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Abstract 

The covariant formalism of the generators for the quantum group 

5 [,7(2, C) on the quantum spinor space is constructed manifestly, 

very similar to the ones on the quantum group itself proposed by 

Woronowicz through his 4 D+ calculus. Also constructed is the set of 

ei<J;ht g~nerators for th,! quahtum Lorentz group on the bispinor space. 

In the limit q ---j. 1, these generators reduce to those of the left and 

the right 5L(2, C) plus two corresponding Casimirs. 
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I Introduction 

The importance of the idea of the quantum groups [1] is now more and more 
extensively understood by most of physicists. This is due to its close connection to 
the Yang-Baxter equation (2] which plays a deep role in various physical problems. 
In our opinion, as for the classical group, for more direct physical application, the 
view considering the quantum group as the "quantum" symmetry of some basic 
physical objects, or "quantum" space, is more attractive. 

The noncommutative differential calculus over the quantum group itself and 
the generators of the quantum group have been established by Woronowicz {I]. A 
general construction of quantum group as linear transformations upon the quan­
tum plane has been suggested by Manin[3]. And the covariant differential calculus 
on the quantum plane was developed by Wess and Zumino (4] and generalized to 
the more genernl quantum spaces including the quantum orthogonal plane and 
symplectic plane[5], and more recently, to the quantum Minkowski space[6]. 

In this paper we would like to give the explicit covariant form of the generators 
of quantum groups 5Lq(2, C) and 50q(3, 1) on these quantum spaces. The main 
tools are the consistent covariant differential calculus on these spaces[4,5] and 
the projection operator method developed in Ref{5-7]. We start with the linear 
representation of the 5L'1(2, c) on the spinor space in Section II. With the help of 
the differential calculus on the spinor space, we construct the differential realization 
of the covariant generators explicitly in Section III, just as the ones for the ordinary 
5L(2, c) group. \Ve have a set of four generators satisfying the relations similar to 
those given by \Voronowicz [8] in considering the 4 D+ calculus on quantum group 
SL'1(2, C) itself and by \Vu & Zhang recently [12] in developing RTF method [1] 
to discuss the differential calculus on quantum matrix groups. In q - 1 limit 
three of them reduce to the generators of classical 5L(2, C) and the fourth is 
connected with the Casimir operator(totl\l angular momentum)[9].Then we turn 
to discuss the counterpart set of generators in conjugate spinor (dotted spinor) 
space in Section IV. Combining these two set we get the total eight generators 
of quantum Lorentz group 50.,(3,1) in the bispinor space. The action of these 
generators on the spinors as well as the 4-vedors is presented in Section V. 
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II. Quantum Spinors and R Matrix 

We s~art from two-dimensional q-spinor ua = (u l , u2 ) = (u, v) with its components 
obeying the q-deformed commutation relation 

uv = q tJu • 	 (2.1) 

This relation is preserved unde~ the transformation of the q-spinor (The summation 
over t.he repeated indeces is understood throughout this paper) 

u -+ u =k/o M 	 (: ! ) a fa 
pul', 	 (2.2) 

if M is a. GLq(2) matrix with its entries satisfying the definition relations 

ab = q ba ae =q ea ad - da = (q _ q-I 
(2.3)

be =eb btl = q db cd = q de 

and c0mmnting with t.he components of the spinor, i.e., au ua etc. The relations 
(2.1) 	iUld (2.3) can be put into the following fonn 

uaup = q-l /lal'.,6u.,Uli , (2.4a) 

na().,/iM"r"r,Mli 
li , = M acr,Ml1p' Ro'I1',,'6' , (R12MIM2 = M1M2R12 ) (2.4b) 

by introducing the numerical R12 matrix associated with GLq(2) 

k(q) = (k'P.,,) = (q q-t ~ J (2.5) 

which satisfies the Yang-Baxter equation (in the braid form) 

R12R23R12 = R23R12R23 	 (2.6a) 

;\Orl the rf>duction relation 

( Ii q)(R+q-1) =0 . 	 (2.Gb) 

