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Abstract 

The de Rham complex of the quantum group GL,(n) is 
presented. And we show that the differential calculus on the 
quantum group GL,(n) given in this paper is bicovariant. 
The noncommutative different aU calculus on the quantum 
group SL'l(n) is also discussed. 
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§o. Introduction 

Recently, much attention has been paid to the non-commutative differential cal
culus on quantum groups[I-5). In this paper we will describe the exterior differential 
calculus on the quantum group GL,(n). Quantum group theories were developed alld 
several different approaches to construct quantum groups were also introduced in pa
pers [6-9). In the first part of this paper, we will adopt Faddeev's approach to give 
the conatruction of the quantum group GL,(n) and a concrete subalgebra of the dual 
of the coordinate ring of GL,(n). The second part is mainly applied to discuss the 
first order differential calculus on the quantum group GLq(n), namely the construction 
of the exterior differential operator d and the first order differential bimodule. In the 
trird part we will demonstrate in detail that the first order differential calculus given in 
section two is bicovariant. In the fourth part we will describe how to get the quantum 
de Rham complex of GL,(n). A general theory for bicovariant differential calculus on 
compact matrix pseudogroups was developed by Woronowicz (I). And the discussions 
of noncommutative differential calculus on more general quantum groups and quantum 
spaces can be found in the papers (2). In the third and fourth sections we mainly adopt 
Woronowicz's methods and some basic results tha.t are true in Hopf algebras level for 
general quantum groups. In the last part we shortly remark how the quantum exterior 
differential calculus on the quantum group GL,(n) is induced to give the quantum de 
Rham complex on the quantum group SL,(n). 

This paper is an extension of (10) for more general case GLq(n}, most proofs in 
[101 are still valid in this paper. In this paper qU~tum groups are understood as the 
objects of the inverse category of the Hopf algebras with antipode, which are neither 
commutative, nor co-commutative. As to Hopf algebras, please see [11). For simplicity, 
summation convention is used in the pa.per. ' 

By the method provided in this paper, we can also give bicovariant differential 
calculus on quantum groups of B", Cn , D" series and other types[12). 

§1. Quantum group GLq(n) 

In this section, we will cite some results on the quantum group G L'l( n) without 
proof, and give some explanation to the symbols appUed in this paper. 

Let 

R, = t q6;lt.ii ® ejj +X t t.ij ® t.ji, q E C·. ( I.l) 
i,j=! i,; =1 

i>j 
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where X = q - q-l, eii (i'; = 1,2,···, n) is the element matrix of order n, entries of 
which are all zeros except that the one on i-th· row j-th column is 1, and the symbol 
® means the tensor product of matrices. One easily checks that the matrix R.q is a 
solution of the quantum Yang-Baxter equation(QYBE) 

R12R13R23 = R'J3RI3RU, 	 (1.2) 

with Rii as n3 X n3 matrices defined via 

R12 = R.q ® E, R13 = (E ® P)Rn(E ® P), R23 = E ® R" 

where E is the unit matrix of order n and P is the permutation matrix in Cn ® Cn • 

We can also write the matrix R, in the form of submatrices, Le., 

R, = (rii)lSi,jSn, 	 (1.3) 

with 
xeji, i », 

rij = 0, i < j, (1.4)
{ 

E + (q - l)eii, i =j, 

Take n'J elements tij (i, j = 1.2"", n) and arrange them into a matrix T = 
(tij).Si.iS'" Let CrT) denote the free associative algebra with unit 1 generated by the 
n'J elements tii (i,j = 1,2,· ... n). and let {R,T1T1 - T1T1R,} be the two-sided ideal 
of CrT) generated by the relations R'lT1T'J - T'JT1R" where Tl =T ® E, Tl = E ® T. 
Then the quotient 

Fun(M'l(n» =C[T]/{R,T1T2 - T2TIR'l} (1.5) 

has the structure of a bialgebra with the C-linear structure maps, the comultiplication 
a. and'the counit E, fixed by the following values for the generators: 

60T = T0T, (1.6) 

E(T) = E, (1.7) 

where the symbol 0 means 60tii = tile ® tlei' Both a. and E are algebra homomorphism. 
And the multiplication m on Fun( M'l( n» corresponds to the ordinary one of functions, 
i.e., 

m(z® y) = xy, "f/z,y E Fun(M,(n», 

and the unit map i is defined by 

i: 	 C Fun(M'l(n», 
.\ ...-.. .\ . 1 . 

When q = 1. Fun(M'l(n» coincides with the commutative algebra Fun(M(n» of co
ordinate (unctions on the matrix algebra M (n, C). So, we can regard Fun( M,(n» as 
the deformation of Fun(M(n», or the algebra of coordinate functions on the quantum 
matrix algebra M,( n) of rank n associated with the matrix R,. 

Write S.. for the symmetric group on In letters and write 1(/7) for the length of 
0' E S". Namely, 1(/7) is the minimal number of the terms required to express 0' as a 
product of the simple transposition (i, i + 1). For the quantum matrix algebra M'l( n), 
the quantum determinant can be defined as: 

Dtd,T =E (_q)/(ff)tl'l t2cr2 ••. t_... (1.8) 
.Es.. 

The quantum determinant has the following properties 

6o(Det,T) = DeI,T ® Det,T, (1.9) 
E( Det,T) = 1. (1.10) 

Remark 1. In what follow., we identify the element 'ii (i,j = 1,2"", n) and 

Det,T with. their corresponding equivalent classes. 


Definition 1.1 


Fun(GL'l(n)) =Fun(M,(n»[t}/{IDet'lT - (Del,T)', IDet,T - l}, (1.11) 

where' is a new generator and {tDelq T - (DetqT)t, tDe',T - I} means the two-sided 
ideal of FunCM,(n))[t) generated by the two relations tDet,T - (Det,T)t, tDet'lT - 1. 

At this time, we naturally extend the structure mapa m, i, a. and E of the bialgebra. 
Fun(M,(n» to the quotient FUn(GLq(n)) and require 

6o(t) = I ® t, ECt) ::: 1 	 (1.12) 

to make it also a bialgebra. Furthermore, the antipode S on Fun(GLqCn» can be 
uniquely determined by the requirement that TS(T) = E· 1 ::: S(T)T, its definition 
on the generators 'ii (i, j = 1,2"", n) and t is given by 

Seta;) =(-q)'-;tDet,Tjit i,j =1,2" .. , n, (1.13 ) 
S(I) = Del,T, (1.14) 

where Tij denote the (n - 1) x (n - 1) generic matrix obtained by deleting row i and 
column j of the generated matrix T = (tii)l<i,i<". After introducing the antipode we 
obtain - 

Theorem 1.1 Fun(GL,(n» is a Hopf algebras with respect to m, i, ~, £ and S. 

Fun-CGLin» denotes the dual of Fun(GL,(n». We now give two sets of linear 
functionals 'i; (i, i = 1,2,· .. , n) and arrange them into two n X n matrices. 

