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Abstract 

The Jymmetrie.s of the i.sotropic Heisenberg Jpin-~ model in one di
men.sion with nezt nearest interactionJ are investigated. It iJ shown 
that the model can be ezadly solved. Some detailed calculation.s and 
re.sultJ are pre.sented. 
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It is well known that the XXZ 1-D Heisenberg 8pin-~ chain with nearest in

teractions can be exactly solved in terms of Bethe l\IlSatz [1), which gives rise 

to the general forms of the energy and eigenstl,lotes but the explicit solutions are 

difticult to obtain. In [21 Levy presented a s~stematic method in dealing with 

this model exactly and analytically by using its Temperley-Lieb-Jones (TLJ) (31 

algebraic structures. This method is related to,the SU,(2) group symmetries {41 

of this model in [5] [6] and some detailed calculations are giv~n in [7J. 

In this paper, we investigate the isotropic 1-D Heisenberg spin chain with next 

nearest interactions. It is not knoWn how to cope with this case by Bethe ansatz. 

But we find that the Levy's discussions can be easily applied. 

We consider a. chain with N + 1 spins. The spin operators S± and S3 of every 

spin constitute the SU(2) algebra 

[S+,S-] =2S3 , [S3,S:] = ±S± , (1) 

with the Casimir operator C = S+S- - S3(S3 - 1) and co-multiplication map 0. 

~(S3) =S3 ® 1 +1 ® S3 , 

~(S:) =S: ® 1+1 ® S: , (2) 

~1 =1 ® 1, 

which is the algebra homomorphism. 

For spino!, 
1 3S: = 0': I S3 - -0' I (3)-2 

where o'±,3 are Pauli matrices. It is easy to find that 

a(2 - C) =~l ® 1- (0'+ ® 0'- +0'- ® 0'+ + ~O'3 ® 0'3] . 

which is just the terms describing two nearest spin interactions up to a constant 

term. From (4) one has the trivial representation of TLJ algebra, 

ei =1(1) ® 1(2) ® .•. ® l(i-I) ® ~(2 _ C)(i,i+1) ® l(i+2) ® ... ® 1(N+1), (5) 
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which represents the interactions of spin at site i and i + 1 and satisfies TLJ 

algebraic relations 
e? =2ei , eiej:l:lej =ej , 

(6) 
eiej =eje" if Ii - jl 2: 2 . 

From eqs. (4) and (5) it is obvious that ej commutes with the total spin 

operators 

NH 

S:t = L 11 ® 12 ® ... ® li-l ® Sf ® liH ® ... ® IN+! , (7) 
i=1 

where a = ±,3. Therefore the Hamiltonian constituted of ei will have SU(2) 

symmetry. Its eigenvalues and eigenstates can be studied in terms of the TLJ 

algebraic properties and classified according to the highest weight representations 

of SU(2) algebra. 

The Hamiltonian for spin chain with nearest interactions is simply 

H _J~ _ J~[+ _ _+ 133]
n - 2 (-t ei - -2 ~ (Ii (liH + (Ii (Ii+! + 2(1j (liH +Nl (8) 

1=1 1=1 

It is the usual ferromagnetic(antiferromagnetic) Heisenberg spin chain, up to a 

constant term, when J is positive(negative). 

Let ei,iH denote the next nearest interactions between spins at site i and i +2. 

We find that ei,i+2 can be expressed in terms of the interactions between spins at 

{i, i + 1} and {i +1, i +2}, i.e., ej and eiH, 

ei,i+2 =ei + eiH - {ei,eiH}, i =1,2"", N - 1 , (9) 

where {.,.} denotes the anticommutator. Therefore the isotropic Heisenberg spin 

Hamiltonian with next nearest interactions are 

J [N N-l ]
H"" = ? Eei + g E ei,iH 

.. i=d i=1 
~(1O)

N 1I - J 
= 2?: [(1 + g)ei +g(ej +ei+! - eiei+! - ejHei)] + 2:eN , 

~l . 

where g is a coupling constant of interactions between next nearest spins. For the 

convenience of writing, we will omit the factor ~ in the following. 

