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Abstract 
1/1 

By means of covariant quantization of Faddeev-Popov technique for three di

mensional general covariantnon-Abelian quantum field theory with an anomaly 

and symmetry breaking free, we consider the expectation value of quantum. holon

omy defined on a path it and reproduce the interest result obtained in reference 

and overcome the shortcoming in reference that no covariant gauge fix

ing is introduced. The reasonableness of the conclusions is analysed in term of 

group reresentation theory and the case that quantum holonomy defined on a 

many-component link is investigated. 
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It is well known that during the past several years, a great number of people 

have been devoted to the study of low dimensional general covariant quantum field 

~~heories due to a series of papers written by vVitten[2-5], in which the expectation 

values some obserbles can identiad to topological invariants of the manifolds 011 

which field theories are defined such as Donaldson polynomials etc. One of the 

most important discoveries is that Witten, taking the canonical quantization of 

three-dimensional Chern-Simons field theory and basing OIl the assumption that 

. the quantum Hilbert space of C-S field theory is identical to that of the conformal 

block of WZW model, successfully reproduced the celebrated Jones polynomial in 

knot theory in term of the expectation value of Wilson loop!2}. 

Recently, two of our authors Lee and Zhu communicated a interesting result[11. 

they thought that, in Wilson loop Wb] =TrPexpf.,A, namely the trace of holon

omy operator Pexpj"'(A with i a contour in three dimensional space-time manifold 

JtI, A A:Tadxp the connection I-form of gauge group principle bundle valued 

in some representation of gauge group g and P denoting the path ordering, the 

act of taking the trace of the matrix valued quantum holonomy must have masked 

some nontrivial algebratic property that the matrix should possess. Starting from 

this viewpoint, they directly considered the expectation value of holonomy oper

ator I(A, a) = PexpJ".4. in term of path integral formalism with a denoting a 

path, but during the process of their deriving the interesting result, their func

tional inte,gr81 evaluating the quantum holonomy is not very well-defined, for they 

didn't adopt the explicite covariant formalism, that is, they didn't introduce non

physical ghost fields to eliminate the degeneracy caused by the gauge invariance 

possessed by the classical action, their operation is in essential taken on the orbit 

space .A = 1with A the connection space and g the gauge group. 

In this letter, we shall overcome the shortcomings stated as above, and perform 

the covariant quantiza.~ion by means of Faddeev-Popov technique for three dimen
; 

sional general covariant field theory and arrive at the same result as reference [1). 
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Furthermore the reasonableness of the result is analysed from the viewpoint of 

group representation theory. 

Let SIAl be the classical action of three dimensional field theory with A = 

A:Tlldx" being the connection I-form valued in some represention ~f Lie algebra of 

ga.uge group g. we assume that SIAl is a diffeomorphism and gauge transformation 

inaviant, and is independent of the metric of the manifold on which field theory is 

defined. That is ,SIAl satisfies 

6S[A] 0 
6gpll 

and 

.cvS[Aj =0 (2) 

where .cv is the Lie derivative along a integral curve of some vector field V on the 

manifold M. The gauge invariance means that SlAt is invariant under the local 

gauge transformation 

A(x) -+ A{x)'(z) =0,-1 (x)A(x)Gg(x) +Gg-I(x)dGg(x) (3) 

Of course, it is also a invariant under all the global gauge transformation 

A{x) -+ A'(x) = {lg-lA(x)Gg (4) 

f~r the set ofall global gauge transformations is a subset of that of all local ones. As 

for the diffeomorphism invariance of the theory, the diffeomorphism transformation 

of A is given by the Lie derivative 

.cvA" =VPopA" +Apo",VP (5) 

It can be proved that the needed constraints caused by diffeomorphism invariunce 
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is completely identical to those caused by gauge symmetries. so we only concen

trate to eliminate the degeneracy caused by gauge transformation symmetries. 

