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ABSTRACT 

In this Letter, we predict that the quantum Hall effects, includ­

ing both integral and fractional cases, can be observed when the 

magnetic field and the applied electric field are not uniform. In 

the present model, the non-uniformity breaks the higher Landau 

levels into energy bands while it may not affect the degeneracy of 

the lowest Landau level. 

I T\'II\i1ing I)ddress 

The integral and fractional quantum Hall effects (IQHE and FQHE) were 

discovered in 1980 (I) and 1982(". Many investigations in this field have been 

provided.(3) In most of the experimental and theoretical proposals, one consid­

ers the effect under the uniform external fields because the uniformity of the 

external fields makes the simplity both of experiment and theory. However, 

one can ask if the quantum Hall effect can be observed when the ma.gnetic 

field and the applied electric field are not uniform. In this letter, we discuss 

this subject. We find that when the uniform magnetic field is perturbed the 

ground state wave function of the single-electron is exactly soluble if there is a 

suitable electric field. Thus, the variational ground sta.te wave function of the 

N-electrons may be constructed by means of a similar way to the construction 

in the common FQHE. The filling factor of this state is not uniform. But. 

the non-uniformity of the filling factor is same as that of the magnetic field in 

our case such that the Hall coefficient is still fractional. Under such external 

fields, however, the excited states of the single electron are not exactly soluble. 

To the first order of the non-uniformity, we find that the degeneracy of the 

Landau levels is lifted completely. Therefore, if the non-uniformity is regarded 

as some kind of imperfections, the IQHE should be observed in such case. 

Consider a free electron moving on a two-dimensional plane. Assume there 

are non-uniform magnetic and electric fields. For specification(4" we investigate 

following two cases: 

Bl = -Bo(1 +891r2)k, El = 891 
me

nB
O
rrj 

- (10) 
C 

9, - E, = 9,nBo ­B2 = -Bo(1 - 2r)k, (lb)2m cr2 r,e

where 9iy i 1,2, are the parameters with dimensions L and L -2 respec­
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tively; Bo are constant and r is the unit vector in the radius direction. The 


fields (la) is related to the normal matrix model with the potential V(M) = 

(1/4)Tr(MtM +(gd2)Tr(MtM)2 ( M is an N x N normal matrix).15) The 


fields (1b) may be prefered by experimentists. For example, a ring sample 


called Corbino disk is put closely between two sets of solenoids. In each' 


set, the solenoids are ring upon ring. Then, by adjusting the electric cur­


rents through t~ese solenoids, the magnetic field will have a reduced distribu­


tion along the radius. The electric field E2 may be made by putting a point ~ 

charge on the center of the ring, whose charge, of course, should coincide with 


eq.(lb). In symmetric gauge, the vector potentials and the scalar potentials 


(I)
of eq.(I) are A 

('l) cBo
A 	 = -[y(l ­

2e 
Hamiltonians are 

e e (.)Bs,.=-[(-;·-+-A') +(--:--+-A')}-ecp'. (2)
• .2m. ,8% ,C z 18y C' 

It is easy to see that the Schrodinger's equations BS;~(i) = E~(i) have the 

e."(act ground state wave functions ~(1) =z"'e%p{-(1/4I')r' - (gt/2I')r4} and 

~(') = z"'e%p{-(1/412)r2 - (g2/2I')r} (I = (lic/eBo)I/') and the energy of the 

grond states is Eo = (1/2)1iw~, where z = % + iy and w~ = eBo/m.c is the 

cyclotron frequency associated with the uniform field 	Bo. 

Now, we consider the N -electron system described by the Hamiltonian 

B(i) = f:[_I_(~V; + !A~i»2 - ecp(i)(rj)} +U, (3)
j=12m. , c 

where U includes the potential generated by a neutralizing background and 

the Coulomb interactions among the electrons. And the interactions are weak 

cBo 2 'I 2" (1) 4g11iBo , =-2[y(I +4gl r )1 - %(1 +4g l r »)],CP =--r and 
e. 	 m.c 

'I 'I 	 .(') g,liBog2/r)1 - %(1 - g,/r»)} cp =---, the smgle-electron
'2m.C1' 

1 	 1i 8 (')' Ii 8 (') 2 

i.e. lUI <: 1iw~. The variational ground state wave functions, thus, can be 

constructed by the Laughlin-Jastraw's formlS) 

.p~)(Zh ... , ZN) = n(z, - zj)"'e%p{-! E IZil2 
- gl E IZiI4}, 

i<j 	-. 4 i 2 i 

.p~)(Zh""ZN) = P(Zi - z;)"'e%p{-i ~/zil' - ~ ~/Zil}, 
(4) 

t<J '. 

where the magnetic length I = (1ic/eBo)1/2 is set equal to unit and m is an 

odd integer. 

Along the Laughlin's fonnulation in the discussions of the common FQHE,(6) 

one can write the square of the modulus of '¢!:..) as a classical Boltzmann dis­

tribution 

l.p~)(zb ... , ZN )12 =exp{ -,8(>~?/(Z1t .. , ZN H, (5) 

where 1/{J =m is the fictitious temperature and the effective potentials 

(>~}~ = _2m2 E In/z; - zjl +m E[lz;12 +gllz.I"}, 
i<i. 	 (6) 

(2) 	 Iz.I' 
(>e/l =-2m'L: In/z. - Zjl +m E[-2- +g,lz.l]. 

i.<i ~ 

These effective potentials describe such a system: the first term in the potenti8.I 

represents the repulsion between particles of charge m via two dimensional 

Coulomb interaction; the second term is the attraction of these particles to the 

origin due to a neutralizing background on the same ring of charge densities 

p~l) = (1 +8gl r')/(211'I') and p~') = (1 - g,/2r)/(211'1'), i.e. 

