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Abstract 

In the ferromagnetic Heuenberg chairu of X X X and X X Z type8 
'lDith the hidden 8ymmetrie8 of double Lie algebra 8u(2) and quantum 
bi-algebra 8u,(2), tile 8hotll that at thermodynamic limit the algebra 
contraction.s give the bOMn algebra h(4) and the q-deformed b080n 
algebra h,(2) 48 the hidden 8ymmdrie8 re8pectiveiy. The chain8 in 
con..tant magnetic field are .studied and the ground 8tate8 and lowe8t 
excited 8tate8 are given explicitly toith energy 8pectra. The phonon 
(or angular momentum) ezcitation8 are 8hown to be b080nic for the 
i80tropic ca.se and q-b08onic for the aniMtropic ca8e, and the ground 
8tate8 and lOtlle8t ezcited 8tate8 of the 8y8tem.s of the chain.s in field are 
given explicitly. We give the phonon coherent .state8 in the i80tropic 
Heuenberg chain and the q-coherent 8tate8 of the •anu0tropic chain 
at thermodynamic limit, and the q-coherent 8tate8 are 8hown to be a 
8queezed 8tate8 of phonon excitation8. 

§1. Double Lie Algebra 8u(2) 

For completeness and to facilitate the forthcoming introduction of the quantum bi

algebra theory [I]. we start our discussion at the very beginning of double lie algebra 
theory. But we will confine our introduction to the necessary discussions of double lie 

algebra 8u(2) and in section 6. the quantum bi-algebra 8u,(2). 

lie algebra 8u(2) is spanned by {J±t J3} and defined by the following commutation 
relations . 

[J\ J-] =2J3 [J3,J±] = ±J± , (1)t 

1mailing address 

1 

and for the convenience of the following description, we supplement it with unity 
1. The center of this algebra is therefore spanned by 1 and the Casimir element 
e = J+ J- + J3(J3 -1). 

The algebra structure is built with two maps, the unit map u and the map of 

multiplication m, 
m : 8u(2) ® 8u(2) -+ 8u(2) 

(2) 
u: C -+ 8u(2) 

and m is associative. 

A co-algebra structure can also be defined based on the co-unit map E and the 

map of diagonalization 6, which are algebra homomorphisms, i.e., 6(ab) = 6(a)6(b), 
Va, b E 8u(2). and same to E. The maps turn the algebra into its tensor representation 
as shown below 

6 8u(2) -+ 8u(2) ® 3u(2) 
(3) 

8u(2) -+ C 

and the diagonalization is associative, i.e .• 8u(2)®[6(8u(2»1 = [6 (8u(2»]®8U(2). 
We give the actions of 6 and e on generators J±.3 explicitly 

6(J±·3) = J±,3 ® 1 + 1 ® J±,3 , 
(4) 

e(J±·3) = 1 

As 3u(2) is simultaneously an algebra and co-algebra. it (more precisely 8u(2) ® 
8u(2» is a double lie algebra. 

The Casimir element of this double lie algebra is the diagonalization of e, often 

called the (l-st rank) co-Casimir, which reads. 

6 (e) = J+ J- ® 1 + 1 ® J+ J- + J+ ® J- + J- ® J+ 
(5) 

+1 ® (J3)2 + (J3)2 ® 1 + 2J3 ® J3 - 1 ® J3 - J3 ® 1 

§2. The Hamiltonian of the 1D Isotropic Heisenberg Model 

Consider the co-Casimir for the spin-~ representation. from (5) we learn that 

1 3
6 (e) =0"+ ® 0"- + 0"- ® 0"+ + _0"3 ® 0"3 + - (6)

2 2 
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where (1%.3 are Pauli matrices. Therefore the operator 

0 1 -1 )E=2·1®1-~(C)= -1 1 0 (7) 
( 

is in the center of the double Lie algebra 8u(2) ® 8u(2). Hence it is true that 

e, =11 ® 12 ® ..• ® li-l ® (E)i,i+1 ® li+2'" ® IN+1 (8) 

