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ABSTRACT 

The BRST qu.antization of Chern-Simo1&J field tMory is performed. With aid of 
the nilpotency property of BRST charge, the phYJical state condition Qslphy.a > =0 
if redu.ced to the Gauss law constraints a3Jociated 'with the case that Wil$on loop.$ 
are present or not. Pu.rther the physical Jtates are sho'wn to satisfy Knizhnik· 
Zamolodchikov equation and hence the equivalence between canonical and BRST 
quantization approaches are exhibited. 
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During the past several years, th(! quantization of Chern· Simons field theory 
has been greatly studied in different ways{1-5]. On one hand, Witten performed 
canonical quantization of Chern-Simons field theory[l), he found that the Hilbert 
space of the theory can be identicnl to the space uf conformal bluck of \VZ\V 
moLlel. On this basis, he evaluated the expectation value of Wilson loop operators 
and reproduced the celebrated Jones polynomial. On the other hand, Guadagnini 
dal took the quantization of Chern-Simons theory in a alternative way(2). They 
performed BRST gauge fixing of the theory and computed expectation , ..alue of 
'Wilson loops to second order with aid of perturbation theory, and obtained the 
same result as 'Witten's. This fact suggest the problem that whether these two 
different quantization approaches are equivalent, Cor just as what 'Witten did, 
first impose the constraints, the topology of classical physical phase space may 
become very complicated, in general geometric quantization must be resorted to 
deal with this circumstance. Whilist that first quantize the system and then 
consider the constraints is another completely different story. Hence for a general 
constrained system, it is very difficult to prove the equivalence between these 
two quantization schemes. Fortunately f9f Chern-Simons field theory, Witten h~ 
already pointed out that the Hilbert space obtained by first imposing constraints 
and then quantizing the srstem can be identical to the space of conformal blocks, 
this statement was verified by many authors[6}[7)[8} and make it possible Cor us to 
prove the equivalence between these two quantizatiop schemes. The aim of this 
paper is just give a eJI.-plicit exhibition of the affirmative answer. 

The action Cor Chern-Simons field theory takes the following Conn 

kj 2SCI = 4- (A.AdA + -3,4.I\AAA), (1)
1t' .\t 

where .-l=.1.:radzp with TO the generators in some representation of gauge group 
g, k is chOsen to be an interger in order to make the system PO$5CSS gauge in­
variance under the action of an arbitrary gauge group. Without loss of generality, 
we choose g =SU(N) and there exsits normalization Tr(TIlTi)=t6a6. Choosing 
Lorentz gauge condition a...-lP::;O and performing the BRST gauge fi.xing, we obtain 
the following etIecti \'e action ' 

Sell S,;, +J ~Tr6B[t(Op.-t,. +B)l 

= J £i3z I!" [eP"PA:(oll A: - op.4:> +irbc~.-l:AtA~ (2) 

-~.-l"40,.B" + g.B"2 - ~opt"DPC'I. 
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The BRST transformations for every fields are read as following 

DBA: ED,.CtI, DBBtI = 0, 

(3) 
DSCtJ = _e!ftlkebcr: osCIJ. = eUrBtJ.

2 .' 411' 

Evidently: they are nilpotent: OB 2=O, Now the classical configuration space is 
enlnrgeu by the introduction of new fields-ghost field C I antighost field (; and 
multiplier field B, their canonical conjugate momenta defined by IT~=~, ~ = 
(AI,B,C,e) can be obtained: 

ITAI = i;A2,IT~ = _~Aoo, 
(4) 

IT(l - _lDoC" IIo - Ie!..C- 2 ,c-,· 
These fields and their canonical conjugate momenta satisfy Poisson bracket (for 
bosonic fields) or antibracket (for fetmionic ones) relation 

[II~(x, t), tJ(y, t)l:tP,B -iDJO(3)(X y),' 
(5) 

[II~(x,t),ITi(y,t)l:tp.B = [t1(x,t),tAy,t»):tP.B =0. 

The BRST charge corresponding to the inva.riance under BRST transformation 
eq.(3) can be computed 

QB fcPx{.!.ijD.CtlA~8~ J 
-If°bel:fc"ce - 8r4 UrBIJ.DOC"}, 

(6) 

= fcPx[-t;CtlFt, - ~rkIIcC"ee + *BIJIIC]' 
By a direct calculation, it is easy to prove that 

[Qs,t]:tP.B = !OBt,~ = (Al,B,C,e), 
(i) 

l[QB, QS)+.P.B Q~=O. 

The following is performing quantization. According to the general pr(»cedure for 
quantization, the classical obsen-ables are replaced by operators and Poisson (anti­
)brackets by (Anti~ )commutation Lie brackets. Especially. the polarization must be 

specified, here we choose t=( .41,.8, G, C) to play the role of cancnical coordinates 
and the Hilbert space is composed of square integrable functional in term of (~. 
Since there exists no anomaly in Chern-Simons field theory, the BRST charge Qs 
are well defined and the BRST algebra relations . 