The h'ft-~cting as wdl as the right-ading eigenvalue equations can be written as 

R(qr~p.,6 tm (qp6 = q tm(q)olJ, R(q)"lJ.,s s{qpS = _q-1 s(q)ap , (2.7a) 
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l"'(q)oIJR(q)ol1.,S =q l"'(q).,s s(q)aIJR(q)olJ.,s =_q-l s(q).,s (2.7b)I 

Now since the matrix R is symmetric, the components of fmcq) and s(q) may be 
taken the same as those of their left-acting counterparts tm ( q) and s(q), namely3 

t+(q)OP (~ ~), t3(q)ot3 = (_q~l/2 _~1/2) [2]-1/2, 
(2.8)

0 -1/2)
L(q)olJ (~ ~1) , s(q)olJ = ( _q1/2 q 0 [2]-1 /2, 

where the q-number is defined as [n] = Il;:::;'. The q-analogue of the Levi-Civita 

symbols f(q)011 and f(q)011 are related to the singlet eigenvectors 

f(q)olJ = _[2] 1/2s(q)op, e(qtlJ = [2]I/2 S (q)otJ (2.9a) . 

and are normalized in the way such that 

f(q)ol1 f(q)l1., =6 e(qtlJe(q)p., =60 
., • (2.9b)

0 ", 

As is used in Ref{6] I t m ( q) and s(q) are grouped together to form the matrix­
valued four vectors 

tl.(q) (to(q), tm(q» , to(q)al1 = q s(qtlJ ; (2.10a) 

flJ.(q) (f(q), P"(q» , f(q)ol1 = q-l s(q)ol1 . (2.1Ob) 

It is easy to check that t,.( q) and [1J(q) satisfy the following orthonomality condition 

tlJ.( q)011 P'(q)oD =61J" (2.11a) 

and the completeness relation 

tlJ.(q)OP [1J(q).,6 = 6°.,6Pli == EaD.,s . (2.11b) 

The projection operators for the triplet and the singlet can be defined as 

Q(2)(qyv0.,6 = tm(qtPP"(q).,.s , Q(I)(qtl1..,s =s(qtlJs(q).,s (2.12) 

respectively, with the properties 

Q(i)Q(j) = 6iiQU) , Q(1) + Q(2) =E , (2.13) 

3The convention we adopted here is different rrom that in Ref{6] by exchanging + and-. 
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fl tn'1trix and other relevant matrices can he expressed as the linear combination 
ofQ's, 

R(q) = A2Q(2J(q) +AIQ(I)(q} = qQ(2) _ q-lQ(1! . (2.14) 

Coversely, the projectors can be re-expressed in terms of R: 

Q(2) = Ii. - AlE, Q(I) = Ii. - A2E (2.15)
A2 - At Al - A2 . 

From these relations and the Yang-Baxter relation (2.4b) and the Yang-Baxter 
eqllation (2.6a) we see immediately that 

(i) (i)
Q12Mll.\(2 = MIM2Q12 , (2.16a) 

Qi~R23li.12 =R23R12Q~~, R12R23Q{~ Q~~R12R23. (2.16b) 

The preservation of the q-commutation relation (2.1) comes from the fact that 
e( q)O'J and e(q)011 are the eigenvectors of M ® M with Det'1M being the associated 
eigenvalue: 

M°.,MfJ 6e(q)...,6 =Det,M E(qtfJ, E(q)ofJMa.,MfJ6 = Det'll\.1 e(q)...,6 (2.17) 

wher~ DetqM = ad - qbc is the center of algebra generated by a, b, c and d. For M 
with Detq.\( = 1 we say M is an 5£,(2, C} matrix. In this case we see immediately 
from (2.17) that 

Ma .,E(qp5MfJ6e( q)fJa' = 6a
a' (2.18a) 

f(q)fJ'oM°...,e(q)""SMfJ6 =6fJl (2.18b) 