We consider the expectation value of quantum holonomy operator I( A, a )=Pexpf o.A 

with a a path in J~{ 

Z[a]=V-1j VAexpiS[A.)f(A, a) (6) 

where 'V = fVg is the gauge group volume, Vg = IIsdOg(x) and VA are respec

t,ively gauge group measure and gauge field variables functional intrgral measure. 

Obviousely Vg is a gauge invariant for that 

Vg(x) IIsdOg ( x) = IIsdOg,,(x) 
, (7) 

IT:t;dngg,( x) =V(gg') 

Under assumption that the field theory has no anomaly and broken symmetry. 

VA is im"ariant under gauge transformation. 

VA='DAg (8) 

The fact that the gauge invariance of classical action means that the 

action takes constant value in the orbit formed by gauge transformation eq.(3) 

and that the functional integral is performed in all the connection space makes 

the functional integral proportionate to the group volume and hence be a infinity. 

Faddeev and Popov proposed the following technique to deal with this kind of 

case, they defined a hypersurface in the connection space by gauge conditions 

FI.4j =0 (9) 

and made the hypersurface intersect with gauge orbits only one time, ( proper 

boundary conditions must be chosen otherwise this carmot be done in general for 

the appearance of Gribov ambigurity.) and then defined the functional6 F IA] by 

1 = 6 F[A] j VgIIsc5(F[A'J) (10) 

5 

It is well known that 6 F IA] is a gauge invariant. namely 

(6F[AgD = (6F IAJ) (11) 

In order to remove the degeneracy caused by gauge invariance, inserting eq.(10) 

into eq.(6), we have following formula for the expectation value of I(A,a) 

Z(a) V-l fV.-16 F IAIfVg(x)II:t;o( F(Ag(s)])exp( is(AD!( .4, a) 
(12) 

V-I fVgVA6FIA}ITro(F(Ag(z)J)exp(iSIAJ)!(A, a) 

Make a maneuver in eq.(12): denoting .-1g(z) as A., then the original A is replaced 

by Ag-I(s). eq.(12) becomes the following form 

Z(a) = V-I f'Dg'DAg-t 6F(Ag-I]IT:t;o(F(A.J)expiSIAg-I]J(.-1g-1 
(13)1V-I f'Dg'DA.6 F IA]Uro(F[A.J)exp(iSIAD!(Ag- ,a) 

The 0 function in eq.(13) is very inconvienient to operate, since the real physical 

contents are independent of gauge choice, as usual, we take the following operation: 

choosing the other gauge condition 

o(r'IAD ---+ o(FaIA(x)j- r(x» (14) 

then averaging the functional integral eq.(13) with weight after gauge conditions 

P'IA.J=O are replaced by those F"I.-1(x)j - /"(x)=O 

Z(a) ---+ jITtI.,%'Dr(x)exp(-2i~j(dX)lr(xWZ(a) (15) 

where ~ is a gauge choice parameter. Finally, we obtain that 

zeal v-1jVg'DAexp(iSIADexp - ;~(F(Aj)26FIAlf(Ag-1 ,a) 

According to F-P techinique~ introducing two nonphysical fields C(x) and <7(x), 

which are Lie algebra valued and in the adjoint representation of gauge group, 

that is, 

Cag(x) = n;lCII(x)n" Cftg = n;ICo(x)ng (17) 
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and with aid of the property of Gauss functional integral over Grassman variables, 

we have 

nF(A:J = detiv!F '" JITaVCaVCaexpiJ(dx)(dy)Oa(x).ivr6(x, y)C6(y) (18) 

with l\IF being a matrix with respect to gauge group indices, space-time indices 

and space-time coordinates and its matrix elements taking the following form 

lvr4(. ). 6Pl[.-1~Jx)1 DCd(. ) (19)F x,Y bA~(y) II Y 

Accordingly, eq.(16) becomes that 

Z(a) = 	 V-1JVgVAVCVCexp[iS[A] *J(Fa[A.J)2(dx)+ 
(20) 

iJ(dx )(dy)C4(X ).i\1aO (x, y)Cb(y)]/(AS- ' ,a) 

