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§0. Introduction

!

Recently, much attention has been paid to the non-commutative differential cal-
culus on quantum groups{1-5]. In this paper we will describe the exterior differential
calculus on the quantum group GL,(n). Quantum group theories were developed and
several different approaches to construct quantum groups were also introduced in pa-
pers [6-9]. In the first part of this paper, we will adopt Faddeev’s approach to give
the construction of the quantum group GL,(n) and a concrete subalgebra of the dual
of the coordinate ring of GL,(n). The second part is mainly applied to discuss the
first order differential calculus on the quantum group GL,(n), namely the construction
of the exterior differential operator d and the first order differential bimodule. In the
trird part we will demonstrate in detail that the first order differential calculus given in
section two is bicovariant. In the fourth part we will describe how to get the quantum
de Rham complex of GLy(n). A general theory for bicovariant differential calculus on
compact matrix pseudogroups was developed by Woronowicz {1}. And the discussions
of noncommutative differential calculus on more general quantum groups and quantum
spaces can be found in the papers [2]. In the third and fourth sections we mainly adopt
Woronowicz’s methods and some basic results that are true in Hopf algebras level for
general quantum groups. In the last part we shortly remark how the quantum exterior
differential calculus on the quantum group GL.(n) is induced to give the quantum de
Rham complex on the quantum group §L,(n).

This paper is an extension of [10] for more general case GLy(n), most proofs in
{10} are still valid in this paper. In this paper quantum groups are understood as the
objects of the inverse category of the Hopf algebras with antipode, which are ncither
commutative, nor co-commutative. As to Hopf algebras, please see [11]. For simplicity,
summation convention is used in the paper. : )

By the method provided in this paper, we can also give bicovariant differential
calculus on quantum groups of B,, Cy, D, series and other types[12].

§1. Quantum group GL,(n)

In this section, we will cite some results on the quantum group GL.(n) without
proof, and give some explanation to the symbols applied in this paper.

Let

Ry = Z q‘iie;;Qz,‘,' + X Z e ®eji, e C”. » (1.1)
=1 =1
i>;
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where x = ¢ —¢~!, ¢;; (i,§ = 1,2,--+,n) is the element matrix of order n, entries of

which are all zeros except that the one on i-th row j-th column is 1, and the symbol
® means the tensor product of matrices. One easily checks that the matrix R, is a
solution of the quantum Yang-Baxter equation(QYBE)

RyaRi3Rys = RpaRiaRua, (1.2)
with R;; as n® x n® matrices defined via
Ri2=R,®F, Ria=(EQ®P)R12(E® P), Ria= E® R,,

where E is the unit matrix of order n and P is the permutation matrix in C* @ C".
We can also write the matrix Ry in the form of submatrices, i.e.,

Ry = (rijhgiign (1.3)
with
Xejis i>],
rij=9 0, 1< (1.4)
E+ (q - 1)eih i= j!

Take n? elements t;; (i,j = 1,2,---,n) and arrange them into a matrix T =
(tijhgijcn- Let C[T] denote the free associative algebra with unit 1 generated by the
n? elements &;; (i,7 = 1,2,---,n), and let {R,T\T; — T3T1R,} be the two-sided ideal
of C[T] generated by the relations R,T\T; ~ 3T\ Ry, where 1 =TQ® E, I3 = EQT.
Then the quotient

Fua(M,(n)) = C[TY/{RN T2 —- ThTh R,} (1.5)
has the structure of a bialgebra with the €-linear structure maps, the comultiplication
- A and’the counit ¢, fixed by the following values for the generators:

AT =TOT, (1.6)
&T)=E, (1.7)

where the symbol ® means At;j = 1;; @ tx;. Both A and ¢ are algebra homomorphism.
And the multiplication m on Fun(M,(n)) corresponds to the ordinary one of functions,
i.e., ’

m(z®y) = 2y, Vz,y € Fun(My(n),

and the unit map i is defined by
i: € — Fun(My(n)),
A —  A-l,

When g = 1, Fun(M,(n)) coincides with the commutative algebra Fun(M(=n)) of co-
ordinate functions on the matrix algebra M(n,C). So, we can regard Fun(M,(n)) as
the deformation of Fun(M(n)), or the algebra of coordinate functions on the quantum
matrix algebra M(n) of rank n associated with the matrix R,.
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Write S, for the symmetric group on a letters and write I(0) for the length of
o € Sn. Namely, /(o) is the minimal number of the terms required to express o as a

product of the simple transposition (i,i+ 1). For the quantum matrix algebra M,(n),
the quantum determinant can be defined as:

Det,T = Z (—9)“’)‘101 t203 " *lnon- (1.8)
o€ESn
The quantum determinant has the following properties
A(Det,T) = Det,T @ Det,T, (1.9)
&(Det,T) = 1. ' (1.10)

Remark 1. In what follows, we identify the element tij (4,7 =1,2,---,n) and
Det, T with their corresponding equivalent classes.
Definition 1.1 .

Fun(GLqy(n)) = Fun(My(n))[t]/{tDet,T - (Det,T)t, tDet,T 1},  (111)

where ¢ is a new generator and {tDet, T —(Det,T)t, tDet,T - 1} means the two-sided

ideal of Fun(M,(n)){¢] generated by the two relations tDet, T — (Det,T)t, tDet, T - 1.

At this time, we naturally extend the structure maps m, i, A and € of the bialgebra
Fun(M,(n)) to the quotient Fun(GL,(n)) and require

At)=t8¢, e(t) =1 (1.12)

to make it also a bialgebra. Furthermore, the antipode $ on Fun(GLy(n)) can be

uniquely determined by the requirement that TS(T) = E-1 = § (T)T, its definition

on the generators &; (i, = 1,2,--+,n) and ¢ is given by .

S(‘U) = ("Q)i-j‘DCtQTJ"'* "J = 1,2,"',7!, (113)

S(t) = Det,T, (1.14)

where T., denote the (n — 1) X (n — 1) generic matrix obtained by deleting row ¢ and

column j of the generated matrix T = (tiihigij<n- After introducing the antipode we

obtain
Theorem 1.1 Fun(GLy(n)) is a Hopf algebras with respect to m, i, A, zand .