This implies that 
e(qp6 MfJse(q)fJa = iU-1"a (2.19a) 

e(q)fJal.\(a...,e(qrS (Mt)-l/, (2.19b) 

where Mt is the matrix transpose of .M. Now since f(q)oo(= -f(q-l)ofJ ::f= -e(q)ofJ) 
is not. ordinary a,ntisymmetric with respect to a and (J, (l\{-l)t ::f= (Mttl. This 
fact. tp,lls us that starting from the basic spinor u O

, we can build two different types 
of lower index spinors. The one is 

UQ == uPe( q)fJo --+ U...,l\(-P (2.20a)0 

nnd the other 
U == e(q)apufJ --+ (Mtr\""u., (2.20b)a 
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So two types of invariants can be formed 

uoua --+ u...,M-1""oMO fJu
fJ = UfJUP , (2.21a) 

uaU
O 

--+ ufJMtfJO(Mtrl a"" U" = ufJUfJ . (2.21b) 

In most of the cases we use lower index spinor U a which transforms contravariantly 
to U O as in (2.21a). The only exception is the derivative spinor 8a = 8~'" which 
transforms as in (2.21b) indeed: 

8a --+ (Mt 
)-\..., 8" . (2.22a) 

Then 

P60/ == 8aufJ --+ (Mtr1a" 8...,uSM tl = (Mtr1c/ 6/M
tl = 6a • (2.23) 

Therefore the derivative spinor with upper index aa == e(q)afJ8p transforms just as 
the basic spinor UO does: 

80 (2.22b)e(qt""8., == --+ M afJfi1 . 

The components of the derivative spinor obey a q-commutation relation similar 

to (2.1) 
{h81 = q 81Ch (2.24a) 

which can be re-written as 

(2.24b)8fJ80 =q-l R(q)oo""s8s8..., . 

For consistent differential calculus, we also need the relations between coordinates 
and derivatives. The result is first given by Wess and Zumino(4J: 

8a u/l =6/ +C fJ: o' ufJ' 80 1 
(2.25) 

Of the two possible choises in the following discussion we choose C = q-l il- I 
• 

It can be easily checked that the above relation is covariant with respect to the 
transformation in (2.2) and (2.22) 

The conjugate spinor Uci == (u O )*transforms[6J according to the hermitian con­
jugate of the quantum matrix M: 

tLci --+ tL fJ•}.!+~a. . 
(2.26a) 
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fhen 
uo. == _upe(q).6a -+ &fa -'t u.y (2.26b) 

frnm a ~,ilili!ar relation for 1.\1 as in (2.18). Quantum matrix 1\1 = (M+)-1 satisfies 
HIf~ Y1'ITH;-Baxter relation similar to (2.4b), 

- &.6 . -. - ~ - & - p -&'pIR .:,sAr'.y'J.Y! S' = M iillvf iJlR .y,s, (2.21) 

:md "1\ additional relation[9) with Af: 

R&(J 'Mt>: MP, = Mii·M(J.Ws . (2.28)0(J -, 6 "I" -,6' 

Simih.r to (2.2b), for rr = a!dr' we see eO. == -e(q)",.ofi.O transforms just as the 
dotted ~pjnor uo. does. Now considering q real and taking the complex conjugate 
of E([(2.1) and (2.24) we obtain that the components of the dotted spinor Uo. and 
components of the dotted. derivative spinor lJ& obey the relations 

u,Ui =qUiu:i, eia:i =qe2[i (2.29a) 

which can be recast to the R commutation form 

- - -1"":"6 -- =ttpu& = q n.' o.pusu.y , [JP aa q- t RiJ&6.y as fit (2.29b) 

Also we have relations among up and t¥ 

- . • 1 - 1 . pI .I ­
uiJl1' = 00p+q- R- (q)O Pii,ao oli' . (2.30) 

In discussing the bispinor comprising both '/j0 and aii, we also need the cross 
commutation relations between uD: and Uci, between 00 and uar (aa and flO) and 
betw,~en 8'"2 and t¥. The results are found to be 

UOUo. = ii.puPqR"' l (q)Po.pci , (2.31a) 

