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Ahstract.  The quantum groups are neither group nor necessarily to be
rhesieolly quantum. Namely, they can be realized at both classical and quantum

It ele by means of symplectic geometry and geometric quantization method.

The qnnntum groups [1-5] are usually thought to appear in certain quantum
phrsieal svstems and when the quantum systems revert to classical ones the quan-
i mronps reduce to the corresponding Lie groups. We found [6-12], however,
this j et the case ii; principlke. Actually, the quantum groups are neither groups
{ this i= wrll-known ) nor necessarilly to be physically quantum. That is, they
o hgenlized at both classical and quantum levels. In this talk I would briefly
introdies this approach to the quantum groups by means of the symplectic geom-
~t1v of the phase spaces of certain classical mechanical systems and the geometric
a-vntizaiion theory [13).

Tn order to realize the quantum group SU,(2) at classical level, We first present
the elresienl g-deformed algebra of SU(2), denoted SU, 5_.0(2), which is isomor-

phic to the so-called quantum algebra SU,(2), in both Poisson brackets and Lie
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brackets. On the classical phace space of two linear harmonic oscillators C? and
the line bundle over it, we construct a set of g-deformed observables which form
the SU,x-.0(2) algebra in the Poisson brackets and a set of corresponding opera-
tors which generate the SU,x—0(2) algebra in Lie brackets. Once such operators
are given, the Hopf algebra structure can be easily set up and the entire structure

of the quantum group SU,(2) follows.

In fact, these operators are nothing but the prequantization operators of the ¢-
deformed observables. Since the prequantization line bundle over the phase space
is still classical, so these operator together with unit provide a realization of the
quantum group SU,(2) at classical level. Of course, there is a tiny but crucial
difference between these operators and the usual prequantization operators [13].
Namely, there is no Planck constant A at this level in our approach. From phys-
ical point of view, the Planck constant‘ % is of completely quantum characteristic
so that it should appear only after suitable polarization is taken rather than at
prequantization level. In other words, polarization turns the classical g-deformed
algebra SU, x..o(2) to the quantum one of SU,(2), denoted SU,(2), for which the

Hopf algebra and the quantum group structure is well established.

Let us begin with a system of two harmonic oscillators with the Hamiltonian

and the symplectic form on the phace space C?

H = 71N
', (1)
Q= —ide; A dz;,

=1

gl
T

bt

where z; = E‘%"l 5= Z‘%’l

A set of the classical observables J, = 2,5, J. = 2,7, and J3 = %(zif, — 2p%,)



constitute the SU(2) algebra in Poisson brackets:

{4, -f-]P.B. =—i2Jy, [J3,Ji]lpp. = —i(EJ). (2)
On the other hand, it is easy to see that a set of the q~deform;:d observables
5, Jy=1, (3)

generate the SU, »_o(2) algebra in Poisson brackets

4, T pe. = ~i[25),, (U3 Jilps. = =i (£71), (4)
where
. 1 sinh (y5:%) 1 sinli (7,2 )z- (5)
“7 Vysnhy e HE Vysinhy. 3 !
and
qa: = q-:
S RrEre

On the U(1) line bundle over the phase space C? with curvature £ and con- -

nection (symplectic one-form)
0 = —i(3dz + #dz,), (6)
the prequantization operators of the observable f can be given by the map

f— f=—i(X;~i8(X)) + f, )

where X is the Hamiltonian vector field of f. For the reasons stated above, here

we do not insert the Planck constant.

For z; and Z;, we have

9 )

Xi.' = ‘b:a

i=1,2 (8)

and their prequantization operators

: +z, % 9 )
G =—ao T4y, T T v
dz; ! Oz;
with the following commutation relations
[2.35) = 8. (1)

To get the prequautization operators of J§ and Jj, we need a suitable ordoring of

%, and %;. From formulae (3) and (4) we have

J o= 1 —ilsmh( 5z )
+ = f————~7$inh7 22 YZ222)},
‘Jv._l = _____1 zlsinh (72;;,) , (L)

V/7sinhy #

j:’, = —;- (z.z‘ - 2222) .

with commutation relations of SU, x—o(2) algebra in Lie brackets
AR A %sinh (2072), 1 T2 = 275 O

With formulae (11) and (12) we can define the co-product A. o uuic « i

- antipodal mapping S,

A = he1+19F,

a(ly) = Jadt+atiel, )
SU) = =By S(h)=—¢01, v
e(Ji) = e(B3) =0, e1)=1.

