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Abstract
A consistent theory of the spin and isospin exciiations in an infinite auclear

system is formulated based on the Ward—-Takahashi relations-among various
many=poinl Green’s funclions, wiich are derived from the requirement of the

" rotationalinvariance in spin and isospin SU(4) space. Collective modes are found

to be six Nambu~Goldstone bosons, called spin, isospin, and spin—isospin
waves, which appear as a result of the spontaneous breaking of the SU{#) sym-
matry. The W—T rclations are uscd to determinc the cerrclations among collee-
tive modes, and obtain the consistent expressions for static susceptibilities be.
yond the randem-—phase approximation. Thea the quenching of spin—isospin
excitation strength of nuclei is qualitatively discussed.

@ Permancat address
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1. Introduction

Investigations of nuclear spin and isospin excitations attract a great deal of
attertion™. The interest in this subject is motivated by the universality of these
collective excitations to all nuclei as well as the problem of systematically ob-
served quenching of strength associated with some of collective excitations, i.e.
the Gamow—Teller and isovector magnetic transitions. There appeared many
models of describing the spin and isospin excitations trying to interpret above
natne“’, and most of them were based on the random phase approximation
(RPA). Probably in order to well understand the universality of nuclear spin and
isospin excitations and the quenching mechanisms, one may need to furthar study
the deeper dynamical reson for these excitations as well as the approach beyond
the RPA. The recent interest in understanding the nuclear spin and isospin re-
sponse to external probes also show that the collective excitations have to be stu-
died at a level well beyond the RPA®. In this aspect, so far a systematicul ap-
proach and & fully consistent approximation scheme is still lacking.

On the other hand, quantum field (QFT) has become a standard method to
study the many-body problems in condensate matter physics. As we known from
QFT, when the lowest state of 8 system is not an eigenstate of a continuous
symmetry of the system, it is said that this symmetry is spontaneously broken.
This is 8 common occurrence in natue. The well known examples in condensate
matter physics are ferromagnetism and crystal formation. Where spin=rotational
symmetry is spontaneously broken in a ferromagnet and translational symumctry
is sontaneously broken im an infinite crystalline solid. Of caurse, the symuietry
that is spontaneously broken is still 8 symmetry of the system, which is wiani-
fested through the existence of the- Nambu—Goldstone boson ¥ (Goldsioue’s
theorem) being energy—gapless mode in the long wave length limit in the
non—relativistic theory. In this case it is known that the symmetry propertics of
the system lead to a variety of exact relations among many—point Green’s fune-
tions, i.e. the Ward-Takahashi (W-T) relations™. Some significant conclusions
can be derived from these relations without any approximation. One of them is
that the appearance of the N—-G bosons is a result of one of the W—T relations
(Goldstone's theorem®). In above examples, the corresponding N—G bosous are
spin waves in the ferromagnet and phonons in the crystalline solid, which are
well-studied collective excitation modes®. But nome of nuclear callective
excitations seem to study along this line.

Starting from this paper, we aim at the attempt to cast 2 unified description
of the nuclear spin and isospin excitations and a fully consistent approximation
scheme of the spin and isospin reponse functions or susceptibilities in the frame
of modern QFT. As a starting point, in this paper we first consider a-
nonrelativistic infinite nuclear system in order to simpfy the treatment and make
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use of the QFT method. Generalizing the study of ferromagnetism where spin
rotational symmetry is spontaneously broken, we understand the spin and
isospin excitations of the system under consideration as the spontaneous break-
down of the spin and isospin rotational invariance. It means that the theory or
the Lagrangian of the system is spin and isospin rotationally invariant but the
physically realized state does uot possess such symmetry. To do this the SU(2)
symmetry of the spin has to be extended to the Wigner’s supermultiplet SU(4)
symmetry of spin and isospin. Studying the response of the system to some spin
and isospin symmetry—breaking effects and using the requirement of the
rotational invariance in SU(4) space, we derive the W-T relations among
many-point Green’s functions. The collective modes of spin and isospin
excitations thus naturally appear as a result of ome of the W-T relations
(Godstone’s theorem). That is, these collective modes are N—G Bosons (nucleon
bound state) which include spin waves, isospin’-wives, and spin—isospin waves.
We may simply call them o-,c—, and st—waves (or bosons), respectively. We
hope to point out that the requirement of the rotational invariance in SU®4)
space also determines many properties of 6—, 7~, and sr—waves (or bosons) like
nucleon—boson interactions, in particular, the correlations among collective
modes.