- _. NJ - -1 /J& - - (J - -1 ( Pa 
OOU& = UiJCT R (q) 11&' U 

0 
0& = opu R q) p&' (2.31b) 

l1'eo. = 8iJ[JI1qR-1(q)iJ&p& . (2.31c) 

The ('onsistency of all these relations can be directly checked by considering the 
triplet product of operators chosen from (UO

, {)fJ, a&, ~1) and a.ltering the order in 
two different ways. 
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Starting from the given 4 x 4 R matrix (2.5) we can obtain different higher 
dimensional R matrices by using different "fusion": for example 

- (J -,6 • - OS - ­ (2.32a)j(i '0'0',-,'6' = w-ra'-,' R 0'6' (= P23R 12R 34 PZ3) 

is the R matrix corresponding to the quantum group 80q( 4), 

-00,-,6 -1-0-, • b ;:..cIj --1 b'e' -1- - - --1) (2.32b)1?. o'P'.-,'S' = q R beWa'b'n. e'/j,R (q) 0'-,/(= q R 23R 12R:uR23 

is the R matrix for the quantum Lorentz group 80q(3, 1) [6,10), and 

- oO,-,S -2 - Ij-y - ob • S -b'e' -2·· - • (2.32c)R o'{J',-,'fj' =q R beR a'b,ff c's,R {J'-"(= q R'l3R 12R 3"R'l3) 

• - - 'P' d -,'S'represents a reducible R matrix{7,llJ. By multiplying t P oP, t~s, t~ an t,\ , 
Eq(2.32c) leads to 

- ) - • 00 ..,6 '{J' -,'6'RI.III,.). tJ.'( q opt~6R '0'(J',-,'6,t: t). 
(2.33) 

R OO €a RmOOI Ee Ronk!) Ee Rmn kl •oo 

Here the reduction ofRJ.'v~). comes from the repeated use of (2.16b), and Rmnkl is 
a R matrix associated with 80,,1(3), corresponding quantum matrix being[llJ 

Dm = P"(q)a-,MO pM-'6tk(q)PS . (2.34)k 

Similarly, from Eq(2.32b) we obtain 

,;;,,,, - t-I.I t-ll r(;oO,-,S to'O't-"S' (2.35)
I\" I(). = oP -,6'\. 0'0',-,'6' I( ). 

which is indeed the Rmatrix for quantum Lorentz group with its singlet eigenvec­

tor 
(2.36)gJ.'1I = (g+-,g33,goo,9-+) = (-q-t,-l,l,-q) 

being identified as the q-deformed Lorentz metric(6). 

III. SLq{2, C) Generators on Spinor Space 

Now we are ready to construct the set of generatorR on the Rpinor space. As for 
ordinary anll;ular momentum operators in the classical spinor space[9), we consider 
the combination operators 

Lo/J = u°ft uOe(qt"'{)-,. (3.1) 
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From (2.24) and (2.25) 

!l !l -1 • S !l P P -1 "'-1 )pQ' P'!lVpVQ = q K" ap8S8." VaU =601 + q .n (q aP'U VOl' 

:1nd t.he important relations 

e(q)PS/ta'''6P'E(q).,o. = qR-1(q)PQ'P'Q f(q)p's,R6'fJa."E(q)"Y'o.' (3.2) 

",'(> (,btain 
WUP = E(qt/J + q-'JRQ/Jp'o.,ulJ'ao' (3.3a) 

aofiJ == q-1 /tOP13'01' fiJ' ao' (3.3b) 

tn!~dh(~r with the relation (2.4a) 

uou/J =q-1Rofjp'Q'ulJ'uo ' (3.4) 

Theil hy a straightforward but tedious derivation we obtain 

La/JL.,6 q-1n ofJ·-r;'fJ,..,'6,La'fj'L"'s' 
(3.5) 

