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Ah<;~.T'ct. The quantum groups a.re neither group nor necessarily to be 

rh:"j,..,lh· '1uantllm. Namely, they can be realized at both classical and quantum 

"" "If' hy menns of symplectic geometry and geometric quantization method. 

n" !fnantum groups [1-5] are usually thought to appear in certain quantum 

/.1" Si'·;ll:~.~t(~ms and when the quantum systems revert to classical ones the quan­

""" :'I'lI'1'; reduce t,o the corresponding Lie groups. We found [6-12], however, 

II,i·, i·· ,,,,t t he ease ih principle. Actually, the quantum groups are neither groups 

I l,;!, i, "pH-known ) nor necessarilly to be physically quantum. That is, they 

h . J f·~di7ed at hoth classical and quantum levels. In this talk I would briefly 

i,,1 11'(1,.,. .. 'his approach to the quantum groups by means of the symplectic geom­

"'" ,.f tIl(' phase spaces of certain classical mechanical systems and the geometric 

'I"Tlti;';" j"n theory [13J. 

rn ·'rd('. to realize the quantum group 5Uq(2) at classical level, We first present 

Ihe- ("1"~;:i(',,1 q-deformed algebra of 5U(2), denoted 5U7,1I-0(2), which is isomor­

t,) th(' so-called quantum algebra 5Uq(2), in both Poisson brackets nnd Lie 
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brackets. On the classical phace space of two linear ha.rmonic oscillators C2 and 

the line bundle over it, we construct a set of q-deformed observables which form 

the 5UI1,II_0(2) algebra in .the Poisson brackets and a set of corresponding opera­

tors which generate the 5Uq.II_0(2) algebra in Lie brackets. Once such operators 

are given, the Hopf algebra structure can be easily set up and the entire structure 

of the quantum group 5Uq{2) follows. 

In fact, these operators are nothing but the prequantization operators of the q­

deformed observables. Since the prequantization line bundle over the phase space 

is still classical, so these operator together with unit provide a realization of the 

quantum group 5Uq(2) at classical level. Of course, there is a tiny but crucial 

difference between these operators and the usual prequantization operators [13J. 

Namely, there is no Planck constant nat this level in our approach. From phys­

ical point of view, the Planck constant nis of completely quantum cha.racteristic 

so that it should appear only after suitable polarization is taken rather than at 

prequantization level. In other words. polarization turns the classical q-deformed 

algebra 5U4•1I_ 0(2) to the quantum one of 5Uq(2), denoted 5UI1•II(2), for which the 

Hopf algebra and the quantum group structure is well established. 

Let us begin \vith a system of two harmonic oscillators with the Hamiltonian 

and the symplectic form on the phate space C' 
, 

H=L"'..... ., 
;=1 (1)2 

n = -iLdz; A dzi , 
;=1 

·+i· - ~where Zi = ~, Zi ,;,. 

A set of the classical observables J+ = ZlZ2, J_ = Z2Z1 and J3 = ! (Z1%1 - Z2 Z2) 
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constitute the SU(2) algebra in Poisson brackets: 

[J+, L]P.B. :::: -i2J3 , [J3l hlp.B. = -i (±J:j:}. (2) 

On the other hand, it is easy to see that a set of the q-deformed observables 

J~ = zli~, J~ = z:.!i~, J;:::: JJ. (3) 

generate the SU'l,Ii-o(2) algebra in Poisson brackets 

[J~, .l~Jp.B. -i !:"U~LI' (J~, .J~Jp.H. = -i (±.lU ' (-!) 

where 

,_
zi -

1 sinh(-yzi=d~ :;' 
~ _ "i,';'j

v'Ysmh'Y ZiZj 

sinh(-yziid_ 
~ _ z,

v'Ysmll'Y, ZiZj 
(5) 

and 

!X]q = q% - q-:r: 

On the U(l) line bundle over the phase space C'2 with curvature n and con­

nection: (symplectic one-form) 

9 = -i (zldz 1 + i'J,dz'}.) , (6) 

the prequantization operators of the observable f can be given by the map 

1---+ i =-i(X, i8(X/)) + I, (7) 

where X, is the Hamiltonian vector field of f. For the reasOll::> stated above, here 

we do not insert the Planck constant. 

For Zj and Zil we have 

o .0 
i = 1,2. (8)Xi; = i ' X:; = -1 8z ' 

OZi j 
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and their pre quantization operators 

~ 0 -::: 0 
Zi = - l:\- +Zi, Zi = l:\_ • (i)) 

VZi V""i 

with the following commutation relations 

[Zi, Zj] = -6ij . {lUi 

To get the prequautization operators of J'±: and J~, we need a suit ....ble onL riug "i 

ii and From formulae (3) and (4) we have 

:::: 1 it.ii-' J'Y sinh 'Y i; smh ('Yz2i2) , 
._1 Z2.L' ll)J'Y sinh'Y i; smh (7i tit) , 

1 (_ ­i3 2' ZtZl - hi2) . 

with commutation relations of SU'l,Ii-o(2) algebra in Lie bracket:> 

[j+',L/]=.!.sinh(2'Yi~), [i~,j~l=±j~. \1::; 
'Y 

With formulae (11) and l12) we can define the co-product ...l. ,'0 lilli, •. "i 

antipodal mapping S, 

~ (j~) j~ 01 +10 j~, 

~(h) J± 0l; +q-J; ® j~, 
( j;j) 

S (j~) -j~, S(i3) = _q±11,±:, 

e (h) = e (13) =0, e ( I) = 1. 