In this paper, we also give an approach to the calculations of spin and
isospin response functions and static susceptibilities. We get an expression to the
static susceptibility including the corrections to RPA in terms of the nucleon
self-energy. The result-shows that the standard RPA susceptibility is obtained at
the first approximation to nucleon self—energy, while the corrections to RPA
come from the effects of the collective excitations, i.e. 6~, v—, and sr-waves, to
nucleon self-energy. ’

This paper is orginazed as follows. In sec.2, the Ward—Takahashi relations
are derived from the requirement of the rotational invariance in SU(4) space of
spin and isospin by the functional integral approach. In sec. 3, the collective
modes of spin and isospin excitations are studied by means of one of W~T rela-
tions, which shows why these collective modes are N-G bosons. In Sec.4, we de-
rive several W—T relations among some many—point Green’s fuctions which cor-
respond to the interactions among nucleon and (o67)~ bosons. The vertices rela-
tions are given by Fourier~transforming these W—=T relations into momentum
space. By means of some W-T relations, we study the bound—state condition of
(67)— boson and the susceptibility in Sec.5. In Sec.6, we give the expressions of
the static susceptibilities in terms of nucleon self—-energy, from which we obtain a
consistent approximation approach beyond RPA to the calculation of suscepti-
bilities where the corrections from (gr)—~bosons or spin—isospin waves are
given.In Sec.7, we qualitatively discuss the quenching of spin—isospin excitation
strength and the correlations among collective modes. Conclution and remark

el

are given in Sec.8. .

2.8U(4) Symmetry and Ward—Takahashi Relations

We consider an infinite auclear system of noarelativistic nucleons with spin

- 1/2 and isospin 1/ 2. Their dynamics are described by the Heiseaberg fields

¥1,(x) and the canonical conjugates y; (x) where the first subscript 4 denotes the
spnn state and the second one y for isospin state of a nucleon. Fields W,,.(x) and
i (x) obey the usual equal—time anticommutotion relations

W, & 6Nsa— =88 3 =5 . . @.1)

The equations of motion for the Heisenberg fields can be obtained in the usual
way from some appropriate Lagrangian density L(¥(x), ¢*(x)) for which the de.
tail form is not needed here. L (¥, ¥%) has translational invariance in space—time
for the infinite extended system under consideration. We assume that L{i,§*) has
separate rotational invariance in coordinate space and in SU(4) space ot spin-and
isospin. Such decomposition is valid as long as the LS coupling is out of counsid-

eration. The 15 generators of the semi—simple Lie group SU(4) are

§,= a5 T )6, x e )
T,=Jd'sy " (0 xc W) ,
S, T, =a"xy "), xt W) , 2.2)

with 4,u=1,2,3. Where nucleon fields ¥ (x) and ¢*(x) have been written in tiie .
matrix form. For the sake of convenience and simplification, we intreduce the
notations Q,=0,x% t"and Q,=0,x 1,Qm =] x T, In this way, the 15
generators in Eq.(2.2) can be combined in the form

fd'xe " (0@, ¥ ) S 2.3)

with 4, u=10,1,2,3.

In order to describe the collective excitations of spin and isospin for the sys.
tem, let us remind the situation of the ferromagnetism. In a ferromaguer, al-
though the Lagrangian is rotationally invariant, the ground state is not, since in it
dynamics favors neighboring spins to be parallel. So that the ground state has
maximum spin aligned along some, albeit arbitrary, direction. That is the ground
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state is a spin—ordered state. The symmetry breaks from SU(2) to U(l), the latter
being the rotation group around the chosen axis. Which axis the system chooses
depends on the initial and boundary conditions. A typical procedure is to impose
a weak magnetic fild b which then is gradually switched off®. In mathmatical
- treatment it corresponds to let h limit zero in the end of calculation. Now for an
infinite nuclear system, the interactions among nucleons may favor the appear-
ance of the order state of spin and isospin with the same reason as
ferromagnetism. As a result, the physically realized states of the system do not
possess the same symmetry as the Lagrangian, ie. the SU(4) symmetry is
spontaneously broken. To understand how the symmetry breaks, we need inves-
tigate the response of the nuclear system to some imposed external probes which
then is gradunally switched off. The possible external probes inducing the
excitations or polarizations of spin and isospin may be kinds of electromagnetic,
weak, and strong interactions (f.i. (p,n) and (u,p) reactions). Do not loss the gen-
erality, we may choose the direction of polarization of spin and isospin in the
third component which is fixed by the imposed external field. The
symmetry—breaking terms thus may be following forms

haQJll(X) ’ thﬂ!(") . huall(X) i

where

g,x)=1v (r)a w(x),
g,&=y (x)z,d:(x) ,
0, =v (x)ao,5,0G),

and h., h., b are respectively the imposed external fields generating the spin—,

isospin—, and spin—isospin polarizations.
. The total Lagrangian of the system now is given by