= q R-l(qY·PQ'IJ'f(q)IJ',,'17.-1 (q)"S,,'s,Ro'6'eflLefl +E( q)P" LOS 

\,·here 'R,·t3,.,1)o'/J',.,'I}' is the 17. matrix defined in Eq(2.32b) which can be transferred 
to ~.,w",\ as in Eq(2.35). As is discussed in Ref{6J, the 16 x 1617. matrix 'RI'I.I I<~ has 
three distinctive eigenvalues: the single one Ao( q) = q-3, the sixfold one Al (q) = 
_.q-I and ninefold one A2(q) q. 

v(q)"I.Inl'I.I IC..\ = Ao(q)v(q)lC~ , 

ilm"(q)l'I.In ,,,,1<.\ = Al(q)U"'''(q)l<;\ , (3.6) 

wmn(q)l'"nl'I.I IC..\ = A2(q)Wmn (q}I<A 

where for u(q), m +,3,- and s = ±, for w(q) (m, (2,0), (1,±1), (0,±2), 
(0,0),(1, ±1) and (2,0). To write down the explicit form of'R, we order the Lorentz 
inde>: 11. (+,3,0, - ) and define n. "charge" for each index: c{ +) = + 1, c( - ) = -1, 
c(3):=c(O}=0. Then RI'I.I d is "charge" conservative c(p)+c(v) = C(K)+c(A) = m, 
and breaks into the block diagonal form according to the tote'll "charge" m. 

'R( q) = S~2) ffi S~l) ffi S~O) EB S~r) $ Sri) (3.7a) 
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where S~m) is a d x d matrix with total "charge" m. The following standard order 
for the indeces pair (p, v) or ("', A) is adopted throughout this paper: 

(p,v) = (++) for m = 2, 
v) (+3,+0,3+,0+) for m 1, 

(p, v) = (+-,33,30,03,00, -+) for m =0, (3.7b) 
(p, v) = (3-,0-, -3, -0) for m = I, 
(p,v) (--) for m=2. 

Then the singlet eigenvector( with total "charge" zero) 

v( q)1'1.1 = (_q-1 , -1,0,0,1, _q)[2]-1/2 , (3.8) 

is proportional to the Lorentz metric g(q)l'v, And the sextet eigenvectors are 
chosen as 

u1+(q)l'I.I = (_q-1,q-1,q,_q)[2]-1, 


il1-(q)l'I.I = (-q-t,-q,q,q-1)[2]-1 j 


fi3+(q)l'I.I (l,q _ q-l,q~I,_q,O, -1»[2]-1, 

(3.9) 

il3-(q)l'I.I = (l,q-q-1,-q,q-1,O,-I)[2]-1 ; 


ui +(q)l'I.I (-q-t, -q, q, q-l )[2]-1, 


fii-(q)l'I.I = (_q-l, q-l, q, _q)[2]-1 . 


Then by changing the bispinor index (ct, (3) into 4-vector index p and defining 

LI' = lP(q)aIJLalJ (3.10) 

we obtain 

LI'LI.I q-1i?pl.l ><..\LI< LA = fl'I.I pLP 
(3.11)

[2J1/2[uI+(q)l'I.I + u,_(q)PI.I]L + [2P/2(q _ q-1)V(q)PV LO
' 

where uI~(q)l'I.I and are the left acting eigenvectors of npI.I AIC [6] satisfying 

i.imr(q)I'I.IU/~(q)'''' Om'OT~, 

v(q)I'I.IV(q)l'I.I 1, 

ilmr(q)l'"v(q)l'I.I = ii(q)l'I.Iu/,,(q)"" 0 (3.12) 
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and so on. Then Eq(3.11) can be rewritten in the form 

fil+(q)PII£P£II(l +q-2) = [2]1/2£1 I 

fil-(q)PII£Iol£II(1 +q-2) = [2]1/ 2£1 , (3.13) 

v(q)PII£Iol£II(I- q-4) = [2Jl/'2(q _ q-l)LO • 

Or mor~ t;xplicitIy 
[£O,L"'] = 0, 

q(L3 _ £0)£+ _ q-l£+(£3 _ £0) = q[2] 1/2 L+ I 

q£-(L3 _ LO) - q-I(£3 _ £0)£- = q[2P/2L- , 

L+ L- - £- L+ + (q - q-l)£3(L3 _ £0) = q[2p/'2L3 
I 

_q-I£+£- - £3L3 + LOLO - qL-£+ = q2[2j1/2LO . (3.14) 