1.· -, (8)2[QB,QS} = QB =0 
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are still sat.isfied (the problem of operator ordering is ignored here and in what 
follows). It is well known that the state space at present possesses indefinite metric 
due to the introduction of non-physical fields. According to the general principle 
of BRST quantization, the physical states satisfy that 

Qslphys >= O. (9) 

Not.ice that the above condition determines physical states up to a zero-norm state 
due to the nilpotency property of BRST charge operator Qs, that is, Iphys > 
-Iphys > +/X >,IX >= Qslphys >. Obviously the zero~norm states have 
the property that they are normal to all physical states including themselves, 
< X/phys >=< XliX, >=0. Hence they make no contribution to the observables 
and they are in essential unphysical. The genuine physical state space should 
contains no such states. Kugo and Ojima, making use of the quartet representation 
of BRST algebra provided by the Hilbert space, found that non-physical states 
always appear as the zero-norm state combination[9}, hence non-physical states 
are confined and the genuine physical state sector can be reached. Here we adopt 
the viewpoint of physical operator proposed by :\Iarnelius[10}. Physical operators 
are defined to be those transform a physical state into another one, according to 
their action on the physical states, physical operators can be divided into two 
types: A-type and B-type ones. A A-type physical operator is a genuine physical 
operator and it transforms a genuine physical operator into the other one, i.e. 
Alphys >=Iphys >', A B-type operator take the. following form 

B= [C, Qs}:t (10) 

where C a nonphysical operator. Evidently A B-type oper:l.tor transforms a phys­
ical state into a zero-norm state and it can be regarded as the generator of a new 
type of gauge transformation for its action on a physical operator t 

[.8;. t]:t = fi}(t}Bj. (11) 

B-type operators form a ideal in the operator algebra[lOJ, the product of an ar­
bitrary operator i( (physical or non-physical) with a B-type operator is also the 
generator of gauge transformation for the ~act 

[(k.8)j, t'):t = tit)(K.8}j (12) 

Followed BRST charge eq.(6), it can be proved that 

- • A k AlbeA" A

B~ = [Qs. IIc] = -s;Ff, -,r ficce, 

.8; [Qs, ITsl = ~ITc. (13) 

B; = [Qs,Oj.l'4.U4 
} = :.\lobG", 
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where ;1la;b=-f;[Fi2'0I1,4j16}. Note that the matrix M=(lll",,,) is nonsingular for 
the reason that -f; F12 and Oj1A.1' constitute a pair of second-class con!'ltraint, in 
classical sense the Poisson bracket between them doesn't ,:·a.nish. It is worthy 
to stress the point that during above process we have used on-shell condition. 
The nonsingularity of M states that C'1=(l,-,/-I)ob.836 are also generators of gauge 
transformation. 

From eqs.(6) and (13), one r.an see that the three parts consisting of BRST 
charge QB are nIl gauge transformation generators, but the second and third terms 
suit for non-physical fields. As for the first part, one can see that there exists 
no coupling beh',;cen the unphysical gauge transformation generators C4 and the 
physicru ones -f;Ff2' so if there exist no Wilson loop operators in the universe, the 
physicru state condition QslPhys >=0 reduces to that 

k A 

8i1" F?2lphys >= O. (14) 

In the case that Wilson loop operators are prescnt, since they are not local 
operators, they locate in a finite region of space time; they only produce the 
excitation from the vacuum'to vacuum. If one want consider their effect t one must 
choose a proper time at which Wlison loop operators excite the vacuum, and the 
generated state can be iIlustrately represented by a punctured surface, which is 
obtained geometrically by the intersection of links, on which Wilson loop operators 
are defined, with surface E determined by some time t. Under above polarization 
choice, the gauge invariant state functional at some time t takes the following form' 

l{lphYI = fDX exP(if: =_-x>SI!1!dt +fr; cPiEt:1Ai Aill)n;;:1 expf~:A.(n) 'iio[.4},o

x = (A,C,C,B), 
(15) 

where n denotes the different components of links and Pn,Qn the punctured points 
created by the intersection of nth components of links with!.:. 'iio{.4.] is the vacuum 
wave functional at time t=-oo, which is determined by eq.(14) and will be explicitly 
shown later. In the language of a operator form, eq.(15) can be rewritten as 
following 

Iphys >= (n"Pexp/Q" L:. 2A.(Xlt x2)dxi )IO > '(16)
p"r 1=1, 

with r the projection on transverse surface E of the links l~cating in the three­
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dimensional space-time region of less time t. Hence w~ ha.ve 

Qslphys > = (JcPx[_.l..CrlF,fl + .!..iJllfi'l +- lfabefr4 Chce)A 

. h n .... C 2 C 

xII:7:1PexpJ~:!:i=1,:!-.{idxi)10 > 

== (fcPx[-CIl[f;t~ - (!:;;=16(2)(X - XP,J7('!" - 6(2)(X - XQ..)J 

+!;B'Ifi'C -lrbef1cC·~tcDlphyS >, 
(17) 

where we have used that 

OxPn ~ .totxp,.) Iphys > -~T{~,)lphys >. 
(18) 

aXQn ~ 4.o t ) Iphys > = ~7(~,6(X - xQ,. )lphy.s> . 
• 1 xQ.. 