L)= L@@y @N+h, 0,0 +h 0, +4,0,E . Q4

We use functional formulation™ of the QFT to derive the W—T relations.
The generating functional of the system is defined by

W n5.J0] = %jw]w “lexplifd’ x (LW ")+ h 0, &) +h 0, &)
+h, 0,0+ GNE +E T G+ S, e, I, @.5)

with -8 -

gp=v" @, ¥ . 2.6)

Where n(x), nt(x) and J;,(x) are the external sources, [dy]{dy*]is the measure
of path integral, N is the generating functional in case n=1J,,=0. At the end of
calculation, the limit h,~~0, h,—~0, and h,,~ 0 should be performed. Note that »,
n*, ¥ and ¢t anticommute with each other, while J1. arethe c—number sources
commuting with other operators. In physics, Q,,(x) describe the responses of the
system to sources J;,(x).

Letus now make the variable transformations

v =" Ty e ™, _ @.7)

and

Yix)—e

.o + f.c) (xe + f.5)

ve) ) ¢ *(x)e' . @.8)

in Eq.(2.5), respectively, where y.Q= 7..Qu, Frotn the requirements of me
rotational invariance in SU (4) space of spin and siospin, we then have

- iaw/ "u =0 ) (A)”= 0)1,213) ’ (29)

and .
—i3aW /a8 =0, G,j= 1,2,3), (Z.10)

which respectively lead to

ta's <n QW@ - ¥ " (®Q 1) + J,M0e,x) g,
P +
=-idz<y ®h,0,+40,+45,0,0,Wx> @l

and

ifd'x <fn* @o, T ¥+ ¥ " (x)a,7 n(x)
I, 00" @le 0 e, 6>,
—Jd'xjdty <" @e px) =y

—J W x)e,0,, k)]
X0 e p =¥ O 0= T, 0 T Dl ,0 160 >

OLETE))
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= - ib“jd‘x <y’ o0 ), k) >,

Cld'afdt <l Wh,Q, A0, W (b0

— 0 DT, 0w TGN T )

w0 @I 0, + A0, W0 x)a b )

—¢ e a@+ T, G @I 0 L) >,

rjdtxjdty< @ @A, 0, + 1,0 0 WG B

x[h Q,+h,0,s 0> . @.12)

Where, for convenience, we have used the compact notation

< ¥ 1>y = il " 1w Dexplifa xiLteb D+ b0,

FRQ, Fh, 0 n EHE E Y )+ T, (00, @1 . Q13)

Henceiorth we also use following notations

< e l> = lim <y 1>, S @18
[ ) .
<> = tim < 01>, | 2.15)
: M=t

Eqs.(2.11) and (2.12) are the basic Ward—Takahashi relations resulted from
the symmetry properties of the system under consideration. By taking the succes-
sive derivative of Eqgs. (2.11) and (2.12)-with respective to sources, we then can
get a series of WT relations among the varous many—point Green’s functions.

We hope to poiat out that the presence of the symmetry—breaking
interactions (see Eq(2.4)), which distort the SU(4) invanance, lcads to the ap-
pesrance of the poralezation states or order states which are specified here by

M_ = <¥ (o, p()> , (2.16)
M_ = <y¢p G p)> ' @.1m
(2.13)

M =<y ®e,r,yk)>

Where <F> means the ground-state.expectation value of the time—ordered

—F -

product, <F>= <D|T[FJl0>. Eqs. (2.16), 2.17), and (2.18) respectively iaply
that the rotational symmetries in spin—, isospin—, and spin—isospin—subspace are
spontaneously broken. But the rotational symmetries around the third axis in
these subspaces are not violated, respectively. This is easily understood from
Eq.(2.11) by setting Qu= Q4 (.e., 65X 1), Qyy, and Q,, respectively. It means
that these third components are still good guantum numbers, and so all states
may be classified as eigenstates of generators S5, Ty, and 8;X Ty in Eq.(2.2).