Now we perform the same maneuver as that Lee and Zhu did in reference [11 

,which reveals the transformation property of Z(a). Let g' be a global gauge 

transformation, write A in eq.(20) as As'-Is' and rename A9'- 1 as .-1, and hence 

the original A is replaced by .-1/, but from above gauge fixing process, we can see 

that ghost fields C(x), C( x) are in essential originated from the gauge condition 

F(A)=O, hence if we take some operation on A, correspondingly C and C must 

have some changes, so under above maneuver'..1 - AS' with g' a global gauge 

element, for linear Lorentz covariant gauge conditions, we have 

II - ffLiI
,\( F - 6.-l -

i~ r !J'
:V.l.F 

6F(A.I1'1
.sA 

n-I ffLiln 
H,' oA H!J' (21) 

n;'l,MFn91 

, and hence 
/	

, 
gl8F(Ag ] Jvcg'VCl expiJ(dx )Tr(OS'(x )AIr:(x )C (x)] 

l/ 
detMi = detMF = 8F(A] (22) 

= JVCVCexpiJ(dx)TrC(x)lvlF(x)C(x) 

1 

This coincides with the fact that ghost fields belong to adjoint representation 

of gauge group (eq.(11)). After the maneuver stated as above, eq.(20) can be 

rewritten as following 

Z(a) = 	 V-IJVgVAVCVCexp(iS(AJ - ~J(dx)Tr(F{A])2+ 

if(dz )e(x)MF(x )C( x )11« A,-l)ll', a) 

= V-IJVgVAVCVCexp{iS(A) - i~J(dx)Tr(F(.4])2+ (23) 

iJ(dx )Tr(CMFC»)n;.1 I(A,-l , a )Og' 

= 0;.1 Z(a)O,. 

Since this is true for every global gauge transformation, and a is supposed to be 

'some irreducible representation of gauge group 9 that can be realized in a infinte 

dimensional representation space for the assumption that the cl~sical action is 

general covariant, according to Schur's lemma in group representation theory, we 

obtain the conclusion 

Z(a) = C(a)lp (24) 

where p denotes some irreducible representation of gauge group 9 and C( a) is 

a scalar function depending on the path a. The same as that Lee and tZhu's 

analylising the consequence of changing gauge field A to AS(:!:) by a local 'gauge 

transformation shows that[l) 

0, when a is a open path 
C(a) = (25)

{ :F 0, when a is a contour. 

Eqs.(24) and (25) are just the interesting result in reference(l) 

Inessential, from the viewpoint group representation theory I the result eq.(24) 

and (25) are very eVident, let's see this in detail. Since the classical action 

SIAl = JM(dx)l[A] is a gauge invariant, of course it is invariant under global 
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gauge transformation 

.4'--+ AI' = n;,tA(x)Sl" 
(26) 

= exp( -i(J&T-)A(x)exp(itr'1"') 

wherl'! (}O, (Jb are parameters independent of space-time manifold and T- , T6 (a,b=1,2 ... 

dimG) are generators of gauge group {i, which satisfy 

(r, '1"'] = ij"6err (27) 

then there exist Noether current 

i: = -iTr(8~~1I [r, All]) (28) 

which is conserved for the gauge invariance 

8"i: =0 (29) 

an~ the corresponding covariant conserved charge 

Qfl = ji:dE" (30) 

where 

dE" = (-l)"A!:..o (31) 

with the prime denoting the omission of dx" from A!::(). We. the same as 'Witten 

did[3], assume that for a general space-time manifold j\{, there still exist the 

following classical Possion bracket 

[Qfl, A,,]P.B = i(T- 1 A,,) 
(32) 