L± =(lG)lSi,iSn' 

To describe IG Ci,i = 1.2,··., n) explicitly. We first define that the values of the linear 

functionals IG (i,i = 1.2,···, n) on the generators 'ii (i,i = 1,2,···, n) of Pun(GLq( n» 
are given by 

'G(T) = .\t1rG, O'F A± E C, ( 1.15) 

'G(I)=6ij, i,j=I,2,"',n, 11.16) 
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where 
i < j,{ X';/,rt= 	 E+(q-l)eii, i = i, (1.17) 

0, i > i. 

r i < i, 
rij = E + (q-l - l)eii' i = i, ( 1.18) 

-Xejit i > i. 

Hdenote R+ = (rth~i,j~I" R- = (rijh~j,j~n' then R+ = PR,P, R- =R;\ where P 
is the permutation matrix, a.ud ca.u be written in the form of submatrices as 

P =(P'jh~i,j~n =(ejih~i.j~n. 

From the fact that the matrix R, satisfies QYBE, it follows that 

(1.19)Rt2Rr3Ria = RiaRr3Rt2 

with R~ as n3 X n3 matrices defined by 

Rr2 =R~ 0 E, Rr3 = (E 0 p)Rr2( E ® P), Ria =E 0 R~ . 

For arbitrary element of Fun(GL,(n» the definition of l~ is given by the following 
induction, 

l~(z!l) =1~(z)l~j(!I), VZ,1/ E Fun(GL,(n». (1.20) 

Now what we need to do is to give the value of I~ (i,i = 1,2,"" n) on the 
generator t of Fun(GLI/(n». For this we rewrite (1.15), (1.16) and (1.20) in the form 
of sub matrices as follows 

< L~,T >= (1~(T))I~i.j~n =AilR~, (1.21) 

< L~, 1 >= E, (1.22) 

< L~,:cy >= (lG(:Cll))19.;~n =< L~,:c >< L~,1J > . (1.23) 

Then the action of l~ (i, j =1,2,,,,, n) on the generator t is 

< L~,t >= (I~(t)h~i.j~" =< L~,Det"T >-1. (1.24) 

In fact, we have 

< L+,t,j >= A+Tij, 


" < L+,Det,T >=< L+, II tij >= Ai-qE. 
i=1 

Thus 
< LT,t >= A;nq-l E (1.25) 

holds. Similarly, we have 
<L- ,t >= A':.qE. (1.26) 
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We can check that the action of the linear functionals I~ (i,i = 1,2,···, n) given 
in above way on the two-sided ideal generated by the relations RqTIT:t - T:tT1 Rq', 

Det,T-(Det,T)t, tDet,T-l iSHro. Thiashowsl~ (i,i = 1,2,···, n) is well defined on 
the Hopf algebra Fun(GL,(n» a.ud then the two sets offuncl;ionalsl~ (i,i = 1,2,· .. ,n) 
belong to Fun-(GL,(n» (also see Proposition 1.2 in [10». Furthermore, with the 
comultiplication A of Fun(GL,(n», the multiplication m- among I~ (i,i =1,2, ... , n) 
can be introduced. Suppose e, q are two polynomials of l~. We define 

m-ce 0 q)(z) = (eq)(z) = (e 0 q)Az, Vz E Fun(GL,(n», (1.27) 

a.ud introduce two new linear functionals I~ by the following formulas 

< ,~ IT >= 1~(T) = (ln1fl .. .1;n(T»-l , (1.28) 

< l~, t >= l~(t) = (In1t2' ••1;n(t))-l, (1.29) 

< I~,l >= 1~(1) = 1, (1.3~) 
< I~,z!l >= I~(z!l) = 1~(z)I~(!I), V:C,1/ E Fun(GLq(n»). (1.31 ) 

It is also easy to see that 

l~({RqTIT2 - T2TIRq, tDet,T - (Det,T)t, tDel,T - I}) =O. 

Funa(GL,(n» denotea the associative subalgebra of Fun'"(GLq(n) generated by 11; 
(i,i = 1,2,.··,n) a.ud l~ via the multiplication m- in (1.27). Obviously, the unit of 
the algebra Funii(GL,(n» is" i.e. the counit of Fun(GL,(n». However, it should be 
pointed out that the 2( n2 +1) elements I~ (i, i =1,2, ... , n) a.ud I~ are not free gener
ators, which are subordinate to the communication relations given by the following two 
propositions proofs of which are due to (1.19) a.ud definition of L~ (also see Proposition 
1.4 in (10». 

Proposition 1.1 

R+LrLi = LiLfR+, (1.32) 

R+LtL; =L;LtR+, (1.33) 

where Lr =L~ 0E,Li = E0L~. 
Proposition 1.2 

" (i) 1* II l~ =', 	 (1.34) 
1=1 

(ii) I+L* =L~I+t l-L~ =L~r, 	 (1.35) 

(iii) l+r = r 1+, 	 (1.36) 

(iv) 't =0, i > i, lij = 0, i < i. 	 (1.37) 

The homomorphisms AW, ,., S- on Fuuo(GL,(n» are defined as 

A-(L~) =L* 0 L~, A-(l~) = I~ ® I~, 


'·(L~) = E, ,-(1*) =1, 

S-(L~) = (-q)i-il~(Det9-J L~)l~i,j~n' S·(l~) = Ifll~ .. ";~' 
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where L~ is the aubmatrix of LZ defined like Tij in (1.13). We can check the compat
ibility of the maps ~ '*, E., S* and the relations in Propositions 1.1 and 1.2. Namely, 
the actions of d'* , E* , and S* on the relations (1.32)-( 1.37) are all zeros (as Proposition 
1.5 and 1.6 of [10l). We can also see 

S*(LZ)LZ :: LZS'*(LZ) =E' E. 	 (1.38) 

Finally, we have 
Theorem 1.2 Funo(GL..(n» is a Hopf subalgebra of Fun·(GL..(n» with respect 

to m., ~*, E·, S·, 

§2. The first order differential calculus on GLq(n) 

Asaume A is an associative algebra with unit. The first order differential calculus 
on A, which is denoted by (r,6), consists of a bi-module r of A and a linear operator 
6 satisfying 

(i) Leibnitz rule 
6(z,):: (6z), +2:611, Vz" E A, (2.1) 

(ii) Cor arbitrary element p in r, there always exist some elements Z/" '" E A 
(k = 1,2,· .. ,N) in A such that 

N 

P= 2:2:,.6,11. (2.2) 
k=1 

Now we regard Fun(GL .. (n» as.A, and for simplicity, give it a special symbol 0.0. 
To construct the one order differential calculus on quantum group GL..(n), what one 
first has to do is to determine a nO-bimodule which is denoted by 0.1• For this end, we 
introduce the convolution "." on 0.0. For f E Fun·(GL .. (n)), the convolution "." from 
0.0 to n° is defined by 

f. (z):: (id® f)~z, z E Fun(GL ..(n», (2.3) 

where id is the identity operator on 0.0. Furthermore, we introduce two sets of func
tionals on n° as follows: 

(i) Vij:= .!.(S·(l;i)ltj - 6ijE), i,i =1,2,"',D, (2.4)
X 

(ii) 'ij":= S·(I;i)Ij" i,i,k,l =1.2.· ... n. 	 (2.5) 

For the operators •• Vi;, 'ij/d, we have 
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Proposition 2.1 For V2:" E 0.0, i,j, A:, I = 1,2, .•. , n the formulas 