I-‘.un'(GL (7)) denotes the dual of Fun(GL(n)). We now give two sets of linear
functionals I} (i,j = 1,2,--+,n) and arrange them into two n X n matrices.
L* = (E)igijgn-
To describe l§ (i, =1,2,---,n) explicitly. We first define that the values of the linear
functionals l?} (1,7 =1,2,-+.,n) on the generators t;; (i,j = 1,2,---, n) of Fun(GLy(n))
are given by '
ET) =8, 0#)c€€, (1.15)
‘§(I)=6i]'v ivj=l:2!"‘)ny (116)
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where
X€jis 1<
= E+(q—l)c.~.', i=j, (1‘17)
0, i> ]
0, i<j, )
753 B+t~ Nei, =7 (1.18)
-X¢€ji» i> ]

If denote R = (r¥ Migijgn B™ = (r,,)1<.,,<,., then Rt = PR, P, R~ = R}, where P
is the permuta.tlon matrix, and can be written in the form of submatnces as

P = (Pij)1gijgn = (il1giign:
From the fact that the matrix R, satisfies QYBE, it follows that
RER{RE, = RERGRY (1.19)
with R,?,- as n3 x n® matrices defined by
RY = R*QE, RE = (E® P)RE(EQ® P), R}, = EQ@ R*.

For arbitrary element of Fun(GLy(n)) the definition of l,-j is given by the following
induction,
IE(zy) = I5(2)E(y), Vo, y € Fun(GLy(n)). (1.20)
Now what we need to do is to give the value of l;*j (i,j = 1,2,---,n) on the
generator ¢ of Fun(GLy(n)). For this we rewrite (1.15), (1.16) and (1.20) in the form
of submatrices as follows

< L*,T >= (B(T)higijsn = M'RE, (1.21)
<[*1>=E, (1.22)
< L 3y >= (Eay)igien =< LE,z >< L¥y > . (1.23)

Then the action of I* (3,7 = 1,2,-+-,n) on the generator ¢ is
< L%t >= (EE(t)gijgn =< L*, Det,T >t (1.24)

In fact, we have
< L+.t,‘j >= .«\+r;5,

< L*, Det,T >=< L*, [[ tii >= A}4E.

=l

Thus
<Lt t>=A"¢"'E (1.25)
holds. Similarly, we have
' < L™t >= A%qE. : (1.26)
4

We can check that the action of the linear functionals l* (4,j=1,2,---,n) given
in above way on the two-sided ideal generated by the rela.tlons R,N\T; - Ty Ry,
Det,T~(Det,T)t, tDet,T—1 is zero. This shows I % (5,5 = 1,2,--+,n) is well defined on
the Hopf algebra Fun(GL(n)) and then the two nets of functionals I£ 3,7 =1,2,---,n)
belong to Fun"(GL,(n)) (also see Proposition 1.2 in [10]). F\uthermore, with the
comultiplication A of Fun(GLgy(n)), the multiplication m* amongl (,ij=12,--+,n)
can be introduced. Suppose £, 1 are two polynomials of l We deﬁne

m* (€@ n)(z) = ()(z) = (€@ n)Az,  Vz € Fun(GLy(n)),  (1.27)

and introduce two new linear functionals I* by the following formulas

<ET>=%T)= (lu LU AV ) I (1.28)
< Bt >= ) = (15 (1), (1.29)
<P 1>=F1)=1, (1.30)
< I, zy >= E(zy) = [X(2)IX(y), Vz,y € Fun(GLy(n)). (1.31)

It is also easy to see that
E({RN\Ty - ToT1R,, tDet,T — (Det, T)t, tDetyT ~1}) =0

Fung(GLy(n)) denotea the associative subalgebra of Fun*(GL,(n)) generated by lah
(4,j=1,2,--+,n) and I* via the multiplication m* in (1.27). Obviously, the unit of
the algebra Funo(GL,(n)) is €, i.e. the coumt of Fun(GLg(n)). However, it should be
pointed out that the 2(n? + 1) elements l 5 (hbi=1,2,--,n) and I% are not free gener-
ators, which are subordinate to the commumca.uon relations given by the following two °
propositions proofs of which are due to (1.19) and definition of L* (also see Proposition
1.4 in [10}).

Proposition 1.1

RYLELF = LELERY, (1.32)
RYL}L; = L7 L} RY, (1.33)
where Lf =L*QE, L‘f = EQ® L%,
Proposition 1.2

(l) I H‘-- =¢, (1.34)

(ii) z+1.* LA, 7 L* = L3, (1.35)
(i) =11, (1.36)
(iv) I5=0,i>j15=0,i<j. (1.37)
The homomorphisms A®, £°, §* on Fung(GL,(n)) are defined as
AY(L*) = L* @ L*, A(IF) = X Q I,
e(L*)= E, e(l¥) =1,

5°(L*) = (=Y~ *(Dety1 LEhgijgn,  S°(UE) = iilh 1%,
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where Lg is the submatrix of L* defined like T;; in (1.13). We can check the compat-
ibility of the maps A®, £*, $° and the relations in Propositions 1.1 and 1.2. Namely,
the actions of A®, ¢, and S* on the relations (1.32)-(1.37) are all zeros (as Proposition
1.5 and 1.6 of [10]). We can also see

S*L¥)L* = [¥§*(L¥)=¢-E. (1.38)

Finally, we have
Theorem 1.2 Funj(GL,(n))is a Hopf subalgebra of Fun"(GL,(n)) with respect
tom®, A", ¢", 5. .