3. Collective Modes

According to Goldstone theorem, the spontaneous breaking of a conuinuous
symmetry of a system implies that there inevitably exist a N—G boson which has
no energy gap in the long wave length limit. In this section, we shall show taart as.
sociating with the spontaneous breaking of SU(4) symmetry described in abouve
section there may appear six N~G bosons which correspond to basic collective
modes of spin and isospin excitations in the nonrelativistic infinite nuclear
system. . )

To do this, let us first derive several W—T relations by means of the basic
W-T relations (2.11) adn (2.12). Operating both sides of Eqs. (2.11) and (2.12)
with —id / 1, (x), tespectively, and putting =9 =0, we obtain

<@,0.0,@]>,= ~ijd'y<lh,0Q,,0)+h 0,0
+h,0,,00.0,0000,0>, . G.1)

and
< fo,(x)a, (Ol ;(x)z (>
= —ih Jd'y < lo,000, Wi, (2, VE,, 0>,
~ifd' y <, 002, 0) + 4,8, 0, 00Q ,, ()t ) >,
—ifd'y <, ()8, 0 + k.0, (W iE,, (5)a, (N>,

[yl <, 000,00+ 4,0 008, (I, (N, ()
+h, 0, @602, &>, . ' (3.2)

" We now respectively consider the symmetry—breaking effects in Eq.(2.3) and
write some detail relations from Eqs.(3.1) and (3.2). ‘
(1) For the case of presence of symmetry—~breaking term h,Q;,(y). By setting
h,=h,.=0, and putting Q= Q.q, Q,,= Q4 in Eq.(3.1), we get

-8-—-
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<a’(x)>.ﬂzf'l'jd.y<o'+(y),0’_(X)>. 4 (3.3)

1 , . _ . R
where ¢ . ™ 2 ("x + wz), and the notations Q,,=¢;X 1 given in Sec.2 have been

used. ‘
(2). For the case of presence of symmetry—breaking term h,Qq;(v). By setting

h,=h,=0and Q= Qu..)Q“= Q. in Eq.(3.1), we get
<t,(x)> , =2ih Jd y<t Os_()>, (3.?)
wherez = %(1:l £ it )and notations Q  =1% 1, in Sec.2 have been used.

(3). For the case of presence of symmetry—breaking term h,.Qy(y) and
hw= h: = 0 RBSpECtiVEIY puning Qm = Q-)-QL“= qu: Qll’.= Q}-a QL“ = Qof;
Q= Q. Q= Qup Qu=Qo, Qu= Qy,in Eq.(3.1), we have

<Q,&)> l==21h"[d‘y<o'*(y),c_(x)> - (3.5)
<Q”(x)>‘=2ih"[d‘y<t‘(y),r_(x)> Lt (3.6)
<@, &)> .=2ih“jd‘y<Q+3(y),Q_,(x)> . 3.7
<@, &> ‘-Zi,’:"jd‘y<Q“(y).Q,_ x)>, . 6.8
By putting 6,=0;, 7;= 1, and ¢,=0a.,t,=1. in Eq.(3.2), we have
<0 ,&)> = - 4M"J'd“y< g.,»ne __(x)>',
+ 2ih"jd‘y< g ,na _,&)>,
+2in jd'y<0, e, &)>,
+ah jdyfd'z< 0,000, @2 __E)>, . 6.9
If puttinggy=0p ,7;=1t. and e, =d 1,7 in Eq. (3.2), we get
<Q,x)>, = —4ih Jd'y<o, DO _ 0>,
v fd'y< @, 00 _,(®)>,
+2ik fd'y<Q, 0@, &>,
+ 4’ dyjdz< @ (0., @0 _ ()>, . (3.10)

We now prove the existence of the collective modes of spin and isospin
excitations by means of the W-T relations(3.3)—(3.10). In fact, Eq.(3.3} has the.
same form as that one met in the situation of ferromagnetmwhcre the
itinerant—electron ferromagentism is specified by <a,(x)>. As a result of such
spontaneous polarization of the fermion’s spin, there exsits a poie with
energy—gapless in the transve—spin susceptibility. The pole term is known to rep-
resent & kind of N—G mode B, (q) which is called spin wave. Obviously, same

‘conclusion is suitable for the case(l) meantioned above in & nonrelativistic in1in.

ite nuclear system. Similarly, Eq.(3.4) means that the existence of the polarization
state < 14(x)> of the considering system leads the appearance of another kind of
N~-G mode B (g) which may be called as isospin—wave.