(i) 	 Vij(l) = 0, . 'i;I:.(l) = 6il:6jh (2.6) 

(ii) 	 t1'*Vij = V". ® 'viii; +£ ® Vij, 

t1'*li;1:l = 'j;... ® 'vlllrl. 	 (2.i) 

(iii) 	 Vii. (2:,) =(Vvv *2:)('vvii *,) +2:(Vij • ,). 

lijl:l *(2:,) = (Iiivv *2:)(lvvI:I .,) (2.8) 

hold, 

Proof: Now we prove the first equation of (2.7). A directly calculation shows 

t1'*Vii = l~'*(S·(lii»~'*lt - 16iiE ® E 

:: !S'*(l;j,)lt, ® S*(li;)l~ - ~6i;E ® e 
:: (Vvv +~6vve) ®S*(li;)I~ - ~cSij& ® £ 

= V"" ®Ivllii +~E ® (6vvS*(li;)I~ - cSijE) 

= VVII ® 'vvij +e ® Vij' 

Next we prove the first equation of (2.8). Let ~2: =2:1,0' ®2:1,0', t1, :: YI,I1 ®Y'l,n. Since 

Vij • (z '11) 	 = (id ® Vij)~(2:Y) 
= (id ® Vij)~zt1l1 
:: ZI,O'1l1,IJVij(2:2,O'1ll,IJ) 
= ZI,O'lll,IJA*Vij(Zl.O' ® 1I1,IJ), 

applying the first equation of (2.7), we have 

Vij *. (2:,) 	 = ,z1,a'I,p(V,,"(2:1.O')lvvij(1I2,p) +E(,zl"lt)Vij('2,,1t» 
= 2:1,aVvlI(2:1,O' )'I,IJ'vllij(1I2,IJ) +Zl,O'E(Z2,O')'l . .OV jj(y'l.'o) 
= (Vvv • 2:)(lvvij .,) +Z(Vij • ,). 

As for the remained formulae, we leave them to readers. 
From (1.38) and (1.1) it follows that 

< S*(L-)L-, T >=< E' E, T >= (cSijE(T»ISi.jSn =Enl, 

where E,,2 is the unit matrix of order n2 • On the other hand, due to (1.6) one has 

< S*(L-)L-,T >=< S*(L-),T >< L-,T >=< S*(L-),T > >.:1 R-. 

So we obtain 
< S*(L-). T >= >._R.. , 

i.e. 
S'*(lij)(T) = >._rjj. (2.9) 
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Combining (1.4), (1.15), (1.11) with (2.9), and letting r = A+,L, we can get, if i =j, 

(S(lji)lt)(T) 	 = S(/ji)(T)/tj(T) 
=r Lk<i rikrt + rriirj 
= rx2 L.<.eu + r(E" +(q2 - l»eii' 

and if i # i, 
(S(lji)It;)(T) = rxeji. 

Thus 

V ..(T) _ { reii, i -:p i, 	 (2.10)I, - ~{(r - I)E" +r(q2 - l)eii +rx2 Lk<i ekk), i = j. 

Similarly, it follows from (1.25) and (1.26) that 

1 1 (2.11)Vii(t) = -(""";;2 - I)Oi;.
X r q 

H we arrange V ii( t.,) as a matrix of n X n blocks, 

VeT) = (Vi,(T»ISi,jS", 

where the submatrices are 

Vii(T) = (Vjj(tkl)hsk,IS'" 1 ~ i,j ~ n. 

Then 

VeT) = .!.(S*(L-)L+(T) - E' E(T» 
X 

= !« S*(L-),T >< L+,T > -E,,2) 
X 
1=-(rRqR+ -	 E,,2)
X 
1 (2.12)=	-(rR'IPR,P - E,,2).
X 

And 1 1 (2.13)(Vii(t»l<iJ<" = -(-2 - I)E.
- - X r"q 

Now we apply the matrices VeT) and !(;:Jr - I)E to construct another matrix. Let 

M(A) = (M:ltl)~hsk",iJ-S" = (Vii(tkl) +AO.,Vij(t))ISU,iJS"· (2.14) 

where A is a complex parameter. Sometimes we also write the matrix M(A) as M(A) = 

(Mtjhsu,iJ-S'" 
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PropOIitioD Z.Z H r"q2 -:p 1, for fixed q and r there always exists A, S.t. the 
matrix M(A) is invertible. 

Proof: Hi -:p j, then one haa 

M::t.'::;~>.:f :: ix6.-il.-1 = r6k-i,i-l. 

The above equation showl that there is only one non-zero element r in every row or 
column of M(A) except the rowl (n(e-lHe) and columns n(i-1)+i (i,k = 1,2,···, n). 
Hence, to determine whether or not the matrix M(A) is invertible we need only to 
consider the matrix N(A) of order n, 

N( \) (M"Ck-l)+k)
1\ = "Ci-I)+i ISk,iS'" 

M "Ck-I)+k V ( ) !( _1 1)
,,(i-l)+i = ii tu + x ~ - . 

In fact, the expression of the matrix N (A) is 

6 a a 
c 6 a 

N(A) =.!. c c 6 
X : '.

[ l}
c c c 

where 
a = r(x2+1) -1 +A(rJr - 1)1 

6 = rq2 - 1 +A( * -1), 
c =r - 1+A(* - 1). 

Straightforward ca.lculation gives 

(b - a),,-1 q2" _ 1 q2,,-2 - 1 
DetN(A) = (6-2--q2(6-4) • )'2 

r,,-·f' ( 2" q ,~ 1 ) ~ 
= -- 6L.::- _ (q2,,-2 - 1) . 

Xq,,-I q2_1 
I, ' 

So, when rnq2 -:p 1, for fixed q and r we have Asuch that DetN(A) -:p O. 
Now we are going to construct a OO-bimodule 0 1• Define dt'i and dt the one order 

differentials of the generators tii (i,j = 1,2, '. ", n) and t of 0°. And let 0 1 be the left 
0°-module generated by the elements w'd (e, I = 1,2, .. ·, n), satisfying the following 
conditions: 

S(tifll)dtmi =V.,(tii)wk', (2.15) 

Det,Tdt = VIII(t,)wkl. (2.16) 

The right multiplication in the left module 0 1 is defined by 
1 , 

wii .:; = (Ojikl. :;)wkl, V:; E 0°, 	 (2.17) 
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so that 0 1 is a bimodule of 0°. Due to the argument in the last section that 'U/d is a. 
functional on 0°, the right multiplica.tion is well defined. Namely, 

,.,aj .% = (id ® 'ijlel )A%Wkl 

is independent of the choice of the representation element %. FUrthermore, by Propo
sition 2.1 this right multiplica.tion is associa.ble, i.e. 

wij(%lI) = (wii%)y, V%,1I E 0°. 

And it is clear 
wij '1 = wi;. 

So ot is a. OO-bimodule. 
Definition 2.1 The differential operation dfrom 0° to 0 1 is defined by 

d% = Vi; * (%)Ji. 	 (2.18) 

Theorem 2.1 {Ol, d} constructed above is the first order differential calculus on 
0°. 