§2. The first order differential calculus on GL,(n)

Assume A is an associative algebra with unit. The first order differential calculus
on A, which is denoted by (T, ), consists of a bi-module I of 4 and a linear operator
§ satisfying

(i) Leibnitz rule

5(zy) = (6z)y + 26y, Vz,y€ A, (2.1)

(ii) for arbitrary element p in I, there always exist some elements z;,y, € A
(k=1,2,---,N)in A such that )

N
p= Z Zibyx. (2.2)
k=1

Now we regard Fun(GL,(n)) as A, and for simplicity, give it a special symbol Q°.
To construct the one order differential calculus on quantum group GL,(n), what one
first has to do is to determine a 02%-bimodule which is denoted by Q!. For this end, we
introduce the convolution “x” on Q0. For f € Fun*(GLy(n)), the convolution “+” from
29 to Q0 is defined by

f+(z) = (id® f)Az, z € Fun(GLy(n)), (2.3)

where id is the identity operator on (%, Furthermore, we introduce two sets of func-
tionals on Q° as follows:

. . -
(i) Vi:= ;(s (G - bie), 4,5 =1,2,---,n, (24)
(ii) aijﬁl = S‘(l;)l;;b i‘lj’k)l = 1,2,"',11. (2‘5)

For the operators *, Vj, 8;;1, we have

Proposition 2.1  For Vz,y € 02%,i,j,k,1 = 1,2,---, n the formulas

() Vii(1) =0, 6;u(1) = budy, (2.6)
(i) A"V =V ®0uij +£8 Vy,

A8kt = Gijue ® uvit, (2.71)
(i) Vij» (2y) = (Vaw #2)0uvij * ¥) + (V5 + y),

Gijat % (2¥) = (Bijuu * 2){(Buvst + y) (2.8)

hold.
Proof: Now we prove the first equation of (2.7). A directly calculation shows
AV = Lav(S Aty - Lieoc
= S (S, ® S (I - 166 @¢

= (Vaw + 16ue) @ S* ()15 - 16, @€

=V ® 0uwij + ’%5 ® (GNUS‘(I;;)’:; - 6556)
=Vw® oum'j +eQ@ vi,i~
Next we prove the first equation of (2.8). Let Az = 2,4 ® 23,0, Ay = ¥1,8® ¥2,9. Since

Vii*(z-y) =(id@ Vi;))A(zy)
= (id @ Vi;)AzAy
= Z1,a11,8Vii(Z3.a12,8)
= 21,a11,80°Vij(Z2,4 ® 124),

applying the first equation of (2.7), we have
Vii 2 (2y) = 21091,0(Vuu(22.0)0uii (12.6) + £(22,0)Vij(v2.8))
= 21,0 Vuu(22,0 91,0015 (¥2,8) + 21,06(22,0)91,0 V35 (32.0)
= (Vuy # 2){0unij *y) + 2(Vi; + y).

As for the remained formulae, we leave them to readers.
From (1.38) and (1.7) it follows that

<SYLTIT\T >=<e-E, T >= (6i;e(Ti<ijcn = Ena,
where Ea is the unit matrix of order n%. On the other hand, due to (1.6) one has
< SYLT)L7,T >=< SY(L™),T>< L™, T >=< §*(L™),T > A='R".

So we obtain
<SL7)T>=A.R, |

ST UGNT) = A-ris : (2.9)
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Combining (1.4), (1.15), (1.17) with (2.9), and letting r = A4 A, we can get, ifi=j,
(SUIENT) = SURNTWET)

=r i Tkt T rrard
= rx? Taci ekk + 1(En +(g" = 1))eiis

and if i # 7,
(SUZMENT) = rxejie
Thus
vy =] T i#ED . (2.10)
WT) =\ L(r = )En +7(e? = Deis + 7 Tacionly §=5:
Similarly, it follows from (1.25) and (1.26) that
1,1
Viilt) = ;(;;ﬁ - 1)6i;. (2.11)
If we arrange Vi;(ts) as a matrix of n x n blocks,
V(T) = (Vis(T)hgiign
where the submatrices are
Vi T) = (Vii(t#)ighigny 1 S 4,7 <m0
Then
VT) = (ST e B
= )l((< §(L7),T >< L*,T > ~Eya)
= -:z(quR" - Epa)
= %(quPR,P - Ea). (2.12)
And L1
(Vii(Ohgijgn = ;(;ﬁi - 1)E. (2.13)

Now we apply the matrices V(T) and (77 — 1)E to construct another matrix. Let

M(A) = (M:((?.—n‘)w)xsk.t.i.isn = (Vij(tu) + AuVii())ightiign (2.14)

where ) is a complex parameter. Sometimes we also write the matrix M())as M{\) =
(M )1grsiign:

Proposition 2.2 If r*g? #£ 1, for fixed ¢ and r there always exists ), s.t. the
matrix M(A) is invertible.
Proof: Ifi3# j, then one has

- r
M:(“."_l')&;‘ = ;X‘k-j,i-l = rék—ji-i-

The above equation shows that there is only one non-zero element r in every row or
column of M(A) except the rows (n(k—1)+k) and columns n(i—1)+i (i,k = 1,2,---,n).
Hence, to determine whether or not the matrix M(A) is invertible we need only to
consider the matrix N(A) of order n,

N(A) = (MO  ichigns

My = Vi) + 33 - D).

In fact, the expression of the matrix N()) is

b a a a

1 ¢ b a a
NMN==}¢ ¢ b a

W= : :

c ¢ ¢ b

where
a=r(x2+l)-l+,\(;;.’;1-l)?
b= rq’—l+A(;;’;,—l),
e=r~1+AMzy-1).
Straightforward calculation gives

_ b__a)n-l q"‘—l__ 2y _ qﬁn-ﬁ_l
DetN()) -f———-xﬂ b - -0t

pn=1 q2u -1 ane2
= (qu_'% -(q -1
So, when r?g? # 1, for fixed ¢ and r we have A such that DetN(A) # 0.
Now we are going to construct a Q°%-bimodule Q. Define dt;; and dt the one order
differentials of the generators t;; (i,j = 1,2,*--,n) and ¢ of 2% And let 2! be the left

0% module generated by the elements w* (k! = 1,2,--,n), satisfying the following
conditions: : .

S(tim)dtmj = Vutltio®, (2.15)
Det Tdt = Vit : (2.16)

The right multiplication in the left module Q! is defined by

] .
wioz= (B * )M, vz € 0O, (2.17)
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so that Q! is a bimodule of 02%. Due to the argument in the last section that 8;;4 is a
functional on 09, the right multiplication is well defined. Namely,

Wz = (id @ fiju) AzwH

is independent of the choice of the representation element x. Furthermore, by Propo-
sition 2.1 this right multiplication is associable, i.e.

wi(zy) = (Wiz)y, Vz,yen’.