Now we use the W=T relatios (3.5)—(3.10) to prove the existence of N~G
modes and to find all collective modes in the case of the appearance of
polarization state < Q,4(x)> in the system. The discussion is more cleas in the
momentum space. For this purpose, we define the propagators as

‘ - gz - n

<o, (a_N>,= (2:)‘ fa've A @ @1
<t, (x),t_(y)>‘l - (2:)‘ ;d'yc"“""’Am-,(q) _ 3.12)
<@g, 0>, ak,a%rffr’ye“"‘"’A,(_.,,m , @.13)
<0, (e, (>, = (2;)‘ fa'ye ™AL @), G.14)
<0, Q__(N>, = (2;)‘ fa've AL @), (3.15)
<@, e (>, = (2;')‘ Jatve ™AL @) (3.16)

and the three point vertex functions as

<0__a,,me,, &>

i 1.4 4 4 -le. x
zx)“] Id g,d'q.d "36(‘71 -—qz--q,):." e, x+t6 yriae

= |
XAy, @IT 208,000, ,6)0,, @), 617

and similar definition for < Q., (1), Qu3 @), Q3@ > . Where q = (q5,8), & geu are

I
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Eq.(3.25) implies the existence of the bound states(collective states) with van-

the propagators defined in momentum space, which are written in the spectrum ) - : JRRE

. . : . ishing energies for zero momentum. This is just the statement of Galdstoue’s the-
rcp?esenlat'on as, for instanee, C ; “orem. That is, these collective states are N—G bosons, which are characterized by
‘ <ug “(ﬂ)iﬂ' - ”(—) s < 3 . @ig _ (G)IU > tx?,usve—spm polarization and longitudinal isospin v:brau‘on. Without lgss gener-

AL y@= ality we can choose M, >0 which assumes that <B 30){Q¢y0)>=10. It

) gy =lo,_,@ )+ 24 ME R i means that B, 5(q) mode does not appear and there exists only the mode B ;)

<0lQ _,0)8,, ,@> <8, @ig ,, 00 > : ' which may be called as isovector—spin wave.

- 7 - : The discussion is similar for other expressions in Eqs.(3.19)=(3.24), from

g, + o, ,@)-24 ]+ ie ' which we can prove the existence of other kinds of N—G modes, the collective

(3.18) : . modes of spin—isospin excitations. The results are described as follows. Eq.(3.19)

+Zconu’num terms .
or (3.5) shows the existence of the N—G mode B, (q) with S; spin—1 and

Ty isospin 0. That is, quantum B_,(q) is specified by transverse—spin
' , polarization, which may be called as isoscalar—spin wave which, of coures, is
same as the spin wave appeared in the existence of polarization stite <o,(x)>.
Eq.(3.20) or (3.6) shows the existence of the N~G mode Bg (@) with §, spin 0
and isospin~l. The quantum Bg_(q) is specified by transverse—isospin

Here the pole terms containing the l/h—sxugulnnty have been picked up.

_which By y,(q) is the spin—isospin excitation states with energy wyg, »@? and
momentum q and the quantum number S, spin t | and T, isospin being the
longitudinal fluctuation. Using the defmmons(3 11)-(3.17), Eqs. (3.5)—(3.10) can

be respectively expressed as
polarization which may be called as scalar —isospin wave which, of course, is
M, = =2n 0, 0, (3.19) same as the isospin wave appeared in the existence of polarization state < 7;(x)> .
M,=-24 A, 0), ) (3.20) ' Eq.(3.22) or (3.8) implies the existence of the N~G mode B _,with T, spin—1
M,= =20 A, ©) , (3.21) . and 8, spin being longitudinal vibration. Thus the quantum B _,(q) is charac.
M, = —2h u/'\‘w ©) ‘ (3.22) i terized by longitudinal isospi‘n vibration and transverse—spin polarization, which
may be called as vector —isospin wave. Eqs.(3.23) and (3.24) can be simplified iu

M= +4h A, O=20 A, (O=20 A, 0
' terms of Eqs.(3.21)—(3.22) and the relation I‘L 8,0,0)=0 sicne the low=energy