Note that in the locations of punctures, Qs becomes a matrix-valued operator, 
so do every fields containing in QB. but out the punctures QB and the fields 
containing in it restore to the ordinary ones. Repeating above process: 'one can 
reduce the physical state condition Qslphy.'J >=0 to that 

[8
k 

Ff2 - L:N_ (6(2)(X - xP.JT: - 6(2)(X - Xq,.])T:lIphys >= O. (19)
iI" ,,-1 

From Gauss law constraints eqs.(14) and (10) satisfied by physkal states, we 
can show that the physical states indeed can be explained as conformal blocks. 
Let's first see the case that there exist no \Vilson loop operators. As stated abo'lre, 
we choose the polarization that At plays the role of canonical coordinate and 
the physical states are represented by the functional with respect to .-lI(X), the 
eigenvalue of operator At. Introducing the new fields U(x) defi.nedby[9] 

Trl A~(x) = -iU-1(x)OlU(X) , (20) 

or in other words, 

%1 

U(x) =U(Xl,X2) = Pexpi _ocdtTa.4.~.(t,X2)' (21)
/ 

one can find the solution to the constraint equation eq.(14) takes the following 
form 

'iio{A] = exp[-it;,J.\{d3yeo/J-rTrU-toou-laaU-la..., - if;h;cPxtraiU-1tJiC:] 

== exp - 5wzw 
(22) 
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Hence one see that physical vacuum state corresponds to a special conformal block 
of WZ\V model - the sco.ttering amplitude from vacuum to vacuum 

< 0 outlO in >= JDU exp - iSWZlV (23) 

If there exist Wilson loops in the unh-erse, in order to exhibit the explicit 
identificntion of conformal block with physical state, we adopt complex coordinate 
description with the convf!ntion Z=*{XI +ix:z), z = *(Xl- ix2); .t=72( .41-i.42), 

.4!=,*(.-i1 + i.-i2 ). It can be easily proved that the .4! polarization in term of 

complex language is consistent with the real .41 polarization 

[;L".4w] [ . .!!, it,,] = 0 
(24) 

[.4:,.4~] -i'\Tc5(2)(Z - w)c5Qb 

Correspondingly. the constraint equation eq.(20) takes the following form 

8~ F:'lphy.9 >= L~=1[c5(2)(z - zpJT(~) ­

Starting from this, one can verify that 

8 2 (~N TC':.11j"",I-\{I [ k+Cv ..c..n#m :P" -zP", ­{}zp" ph!l~ ·-td 
{} 2 (~N ~ -\{I ( k+Cv .c..m;o!nzQn-:Q", ­{}zQ" phl/JI A.!] 

that is~ 

8 2 ~2N 1(",1(;) 

6(2)(z - zQJTtn)lIphys > {25} 

~N Ttnl7j~I)\{I [4. )
.c..m=l zPm -zq" phl/." I , 

(26) 
~N 7j"",)1(",) [
.c..m:l&'Qn-zPm \{Iphl/' A.,], 

~\{Iph!l.t[Af] = -kC L."L.:t,--\{Iphl/,[A,l,k = 1,2, ... 2N. (27) 
VZk + V "r Zk - z, 

They are exactly the Knizhnik-Zamolodchikov equations satisfied by the conformal 
block for '2N primary fields 

8 2 2N T(k)T(i) 
~ < 1il(=d·"~2N(.:2N) >= -kC Lk~'-- < ~1{zd .. ·cfl2N(Z:ZN) > (28)
VZk + v .,.. ZIc - Z, 

Hence from eqs.(23) and (27), we come to the conclusion that physical states can 
be explained as the conformal blocks of WZW model. 

In summary. we perform BRST quantization for Chern-Simons field theory and 
reduce the physical state condition Qs=O to the Gauss law constraints associated 

f 
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with the case that vVilson loops are present or not, then we exhibit the identi­
fication of constraint equation for physical states with Knizhnik-Zamolodchikov 
equation satisfied by conformal blocks, this is consistent with the facts coming 
from Witten's canonical quantization approach. In this sense, we state that for 
Chern-Simons field theory, its BRST and canonical quantization are equivalent. 
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