The Hamiltonian system of (10) can be studied according to the independent 

bases of the left ideal of TLJ algebra (2) [7]. Let 1:.1:1 :.1:2 ••• :.1:,,), 1 :5 .1:1 < %2 < 

... < %" :5 N +1, denote the state with n down spins and %is denote the locations 

of the down spins of the chain. The bases for n down spin states with the highest 

weight j are 

"Ccrn,Z:'11 3 5 •.• (2n - 1») n < (N + 1) (11) , - 2 ' 

where 

"C(rn, =C;'IC3'2 ... C~'!.lJ 1:5 ml < m2 < ... < m" :5 N, mj 2: (2n - 1) 

Ci = ernern_I' "ei, j = HN - 2n -1). 
(12) 

Z~ is a polynomial of e/s with property elcZ~ = 0 if k 2: 2n . The action of Z~ 

on 11 3 5 ... (2n - 1» gives rise to a constant factor. Therefore the bases of 

eigenstates for n spins down case are simply 

"~(rn) = "C(rn)ll 3 5 ... (2n - 1»). (13) 

The eigenstates of the Hamiltonian are the combinations of "tCrn) with the same 

n, 

"'1' = E aCrn) ~(rn)' (14) 
(rn' 

For every n :5 (N + 1)/2, there are ( ~ ) - ( n ~ 2 ) eigenvalues of energy 

nE from Hamiltonian equation 

B""'= "En",. (1~) 

The degenerate states with respect to every eigenvalue can be obtained by acting 

the total spin operator S;;, on the corresponding eigenstate of the highest weight. 
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All the eigenvalues and eigenstates can be exactly obtained in terms of recipe where Oft" Pm, "'1m are determinants of (m + 3) X (m + 3) matrices, 

above for given spins of the chain. Here we only give detailed calculations for fie 1 -gI some special cases. -g 1 c 1 -g 

-g 1 c 1 -g

First we consider n=1, the case of N + 1 spins chain with 1 spin down. The 


1 
eigenstates are simply of the form am = (_g)_del I -g 1 c 1 -g 

N 0 1 0 0 
lq, = L amCi"ll) (16) o 0 1 0

m=1 
000 1 

Accounting to the relations (6) and (15) we have 

- gam+2 + a.,.+1 +[2( 1 +g) - EJam +am-l - ga.,.-l = 0, m;;: 1,2, .. · ,N. (17) I 1 c 1 -g 

-g 1 c 1 -g 
Where co~paring to the Hamiltonian equations about m = 1,2, N - 1 and N, we -g 1 c 1 -g 

have 1 
Pm == (_g)m det I -g 1 c 1 -gao =0, a_I =al + al, aN+! = 0, aN+l =aN-l +aN· (IS) 

1 o 0 0 

The reduction equation (17) can be easily manipulated by simply setting am = o 0 1 0 

000 1t
'11m, which gives rise to an equation of '11 with four solutions, 

±2J-.::r - 2g'E +4g +1- A.v'2 +J2 

'111.1 = 4v'2g 
 1 -g(19) fie 

A.v'2 ± 2JA - 2g'E +4g +1 +v'2 -g 1 c 1 -g 
'113." = -g 1 c 1 -g4V2g 

where A = J16g2 - 4gE +Sg + 1. Therefore am == 61TJi + b-zTJl + b:JTJ!f + 6..TJr. 
1 

7m = (_g).det I -g 1 c 1 -g 
The coefficients 611 ~, 631 6.. and energy E are determined by conditions (18). o 1 0 0 

o 1 0 0Or explicitly 
000t 

[C8 ) ( ) PN-l "'IN-I]am+2 = m +"'1m - Qm +"'1m ++ m=I,···,N, (20) and c =2(1 + g) - E.QN-l "'IN-l 
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The condition 

!3N-l + "tN-I] 
[ (!3N + "tN) - (QN + "tN) QN-l + "tN-I 

!3N-I +"tN-I] (21)= [(!3N-l + "tN-l) - (QN-l + "tN-l) QN-I + "tN-l 

PN-l + "tN-I]+ [(PN-3 +"tN-3) (QN-3 + "tN-3) QN-l +"tN-l 

determines the energy E. 