(>~jl = -2m' ~ Inlz. - Zjl +m ~I dz'p~')(lzDlnlz - zA:l. (7) 

The neutrality of the system tells us that the electron density in states "'~) is 

equal to 
(i' . 

p~ = (!fL = .!. eB,(r) 	 (8)m m hc . 
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This results in the filling factors of these states have a radius distribution, 

v(l) = (1/m){1 + 8g1r') and V(2) = (1/m)(1 - g2/2r). IDgorously, we should 

prove that the perturbation to the incompressible quantum fluid theory no not 

change too much properties of the unperturbed theory. But if the perturba­

tion is sufficient small we believe that the present system remains the main 

properties of the two-dimensional one-component plasma. For instance, in the 

small r = 2m, the system is a liquid. We shall give a detailed discussion for 

this matter in a separate proposal. 

To understand the physical implication of the above result, we consider the 

Boltzmann equation 

fJf fJ/ F 8/ fJf 
- +v· - +-. - =(-)eotl., (9)
8t fJr m. 8v 8t 

where F =eEtot +(e/c)v x B with EtoC being the sum of the E, and a uniform 

applied electric field Eo. By definition, p~ =f fer, v)dv so that fJ//fJr is of 

the 9i-order. The velocity v in the lowest order is proportional to the electric 

field. Thus, in the weak field approximation, the second term of the left­

hand side of eq.(9) may be ignored because it is proportional to 9,IEtOfl. By 

I'using the relaxation time approximation, therefore, the conductivity tensor 

still has the familiar form C1'n = 0'0/[1 + (wcr)2},C1'z-r = p'{}ce/Bi - C1'n/wer 

where (10 = p'je2r/m and We is the cyclotron frequency associated with Bi. 

When the relaxati~n time r -+ 00, we find that the Hall conductivity C1'%, = 
pCjce/Bi = !;.e'/h is fractional while the longitude conductivity C1'%% =O. As a 

result, one expects that the FQHE can be observed when the external magnetic 

an electric fields are not uniform. 

The qllasipartides of the present model can also be discussed by the similar 
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way to describe the quasiparticles in the common FQHEJ8) From eq.(1), we 

see that the only difference between our model and the two-dimensional one­

component plasma is the density of the state. The charge of the particles is not 

changed. This, and the fractional Hall coefficient, imply that the quasi particles 

in our model should have the fractional charge. In concluding our description 

to the FQHE, we world like to mention that the general fractional quantum 

Hall state in our model may be constructed by the Haldane's hierarchical 

schemeJTI We do not give the details here. 

We turn to understand the excited states of the single-electron Schrodinger's 

equation. It is found that the excited states of the Schrodinger's equation are 

not exactly soluble. Up to the first order of perturbation, the higher Landau 

levels are broken into the energy bands. The standard perturbative theory 

in the course of quantum mechanecis may be employed. However, it is too 

complicated to solve our problem because the Landau levels are high degen­

eracy. Fortunately, the ground state of the single-electron is exactly known, 

which may be taken as a starting point to do the perturbative theory. Take 

the Hamiltonian HSJ as an example, we present the results of the first order 

perturbation. Also consider the symmetric gauge, the wave functions are de­

noted by f>n,m where n is the index of energy band and m is corresponding to 

the wave vector. The ground states f>o,m = zme-I (f =(1/4)lzl' + (91/2)1:'1") 

are still degenerate as we have mentioned. Then, it may be check that the 

lowest state in each energy band, up to the first order of 911 

f>n,o =Lne- I , L = (1- 4911:1').:, (10) 
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and the eigenvalue of the first perturbation is (in the unit of I) 

tn,o = [(1 + 16gl )n + 1/2}Jiw~. 	 (11) 

This implies that the lowest energy in each band is higher the original Landau 

energy. The other states may be constructed in the following way. For example, 

assuming the sought wave function t/ln,1 is 

t/l,.,l = Lft-t[a,.( 8 + i) + Llze-/ , (12). 

then a consistent coefficient aft and eigen·energy are 

2n 
an = 3 + (n + 1)32g ' tn.1 = [(1 + (1 + 1)16gt )n + ~]Jiw~. (13)

t 

The state 

t/lt,m = [at.m(8 +i) + Llzme-I (14) 

. is, for a suitable at,m, corresponding to 

el,m = [(1 + (m + 1)16g1) + ~]Jiw~. (1:» 

Repeat the previous process, one can obtain the state t/ln,m and the corre. 

sponding energy en,m = [(1 + (m +1)16gt)n + ~]Jiw~. The conclusion is the 

higher Landau levels are completely separated into energy bands. The theory 

of the IQHE is essentially based on the non·interaction twa.dimensional elec­

tron gas with weak impurity or imperfection. In our ease, the non-uniform 

... 	 parts of the external fields can be regarded as a type of weak imperfection. 

This imperfection breaks completely the Landau levels into energy bands. FUr­

thermore, the existence of the electric field leads to that the extended states 

could exist. Thus, one expects that the IQUE can be observed in the present 

('age. 
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