This s('t. of relations are obviously equivalent to those given in [8] from the 4 D+ 
r1ifren~llt,i(11 calculus on quantum group SUq(2) itself [8]. So the operators LIJ. 
ddirwd in (3.1) and (3.10) are indeed the derivative realization of the 5L,,(2, C) 
r:('I\("~t()rs on the spinor space. 

III the limit q ---+ 1 , it is easily seen that 

£+ '" u l 8:!, £- f'V u 2a. , 
L3 (u I 8} - q'2U '1.82)/V2, £0 f'V (u I8} + u282)/V2 . (3.15)f'V 

This means that Lm are the generators of S£(2, C) and LO all operator related to 
the Casimir operator L2. 

IV. Generators on Conjugate Space 

On the conjugate spinor space, corresponding right-acting generators can be de­
fined in !\ similar way. Consider 

Lpo == a~fia = (£OPr I (4.1) 

then we see 

- - -1 - - - l a'P' '1'5'
L/j.yLiJo - q L6'i,LiJ'o,n (q) &t.f."r5 

(4.2) 
=LljeR(q)e';o,.y,/i-l(q).y'6'.y8 q f(q)p,.y,/i-I(q)a't1la~ - ~(q)ti.yL5dr 
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- t &'P',.y'5'.. - &P,.y5 .
where n (q) &iJ,.y5 IS the matrix transpose of n(q) &'O',.y'5'· 

nl(q) =q-I fl;i ill '2 R34R'23 

. In deriving (4.2) use has been made of the relations 

1-'5 -- 1-'5-­upua = q- 11:' apu6fi.y 8iJ8a = q- .ftT aP868.y (4.3a)I I 

- '2 - 1 0'" ­up80 = -~(q)iJ& + q R- (q) a ap8a,fiiJI . (4.3b) 

Therefore by introducing 

LIJ. = (£I'r =80u.;tIJ.(q):p (4.4) 

we have relations similar to those in (3.14) 

[Lo,Lm1 0, 

q(L3 - Lo)L+ -q-1L+(L3 - Lo) = q [2]1/2L+ , 

q L_(L3 - Lo) - q-I(L3 - Lo)L_ = q [2j1/2L_ , 
(4.5) 

L_L+ - L+L_ + (q - q-I)L3(L3 - Lo) = q [2Jl /2L3 I 


-qL+L_ - L3L3 + LoLo - q-I L_L+ = q2 [2]1/2 Lo . 

Now by making use of the relations between one undotted object with dotted one 


UOUa == uiJuP q ir1(qiop& I 

~ - - ,,0 R--I ( )PO ais 8- P R--I ( via v U a == UpU' q pa I U Va = pU . V po, 

- - ....13 - -I poaa8a = 8pu' q R (q) P& (4.6)I 

we see immediately that 

. u o aP8pua = u 0 8iJlaP' q /i-l( q)(Jlpp,pt1 a 

=8jju Ol /i-I (q)60 a'p' q il-I(q )P'P p,iJila,Cf il-1( q)aIP'60 ( 4.7) 

== 8S/i-I( q)SO 0IfJ1fi.:,u'lqn-l(q).yo'..,&, q n-l(q)fJ'P fJ'P Cf il-l(q)a'P'Sa . 

This gives 
Lrt i1L·. _ L .. L'I,5ft-' (q).y6.crP .' = 0 (4.8)po s.., ..,S,oP 
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which means that LaP is R commuting with Lpi.' Here R':'S,a~6,aP is the R matrix 
given in Eq(2.32c), which can be transferred to the vector index form as in (2.33) 

li'''' IC~ =; lioo
oo (f) lim001 ED lio"kQ ED limn", (4.9) 

"" " ., ~ ­with ROo no 1, RmOOI = 8m" ROnkQ = 8'\, and Rm"", being an 50..,2(3) R matrix. 