And it is clear
w1 =0l
So Q! is a N%-bimodule.
Definition 2.1 The differential operation d from 0° to Q! is defined by

dz = Vyj + (z)w' (2.18)

Theorem 2.1 {Q!,d} constructed above is the first order differential calculus on

0. :

Proof: We need only to check (2.1) and (2.2) hold. Combining (2.8)in Propasition

2.1 with (2.17) one directly verifies d is a differential operator satisfying Leibnitz rule

(2.1). To verify {Q',d} satisfies (2.2) we need to prove w"” (i,j = 1,2,---,n), the
N

generators of ! , can be represented by the form Z zidyx, T,y € Q°. By (2.18),
k=1
(2.15) and (2.16), we have

dtg = (id@ Vi,' )Al!;‘zwij,
=(id® V;;)Au",

Using the Proposition 2.2 we can find A such that the matrix M(A) is nonsinguiar. So
from
5(!*,,. Yt + A6MDct,le = (V,’j(lu) + A5k1ng(l))wij,

one obtains B o
W = MO IS (tkm)dtmt + AuDet Tdt), (2.19)

which implies that for {Q?,d}, (2.2) holds.

It should be point out that the expression of w'/ in (2.19) is independent of the
parameter A. This can be proved by a simple argument in linear algebra.

By (2.17), we also have the cross relation among di;;, dt and ¢;;, { as follows,

dT -z = (V;j+ Tz

= (Vij » )i » ()M )t Z (S (tor)dtyg + Aap(Det T)dt),
dt-z =(Vsthw'z

= (V5 + Ot + ()M Ao S a(S(tan)dtyg + Aag( Dety T)dt),

(2.20)

10

where z = t,, or t (v,9=1,2,---,n).
Remark 2. The case of r*q? = 1 will be discussed in §5.

Proposition 2.3 Let L = §*(L~)L%*. We have
RLR*L; = LRI, R*

here Ly =L®I, L;=I@®L.
Proof: By Proposition 1.1 we easily obtain

LYR*S*(L3) = S*(L7)R* L},
ﬁfz.(f},ls (Li) S*(L7)8 (Lx IR,
S*(LT)RLY L*RS'(L, )

Noticing Ly = §*(L7)L} and Ly = S*(L7)L}, we have

RL\RYL, = RS*(Ly)L{R*S"(L;)Lf
= RS'(L,‘)S'(L;)R"L*L"‘
= §°(L;)S*(L)RL L} R*
= S*(L3)LRS*(L] )L+R+
= LyRL,R*.

§

RN, =< Oijue, Tk S(Tin) >, -
Fk’l,mn =X < Vpn, Tkis(nl) >.
By Proposition 2.3, we obtain ’

Theorem 2.2 For R, F defined in the above two formulae, there exist two sets
of equations which are equivalent with each other:

(i) ViVi-ViV;R} = V.Fp,
vkeml Omi v) Ru 3
R-Hokualv = ouna)nn—w ' "
F )‘o)uekv + Emvv = Vmamam, + am uvl
(i) FyFy, ~FuFy R.‘ =Fi.Fu,
Wl = R"""F" R'l:h
RIJ B_gr‘l‘R:w J"I R.“"
R}},F* + FiaR} ’R"* = F,mn:'f R7™ + RY,Fy.
Here, for slmphcﬂy. we use one index instead of two in above equations, for example i
stands for i?', etc.

11



Proof: Here we only prove the first equations of (i) and (ii), the proofs of remain
equations are similar and can be found in {5]. By Proposition 2.3, we have

Lo ch'.dl’ L E}-y",qn = ch,clLaa‘ R:q,ybLW

Lo < S'(l;,‘), top > Lagy < lj:k.,tpy >= S'(‘;a), te > Lgar < l:;yy tis > Ly
LeorLga 8 arnie (tey ) = LaarLipbaariir (cs)

Lo Laar8adriir (bepe rrnu (S(yrw)) = Laar Lis8aarins (2cs ) Okkrun (S (tsew))

Lot LagrOaarun (1o S(tyru)) = Lot LiprGaaruw (16 S (t5ew))

LeetLagr 692,65 = Loy Ly RS,

LeoLyg = Loy LRSS

(XVer + 8e€)(XVadr + 8aa€) = (XVaar + baar€)(X Vit + S )RS S

ggeaany

Since -
aaa'R'::lu' = 604’00!'4&‘(!&5(‘6’1:’)
= (xv’“; + 8uare (tes S ()
= Fﬁ:a“ + sdd'&bc‘sb‘c'v
and s
SRS = Sybagruarl(ta S(tye)
= bqdbarardccty
baar S REE S = Bocrbaar,
we have " ,
Voo Vit = Voo Vir RIS = Voo Filug.
Therefore the first equation of (i) is proved, and by applying both sides of it to
tuuS(tyrw ), we have on the left side
(Vcd vdd’ - Vu'VwR:ﬁﬁ:)(i?vs(luvu'))
(Ver ® Vg = Vaar ® Vi RSN A(tuuS ()

(Vcc" ® Vfd' - Voa‘ G; VM'B::*}::)('“:AWS(‘MW)) ® (twvs(tv‘w’)))
Futee Filae — FuttaFanw R4

imouu

and on the right side

Veer(tuv Sty ))F:::dd' = F:‘:‘u‘ F:::dd’ '

' ]
FuteoFomaw - FutaFaww R i = i o Fiday.
Therefore, the first equation of (ii) is true.

In Theorem 2.2, the first set of equations is related to the Lie bracket of the gener-
ators of Lie algebra and the second set is a deformation of the Jacobian identity of the
structure constants of the classical Lie group GL(n).
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§3. Bicovariant differential calculus on GL,(n)

Definition 3.1 Suppose (T, §) is the one order differential calculus on Hopf algebra
A. For arbitrary z),yx € A (k= 1,2,---, N) satisfying 2,8y = 0, if Az (id@68)Ay, =
0, then we call (T, §) left-covariant; If Azx(6 ® id)Ay, = 0, then we call (I',é) right-
covariant; If (T, 6) is not only left-covariant but also right-covariant, then we call (r,8)
bicovariant.