Proof: We need only to check (2.1) a.nd (2.2) hold. Combining (2.8) in Proposition 
2.1 with (2.17) one directly verifies d is a differential opera.tor satisfying Leibnitz rule 
(2.1). To verify {Ol, d} sa.tisfies (2.2) we need to prove wi; (i,j = 1,2,''', n), the 

N 

generators of ot , ca.n be represented by the form L: %kdYk, %k,YIt: E 0°. By (2.18), 
k=1 

(2.15) a.nd (2.16), we have 

dtkl = (id® Vii)AlkIWii,
ijdl =(id ® Vii )Atw . 

Using the Proposition 2.2 we ca.n find Asuch that the matrix M(A) is nonsingular. So 
from 

jS(tlcm)dtml +AbklDet"Tdt = (Vij(tkl) +Ab.,Vij(t»)wi , 

one obtains 
W 

ii = M-l(A):~~-=-~))~[S(tlcm)dtml + A5kIDel\lTdt), (2.19) 

which implies tha.t for {Ol, d}, (2.2) holds. 
It should be point out tha.t the expression of wij in (2.19) is independent of the 

parameter A. This ca.n be proved by a simple argument in linear algebra.. 
By (2.17), we also have the cross rela.tion a.mong dtjj, dl a.nd Iii, I as follows, 

dT·z =(Vij*T)wiiz 

=(Vij. T)'ijkl. (z)M-l(A):~::~~~~(S(to-r)dt'YJJ +A5afj(Det,T)dt), 
(2.20)

dt· z = (Vi;. l)wii z 
= (Vi; • t)'ijkl. (z)M-I(A):~!:~~~~(S(IQ"J)dt..rfj +Mafj(Del,T)dt), 
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where z = ',,,, or t (u,. = 1,2, ... ,n). 

Remark 2. The case of r"q'2 = 1 will be discussed in is. 


Proposition 2.3 Let L = S*(L-)L+. We have 

RLIR+L2 = L2RL1R+ 

here Ll = L ®I, L2 = I ® L. 

Proof: By Proposition 1.1 we easily obtain 


LtR+S*(Li) = S*(Li)R+Lt, 

RS*(Ll)S·(Li} = S"(L;nS*(Ll)R, 

R+LtLt = LtLtR+, 

S*(Li)RLt = LtRS*(Li). 


Noticing Ll = S"(Li}Lt a.nd L'2 = S*(L;)L;, we ha.ve 

RL1R+L2 	 = RS*(LI)LtR+S*(L;)Lt 
= RS*(Li)S·(L;)R+LtL; 
= S·(L;)S*(Ll)RLtLtR+ 
= S"(Li)L;RS*(Li)Lt R+ 
= L2RL1R+. ' 

Let 
R ij,lcl


m"..." 
 =< "j..",\l'",IeS(T,,,) >, 
F~,m" = X < "1m", TlciS(1'jI) > '. 

By Proposition 2.3, we obtain 

Theorem 2.2 For R, F defined in the above two formulae, there exist two sets 
of equations which are equivalent with each ~ther: 

(i) 	 VIeV,- ViVjR~ = VmFk}, 

V.'ml = ''''iVjR~, 
R~'lutll" = """i"R::''', I 
Fj.'i"'.,, +'j.V" 7. Vmtl•• R:'.," +'in F:" I 

(ii) 	 F:'IcF:;" - F:F:'iR~ = F:tuFf" 

Fw Rm" - RmtuFII R'i
1ft wi -	 .e :lUi kl' 
R~R!:R!: = R~jR~~R!~! 

R~F~1I +F:""RZiJR:! = FLmR~~R;:n +R:lw F;:. 


Here, for simplicity, we use one index instead of two in a.bove equa.tions, for exa.mple i 
sta.nds for ii', etc. 

11 



Proof: Here we only prove the first equations of (i) and (ii), the proofs of remain 
equations are similar and can be found in [5}. By Proposition 2.3, we have 

Lcc'Rlec',tU'Ldd'R~I',Ie'"1 = Rlee"dLo.o.,Rt"Ic'IILw 
¢::::> Lee' < S*(I;d)' tc'" > LcI41 < It-lei, t"., >=< S*(/;o.)' tel > Lo.o.' < 'tlc" til. > Lw 
¢::::> Lcc'LcI418dt.(IIcIc,(tc't.') = L,,0.,Lw80.0.'IeIc'(te/l) 
¢::::> Lee'Ldd,8c1411cJc1(tc''' )8u'u,u,(S(tll'",» =L,,0.,Lw80.0.'IeIc'(te/l)8lele'u,,'( S(t" .... » 
¢::::> Lcc'LtId,8t1d'u,,'(tc'II'S(tll'.... )) =Lo.o.,Lw800.1""I(te/lS(t.,,,,» 
¢::::> Lcc'LtId,6~:6;; = L"o.,LwR:'!!: 
¢::::> Lcc'L"", = Lo.,,'LIIII'R:;'~: 
¢::::> (XVee' +6cc'e)(xVdd' +b"",e) = (XV", +60.0,e)(xVw +6""E:)R:;~;. 

Since 
600IR:;~: 	 = 6"",80"'dt.(,(te/lS(tt.'c') 

= (XVcI41 +6tldle)(te/lS(tll'c') 
= ~"'" +6t1d,6/1ebll'cl, 

and 
6".,R:;'~: 	 =6wBo.o.lddl(te/lS(t.,c') 

= bo.db"'d,bcc' , 

600.,61111IR:;~; = bee'6ddl, 

we have 
Vee'Vddl - V"oIVwR:;~; = Vee'F~~tId.. 

Therefore t.he first equation of (i) is proved, and by applying both sides oC it to 
t"vS(t",u'), we have on the left side 

(Vee' Vdd' -	 V"",VIIII,R~~:)(tu"S(tv'u'» 
(Vee' ® VcI4' - V0.0.' ® VIIII'R:;~~:)(6(tuvS(tv'u'») 

= (Vee' ® Vdd' - V00' ® VIIII'R~~~:)«t ......S(t.....u'» ® (t",vS(tv'w' ») 
= F::::e.F::',tId, - F::::~o.,F:;"IIII,R~.t'~:, 

and on the right side 

Vec' (tu"S( tv'u' ) )F~~"", = F=',ee' F~tId" 

i.e. 

F:iee'F:;""", - F:::::",F=~/IIII,R:~; = F:U:ee,F~~ddl' 
Therefore, the first equation of Oi) is true. 

In Theorem 2.2, the first set oC equations is related to the Lie bracket of the gener· 
ators of Lie algebra and the second set is a deCormation of the Jacobian identity oC the 
structure constant.s of the classical Lie group GL(n). 

12 

§3. Bicovariant differential calculus on GLq(n) 

Deftnit.ioD 3.1 Suppose (r,6) is the one order djJferen&ial calculus on HopC algebra 
A. For arbitrary Z •• ,. e A (Al == 1,2"", N) satisfying zle6YIe = 0, if ~zle(id®6)~1I1e = 
0, then we call (r,6) lef&-covarianti If ~zle(6 ® id)/l.YIr == 0, then we call (r,b) right. 
covariant; If (r, 6) is no& only lef&-covariant bu& also rigM-covariant, then we call (r, 6) 
bicovariant. 