(where i = 1,2"" 	N) is 8u(2)-invariant, i.e., 

[ei ,8u(2)®Nl =0 . 	 (9) 

It is interesting that ej are elements of the N-dimensional permutation group 
algebra PN satisfying 

el =2ei 

e.ei%1 ei =ej 	 (10) 

rei, e;) =0, Ii - jl ;::: 2 

which is a special case of Temperley-Lie-Jones (T-l-J) algebra (2J. Therefore the 

Hamiltonian for spin-~ Heisenberg chain 

N N 
Hxxx = Lei=2:(~(2-C»(i,i+1) 

j ... l i,.1 
N 	 (11) 

= ,,( + - + - + 1 33) IN .- &;t (1. (1i+1 (1i (1i+1 + 2(1i (1i+1 + 2 

is invariant under the action of double Lie algebra 8u(2). 

§3. The Ground and the Lowest Excited States in the Chain 

As is shown in the above. the Hamiltonian of the spin-~ chain is invariant under 
the action of the 8u(2) generators, and therefore the solution spaces are completely 

reduced into irreducible spaces characterized by their highest weight states, and each 
state can be labelled by the quantum numbers of total spin, the third component of 

the total spin, and the energy eigenvalues. As a method of book-keeping, we will first 

give the highest weight states, and the complete solution spaces will be obtained by 

the application of the lowering operators of the double Lie algebra. 

The ground states are irreducible representation spaces with enerlY eigenvalues 0, 
and total spin numbers the largest ones, i.e .• (N +1)/2. We assume the space of the 
ground states is characterized by the highest weight state of all up spins, i.e .• 

10) = 1TIT2 ... Trl+l) . (12) 

It is clear the energy eigenvalue of this state is O. 

The lowest excitation states are those characterized by the highest weight state 
with the turning-down of an arbitrary spin, 

Iii) = I Tli2 ... ii-riiTi+1'" TN+1} • (13) 

Since 
Ili) -I !i+1) , if i = j; 

',1 1,) = ~1;.,) -I 1;) , if i=j-1; (14) 
{ 

if otherwise, 

the action of the Hamiltonian on this state yields 

Hxxxi !i) = eilli) +ei-lI1i) = -I !i+1) +21 !,} -I !,-1) , (15) 

i.e.• the spin deviation propagates along this chain. which is the familiar spin-wave. 

To diagonalize the Hamiltonian. we consider the states 

I(i, i +1).) (- );+1 (I f 1f 2 ..• fi-l T.!i+1 ... TN+1) 
(16)

-I T1f2 ... fi-difi+1 ... fN+1» . 

The lowest excited states 11) (which will be supplemented by an subscript k denoting 

the degeneracy) should be proper compositions of these states with i running from 1 

toN. 
N 

11) =L lItl(i, i +1),) . 	 (17) 
i=l 

Because 

! 

21(i, i +1).) , if i =j ; 


if i=j+l;
eil(i, i +1).) = 	 I(~ +1, i +2),) , (18) 
I(t - 1, i).) , if i =j -1 ; 

o if otherwise, 
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and we have the reduction equation 

(2 - E)a. +ai+! +ai-l = 0 , ao =aN+! = 0, (19) 

which can be easily solved 

a~ 51n. ("'")WI 
( )"'-1 ) , 

al - sin (N':1 (20) 

Elt = 2(1 -cos N": 1) , ,,= 0, 1,2,···,N . 

For each ", a~ gives only the highest weight state characterizing a solution space, 
and this space is obtained by the actions of the lowering operator of the symmetry 
algebra su(2), or precisely the lowering operator 6(N)(J-) of the double Lie algebra 
su(2)e(N+!) . 