Theorem 3.1 The differential calculus (2',d) on GL(n) given in §2 is left-
covariant.

Proof: According to the definition of left-covariant, we need only to prove that

for arbitrary z4,ys € Q° (k= 1,2,--+,N), if Zadys = 0, then Az, (id® d)Ay = 0.

Suppose Ayk = 1) ® yi*). Then

Azy(id® DAy = Azy(id @ id ® Vi;)(id ® A) Ay’
= Az (id ® id ® Vi) (A ® id) Ay’
N

=Y Azy(id® id ® Vi;)(Ayf") ® y{M)o
k=1

N )
= Y An(Ay V(M)
k=1 ! .

= :
= Y Az A v
k= .
= Az A(Vi; o'y JuM
= A(zi(Vi; + ).
Since 0 = zydys = z4(Vi; # yu Jw'l, we have
aw(Viem) =0, Vij=12-n.
Thus : ?
Az (1d® d)l%yk = 0.
Therefore, Theorem 3.1 holds.

Now we introduce the concept of ad-invariant. First let two linear mappings r, s :
2°® 2% — Q%@ ° be defined by the following formulas: for ¥z, y € 0o,

(z®y) =m®(z81)8ay), (3.1)

(z@y) =m®((192)QAy), (3.2)
where m® is the multiplication on °@® 9, i.e.

m®((z @)@ (2@ w)) = 22 ® yw.

It can be proved that r, s are bijections, and (see [1])

rlzey)=m®(z91)8(58® id)Ay). (3.3)

13
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Definition 3.2 We call a linear subspace B of {1° ad-invariant if
ad(B)C B® Q°
where the linear mapping ad : Q% —» Q% ® Q° is defined by
' ad(z) = s(r~'(1® ). (3.4)

Proposition 3.1 Let H = kerc N (N];= kerV;;). Then H is a right ideal of Q9.

Proof: Assume z € H, i.e. the equations
5(3) =0, vl'j(z) =0, 4,j=12,--,n
hold. For Yy € Q° using (2.7) of Proposition 2.1, we have

Vii(zy) =A% (Vi) (z @)
= Vuv(z)aum‘j(y) + 5(3)v‘i(y)
=0

and
£(zy) = e(z)e(y) = 0.

Sozy € H.

Now take such a parameter A that the matrix M(A) is invertible and denote the
dual basis of Vi by

Sy = M”l(t\)f’!(t.'j + Adijt),

i.e. Vij(Sk) = bixdji. For the operator ad we have

Proposition 3.2 The formula

Vot (tijtat)Suwt © S(tek)S(tai)tjptia = ad( Vo (taptea)Suw) (3.5)

holds.
Proof: Due to Proposition 2.1 and the definition of the operator ad, the right side

of (3.5)is

ad[vuu‘(‘nbtd)M—l(’\)::"(:W + Aﬁw“)}

Vi (tabtea) M (A)25 (21 ® S(tuk Yt + Myt ® 1)

[V (tas)Buwrvur (ted) + 6as Vo (Lea) | M (A2

(bt @ S(tui )i + A6yt @ 1)

tvw'(tﬂ)aww’uu'(‘cd) + 6,53\(’(/\)3:: - Aédédvuu'(‘)]
M) (b ® Stk + Aot @ 1)

(Vo (tab) Bt (tea) = Ababbea Vuur ()] M~ (N) 08

(bt ® Sk )i + Ayt ® 1) + Gop(tiy ® S(tek)tia + Aeat ® 1).
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On the other hand, the left side of (3.5) is

Vi (Bijta) Suwt @ S(8ck)S(8ai)tstia ,

(Ve (845 st (1) + 835V (0] Sunr ® S(tex)S (aidtiptia

va:'l(‘c‘j)ﬂw.m'(iu)suv ® S(8ck)S (faidtjstta + 626Vt (tt) Suw @ S(bei)tta
1 ¥

0un

1

where I Veul .
1 = Ve (45) 0wt un (tr1) Sunt ® S(8ek)S (faidtsstia,
I? = aabvuu'(tkl)sw‘ ® S(‘d)‘ld- ( ) ( ) e
We also have :
Veew (8i5)S (tai)ts -
[S*UZIE(47) = Swure(ti;))S (taidt s
Ts(tni)ﬂﬁ.ukﬁtk.w:jt,} - 6w6“1
TuiRioukRY, 1S (tjw) = Sy 6asl
(S U (ab) = Gise(tas)twi S (t541)
Vii(tab)tuiS(tjur), |
ie. | ;
Vunr(t5)S(taidtin = Vij(tap)tui S (t00). (3.6)
) .

L T (I T 1

Here
(Rm',vk)lsi,ksn = Twwy
(R wihshicn = 18,.

Applying (3.6) to I, we have

L= V"j(teb)oww'uu’(‘kl)snu‘ ® S(tex)tuiS( Liw Yug-

Since

Ot (81) S (et )i S (200 Y1a

T(Rukwm S(tet)twi)(RE, 1 S(tjwYtia)

"(0ua S(tek) Rar witwibom (S (tiw Yoma RE)q gibautta)
"(buaS(T)rawtui E)om(S(tjur) Ert, 505 Tmg
E®S(T)-R,-T® E)ucim(S(T)®E-R*-EQ® TYimoutd
r(S(T]aRT1)ucim(S(TH RYT3)jm wia '
(TR S(Th)ucim(TaR* S(T)y )jum uta
"RuciwturS (tum )R, jgtmu S (1)

0ijkl(‘cd)tuks(‘h’):

in which we apply QYBE and

S5(T1) = S(T® E) = S(T)® E = §(T),,
5(Tz)=S(E®T) = E® S(T) = §(T),,

Bowwuanna

we obtain
I = Vii(tas)Bijnt(tea) Suwr ® 6 S(ths). (3.7)
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By (3.6), we have ;
(Ve (835) + A8 Ca) S (taiJtjo = (Vij(tas) + Abas6iiCo)tuiS (i )s
where §;;Co = Vii(t), ie.
MO, S(ta)tis = MO twiS (o).
Therefore, one obtains
M (AES(taidtiy = M LN turS (b )s

m MU S () = M7 (Ao S(tun )b
Thus the equation (3.8) is applied to rewrite I as
i Ay S(tiw)
5L = Vii(ta)Biju(tad) M H A (e + Abyt) ® tuk
= Vot n(te MO (e + M) 8 Slhun by
= Vs (tad)unun (ted) M T (A)ouir (k1 + Abuit) @ S(tui )t