Theorem 3.1 The djJferential calculus (nl,d) on GL,(n) given in §2 is leCt. 
covariant. 

Prool: According to the definition of len-covariant, we need only to prove that 
for arbitrary ZIr," e no (k == 1,2,···, N). if ZlrdYIe = 0, then /l.ZIe( id ® d)~!lk =O.

(AI) (Ie)
Suppose ~YIr = '1,0 ® Y2,Q' Then 

~zAI(id® d)6YAI = 6zA:(id ® ad ® Vij)(id ® /l.)~!lkWij 
= 6ZIr(id ® ad ® V'j)(/l. ® id)~YkWij 

N 

= E6zAI(id ® id ® Vij)«(~1Il~) ® 1I~~)wii 
lrel 
N 

- '"6ZL(~ti(le)v. '(y(Ie»\,.ij 
- f...." .. '.,0 I, 2.0"'" 

hI 	 ; 
N 

:: E6zle~(Yf~Vii(y~~~»w·j_I .. 

:: 6ZIe~(Vij .'YIe)wI' 
= 6(ZIe(Vij. YIe»wij . 

Since 0 = zledYAI :: ZIe(Vij. YAI)wii, we have 

zle(Vjj • Y') == 0, Vi,i:: 1,2,·.· ~ n. 

Thus 

6ZA:( id ® d)~YIe = o. 
Therefore, Theorem 3.1 holds. 

Now we in&roduce the concept of ad-invarian&. First le& &wo linear ma.ppings r, S : 

no ® no _ no ® no be defined by the following formulu: Cor liz, 11 E nO. 

r(z ®,) = m~«z ® I} ® ay), 	 (3.1) 
s(z ® y) = m~«1 ® z) ® ay), 	 (3.2) 

where m~ is &he multiplication on no ® no, i.e. 

m~«z ® y) ® (z ® 1.11» = zz ® YlU. 

1& can be proved that r,,, are bijections, and (see [1]) 

8r-'(z ® y) = m «z ® I) ® (S ® id)~1I). (3.3) 
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Definition 3.2 We call a linear subspace 8 of no ad-invariant if 

ad(8) C 80no 

where the linear mapping ad : no _ no 0 no is defined by 

ad(z):: s(r-l(1 0 z)). 	 (3.4) 

Proposition 3.1 Let 11. :: ker f. n (nr..i:l kerV'i)' Then 11. is a right ideal of nO. 
Proof: Assume z e 11., i.e. the equations 

.s(z) = 0, Vii(z) = 0, i,j = 1,2,"',n 

hold. For V,l e no using (2.7) of Proposition 2.1. we have 

Vij(ZY) 	 :: ~·(Vij)(Z ® y) 
= Vu,,(Z)8uvij(Y)+ f.(Z)Vij(Y) 
=0 

and 
f.(ZY) = f.(z).s(y) = O. 

So zy e 11.. 
Now take such a parameter ..\ that the matrix M("\) is invertible and denote the 

dual basis of V., by S., = M-1(..\)n(tij + ..\bj;t), 

Le. 	Vii(S.,) = bi.Oj'. For the operalor ad we have 
Proposition 3.2 The formula 

V.u,(tijt.,)Suu' 0 S(tc.)S(t.i)tj."d = ad(Vuu.(ta/lted)Suu') (3.5) 

holds. 
Proof: Due to Proposition 2.1 and the definition of the operator ad, the right side 

of (3.5) is 

ad[V"1£'(ta6'c:tl)M-I(..\):~(t"", + ..\6"",t)} 

= V"u·(ta/lted)M-I(..\):::(tw 0 S(t".)"'" + ..\6"",t ® 1) 

= [Vww'(tah)8I1/w'"u,(ted) +00 /1 V u,,·(ted)}AI-l(..\)::: 


·(t., 0 S(t.... )t,,,, + ..\0"",t0 1) 

[VVI1U.(t~)8wv1u",(tc:d) +Oo/lM("\):, - "\0a/lOedV,,••(t») 

.M-I(..\)::;'(t., ® S(t",,)t,v' + ..\6"",t ® 1) 

[VwvI(tah)8wv11£•• (ted) - "\OQ/lOc:d V "",(t)JM-l(..\)::: 

·(t., ® S(t".)t,,,, + "\o",,,t 0 1) +ball(t., ® S(tu)t'd + ..\bedt ® 1). 
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On the other hand, the left aide of (3.5) is 

V1£lI!(tiitW)SlI.' 0 S(td)S(t.i)ti.t'tl 
= [V....(t'j)'''''1I1I,(tw) +6;jVu.,(t",)]S1£.' 0 S(td)S(tai)t;.t'tl 
= V....(tij)8wwt1£1£·(tk,)S.1£' 0 S(tdr)S(ta;)ti.t'd +600 Vuu,(t.dSuu' 0 S(tc:.)t'd
= II +I" 

where 
11 = V,.,.,,(ti;)'''''''uu,(I.,)S.u' 0 S(ld)S(t.ilti6"d, 
1, = 6.,VU1£,(t.,)Suu' ® S(tU )t'4. 

We also have 
V,.,.,,(tij)S(tai)ti' ' 
[S·(I~)I!,.(ti;) - 6.."..,,£(lij )jS( tadt;6 

= rS(t•• )Rwt.v.Rt••w'jtj'  6.."..,,6..1 
:: rt""R••,,,.Rt.,i.S(tj.,,)  6_,600 1 

:: 
[S-( li;)l~(t..)  6Ut(t..»)twiS(tj~' ) 
Vjj{ta.)t""S(tjw')' i 

i.e. 
I 

V.."..,,(ti;)S(tadti':: Vi;(ta.)lwiS(tjw'}' (3.6) 
Here 

(Rwt,V.)lSi••Sn :: r_. 
(R~",wj).S.';sn = r!.,. 

Applying (3.6) to II. we have 

II = Vij(ta.)8wwtu.,(t.,)S.u' 0 S(tU)twiS(t;w,)t,tl. 

Since 
8""""u.,(t",)S(tu }tvnS(t;vI )t14 

= 	 r(R...,wmS(tu}twi)(Rtm••"S(tjw' )t'd) 
:: r(6VQS(tu)Ro,.,wptwi6I1m}(S(tjw' )6mQ RtQ.p,6pu,t'd} 

r(6VQS(T)rQwt""E)cm( S( tjw' )Ertp6111£' T)md 
:: r(E ® S(T). R.q. T 0 E)uc,im(S(T) ® E· R+ . E ® T)jm.u'd 
= r(S(T),RTI )uc.im(S(T)lR+T');m .• '1II 

= r(T1R.qS(Th)uc.im(T,R+ SeT). )im,.'4 
= rRkc:,iwtuS(twm)Rtw',Idtmw' S( t,u' ) 
= 'i;'"(tctl)t1£k S(t,., }, 

in which we apply QYBE and 

S(T1):: S(T® E) = S(T)® E = SeTh, 
S(Tl) = SeE ® T) :: E ® SeT) = SeTh, 

we obtain 

11 = Vi;(t.6)'ij.,(ted)S"., ® tuS(t,,,,). (3.7) 
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By (3.6), we have 

(V_,(tij) +A6ij6_,Co)S(toi)tjb = (Vij(tob) +A60bbijCO)twiS(tjw')' 

where 6ijCO = Vij(t), i.e. 