The complete solution space for the ground states is 

Yo = {Ii =N; l,l = i - m,E= 0) = [6(N)(J-»)", 10)} (21) 

V\!here 0 ::; m S N + I, the states are not normalized. and the state IO} is the highest 
weight vector given in (12). The solution spaces for the lowest excited states are 

Vilt ={Ii = N; 1 ,j3 =; _ m,Ek} = [6(N)(J-»)", 11)1t} , (22) 

where 0 S m ::; N, and Ek are indicated in (20). 

By the term IOUlest e:z:cited we mean there is only one spin turning-down in the 
highest weight states. and we will see that at the thermodynamic limit, the energy 
eigenvalues of these highest weight states becomes continuous from the energy eigen
value of the ground states O. The lowest energy eigenvalues are really contained in 
these solutions. 

§4. The Chain in Constant Magnetic Field 

The behaviour of the excitations in the chain in a constant magnetic field is one of 
the important problem of theoretic research and also one of the experimentally devoted 

problem in quasi one dimensional samples. The Hamiltonian for the X X X chain in a 

constant magnetic field jj = Bz is 

N+! 
H'xxx =Hxxx +BpB E J! , (23) 

i=l 
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where PB is Bohr magneton. It shows that each spin along the chain has contribution 
to the energy of the system, and Ef.tl J! is nothing but the element of the double 
Lie algebra su(2)e(N+l). 

Obviously, the existence of the nonzero B induces the breaking of the su(2)· 
symmetry, and the degeneracy of the states in each solution space is lifted . 

In space Vo, every state has a different energy eigenvalue, 

Hxxxlj = ¥,j3 = m,E =0) Hxxx [6(N)(J-»)", 10) 
(24) 

mBpBI; = ¥,j3 =m, E = 0) 
1twhere 0:::'; m S N +1. In space V1 , 

Hxxxlj =N;I,j3 = m,EIt ) = Hxxx [6(N)(J-)J'" 11) 
(25) 

(Ek +mBpB)!j =N;I,p = m,Ek) 

where 0 S m S N. 

§5. The Thermodynamic Limit and Coherent States 

When N - 00, if we suppose k =ex(N +1). ex E [0,1) then 

a~ =(_)m_ts~(mex1r) , Ek = 4sinl~ (26)2 .at sm(ex1r) 

Especially. when ex - 0+, we have 

lta-!!. _ (_)m-lm, Ell _ 0; (27) 
a1 

while when ex - 1-, we have 
ka


-!!. - m, Ell - 4 . (28) 

at 

When ex increases from 0 to I, the energy eigenvalue Elt increases from 0 to 4. There 
is no energy gap between the ground states and the lowest excited ones. 

Since N - 00, the total spin numbers for the ground and lowest excited states 
approach infinity, there is natural algebraic contraction from su(2) to h(4), the linear 
oscillator algebra. Consider the following linear transformation that transforms the 
generators J±.3 to a new set of generators h*·3 

(29)(~:)=C 1 ~ )(~:) 
6 



the algebraic relations are turned into 

[h3 ,h:t:)=±h±, [h+,h-l=2c2h3 -1. (30) 

The actions of the new generators in the Dicke space yield 

h±ljm) = cVU ± m)(j =f m + 1)lj, m ± 1) , 
(31) 

h3 jjm) c (m + 2~) Ij, m) , 

2Therefore when j -+ 00, c = h -+ 0, the transformation (29) becomes singular. 
but the limit algebraic relation (30) are still well-defined, i.e., the (29) describes an 
algebraic contraction. The contraction limit is the well known linear oscillator algebra 
h(4), and the usual generators are at = h+, a = h- and N = h3 + j. Denote 

l = j + m, we also obtain the Fock space representation of h(4) as the limit of (31) 

afjl) v'mll+l), 

all) v'lll - 1) , 
(32) 

Nil) lll) , 

a/O) = O. 