= wa‘(tcb)ow‘uu’(tcd)M”l ('\)::"(““ ® S(t"k)“"' + '\6""“ ® 1)'

Similarly, I; can be rewritten as
L = Sab( Ve (ti) + Mg V() = AV (t)
MYAYE (t + Auet) @ S(tek Jtia
= bap(tat + Muit) ® S(texia
~Aasbut Ve (M 1AV (b + Abur) @ S(Lek)bia
= bap(tu ® S(tcktia + Aeat @ 1)
—A6apbeg Vi ()M YA (Byr + Ay t) @ 1.

By (3.8), we have

V)M (Mt 81
= S CoM ™ (At ®1
SuCoM ™ (AN tuyr ® turS(tiwr)
V()M (At ® S(tun)tvw
= V()M (A)5% tn ® S(tuktv-

Therefore,

L= Su(tu ® S(tek)tia +Aocat @ 1)
- Miabbog Veur ()M "1 (A28 (tit ® S{tui Yt + A0t @ 1).

We complete the proof of the Proposition 3.2

(3.8)

(3.9)

Theorem 3.2 The differential calculus (', d) on GLy(n) given in §2 is right-

covariant.
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In Theorem 1.8 of {1}, S.L. Woronowicz provided a theorem to decide whether a
differeatial calculus is bicovariant. The theorem can also be said as “Let (I',4) be a
left-covariant first order differential calculus. Then (T, d) js bicovariant if and only if
H is ad-invariant.” Based on this theorem, in order to prove the differential calculus
on 0° we have provided is bicovariant, it is sufficient to verify ¥ is ad-invariant.

Proposition 3.3 Let H = keren (N}, kerV;;). Then ¥ is ad-invariant.

Proof: It is easy to check that ' :

tijtet = Ve(tijtar)Sue = Cijul € H,
t— Vo ()Su ~ClEH,

where
Cijnt = &(tijt — Vaoltijte)Su),
C = g(t = Voo (t)Sus)- .

Denote by H the right ideal gmmted by tijti = Vu(tijta)Suw — Cijul (i,5,k,0 =
1,2,---,n) and t~ Vuu(2)SuvC1, and denote the set of the generators by A. Obviously,
HCH.

Now we define an equivalent relation in 0, for £,7 € O, we say € and 7 are
equivalent or { ~pif §~ne M.

An arbitrary element p of  can be represented by a polynomial of ¢;; (i,j =
1,2,---,n) and ¢. By the definitions of the generators in A, we known that any two
order polynomial of ¢;; (3,5 = 1,2,-+-,n) and one order polynomial of t is equivalent to
a one order polynomial of Sy (k,{ = 1,2,---,n), so p is equivalent to aySy, ay € C,
i.e.,

0 = &(p) = e(auSu),
0= Vii(p) = Vij(auSu), 1,j=1,2,---,n.
Since Sy (k, = 1,2,---,n) is the dual basis of V;; (i,j = 1,2,---,n), ay = 0, i.e.
p € H. So we have proved H C H, therefore H = H.
Now we prove A is ad-invariant, i.e. adA C A ® Q9. By the definition of ad,

ad(ti;) = ta @ S(tix )5 (3.10)
ad(apbed) = tijtis ® S(tk)S(tai)tintia, (3.11)
ad(t) =t®1. (3.12)

By the Proposition 3.2, we have

Cijrl ® S(ta)S(taidtistia
= &(tijth ~ Vu(tijta1)Sue)l © S(tek)S(tai)tivtia
66l ® S(tck)S(taidtjstia — (€ ® id)ad(V yy(taptea) Sunt)
5::&6:‘1 ®1- 5(vw'(tab‘cd)suu')l 91
= Caal ®1. (3.13)

fi
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Therefore, by the Proposition 3.2 and (3.11),

ad(tapted = Viw(tabted)Suw = Cabedl)

‘u‘kl ® S(‘d)s(‘u)tﬂ‘fd - ad(vuu’(tnbtcd )Suu‘) Cabcdl ®1
(tu)tkl Vuu’(!utld )3 w ™ Cukll) ® S(‘ck)s(‘m)‘ istid

€ AQQ

nou

holds. By (3.9) we have

ad(t - Vuu (‘)Sun' - Cl)

ad(t = bur CoM ™ (Ao (tuws + Mt) = C1)

to1 -~ 6uu'CDM-1(’\) (b ® S(tuk)ti + Mt ® 1) ~ C131
t®1— ..:(t)CaM"‘(,\)““ (to ®14+ At ®1)-C101

(t = Vaw()Suw ~C1) @ 1.

W oni

Therefore we have proved

adA C A® Q°.
Let & (i =1,2,-+,n'+1) be the n* +1 generatorsin A. Take { € A. ForVy € o,
one has
Al =610 @ 62,0y An =1, @ Mm.a,
AEn) = (En1r ® (EM)2r = E1.aM 6 ® 20,5
Th
. ad(®) =s(r(196))
= s(m®((1® 1) ® (5 ® id)AE))
= 8(5(€1,0) ® £2.0)
=m®(1Q $(£1.0) ® Ab2a)
= (18 5(£1,0))A62,0-
Similarly,

ad(én) =[1® S((Enh.NA((En)ar)
= [1 @ S(€1.am p)A(E2,0m2.0)
= {1 ® 5(m p)5(€1,0)12(62,0)8(m,0)

(1 ® S(m.pNad(§)A(ms)-
Since adf € A ® Q°, one obtains
n'+1 .
ad()= Y &®zi, €0 i=1,2,---,nt +1.
i=1

Thos ad(¢n) = (18 5(m.a))(& ® z:)A(m.s)
= (& ® 5(m )z )A(m )

Therefore ad(£n) € M ® 9°. By the linear property of ad, we know
adH)CH® o0,
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i.e. H is ad-invariant.