M(A):!w,S(toi)tj/t = M(A)ittwaS(tjw')' 

Therefore. one obtains 

M-l(A)~1S(toi)tjb = M- 1(A)ij' tw.S(t,w'), 

or 	 (3.8)M-1(A):;t".S(t".,) = M-'(A)~,S(tW1l)tvw" 

Thus the equ.ation (3.8) is applied to rewrite II as 

II 	 = Vij(to/t)8ij.,(tc:d)M=I(.>.)ir(t"", +A6w ,t) ® t".S(tl,,') 
=Vij(tob)8ij.,(tc:d)M l(A)ww'(tw' +A6w ,t) ® S(tw.. )tllw' 
= Vww'(to/t)8_"",(tc:d)M-I(A)~::(t., + A6wt) ® S(t... }t,.., 
= V_,(t b)8 ,,,,,,(tc:d)M-1(A):::(tkl ® S(t... )t, .., +A6tn1t ® I}.o	 ww

Similarly, 12 can be rewritten as 

h 	 = 60l/(V"",(t.,) + .>.6.,V"",(t) - M.,V"u,(t» 
.M-I(A)::;(ttnl +A6w .t) ® S(tcle)tld 
= 60l/(tlel +A6",t) ® S(tcle)t'd 

-.>.60l/6Ie,Vuu,(t)M-l(A):::(t..v +M..llt) ® S(tcA:)t'd 
= 60 l/( tid ® S( tdl )t'd +A6edt ® 1) 

-A6o/t6c:dVu",(t)M-I(A)::: (t...., +A6uv t) ® 1. 

By (3.8), we have 

VU",(t)M-I(A):~tw' ® 1 

= 6uu,CoM-' (A):::'w' ® 1 

= 6.,CoM-1(A):;: tw ' ® t".S(t,..,) 

= Vkl(t)M-'(A)~w,tw' ® S(tw.. )tu'w' 
(3.9)= V ....,(t)M-' (A):;t", ® S(tuk)t'll' 

Therefore, 

12 = 	 60 ,( t., ®S(tdl)t'd +A6edt ® 1) 
-'>'b ,6edV u",(t)M-'(A):::(tkt ® S(t... )t, .., +A6..lIt ® 1}.o

We complete the proof of the Proposition 3.2. 
Theorem 3.2 The differential calculu.s (O l ,d) on GL,(n) given in §2 is right-

covariant. 
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In Theorem 1.8 of {lit S.L. Woronowi~ provided a theorem to decide whether a 
differential calculus i, bicovariant. The theorem can also be said as .. Let (r, b) he " 
Ieft-cotHI.riant fiTst order differential colculu. Then (f,d) ia bicotJariant i/ and onlv i/ 
1t is ad-inuariant." Based on thi, theorem, in order to prove the differential calculus 
on no we have provided is bicovariant, it is auftlcient to verify 1t is ad-invariant. 

Propositioa 3.3 Let 1t = kereO(Oij.lkerVij). Then 1t is ad-invariant. 
Prool: It is easy to check that I 

lijt., - V.(tijllel )S".. - Cij.,1 e 1t. 
t-V".,(t)S".. -CI e1t, 

where 
Cijlel = e(lijtle' - V"v(lijtle')S..v), 
C = e(t - V"..(t)S.... ). 

Denote by it the right ideal generated by lijllr' - V....(tijtle,)S".. - Cijlr,1 (i,i,A:,1 = 
1,2"", n) and 1- V....(t)S....Cl. and denote the set ofthe generators by A. Obviously, 
it r;.1t. 

Now we define an equivalent relation in no, for e, '1 e 0°, we say t and '1J are 
equivalent or e.... '1 if e- '1 e it. 

An arbitrary element p of 1t can be represented by a polynomial of tij (i,i == 
I,2,···,n) and t. By the defin.itions of the genera.tors in A, we known that any two 
order polynomial of lij (it j = 1,2,···, n) and one order polynomial of I is equi valent to 
a one order polynomial of Slrl (k,l:: 1,2,,, ·,n), so p is equivalent to a",S"" aIel E C, 
i.e., 

0= e(p) = e(aIeISIe'), 

0= Vij(P) = Vij(a.,SIrI), i,j = 1,2,·", n. 


Since Slrl (k,l = 1,2,· .. ,n) is the dual basis of Vii (i,j = 1,2,· ... n), air' = 0, i.e. 
p e it. So we have proved 1t r;. it, therefore 1t = it. 

Now we prove A is ad-inva.riant, Le. adA C A ® no. By the definition of ad, 

ad(tij) = tlrl ® S(tile)t'j, (3.10), 

ad('a"ed) = lijtlet ® S(tdl)S(toi)tjl/t'd, (3.11) 

ad(l) = to I. (3.12) 

By the Proposition 3.2. we have 

Cijlrl1 ®S(tdl)S(t.;)tj/tt'd 
= e(t,jtlrl - V ....(tijt.,)SlI.,)1 ® S(tdl)S(toi)tjl/tld 

:: 6ij6W1 ® S(tdl)S(t.,)tj,t'd - (e ® id)ad(V u ..,(tol/ted)S....,) 

= 6..6C4l1 ®1- e(V....,(ta,ted)S"..,)1 ® 1 

:: Co6c<l1 ® 1 . (3.13) 
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Therefore, by the Proposition 3.2 and (3.11), 	 i.e. "It is ad-invariant. 
Therefore, by Theorem 1.8 in (11, we have proved the differential calculus given in 

ad( tabled - V"", ( tabted)S",,' - Ca6c:d 1 ) §2 is bicovariant. 
= t,jtld ® S(tdJS(tai)tjbtfll- ad(V"".(tabted)S"".) - Ca6c41 ® 1 

(tijtSd - V"".(tijtkf)S"". - Cijkl 1) ® S(tck)S(toi)tjbt'd 
E A®OO 

§4. Quantum de Rham complex on GLq(n) 
holds. By (3.9) we have 

ad(t - V"".(t)S"". - (1) 
= ad(t - 6"".COM-l (,x):;(tllv' + ,x611v't) - (1) Let r be a .A.-bimodule conaiating of all differential forms of one order on an as

t ® 1 - 6"",CoM-l(,x):~(tkl ® S(tllk)tfv' +,x6"".t ® 1) - Gl 0 1 sociative algebra .A. with unit. Let f8" be the ,,-fold tensor product of r. If A is 
commutative, for example the algebra consisting of all Coo functions on a smooth man= t ® 1 - V"".(t)CoM-I(,x)~(t"". 0 1 +M"",t 0 1) - Gl ® 1 
ifold, then the de Rham complex on .A. can be defined u foUows.(t - Vu",(t)S"". - (1) 01. 