'( (1 - q-2)O _q-10 q-2) 
(ftm",d q'EIl(~ ~)EIl -:~:e ~ ~ EIl(~ nEllq' (4.10) 

wh~rf! e ~t,atlds for q2 - q-'l. This leads to 

[LO,Lo] = [L",Lo] = [LO,lm] = 0 (4.11a) 

nnd 

LnL, =LmLklimnJ:1 . 

The l[ltt,f'r relation can be written out more explicitly as follows 

q'll+L+, 

L+L3 = L3L+ I 


L+l_ = q-'lL_L+ , 


L3L+ = L+L3 I 


L3l3 = Ol+L+ + L3L3 , (4.12) 


L3 L_ = -q-10L3L+ + I_L3 , 


L- L+ = q-2L+L- , 

L- L3 = -q-10l+L3+ L3L- , 

= (1 - q-2)(lL+L+ +(ll3L3 +q 

The relations (3.6), (4.2) and (4.11), or equivalently (3.14), and 
complete our cross commutation relations for quantum 
total eight generators (L", L)I)' two ofthem, 

m1lst be added to complete the algebra. 

In t,he limit q _ 1, two of these relations bocome the definiton of LO and Lo 
which are decoupling from the other six generators and these six generators fall 
into t.wo commuting sets of angular momentum operators. This is just the case 
for classical Lorentz algebra. 
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v. The Action of Generators 

Now we are in the position to give the explicit results when the generators are 
acting upon the spinors and 4-vectors. The cross commutation relations given in 
Section II are enough to give all the following results. 

The action of generators on the basic spinor 11.'1 gives 

(uaaP)u'Y = uQe(q)O'l' +q-3 fl0'Y 'Y'O,ita 'l"5a,U6(Ua'11.13') . (5.1) 

This yields 
LOu'Y = -q-I[2r l / 2u'Y + q-2 u'YLO , (5.2a) 

Lmu'Y = f"(q)aOuQe{q)o'Y +q-2 il.'Ym
15UoL' (5.2b) 

where is the it matrix between spin 1 and spin 1/2 . IT we set 

then 
q 

q-I 

R(q)m75 = 0 ~ (5.3) 
1 -w 1[ o q-I 

q 

where w = (q-I - q)q-t/2[2j1/2, and the indeces pair (m,l') or (l,8) is ordered 
(+,1), (+,2), (3,1), (3,2), (-,1) and (-,2). Then (5.2b) can be written out more 
explicitly 

L+u 1 = q-1uIL+, 

L+11. 2 = q-I/2UI _ (q _ q-I )q-s/2[21- 1/ 2u 1 L3 + q-3u 2L+, 

2 1L3L3U l = +q- u , 
(5.2c)

+ q-2 u 2 L3,L3U 2 = +(q 

L-11. 1 == ql/2U 2 +q-3u IL-, 

L-u2 = q-I u2L- , 
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The similar results can be obtained when the generators are acting upon the 
conjugate spinor ii". Indeed we have 

(u"aP)u.:, = q R- t (q)6a a1i"Ri"Pp,-yu5(u"'aP') . (5.4) 

This give'> 
LOu.:, = u.yLo , (5.5a) 


L"'u.:, = /t-l(q)m6.",Ui L' . (5.5b) 


H!'re .k-' l (q)",'\, is the inverse of the R matrix appearing in (5.2b). And (5.5b) 

h('rOlOr:~ 

L+ui = q-1uiL+ + (q - q-l)ql/2[2]l/2U;L3, 


L+u; = q uiL+, 


L3ui =q-l ui L3 _ (q _ q-l )ql/2[2]l/2U;L-, 

(5.5c)

L3u; =u;L3, 


L-ui = q ui L-, 


L-u; = q-l uiL- . 