(Qfl, Qb)P.B = i/,,6erc 

(For a flat space-time manifold, the evolution time is well defined, correpondingly 

so are the conserved charge and canonical momenta 11'" conjugate to A". With aid 

of the well-defined basic Possion bracket between A" and 11'111 the above Possion 

bracket can be proved by a direct calculation) 

After quantization, the classical field functions A" are replaced by operators 

A,,(x) (their concrete fonns depends on the polarization choice) and the classical 

possion brackets by Lie brackets. With above assumption that there exsits no 

anomaly, the quantum Nother current conservative equation 

(}'J < J: >= 0 (33) 

is still satisfied. With aid of another assumption that gauge symmetry is not 

broken, that is, the ';accum state is invariant under gauge transformation 

Og,IO >= 10 > (34) 

or 

QOIO >= 0 (35) 

Hence the conservative operators QO are still well defined and preserve hermic

ity. They satisfy the following commutative relation correponding to the classical 

Possion brackets eq.(32) 

[Qfl,.4,,(X)] = -i{Tfl, • .i,,(X)J 
(36)

[QI1, QIII = ifflbcQC 

From eqs.(26),(27) and (36), one can Qfl constitute the representation for the Lie 

algebra of gauge group 9 and the Hilbert space of the field theory is just the 

representation space for the charge operators act on the Hilbert space. For an 

arbitrary element 9 of global gauge group {i, its representation takes the folllowing 

form 

0." = exp - ia"Q!I (37) 

with aO are real constants, which is unitary for the hermicity of QI1. Note that 

the assumption that gauge symmetry is not broken or equivalently eqs.(34) and 

(35) is important for the representation to be unitary. Otherwise the zero-norm 
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states will appear in the Hilbert space of the theory and the charge operators Q. 
are not physical operators, and hence it is impossible for them to generate unitary 

reresentation of gauge group 9 in the physical Hilbert space. So under global 

gauge transformations, the transformation behaviour for a quantum state /_4. > 

and quantum holonomy operator i( .~, a) take the following forms respectively 

1.4 >-- '.4 >iI' =0;.11_1 > 
(38) 

j(A,a) ~ U(A,a)]g' = 0;.1 j(.4,a)0.7' 

Hence we have 

[Z(a)]9' « .4Ij(-4., a)I·4. >)9' I 
« .4/)9'[je..i,a)]9'(IA > )9' 

(39)
AI' • 1 • 

< AIOg'O;' f(A,a)Og,n;. 1..1. > 

Zeal 

that is, Z{a) is invariant under global gauge transformation. Note that zeal is 

matrix-valued. By means of Wigner-Eckart theorem, we obtain that 

Z(a)ij = C(a)5jj (40) . 

with that 

C(a) =< A.P)lj(.4.,a)/..i(p) > ii).p (41) 

where A,p stand for irreducible representation and IA.().) > is a state in the Hilbert 

space of three-dimensional general covariant field theory and belongs to A irre

ducible representation of gauge group G for the fact that the representation pro-

vided by the Hilbert space is in general reducible. 

As for the reasons that the vanishing or not of C(a) depends on the closing or 

not of the path a, it can be explained as following. If there exist no Wilson loops or 

holonomy operators in the universe, the Hilbert space of the theory only contains 

one vaccwn state 10 >. In the case that they are present, they will play the role of 

matter fields and after quantization they will generate the Hilbert ::lpace through 

their action on the vaccum state. Let's see Witten's quantization idea. The 

three dimensional manifold can be chopped into pieces along the time evolution 

direction. Since we assume that the links are located in a finite region o~ three 

dimensional space-time manifold, at an arbitrary time t, the state of the ~ystem 

evoluting from, the vaccum at time t=-oo, which is represented by a transverse 

surface E with no punctures on it, now is represented by a. punctured surface ~ 

created by the intersection with it of the links or arbitrary paths on which Wilson 

line or holonomyoperators are defined. The obserbles-holonomy operators acting 

as creating operators generates the present state. In the polarization that A is 

chosen coordinate, the state functional at time t takes the following form[6J 

IW[A, t] > < A,tlw >= fdA' < A,tIA',to = -00 >< A', to = -00/\11 > 

= fdA'I((A,t;A',to =-oo)W(A',to = -00) 

=' fVAezp(if~=_ooS[A]dt + f tB[A])W(A., to = -00)nnPexpI~:A(n) 

(42) 

where B(A] denotes the boundary terms associated with the transverse surface E, 

n the different components of links or different paths ~d Pn , Qn the puncture 

points created by the intersection of the nth component of links or pa.ths with E. 