r A ='f'1J IN, 'f'1J = EBi:o'f'1Ji 
, 	 (4.1 ) Therefore we have proved 

adA C A000
• 

where ro = A, r01 = r, and N is the two-sided ideal of re generated by the kernel of 
Let ei (i = 1,2,·· .,,,4 +1) be the n" +1 genera.tors in A. Take e E A. For \('l E 0 0 , 1-(1, in which 1 is the identity operator on r®A r and (1 is the automorphism given by 

one has the permutation on f02. As done in commutative geometry, in order to construct the 
Ae = e..a 0 e2.a, A'l ='lJ,JJ 0 712,JJ, high order differential calculus on the quantum group GL.,(")' we should first decide 
6.(e'l) = (e'lh.r ® (e'lh,r = el.a1h.P 06.a712.p· a bimodule automorphism (1 of r 0A r. For that reason we first introduce the concept 

Then of left-invariant and right-invariant I-form. 
ad(e) =s(r-J(1 0e» Definition 4.1 Let 6.0 : 0 1 - 0° 0 Ol be a linear mapping satisfying 

= s(m®«1 0 1) ®(S 0 id)6.e» (0 \(:1: E 00 , W E 0 1, 


=S{S(el.a) 0 6.0} 6.o(:l:W) = A(:I:)Ao(w), 

=m®(l 0 S(et,o) ® 6.e2.0) 6.o(W:I:) = Ao(w)6.(:I:), 

=(1 ® S(el.a»6.e2,o' 


(U) (6.0 id)Ao =(id06.0)Ao, 
Similarly, (iii) (e ® id)6.o = id. 

ad(e'l) 	 = [10 S«e'l)I.r)I6.«{'lh.r) Then we call Ao the left action on OJ. If an element W e OJ satisfying ~n(w) = 10w. 
= [1 0 S(el.o'1u)I6.{6.0712,JJ) then we call w the left-invaria.nt differential I-form. 
= [1 ®S('lI,JJ)S(6.a)}A(e2.0)6.(712.,a) Definition 4.2 Let 06. : 0 1 - 0 1 ®0° be a linear ma.pping satisfying: 
= (10 S('ll./J»ad({)A(712J1)· 0) \(:1: E Oo,w E 0 1, 

oA(%~) = A(:I:)o6.(w),Since ode e A® 0 0
, one obtains 

oA(w:I:) = o6.(w)6.(:I:), 
nt+J 

ad(e) = L e. 0 :t., :l:i E 0 0 , i = 1,2, ... ,n" +1 • (il) (id 0 A}oA =(06. 0 id}o6., 

•=1 (iii) (id 0 e}oA = id • 
Then we call oA the right action on 0 1• If an element w E 0 1 satisfying n.tl{ w) = w® I, 

Thus then we call w the eight-invariant differential I-form. 
ad(e'l) 	 = (1 0 S('lI./J»(ei 0 :l:d6.(712.P) In general, the differential calculus on a Hopf algebra which only satisfies the con

= (ei ® S('11./J):l:i)A(712./J)· ditions (2.1) and (2.2) can not always be provided with a leCt(eigbt) action. But if the 
Therefore ad(eq) E "It 0 0°. By the linear property of ad. we know differential calculus is left(right)-covariant, the leCt(eight) &ction on differential forms 

can be defined. 
adC-H) c "It ®0 0

, 
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Proposition 4.1 For Vw E 0 1, W = zlcdY/u the left action on w is defined as 

6g(zlcdylc) = 6zlc(id® d)6ylc. 

and the right action on w as 

o6(zlcdylc) =6zlc(d® id)6ylc' 

For the proof of this proposition, please see the Proposition 1.2 and 1.3 in [I}. 
By this proposition, we have 

6g(DetIlTdt) = 6(DetIl T)(id ® d)6t, 
o6(DetIl Tdt) = 6(DetIl T)(d® id}6t. 

Since 
6Detll T = DetllT ® DetllT, 6, = t ® t, 

we have 

6g(Det Il Tdt) = 1 ® (DetqT)dt, (4.2) 

o6(DetIlTdt) = (DetIlT)dt ® 1. (4.3) 

Noticing 
6S(tilc) = S(t""j)®S(tlcm), i,k= 1,2, .. ·,n, (4.4) 

we have 

6g(S(tilc)dtlcj) = 1 ® S(t;lc)dtlcj, (4.5) 

gA(S-l(tlci)dtjlc) = S-l(tlc.)dtjlc ® 1. (4.6) 

Combining (4.2), (4.3), (4.5) with (4.6), we obtain the following proposition. 
Proposition 4.2 
(i) DetllTdt is left-invariant and right-invariant I-form, 
(ii) S(tilc)dtlcj,(i,j= 1,2, .. ·,n) are left-invariant I-forms, 
(iii) S-l(tlci)dtjlc, (i,j = 1,2,''',n) are right-invariant I-forms. 

By the proposition, 

.. .. 1 (4.7)Wi' =M-l(A)~[S(tlcm)dtm' +A(rnq2 - 1)6Ic,DetqTdt} 

is left-invariant. It is easy to see 

(4.8)tmIcS-I(t,,,,,) = 61c'!. 

By (4.8), we can rewrite (4.7) as 

wi; =M-l(A)~S(tlcu)tll,[S-l(t_)dt"w +A( ~ - 1)6,,"DetIlTdtJ, (4.9) 
T q 
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Denote 

q." = S-l(t_}dt"w +A(.-!...2 - 1)6"uDet.. Tdt. (4.10)T"q • 

We have 
wij =M-l(A)t,S(th)tlllJ1u". 	 (4.11) 

By Proposition 4.2, q.. is right-invariant I-form, and (4.10) shows 11,.11 (u,v = 
1,2"", n) a.re also a group of right-invariant generators of 0 1• 

Now we define the bi-module automorphism a: 0 1 ®oo 0 1 - 0 1 ®go 0 1 by 

a( X:::'''WUII ® '1m,,) =X:::''''Im'' ®W
UII 

, (4.12) 

here X:::''' E 0°. It is euy to check a satisfies the braid relation, 

(id ® alta ® id)(id® a) = (a ® id)(id® alta ® id). 

Obviously, wij ®wuv (i,j,k,1 = 1,2, ... ,n) is a group of generators of 0 1®oo ai, By 
(4.10), 

a(wij ®wlc,) = a(wij ® M-1(A)!'oS(tau)t,,0J1..,,) ( ) 
= M-I(A)~~«(Jii"". (S(ta'Y)tT~d)'h'" ®w"" 4.13 

Applying (4.10) to (4.13), we obtain 

a(w
ij 

®wlc') M-l(A):~9iju,,(S(ta,,)twO)S(t"''Y)t.,.w 

·[S-l(tm.,.)df-ym +A(.-!...2 - 1)6"''YDetqTdtJ ®W""
T"q 

= M-l(A)~~9iju,,(S(ta,,)twp)[S(tl''Y)dt'Yw 

+A(-'!""'2 -1)6,..wDetqTdt}®w""
T"q 

= M-I(.\)!'09ij,,"(S(ta,..)twp)M(A)::'~Wmn ®W"". (4.14) 

Let 
a(wi; ®wlc,) = ~!'uvwm" ®w"", 
R~!,_ = 8ijuv(tmIcS(t,,,». 

Proposition 4.3 R~!'.tI =ii~~'"". 

Prool: From (4.14), it follows that 


~!'''v 	 = M-l(A)!,p(JijulI(S(to,,}twO)J.I(A)~~ 
= 9ij.." ( M -1 (A,!IIlS( tal' )t",o M (A)~~). 