The Hamiltonian for the chain in magnetic field is 

H'xxx = Hxxx + IJBBN . (33) 

Although the system may be macroscopically large, it is obviously in pure quantum 
states. The excitations are constrained by the quantization condition, and obey the 
uncertainty relation. It is interesting to find the minimal uncertainty states, i.e., the 
coherent states (3), Iz) with z E C defined as follows 

.ef zl 
Iz) = exp (za t + z*a) 10) = e- 2 t;00 

"\I'l!ll) . (34) 

It can be checked directly that 

alz) = zlz) . (35) 

The adjo'int states are 

(zl =(Iz»t , (36) 

and 

(zlat =z*(zl . (37) 

7 

at + a at - a 
Therefore the coordinate Q = v'2 and momentum P = i v'2 of the bosonic 

excitation has the following square root differences 

!:1P == V(zIP2Iz) - (zIPlz)2 = ~ 
(38) 

!:1Q == J(zIQ2Iz) - (zIQlz)2 =~ 
That is, the coherent states Iz} are minimal uncertainty states, or the quantum states 
nearest to the classical ones. 

In the following, we will generalize the above analysis for isotropic X X X chain 
to the anisotropic X X Z one, but this generalization is rather indirect, for this sake 
we have to make use the mathematical tool of quantum bi-algebra theory, or the 
q-analogue of the double lie algebra theory. 

§6. Quantum Bialgebra 8u,,(2) and T·L-J Algebra

I Quantum bi-algebra (41 8uq(2) is generated by 1, Ji.3 satisfying the following 

I 
relations 

(J:, J,,-] = [2J;)q' [J:, J;1 =±J; , (39) 

where (x], = ~~:~lz. Please note that [x], -+ x if q -+ ±l. The independent 

central elements are 1 and C'l = J: J'l- + [J:l [J: - l)q' The algebra structure is 

stiff based on two maps: unit map u and assocIative map of multiplication m. The 
co-algebra structure is built on the co-unit map e and map of diagonalization !:1, which 
are algebra homomorphisms and defined as follows 

!:1( Ji) = J; ® 1 +1 ® J; , 

!:1(Ji) = Ji ® qJ: +q-J: ® Ji ' (40) 


e(Ji·3 ) = 1. 

It can be seen that J; is lie-like under diagonalization and q:t:J: is group.like, because 

!:1 (q±J:) =q:t:J: ® q±J: . (41) 

The parameter q is called the deformation parameter, and when q -+ 1 the double Lie 

algebra su(2) is recovered. 

When the spin number is I, the representation of quantum algebra su.,(2) is the 
same to that of su(2) which is constituted by Pauli matrices, but note that the tensor 

8 



representations are deformed. This is obvious from the relations (39) and the definition 
of diagonalization (40). 

Consider the diagonalilation of c~ = (2), - C, for spin-l representation, we have 
the co-Casimir 

A (C;) = ~1 ® 1-[(7+ ®(7- +(7- ®(7++ 

~(73 ® (73 _ '-r1 
«(73 ® 1-1 ® (73)] 

cq 

(42) 

-1 
-1 q-I= J 

which is just the e matrix in (5) and E matrix in (6). Therefore the elements of T-l-J 
algebra (2) ca n be given 

e. = 11 ® 12 ® ... ® 1,_1 ® [A (C;)L.i+l ® 1'+2'" ® 1N+I (43) 

(where i = 1,2"" N), and it is a simple calculation to check that 

e~ = [2),ej 

e,ei:l:l ej = ei (44) 

fe"~ ei) =0, Ii - jl ~ 2 

which are just the defining relations of the N-dimensional T-l-J algebra. From (42), 
we see 

[e,,3u,(2») =0 . (45) 

Apparently. when q ..... I, the T-l-J algebra coincides with the permutation group 
algebra. It should be stressed that the T-l-J algebra is a special representation of 
braid algebra (1) which is an important tool in studying many body systems. The 
anisotropic Heisenberg chain presented in the next section is a well known example to 
illustrate this. 