1 hf'll when we consider the coordinates 4-vector as product of a basic spinor 
1/ y with (1, conjugate spinor w.:, transformed in the same way as u.:,: 

X'\ = (1p'Y.:,xP 
'" u"'w.:,. (5.6) 

WP. Cl1.U easily obtain that 

(u "tJi1)( u"'w.:,) 
(5.7) 

CI - (J -2r.ll., R-"'Y' S- a"!lf1" --Ie )60' R--l( )':"/3= " tU;f(q) .., +q if: ..,'(1' 6a'U W 5U if R q a""y' q (1"':" 

It follows that 
V'x" = G''';"XO' +q-2R'Jl1 ",\X" L'\ I 

GII.~ = rll.(q)o/Jf(q)P'YP'(q)-rit(q);-r . (5.8) 

Both CP~ and RP" ",\ are reducible in the way such that 

~=~$~m~$~, 

~=~m~$~e~m~ (5.9) 
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with 
GO"O' = GuOO' = _q-I[2!-1/26" 0' , 

nGmo = _q[2]-1/2g(q2r , (5.10) 

emn - ~u (q2)mn,- (2)! , 

where g( q2)mn and u,,( q2)mn are respectively the singlet and triplet eigenvectors 
of the itm

\,. Then Eq(5.8) is equivalent to 

LOxo = -q-I[2J- t / 2xO +q-2xOLO , 


LmxO = _q-t[2]-t/2xm +q-2xOLm , 

(5.11)

LOxn = _q-I[2j-t/2xn +q-2xnLO , 

Lmxn = -q [2J-t/2g(q2)mnxO+ ~u,(q2)"'nx' +q-2itmn",xk L' . 

The reality of the 4-vector xP can be expressed as 


n
(XOr = xO, (xmr = x gnm(q2) . (5.12) 

And similarly we define 

I} Lo = (LOr, Lm = Lngnm (q2) = (Lm)... (5.13) 

Then the action of the generators Lp on x" now becomes 

x OLO = _q-l[2]-1/2 X O +q-2 LOxO • 

xn LO = _q-t[2]-1/2x n +q-2 LOxn , 
(5.14) 

XOLm = _q-I[2]-I/'2 X m +q-2 Lm.7:0 , 


xnLm = _q-l[2]-1/2g(q2 t m + ~u!(q2)nmx' + q-2itf'li"L'x" . 


Relations (5.11) and (5.14) complete the action of whole set of generators on 4­
vectors. 
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rn the limit q --+ 1, (5.11) and (5.13) reduce to 

[L+,x+] =0, (L+,x+1 =0, 

[L+,x3
] = -~x+, [L+, xJ1= -~x+, 


[L+, x-] = -ja{x3 
- xO), [L+,x-] =-j;(xJ +xO), 


[LJ,x+]:=: ~x+, [L3,X+] = ~x+, 


[LJ,x3 ] = -7,xo, [L3,XJ} = ~xo, 
(5.15)

-3 -] t ­. [LJ,x-] = --j;x-, [L ,x = -72x , 

[L-,x+] = -7,(x3 +xO), [L- ,x+1 = _~(xJ - :to), 

[L-,xJ
] =~x-, [L-- J] 1­,x =72X , 

[L-,x-]:=: 0, [L-,x-} = 0, 

[Lm,xO} =-xm/J2, [Lm,xOJ = xm /V2. 

It Imp!;",;; that .Jm = ~(Lm +Lm) are the rotation generators while [(m = ~(Lm_ 


"") th" !toost generators. 


I"Jnf(~ Added 


1\£1,,[ completing this manuscript we saw a paper by W.B. Schmidke et al 
(7:.fhy:;. C 52(1991)471) in which the ansatz-consistency method is used to give 

nth ['('PI'rntors of the quantum Lorentz group '\cting upon spinors and 4-vectors 
sirnilnr tn those in Section V. We believe that their results will be equivalent to 
nul'S if ~hey used an ansatz corresponding to the 4 D+ differential calculus rather 
tim' the:) D calculus they adopted. This is also the reason why their results were 
k.,s ('OYllract and less explicitly covariant. 
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