More exactly the state should be generated by the action on vaccum state of the 

holonomy operators defined on the projection on the transverse surface E of the 

links or paths located in three dimensional space time region of less time t[1) 

Q. i . ! 

W[A,t) = fI"PezpiJ Ei..d,'lAi (ZI, z'l)dz'W[A, t = -001 (43) 
- p. I 

where %i, i=I,2 chracterize the punctures position in E. On the other hand, the 

state represented by punctured surface can be obtained through the vaccum state 

at t = +00 for the links or paths on which quantum holonomy operators are defined 
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locate in a finite region. that is, it is generated by the action on the vaccum state 

at t =+00 of holonomy operators defined on the other part of the links or path 

cutted by the transverse surface. The states generated in this way also constitute 

the representation of gauge group g. The quantum Z(a) or C(a) is exactly the 

expectation value of holonomy operator I( .4, a) between of these two kind of states 

due to the cutting of transverse surface. From above statement, it can be easily 

seen that if the path is not closed, the irreducible representation provided by 

. two kinds of state :;pace cannot be equivalent, hence according to eq.(41), 0(0) 

must yanish. Conversely, if the path is a contour, the irreducible representation 

should be equivalent for that these two kiuds of Hilbert space are created from the 

holonomy operators inheriting the same representation from gauge group g. So 

we arrive at the conclusion eq.(25). 

Let's see the case that quantum holonomy operator is defined on a many· 

component link L. From the defination of a link, it is well known that the compa. 

nents of a link don't intersect but can link with each other, hence the expectation 

value of quantum holonomy operator 

Z(L) =< PexPj .4 >=< IIi:1PexPj .4 > (44)
L Qi 

can be evaluated without any path ambigurity for the path ordering in the de

fination of holonomy operator already shows the sequence of transport of the 

connection on the path provided by the components of a link L. Morever the 

quantum holonomy operator defined on different components of L can be in differ

ent representation of gauge group G. Under global gauge transformation, they are 

covariantly transformed according to the representation to which the connection 

A belongs: 

PexPj ..4(p)·(i) ~ n~).(i)-lPexPj .4(p)·(i)n~).(i) (45) 
at a, 
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where p specifies the representation and i the ith component. Repeating above 

performation, we can reach the following result 

Z(L) =0(0t,02, ...on)lp, ® IP:1 ® ... ® Ip.. (46) 

or 

Z(L)AIA, ...A..,BIB,...Ba =C(O., 02, ...on)bAIBlbA2B2 .. ·6.4."B" (47) 

This can also be straightforwdly predicted from the result eqs.(24) and eqs.(40), 

which are suit for a single knot. Note that the coefficient scalar function C(ai, a2, ... a,,) 

doesn't not simply depend on each isolated component O,i (i=I,2, ... n), but also has 

relation with the linking among the compqnents. That is, in general 

C(01' Ct2, ...Ctnh~C(~1)C(Ct2)...C(Qn) (48) 

unless every components of L don't link with each OI;her. If one of the components 

is open (of course, in this case, the geometric object is not a link), C(01,02, ... On) 

must vanish due to the local gauge transformation propeity of holomomy operator 

defined on this one open component{I). Thts many.com~onent result eqs.(46) and 

(47) furtherly implies that the connection between quantum holonomy and Hopf 
. I 

algebra is worth investigating.[8) 
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