§7. Anisotropic Chain and Lowest Excited States 

Consider the Hamiltonian for anisotropic Heisenberg chain {5}[8J[9][10} 

~ ( + - - + [21, 33) (2), N q - q-l (3 3)HXXZ = - (- (7, (7j+l + (7, (7i+l + 4(7j(7i+l + 4 - -4- (71 - (7N+I , 
t:l 

(46)· 

9 

it is clear 
N 

Hxxz = :~::>~, . (47)
.=1 

From (45) we learn that 

[HXXZ ,3U,(2)} = 0, (48) 

i.e., that system is 3u,(2)-invariant. 

The ground states are the state 

10) = I T.f2 ... TN+I) . (49) 

and its descendent states from it by the action of the lowering operator A(N)(J;) of 
the quantum bi-algebra 3u,(2)@(N+I}. The complete solution space for the ground 
states is 

,Vo = {Ii = N: 1 ,j3 = j - m,E =0), = [A(N)(J;»)'" 10)} (50) 

where 0 :5 m :5 N + 2. 

When there is only one spin deviation, such as I f. f2 ... 1i ... f N+I)" the solutions 
are similar to the isotropic case. let 

I(i,i + 1).}, (_)'+1 (ql flf2 '" f'-lfd'+I'" fN+1), 
(51)

-I flf2 '" f.-.1ifi+l ... fN+I),) 

The states 1(1,2),}, etc. are q-analogous spin-singlets. 

We will confine ourselves to the analysis of the first excited states 11), which are 
proper compositions of these states with i running from 1 to N (11)[6). Le., 

N 

11), =Ea,l(i,i + I).}, . (52)
,=1 

Because 

! 
(2),I(i, i + 1) ) ., , if i = j j 

if i=j+l;e,l(i,i + 1»,,__ I(i + 1,i + 2)8"} (53)
l(i - 1 i) ) if i=j-l;, 'II' 
o if otherwise, 

and we have the reduction equation 

([2), - E)ai + aj+l + at-I =0, 00 =ON+I = 0, (54) 

10 



which is solved in analogue of the isotropic case, 

• (mA:1I')a~ SIn N+t 
)"'-t H) ,at (- sin (N+I k ) (55)

1 

E" 2 ( q +2
q

- - cos N : 1 k =0,1,2,···,N. 

For different k, a~ give the highest weight states characterizing different solution 
spaces, and the other states in the spaces are obtained by the actions of the lowering 
operator I),.(N)( J,-). The solution spaces for the lowest excited states are 

,ViA: = {Ii = N; l,j3 = j - m, EA:)" = [1),.(N)(J;)j'" 11)1} I (56) 

where 0:5 m :5 N, and E" is indicated in (55). 

§8. The Thermodynamic Limit and Chain in Constant Magnetic 
Field 

When N - 00, if we suppose k = CIt(N + I), CIt E (0, I) then for the lowest excited 
states we have 

a~ _ (_)",_t sin (mClt1l") E _ 4 . 2 ~ (57)at - sin (Ot1r) , ,,- SIn 2 . 

When CIt - 0+ and CIt - 1-, we have respectively 

a"
-!!!. _ {-)",-lm, E" _ (2]" - 2 ; (58) 
at 

and 
ale 
-!!!. - m, EA: - [2], +2 • (59) 
at 

As CIt increases from 0 to 1, the energy eigenvalue E" increases from [2), - 2 to (2), +2. 
There is an energy gap between the ground states and the lowest excited ones. 

Since N - 00. the total spin numbers for the ground and lowest excited states 
approach infinity, there is an algebraic contraction from su,(2) to h.,(4), the q-oscillator 

algebra. Consider the following linear transformation that transforms the generators 

J;,3 to a new set of generators h;·3 

(60)(¥)=(" 1 f )(~n 
11 

the algebraic relations are turned into 

[h!,h;] =±h;, [h:,h;] =c 2 [2h! - ~L (61) 

The actions of the new generators in the Dicke space yield 

h;ljm), cJ[j ± m),[j =F m +1),lj, m ± 1), , 

h,3 jjm), (m +tcr) Ij,m), , 
(62) 