The::>e three Hopf operations are algebra homomorphisms and auti-hl l lll(JlIllHI,ili',1iI 

i.e., 
u:J, -+ A <8l A, u(ab) u(a)6.(b); 

S:A -+ A, S(ab) S(b)S(a)j (lJ) 

f:.4 -+ C, e(ab) e(a)e(b), 
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where a, b are elements of algebra A (which is at present SUqA-oo(2», and C the field 

of complex numbers. The above three operations, supplemented by the identical 

mapping id and multiplication m, should be consistent, i.e., 

(id ® a)a(a) (a @id)a(a); 

m(id®S)6(a) = m(S0id)6(a) =f(a) ·1; (15) 

(f ® id)6(a) (id ® f)6(a) =a, 

and compatible with the algebra relations. 

We have seen that Eq.(13) defines a neither commutative nor co-commutative 

Hopf algebra; As is well known in the quantum group theory, once such a Hopf 

algebra structure is given, the entire quantum group structure follows [1-5]. Thus 

the classical q-deformed algebra SUq,li_o(2) possesses the nontrivial Hopf algebra 

structure as well as the entire structure of the quantum groups, but it has nothing 

to do with physical quantization at all. 

In geometric quantization approach, to quantize a system on the symplectic 

space (el 
, il) is to introduce a suitable polarization. Let us take the IGihler po­

larization with basis X = {8~1' 8~ }. Then from the quantum map, we get the 

quantum operator of a given classical observable / (which is supposed to preserve 

the polarization): 

/ -+ j = -ili(X/- i8(X/)) + / - ~lia, (16) 

where a.is determined by the formula 

[X" XI =aX. (17) 

The quantum operators of Zj and Zj then take the form 

o
Zi = Zi, Z*-· = Ii -;:;- , (18) 

I VZi 
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with commutation relatioD8 

[Zi' Ij] = -liOij. (19) 

Similarly, the quantum versioD8 of J~ and J~ are 

1 z (j~ '.C~_--...!. sinh 1i 0AV"Y SInh"Y %2 7 %2-) 
J' _ 1 OZ2 

_ - ~~Sinh(71i%1~) (20) 

Ii ( ~ OZI 
__ Z _v 0 ) j~ 2 2(}Z2 - %1~VZl 

In terms of (19), j~ and i3 give rise to the quantum q-deformed algebra SUq•A(2), 

[i' j' ) = sinh"Ylisinh (27J~) [i' i'] =Iii' (21)+' - "Y sinh 7 ' 3' ± ±, 

which is isomorphic to the usual quantum algebra SUq(2), but with an aclditional 

.parameter Ii characterizing the physical quantization of the system. 

Obviously, the H?pf algebraic structure of SUq,A(2) is identical to thai of 

SUq,A-o(2) in form and the entire structure of the quantum groups follows as 

well. 

So far we have constructed the Hopf algebraic structures for both SU1 ,h_O(:2) 

and SUq,A(2) by the symplectic geometry and geometri~ quantization methocl ..' 

Altho~gh we have dealt with the particular quantum algebra SUq(2}, it is ~asy to 

convince that the principle of the method can be applied to generic cases more or 

less straightforwardly. 

It is worthwhile to point out that the deformations Zi - zi are quasiconformal 

deformations while q is real. And (z',i') describe a q·deformed oscillator which is 

a nonlinear object but can be exactly solved at both classical and quantum levels 

[6-9}. 
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In [1O-12J, both SU"A-o(2) and 5U"A(2) are realized on a line bundle over 

a q-deformed sphere, which is closely linked to the q-deformed rotator and the 

q-deformed spherical top. Equivalently, they can also be realized by a set of q­

deformed functions, which satisfy the equation for the q-deformed sphere, on the 

sphere and by corresponding operators on the line bundle over the sphere. The 

Lie group theory shows that the sphere is known as the coadjoint orbit of the 

Lie group SU(2) and for any given compact semisimple Lie group there always 

exists a natural symplectic structure on its coadjoint orbit. Therefore, we can find 

certain q-deformed functions defined on the coadjoint orbit such that they form a 

q-~eformed algebra in Poisson brackets given by the symplectic structure. Corre­

. spondingly, we can also construct a set of q-deformed operators on the line bundle 

over the coadjoint orbit to get the q-deformed algebra in Lie brackts physically at 

both classical and quantum level. 

Our approach also indicates that the quantum groups may be the "symmetries" 

of single deformed dynamical systems, such as the q-deformed oscilla.tor, the q­

deformed rotator as well.as the q-deformed spherical top and so on, in addition to 

that of the solvable models in quantum field theory and statistical mechanics., 

Finally, It should be mentioned that the Poisson bracket realiza.tion of the 

"quantum algebra" 81,,(2) has also heen found by Flato and Lu (14]. 

I would like to thank Z. Chang, W. Chen, S.M. Fei and H. Van for creative 

collaboration on this topic during last two years. 
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