If 9 0, the Hamiltonian (10) becomes (8) with only nearest interactions and 

sin (mk. 
a (_)m-l NH 

m • (kit)'
SID N+l (22)

k
E 2(I-COS N:l)' k=0,1,2, .. ·,N. 

For each k, there is an energy E and a set of coefficients am that gives rise to 

an eigenstate (16) of the highest weight state. The degenerate states with lower 

weights are obtained by the actions of the lowering operator of the symmetry 

algebra SU(2), SCo" on the highest weight state. 

The solutions of the case with one spin down in the chain, n = 1, corresponds 

to the eigenstates and energies of the ground and lower exciting states of the 

ferromagnetic chain when J is positive. And when J is negative it corresponds to 

the solutions of some excited states of antiferromagnetic chains. 

For n 2: 2 and general N the equation (15) becomes a set of reduction equations. 

It will be a bit more difficult to solve. However, for a given finite N the problem 

becomes the solving of a set of linear and homogeneous equations. The energies 

can be immediately obtained from the condition that the coefficient determinant 

of the equation set equals to zero. 

Let us consider, f~r example, the case of four spins (N = 3). The Hamiltonian 
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(10) is simply 

H"" = (g + 1)(el + e3) + (2g + 1)e2 - g(elel + elel + ele3 + e3tl)' (23) 

For n = 0, there is only one state 0", = 10} with all spins up. It is the eigenstate 

of both Hamiltonian and angular momentum with eigenvalues Eo = 0 a.nd j = 2 

respectively. 

For n=l, there are four independent states. One of them is of energy Eo = 0, 

and eigenstate 
• 

1"'0 = Si"o, ~ = L Ii) , (24) 
i.d 

where Ii) represents that the spin at location i is down and others are up. 

From (16) the rest three eigenstates are 

1"'0 = (aiel +a2elel +a3e3elel)ll) . 

By use of (6) and (15) it is easy to get 

(g+2-E)al + (1+g)al ga3 = 0 

al + (2 - E + 2g )al + a3 = ° (26) 

-gal + (1- g)al + (2 + 9 - E)a3 = 0 

Therefore we have solutions 
EI =2+g_Jg2_2g+2, a2=2al(Jg2_2g+2+gtl, a3=al i 

.E, = 2(g +1), al =0 (or arbitrary if 9 =1). a3 = -:-al; (27) 

E. = 2 + 9 + Jg'l - 2g + 2, a2 = 2al( J g2- 2g + 2 - g)-I, a3 = al . 

Explicitly the corresponding eigenstates are 

I 'ill = 11)-(1+2(v'gl-2g+2+g)-1)12) 

+(1 +2(v'g2 -2g+2+g)-l) 13) -14) 

l'i13 = 11) -12) -13) +14) (28) 

I",. 11) - (1 + 2(v'g2 - 29:- 2 - g)-I) 12) 

+ (1 + 2(v'g'l - 2g + 2 - g)-I) 13) -14) 
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For n=2, there are .six independent states. Four of them are obtained by the 

actions of the lowering operator Sloe on above four states of n = 1, 

2'110 = S;,IWO 2(112) + 113) + 114) + 123) + 124) + 134» 

2Wl=S;,IWl = (1-(1+2(v'g3-2g+2+g)-I)(112) 134» 

+(1 + (1 + 2(y'g'l. - 2g + 2 + gtl) )(113) -124» 
(29) 

2'113 = Si"oc 1'113 2(114) - 123» 

2'11. = Sloe 1'11. (1- (1 + 2( v'g2 - 2g +2 - g)-I)(l12) -134» 

+(1 + (1 + 2(Vgi - 2g + 2 - g)-I)(113) -124» 

with energies Eo, E1, E3 , and E. respectively. 