Therefore, by Theorem 1.8 in {1}, we have proved the differential calculus given in
§2 is bicovariant.

§4. Quantum de Rham complex on GL,(n)

Let T be a 4-bimodule consisting of all differential forms of one order on an as-
sociative algebra .4 with unit. Let I'®" be the n-fold tensor product of I'. If A is
commutative, for example the algebra consisting of all C* functions on a smooth man-
ifold, then the de Rham complex on .4 can be defined as follows.

.

=T®/N, T® = g2, 1%, (4.1)

where I® = 4, I'®! =T, and N is the two-sided ideal of I'® generated by the kernel of
1-0,in which 1 is the identity operator on '@« I’ and o is the automorphisin given by
the permutation on I'®3. As done in commutative geometry, in order to construct the
high order differential calculus on the quantum group GL,(n), we should first decide
a bimodule automorphism o of I' ® 4 I'. For that reason we first introduce the concept
of left-invariant and right-invariaat 1-form.
Definition 4.1 Let Ag : Q! — Q% ® Q! be a linear mapping satisfying
(i) YzeQO wet
Aq(aw) = A(z)Aq(w),
Ap(wz) = Aa(w)a(z),

(it) (A®id)Aq = (id® Ap)Aq,
(iii) (e®1id)Aq =id.
Then we call Aq the left action on 2!, If an element w € Q! satisfying Aq(w) = 1 Qw,
then we call w the left-invariant differential 1-form.
Definition 4.2 Let gA : Q! — Q' @ Q° be a linear mapping sa.usfymg.
(i) VzeQuwe,
0d(zw) = A(z)ad(w),
nAwe) = ad(w)A(z),

(i) (d®A)gA = (nA ® id)ad,

(iif) (d®¢)ad =
Then we call gA the right actian on 2%, If an element w € N satisfying g AMw) = w®1,
then we call w the right-invariant differential 1-form.

In general, the differential calculus on a Hopf algebra which only satisfies the con-
ditions (2.1) and (2.2) can not always be provided with a left(right) action. But if the
differential calculus is left(right)-covariant, the left(right) action on differeatial forms
can be defined.
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Proposition 4.1 ForYw € !, w = z4dyy, the left actionon w is defined as
Aq(zidy) = Azi(id @ d)Ayx.
and the right action on w as

al(zidys) = Azi(d® id)Ays.

For the proof of this proposition, please see the Proposition 1.2 and 1.3 in {1].

By this proposition, we have

Aq(Det,Tdt) = A(Det, T)(id ® d)At,
aA(Det Tdt) = A(Det,T)(d® id)At.

Since
ADet,T = Det,T @ Det,T, At =191,

we have

Aq(Det,Tdt) = 1 ® (Det,T)dt,

aA(Det Tdt) = (Det,T)dt@ 1.
Noticing -

AS(‘ik) = s(‘ml') @ s(‘km), '!k = 1'2) cee, Ry

we have

Aq(S(ti)dix;) = 1 ® S(tik)dtsj,
QA(S"!(lki)dl,‘k) = S—‘(lki)dl,'g ® 1.
Combining (4.2), (4.3), (4.5) with (4.6), we obtain the following proposition.
Proposition 4.2
(i) Det,Tdt is left-invariant and right-invariant 1-form,
(ii) S(tix)dtsj, (5,7 = 1,2,--+,n) are left-invariant 1-forms,
(iii) §~'(twi)dtjx, (i, 5 = 1,2, -+, n) are right-invariant 1-forms.
By the proposition,
s I l
W= M“(J\)'{,{S(lkm)dtmj + l\(;:;z‘ - l)ﬁﬂDe!qut]
is left-invariant. It is easy to see

tok S~ (ttm) = SuL.

By (4.8), we can rewrite (4.7) as

W = MY OVES (k) tull S ™ (fun)dtuw + A

1
l‘"qi - I)Ju.,Det,Tdt},
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(4.2)
(4.3)

(4.4)

(4.5)
(4.6)

(4.7)

(4.8)

(4.9)

Denote 1
Tue = 5™ by )dbuw + /\(r“‘q2 ~ )buyDet, Tdt. (4.10)
We have B 3
W = MY ARS (b Yot Ty (4.11)

By Proposition 4.2, 1, is right-invariant 1-form, and (4.10) shows n,, (u,v =
1,2,---,n) are also a group of right-invariant generators of 2'.
Now we define the bi-module automorphism o : Q! @qo 2! — Q! o Q! by

(X0 ® ) = X3 hmn @ ™Y, (4.12)
here X" € Q°. It is easy to check o satisfies the braid relation,
(id® o)(0 @ id)(id ® 0) = (0 @ id)(id ® o)(0 ® id).
Obviously, w” ® W™ (i,j,k,I = 1,2,--+,n) is a group of generators of Q' ®qe N!. By
(4.10), B B
o(w” ®w“) =o(w @ M_l('\):‘gs(‘au)‘vﬁqw) 413
= M (0 (Biius + (Star)ts0)) s B 0™ (413)
Applying (4.10) to (4.13), we obtain
M-‘('\):‘ﬁoiiW(S(‘au)‘wﬂ)s(‘m)‘fw
(S (tmur )ty + ,\(;,‘lq-..T - 1)b,oDet Tdt] ® w*

M- ('\):lae-'iw(s(‘nu)‘wﬁ ){S(tlﬂ )dt’vw

o(w' ®uwH)

1 Uy
+,\(;‘-§; - 1)8yuDet Tdi} @ w
= M7 () M0un(S(tap)tug) M(A)E2™ @ w™.  (4.14)

Let - L
"(&’" ® wlsl ) - R:,{f,‘wu’“" ® uw’
R:,l‘:'w = iiuv(tmks(‘zn)).
Proposition 4.3 Ri¥ = Rik
Proof: From (4.14), it follows that