2Therefore when j - 00, c = ror. - 0, the transformation (60) becomes singular, 
but the limit algebraic relation (61) are still well-defined, i.e., the (60) describes an 
algebraic contraction. The contraction limit is an analogue of linear oscillator algebra 

h,(4), and the usual generators are a! = h:, a, = h; and N = h3 + j. Denote 
l = j +m. we also obtain the q-Fock space representation of h.,(4) as the limit of 
(62) 

a!ll), I(l + IJ"ll +1), , 

B.,ll), yftkll- 1), , 
(63) 

Nil), lll)" , 

a"IO)q O. 
It should be emphasized that if we identify 10), with 10) then 

(a!)" 10) = (at)." 10) (64) 
/[n),! Vn! 

Le., In), = In) with n = 1,2,· ... Henceforth we will not distinguish In), and In). 
This is obvious if we consider the realization of h,(4) by h(4) (121[13)[14) 

[N + I), a, t [N + l)q • 
aq = a! = a \1 N +1 (65)

N+l 
The excitations of the systems are not bosons, but their self-interacting composites. 

The q-bosons are not described by linear operators, but nonlinear ones. And from 

the above equations, the nonlinear operators are certain combinations of the linear 

operators. 

The Hamiltonian for the spin chain in the constant magnetic field reads 

N+t 

H'xxz = Hxxz + BpB E J; i (66)I 

i=1 

12 



but E!tt J: t is nothing but the operator of the quantum bi-algebra 6.(N)( J:). The 

nonzero quantity B induces the breaking of the 3u,(2)-symmetry, i.e., the degeneracies 
of the states in solution spaces are lifted. 

The action of the Hamiltonian on each state in space, Yo yields a different energy 
eigenvalue, 

H'xxzlj = ¥,p = m,E =0) H'xxz [6.(N)(J-)]tn 10) 

= mBpBli = ¥,p = m,E = 0) 
(67) 

where 0 :5 m :5 N + 1. In space,viI:, the action of the Hamiltonian gives 

H'xxzlj = N;l ,p = m, El) = H'xxz [6.(N)(J;)]tn 11), 
(68) 

(El +mBpB) Ii = N;l ,p = m, Ek) 

where 0 :5 m :5 N. 

At the thermodynamic limit, the Hamiltonian for the chain of XXZ type is 

H'xxz = Hxxz +PBBN . 	 (69) 

§9. The q-Coherent States and Phonon Squeezing 

To see clearly the strange but physical object: q-boson, it is worthwhile to see 

its minimal uncertainty property, and to do so we have to introduce the concept of 
q-analogous coherent state. 

The q-coherent states Iz), with z E C are defined as follows 

00 zl 
Iz), = ;V-I exp (zat) 10) = ;V-I ~ ~It') , (70) 

where J\{2 = exp,{lzI2), exp, is the Beidenharn exponential function [121 and it can 
be checked directly that 

aqlz), =zlz), . (71) 

The adjoint states are 

,(zl =(Iz)q)t , (72) 

and 

,(zla! = z· ,(zl . (73) 

The resolution of unity is supplied in [15). As the q-bosons are nonlinear compo

sition of bosons, we should observe the behaviour of the uncertainty of the bosons on 

these q-coherent states. 

d· Q at +a d p .a - a f h b ..The coor Inate = v'2 an momentum = I 

t
v'2 0 t e oson excItatIon 

has the following square root differences on the q-coherent states, 

6.P = vi + (ata) - (at)(a) +Re((at2) - (at)21 
(74) 

6.Q = vi + (ata) - (at){a) - Re{{at2) - (at )2) 

When q -+ 1: these two values approach i, and the limit of q -+ 0 or equivalently 

q -+ 00 gives 

1 z2-1 
6.Q = 	 (75)2' +Z\%2 +1)2 ' 

and for a finite value of q there should be phonon squeezing. 
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