Applying (3.8) to above equation, one obtains 

~!'Utl 	 = 9ij_(M-l(A):eS(talc)t.oM(A:)~~) 
= 9ijuv(t",IcS(t,,,» 

= R~!,,,,,. 	 (4.15) 
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• 

2 
Proposition 4.4 Let R = (R~:~~) ': (rf)lSo,bSn., (I = n (i -1) + n (j - 1) + 

n(k _ 1) + I. b =n3(a _ 1) +n2(iJ - 1) +n(p - 1) +A. Then the minimal polynomial 

3 

of R is (c -1)(e +q2)(C +q-2). 
Proof: By (2.8) in Prop06ition 2.1. 

RUII	 ='ij,,~(talrS(t,p»
a{J,,1.' = A*8ijfl,1.(ta • ® S(tl~» 

= BUob('olr)8Q ,,..,,(S(t,P))

=S*O;.) ® 1~(AtaA:)S·(I;') ® '~(AS(tllJ» 

= S·(l;.)(toc)lj.(tell)S*(I;')(S(tdIJ»lt~(S(tlld). 


By definitionofl~ (i,;= 1.2,···.n), 

'~(tdr) =A+R"J;:,bA:' (4.16)S'"(I;,)(Coe) = A_Roa.iet It~(S(tld» = A+l(R+);;;~'\d'
S*(I;.)(S(tlilJ)) = A:l R;J.ClljJ' 

These formulae give 

R~;~1. 	 = Rte,hkRQa.ie(R+)M~~iR;l),.d.Q{J 
= R i.Jr6( R~ )'e.oa(PR;1P )bI,M( R~I );J,I4Pe	 (4.11)
= (PR~I )ik,cb(R~P)ic,aQ(PR;1 )bl,d1.(PR~I );JJ3,..' 

where t is the transposition of the matrix, and h is the permuta.tion of the first and 

the third indexes. Write 
(R~P)ic.aG = (R~P):;a,

(p R'I) ... _L - (PR'I )jllq J ........ - q cb' 
 (PR~I);JJ3f1, = «PR~I)-l)O~'
(PR;1)16,Ad = (PR;l)~d' 

Then (4.17) can be rewritten as 

_ (6 j (PRII );k6' )«Hep)all 6c 6 )
Rijll' 	 - 0 II be d q o'b' t! 

4 
aP"'~ 	 11.' 

(6~6~ (PR;l);:')(6::« PR~I r 1)o:cS!) 
{(E®PR~I ®E)·(R~P0E®E) 
.(E0 E 0 PH;!)' {E ® PH~I 0 E)-lJ~:~A' (4.18) 

Let Ml = R~P® E ®E. M2 =E® E0 PR;1. Obviously, R and MJMl bave the 

same minimal polynomial (C - 1)(C +q2)(C +q-2). 

Therefore, we obtain 

(En. _ R}(R +q2 En. )(R +q-2 En.) == 0, 

where En. is the unit matrix of order ,,4. 
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Now we introduce the quantum de Rham complex: on quantum group GLII(n). 
Denote 

Oa =EBf!oOei, oeo ': 0°, Oe. =0 1• 

Definition 4.a The quantum de Rham complex: on GL,,(n) is defined as 

OA =08/{ker(1- (1)}, 	 (4.19) 

where {ker(l-D')} il the two-sided ideal 011 Oa generated by ker(l-D'), and ker(l-D') == 
{[(R+ q2Ent)(R+ q-2En.)J:grwi; ®wkl CI,P,p,>' =1,2,···,n}. The production in 
0" is denoted by A. 

Theorem 4.1 There existl a unique linear mapping 

d:O"-O"', 

so tha.t 
(i) d is the derivation of order Olle, i.e. it maps differential forms of order n to ones 

of order n + I, . 
(ii) The definition of dOll 0° is givell by (2.18), 
(iii) d(~ A '1) ': de A '1 +(_l)de"~ Ad'1, where deg~ ;:: n jf ~ is a differential form of 

order n, 
(iv),p = o. 
The proof of Theorem 4.1 Is similar to that of Theorem 4.1 in [1). 
Ii:l.Cact, we can write (4.19) u 

nA =Fun(GL;(n))[(.,,,ii,11/{I1,I2}. (4.20) 

where relation II is given by 

wi;: - (8ijkl. :)wkl, :t =tm", t· (4.21) 

and the relation 12 i. given by 

[(R+q2E"f)(R+q-2E"t)]:t.rlwii ,,,,,kl, a,p,I'.At= 1.2.···,,,. (4.22) 

Additionally, we can also obtaill the MaUrer-Cartan equation by Theorem 4.1 and 
(2.19). 

§5. Noncommutative differential calculus on quantum 
group SL,in) 

Qua.ntum group SL.,(n} can be obtalned:by taking the quotient algebra 

Ftm(M(n»/{QdtT -I}. 
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In fact, as for the Hopf algebra Fun(GL,,(n», its generator C now equivalents to the 

unit 1, i.e. 
t 55 1. (5.1) 

Thus. the algebra of coordinate functions Fun(SL,,(n» is equivalent to Fun(GL,,(n» 
/{DeC.,T -I}. Namely, 

Fun(SL,(n» =Fun(M(n»/{Det.,T - I} =Fun(GL,(n»/{Det,T - I} . (5.2) 

To insure the linear functionalsl~ (i, j =1,'" n) and l~ given in §l are well defined 
on Fun(SL,,(n», from (1.25) and (1.26), we know that the following conditions must 
be satisfied, 

(5.3)A+q = A~q = 1. 

Therefore, 
Vij(t) =Vij(l) = 0, (5.4) 

aad by (1.15) (1.11) and (1.18) we have 1+ = 1- = e. Or we can say, after the condition 
(5.2) is introduced, all of the equations in §1 still hold, and those related to t and I~ 
become trivial. Obviously, Fun( SL.,(n» and the corresponding algebra Funo( S L.,( n» 
are Hopf algebras. 

Now we discuss how to obtain the differential calculus on SL.,(n) and its quantum 
de Rham complex from tha.t 9f GL.,(n). 

Matrix M(A) plays a very important role in the discussions of the differential cal
culus on GL,(n). For quantum group SL,,(n), we have only two extra conditions 
Det.,T = t :; 1 and Af.q =A~q =1. Thus, 

(5.5)M(A) =(M::::'~~lh~It:.'.iJS." = (Vij(tlt:l)h~It:.I.iJ~'" 

And the determinant of N(A) is 

(1 - r,,),,-2DetN(A):; (1- r,,-1 - r" +r2" +rn~tn-I - r,,2t,,) (5.6)
x"r"2_,, I 

where r"q2 = 1. Therefore, except for finite isolated values of q, the matrix M(A) 
is invertible. When M(A) is invertible, we can add the conditions Det.,T == 1 and 
A+q = A!q = 1 to the differential calculus of GLq(n) to obtain that of SL,(n). The 
values of q that M(A) is not invertible are the 6th unit roots when n = 2, when n 2:: 3, 
the discussions will be a bit more complicated, we will discuss the differential calculus 
of SL.,(n) at the extra values of q elsewhere. 
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