Rk = M7 )00 (S(ta)tun) M (At
= Bijuo(M 'l(l)ﬁ',;S(la“)t..,gM (A)an)-
Applying (3.8) to above equation, one obt;ina
RIM. = Gijue(M YN0 (ak g M(AY
= oijw(‘mks(tfn))

= ".’,'.“v. ' : . (4.15)
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Proposition LetR = Ri. Ly = (1} <nty @ = ns(i -1+ n;(j -1+
st 4.4 t ( :ayx) ( b)1<a.b néy - )
(k- D+ lu; = ﬁa(a -1+ nz(ﬂ -1)+ n{p - U+ A. Then the minimal polynomlal
n 0=

-2
Ris (6~ DE+PNEFTD):
o P‘:O(off: By (2.8) in Proposition 2.1,

Mo g (takS(tis))
Rapwr ~ A:‘“;.'jm\(tat ® fé;“’)g)
= Uijablla Babu ¢
S o (A5 ) @ (S
= () oo (tar)S U )(S U S t))-

By definition of I§ (3,4 = 1,2+ ™)

(5 c) = A-Raaics n’b(‘ck) = A:'R}’c.bk_'_ (4.16)
S _ﬁ__(l)"(';(&:;}) =27 R;; 4B ':,\(5’ (t)) = A+‘(R+)bt,l,\4'
5o X

These formulae give

ikl
Raﬂw\

Rf R ic ROVird B Dot
Rej ol B Yicaal PRT Pltrd( e Nadu .
(PR B PYeaa PR I PR (41D

it

i i i the first and
where t is the transposition of the matrix, and & is the permutation of

the third indexes. ‘Write ' )-
N R P)ican = (RyP)as
Rt‘ 1 X =(PR")1,,| ( q-_ N aar
e PR, (PR, = (PR
q 'y

Then (4.17) can be rewritten a8

RUM, = (6(PRO (R E26%)
(68 (PR WOT ((PRY Y )5ee)
(E® PR} ®E)- (RRPOEQE) ”
(EQEQ®PR]")-(E® PRY ® E) ' lagur (4.18)

|

' -1 Obviously, R and M) M; have the
Let My = R\POEQE, M2 = EQE® PR,

same minimal poyROmI e e+ a7

Therefore, we obtain

(B — RYR+ ¢ELR+ g En)=0,
where E,« is the unit matrix of order n*.
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Now we introduce the quantum de Rham complex on quantum group GL,(n).
Denote

08 = 2,0%, 2% =0, 9 =q'.
Definition 4.3 The quantum de Rham complex on GL,(n) is defined as

a* = 0%/ {ker(1 - a)}, (4.19)

where {ker(1~c)} is the two-sided ideal on 0® generated by ker(1—0), and ker(1-0) =

{{R+PE )R+ ¢ 2Ep )]}',-‘,’,:“\w"-" @uwM a,8,u,) = 1,2,---,n}. The production in
Q" is denoted by A.

Theorem 4.1 There exists a unique linear mapping
d: Q% — a4,

so that

(i) d is the derivation of order one, i.e. it maps differential forms of order » to ones
of order n + 1,

(it) The definition of d on Q° is given by (2.18),

(i) d(€ A ) = dE A n+ (—1)3¢8¢ A dn, where deg€ = n if £ is a differential form of
order n,

~(iv)dd =0, v
The proof of Theorem 4.1 is similar to that of Theorem 4.1 in [1}. -
In fact, we can write (4.19) as
0 = Fun(GL(n))w", 1)/ {1, L2}, (4.20)
where relation I is given by ‘ ‘

Wiz~ (Bijur » 2™, T =t 8- (4.21)
and the relation I; is given by '

(R + @B )(R+ g2 B 0w AWM, 0, 8,8, 0= 1,2,--,n. (4.22)

Additionally, we can also obtain the Madrer-Cartan equation by Theorem 4.1 and

(2.19). : .

§5. Noncommutative differential calculus on quantum
group SL(n)

[

. |
Quantum group $Ly(n) can be obta.iuedéby taking the ﬁuotient algebra

Fun(M(n))/{Pet,T - 1}.

23


http:R~P)ic.aG

In fact, as for the Hopf algebra Fun(GLy(n)), its generator t now equivalents to the
unit 1, i.e. )

) t=1 (5.1)
Thus, the algebra of coordinate functions Fun(S§Ly(n)) is equivalent to Fun(G Ly(n))
/{Det, T —1}. Namely,

Fun(SLy(n)) = Fun(M(n))/{Det,T ~ 1} = Fun(GLy(n))/{Det,T - 1} . (5.2)

To insure the linear functionals 1;3‘;- (i,j=1,-++-n)and I* given in §1 are well defined
on Fun(§Ly(n)), from (1.25) and (1.26), we know that the following conditions must
be satisfied,

AMpg=AZg=1 (5.3)

Therefore,

Vii(t) = Vi;(1) = 0, (5.4)
and by (1.15) (1.17) and (1.18) we have I* = [~ = ¢. Or we can say, after the condition
(5.2) is introduced, all of the equations in §1 still hold, and those related to t and I*
become trivial. Obviously, Fun(§L,(n)) and the corresponding algebra Fung(5Ly(n))
are Hopf algebras.

Now we discuss how to obtain the differential calculus on §L,(n) and its quantum
de Rham complex from that of GLy(n).

Matrix M()) plays a very important role in the discussions of the differential cal-
culus on GLg(n). For quantum group SLy(n), we have only two extra conditions
Det,T =t =1 and \}g=A%¢q = 1. Thus,

M) = (MU Y ghiiign = (Viilta)higkpiign: (5.5)
And the determinant of N()) is

1—-p" )n-‘l

DetN(A) = ( (- e S R A L ru’{»n)’ (5.6)

xn,.n‘—n
where r*q? = 1. Therefore, except for finite isolated values of g, the matrix M(A)
is invertible. When M(A) is invertible, we can add the conditions Det,T = 1 and
Ag = A"g = 1 to the differential calculus of GL,(n) to obtain that of SLy(n). The
values of ¢ that () is not invertible are the 6th unit roots when n = 2, when n 2 3,
the discussions will be a bit more complicated, we will discuss the differential calculus
of SL,(n) at the extra values of ¢ elsewhere.
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