2 m PN ) *
— 44 "A:(-'_)(G)I‘A_(B,O,U)A a(—.n(ﬂ)“‘ w,—)w) ! (3.23) ' theorem™ that the reactions among N—G modes vanish at the zero—energy
M, = +41 A4 ,(-',,(ﬁ)" 24, L (-3 0)—24 & m.-)w) i limit. Thus, we have from Eqs.(3.23) and (3.2¢4)
1 o
—-4h N 0O 0,0,0)0A ((IDYAN 0) . (3.24)
e (—.4-)( a f—-s(-.!) 203,-) ‘ ) Mi - —4fl"A . (0) , . . ‘ ] (327)
M, = —4h“A“_‘H(ﬂ) . . (3.28)

Where M, = < Q;;(x)>,. Now let us show the existence of N~G bosons from

Eq.(3.2) as an example. Substituting Eq.(3.18) into Eq.(3.21) and then taking the
By means of Egs.(3.27) and (3.28), it then is easy to prove that there exist the

limit h,,—~0, we find that
N-G modes B, _,(q) and B, _,(q) with the quantum numbers (S, T,) being
M, =<0, x)>= lim(~ 20, O a(_'”(ﬁ) #0, (3.25) (~1,~1) and (=1,+1), respectively. That is, the states IB.4@)> and |B__,@)>
bt are characterized both by transverse~spin and transverse~isospin polarizations
' . except that their isospin polarization directions are opposite. Thereiore, we may
ifonly » ' call quanta B _,(q) and B(.,,(q) as transverse spin—isospin waves.

2 o : . .
@)=0 atg=10. Summarizing above discussion, we find that there exist six N-G modes

w:(r.i)
In that case, we have - Bey(a), Bay@), B @), Bgy@), B 4(a), and B ,,@) in the case 3 if we
choose M, >0, which may be regarded as different channel of the common N~G
M =|<B e @ > iz —i<B me o> . (3.26) boson, the at~boson or st—wave. Totally, there may appear six N—G maodes, the
at -3 (-2 (+.3 w3 . collective modes of spin and isospin excitation in the system under consideration.
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The resuits are listed in table 1. These N—G modes may be ldentifled to
well-known low energy spin, isospin and spin—isospin collective modes in nuclei.

The spin wave B,(q') or isoscaler—spin wave B ;(q) are the collective modes in
isoscaler M1 transition, and the isovector—spin wave B(_3(q) is that in isovector
M1 transition. Isospin wave B,(q) or scalar—isospin wave B“,,*,(d) are the collec-
dive modes in the isobaric analog transition. Transverse spin—isospin waves
B {(q) and B ,(q), and the vector—isospin wave By_;(q) correspond to
Gamow-Teller modes which are some of the strongest excitations in charge—ex-
change reactions (p,n),{n,p) etc, and in inelastic scattering, (p,p’), (e,e’) ete.

" 4. Vertices Relations and Nucleon—~(st)Boson Interactions ,

In Sec. 3 we have found the collective modes (the N—G modes) of spin and
isospin excitations in the system under consideration. To clarify the properties of
these N—-G bosons and their effects in the system, in this section we study the
W-T relations among multi=point vertex functions in which the nucleon and
N-G bosons interact with each other. These W—T relations are also important to
the calculations of the propagators (two-point Green’s functions) and other
physical quanta such &s susceptibility. Whenever making an consisitent approxi-
mation expansion, we must be careful not to violate the W-T relations, the re-

quirements of symmetry of theory.
At first we derive the W—T relations among propagators and vertex func-

tions, which is periormed by taking the second urder derivatives of the basic
W~T relations (2.11) and (2.12). Operating both sides of Eqs.(2.11) and (2.12)
with 8 / dn(y)d / 1 (x), and then putting n=J=h=10, we get

<Q, bW O)> - <wi (I, >
= lim - ijd'z < [k @, )+ 4 0,

At

+4,0,,6.0,OW0 " 0>, , @.n

and
<o W W > - <1 e, >

- <arpGN > - <vGW e, > '
= Jim{ih [d'z <" GG ,6)e @A, @)r () >,
At

rifd's < @ pew (=W )

x (A'Q“(z) + th03(2)+ huQ 33(2)’61(1);
—13 -

@ - weW G,
xh 0, @ +h 0 6)+ h“Q,,(z),tj(z)}> .
4 + +
—Ed < v G O, @ + .0, @+ h_ 0, (e (o)
o My
W0, 0+4,0,0+h,0,00 0>, . “.2)