From (14) the rest two states are of the form 

2'11 =(aI3CtC: + a23C:C:)!13) = (al3e3el + a23e2e3eal113) (30) 

Using (15) we get energies 

E2 =2g + 3 - y'4g2-=-Bg+-S 
(31) 

Es =2g + 3 +v'4g2 - 6g + 3 

with respect to eigenstates 

2'112 = (1 _ 1 + J'"""49""':i-_-':6"-g-+-=-3)113) + (1 + ...(4g2 .= 6g + 3 _ 1)114) 

2g - 2 2g - 2 


+(1 + 1 + "'4g'l. - 6g + 3)124) -123) _ 1 + vr7"~g-2---::6,.-g-,-+..."..3134) 
2g -2 2g - 2 

(32)
2 

2Ws = (1- 1- "'4g - 6g + 3)113) + (1- "'4g2 - 6g + 3 -1)114) 
2g - 2 2g - 2 

+(1 + 1- v'4g2 - 6g + 3)124) -123) _ 1- .;r:"4g-lI ----=6,....g-,-+-=-3 134) 2g - 2 2g - 2 

In this way we get all the eigenstates and energy levels of the I-D Heisenberg 

spin system (N=3) with next nearest interactions. It is worthwhile to note that 

when g=O, 
Eo = 0, EI = 2 -.j2, E2 =3 - J3 

(33) 
E3 =2, E. =2 +.j2, Es =3 + J3 

Hence if J is positive we have, 

Eo < EI < E, < E3 < E. < Es . (34) 

However, when 9 = l, E, = ~ -= 3. The energy level 2 and 3 become 

degenerate. This also takes place when 9 = 1 (at this moment the eigenstate 1 q, " 

in eq. (28) is no longer correct. By solving the eq. (26) again one gets 03 = -al 

and a2 is arbitrary. Similar recalculations for 2'112 and 2ws are also needed). In 

fact we have 

E2 =E:s if 9 =!. or 9 = 12 

E2 < E3 if 0 < 9 <. ~ (35) 

E, > E3 if < 9 < 1i 

Therefore it is manifest that the interactions between the next nearest spins may 

change the order of energy levels and result in phase transitions. 

It is also interesting to have a look at the c~ of 9 < O. When 9 =1, Eo = Et , 

the original ground state and first exited stat~ become degenerate. And when 

1 < 9 < }, one has Eo > El .; E2 • The energy l~vels 1,2 and 3 are reversed. 

Here the boundary conditions of Hamiltonian (10) are open. The cyclic bound

a:s:y conditions may be also considered by adding a boundary term eM of interac

tions between spin 1 and 4, which is easily deduced from rela,tion (9) 

BI,. = el,3 + ea - {el,3, e3} 

= Bl +e2 + e3 - {ehe2} - {e2,ea} - {el,e3} (36) 

+{ell {e2' e3}} 

It is directly to get all the eigenfunctions and energy levels for this Hamiltonian 

system of cyclic bounda:s:y condition from similar calculations above. 

It should be noted that the lower dimensional Heisenberg spin model with 

higher order non-nearest interactions corresponds to higher dimensional ones with 
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lower order non-nearest interactions. Here the 1-D chain with next nearest inter

actions is the same as the 2-D strip with triangular nearest interactions, Le., 

2 4 6 8 10 

1 3 5 7 9 
:.. 

Different selections of non-nearest interactions of I-D chain will correspond to 

different kinds of 2-D or higher dimension l~ttice interactions. Similarly higher 

dimensional Heisenberg spin models may be exactly solved by reducing them to 

be 1-D problems. In any way the Hamiltonians are always the polynomials of the 

elements of Temperley-Lied algebra and hence their eigenstates are of the form 

(14). The 2-D isotropic Heisenberg model, which is related to the Hubbard model 

(8) in high Tc superconductivity theory [9), can be also be exactly solved in this 

way [10}. 
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