These three Hopf operations are algebra homomorphisms and anti-homomorpliom

€.,
A:d - A®4, A(ed) = A(a)A(d)
S:d — A, . S(ab) = S(b)S(a); (14)
e:d — C, elab) = e(a)e(d),



where a, b are elements of algebra A (which is at present SU,.o(2)), and C the field
of complex numbers. The above three operations, supplemented by the identical

mapping id and multiplication m, should be consistent, i.e.,

(d®@A)A(a) = (ARid)A(a);
m(id® S)A(a) = m(SQid)A(a) = ¢a) - 1; (13)
(e®id)Af(a) = (id@€)A(a) = a,

and compatible with the algebra relations.

We have seen that Eq.(13) defines a neither commutative nor co-commutative
Hopf algebra. As is well known in the quantum group theory, once such a Hopf
algebra structure is given, the entire quantum group structure follows [1-5]. Thus
the clagsical ¢-deformed algebra SU, s_.o(2) possesses the nontrivial Hopf algebra
structure as well as the entire structure of the quantum groups, but it has nothing

to do with physical quantization at all.

In geometric quantization approach, to quantize a system on the symplectic
space (C? Q) is to introduce a suitable polarization. Let us take the Kihler po-
larization with basis X = { %, %} Then from the quantum map, we get the
quantum operator of a given classical observable f (which is supposed to preserve

the polarization):
J— J = =ih(X; = (X)) + f ~ Sha, (16)
where a.is determined by the formula
X7, X] =aX. 17)
The quantum operators of z; and Z; then take the form

ii = 2y %; - fl— (18)

with commutation relations

[, 2] = —héy;. (19)

Similarly, the quantum versions of J, and Jj are

B 1 a 9
fho= \/»;‘smz,*'““(""”az,)
Y 1 z3 ., a D)
e 23 il 20
J: s sxnh('yhzlaZI) (20)
oo A, 0 0
3 - 2 282: ‘az;

In terms of (19), J} and J} give rise to the quantum g-deformed algebra SU, A(2),

. . inh v sinh 27f’ I .
tJ;,JL)=s‘“T"—#7“), 3, 2] = AT, (21)

which is isomorphic to the usual quantum algebra SU,(2), but with an additional

"parameter A characterizing the physical quantization of the system.

Obviously, the Hopf algebraic structure of SU,a(2) is identical to that of
SU, s-0(2) in form and the entire structure of the quantum groups follows as

well.

So far we have constructed the Hopf algebraic structures for both SU, x_o(2)
and SU,x(2) by the symplectic geometry and geometric quantization method.
Although we have dealt with the particular quantum algebra SU,(2), it is ¢asy to .
convince that the principle of the method can be applied to generic cases more or

less straightforwardly.

It is worthwhile to point out that the deformations z; — z{ are quasiconformal
deformations while g is real. And (2’, ') describe a ¢-deformed oscillator which is
a nonlinear object but can be exactly solved at both classical and quantum levels

[6-9].



In [10-12], both SU,a_.o(2) and SU,(2) are realized on a line bundle over

a g-deformed sphere, which is closely linked to the g-deformed rotator and the
g-deformed spherical top. Equivalently, they can also be realized by a set of g-
deformed functions, which satisfy the equation for the g-deformed sphere, on the
sphere and by corresponding operators on the line bundle over the sphere. The
Lie group theory shows that the sphere is known as the coadjoint orbit of the
Lie group SU(2) and for any given éompact semisimple Lie group there always
_exists a natural symplectic structure on its coadjoint orbit. Therefore, we can find
certain g-deformed functions defined on the coadjoint orbit such that they form a
q-deformed algebra in Poisson brackets given by the symplectic structure. Corre-
- spondingly, we can also construct a set of g-deformed operators on the line bundle
over the coadjoint orbit to get the g-deformed algebra in Lie brackts physically at

both classical and quantum level.

Our approach also indicates that the quantum groups may be the "symmetries”
of single deformed dynamical systems, such as the g-deformed oscillator, the ¢-
deformed rotator as well as the g-deformed spherical top and so on, in addition to

that of the solvable models in quantum field theory and statistical mechanics.

Finally; It should be mentioned that the Poisson bracket realization of the

"quantumn algebra” sl,(2) has also heen found by Flato and Lu [14].

I would like to thank Z. Chang, W. Chen, S.M. Fei and H. Yan for creative

collaboration on this topic during last two years.
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