From W-T relations (4.1) and 4.2), we can write several relations amon
nucleon Propagators and vertex functions of (et)—bosons and nucleons with d'fg
ferent spin and isospin, which are listed as follows. l -

(1). For the system where h,%%0, h,=h, =0, we have from Eq.(4.1)

SULENLDI> — <y 0>
=lim -2k [d's<a, @, W5, @.3)

B}

where index 1 denotes isospin state. :
(2) For b0, but h, = h,, =0, we have from Eq.(4.1)
VLN > — <u ] (5>

= lim — 4 . +
im —2ih fd' 1 < TLEWL R, )> ¢4

dew

where index u denotes spin state.
(3). For h,,50 but h,=h =0, we have from Eq.(4.1) and (4.2)
>
<UL OGN, > - < w,,(xm,‘,(y»
= lim - 2ih fd4* z M
m i "fd z<QH(..)1Iln(x){{l“ o) > Vs 4.5)

At

UL EWL D> = < W] 6>
X 4
=lm-dk (A <0, W, 0w 0>, 4.6)

ket

LWL > — <w ) >

A .
=lm -2k, Jd2<0, @, CWLm> @)

L)

SHLEN D>~ <y o) >

=lm-2h Jdz<0, W, 0>, , *.3)
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and C
<G> <y W)

- < WS> = < e (0)>
= limfbih [d'2< 0, @, 0 0>,

—4n. Ja'd't< @ @, O, ;00> ] . @.9)

< GW L O> + <b (W 0>
- < W > = < by 6N ) >
= limtik Ldtr<o @ o>,

SR L7 SR BRO RS 0TIl SEIN S (1)

. ‘And Egs. (4.9) (4.10) satisfy
<Y W 00> = <u W 0>,

<, &N D> = <¥, G, (> . @.11)

Next, let us derive the W-T relations among many—point vertex functions
which is relative to third order derivatives. Operating d 7/ dn(y) 8/ dn'x)3 / 3], ()
both sides of Eqs.(2.11) and (2.12), and then putting n=J=h=0, we obtain fol-
lowing relations:

(1)When h,0 buth,=h, =0, we have )

<o, v M- v@ e Jo_@> — <y (e,k) >

= lim =20k Jd' (<o OvW G _@)>, . (4.12)
At

(2)When h, 50 buth,=h,, =0, we have ‘
<@ bW —vGEw O ) @)> - <vlw (W, k) >

=lim - 20 jd'{ <t Qule” We_@>, . (4.13)

e ]

(3)When h, 50 buth,=h =0, we have
<@, ¥aW M- MNE )8 _,@)> — <¥ (Ne,, 6>

= lim = 2ih Jd'(<Q  (Ob " (A _ ) >, (.14)

A3

.

<@, ¥ TGV 0I,,)0, ©> - <we ()0, 6>
- lm =2k [2' <@, OV OO, @>, , @15

bt

<@ W O-vENTGIQ N8 _,@)> - < (o 1) >
' = lim 20k fd' (< @¥eN" Mg _ @) >, “.16)

48

<@, WO -vaw 02,00, ©> - <vii ' g, @)>
= lim —2h fd' <0, QUGN WO, @>, @.17)

L

and

<@, oW WrEEuT e, Do _@>

<@, ¥ e, +0, v e e @)>
<vew ' e, @ >

lim{—4ih Jd'(< 0, QW& 0 __@)>,

R ]
2in Ja'r< @ @, v G- bew " (g W8>
-2 [d'0< @, @ v G -vGW (0 W@,
2 + + -
+ehjded <0, 00, @ We__@)>, . @.13)

]

1

Using the same procedure as that in the second derivatives, from the W-T
relations (4.12)-4.18) we can derive = series of relations among muany-point
vertex functions for (6t)~bosons and novcleons with different spin and isospin.
Here we only write somes as examples to explain the physical meaning inplied
from these W~T relations. We have from Eq. 4.16)

+
SULEW I8 6> — <y, ¥ (00, @)>
- i ' * '
. im — 2, J40<0 O, 0 e &>, , {#.19)
and from Eq.(4.18)
. + +
<UL EN e >~ <y G, (02, 6>
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= him (—4th [d'0< 0, ©¢ ¥, ()0 __@)>,

At
—2h, fd't <0 @O0, N0 __@>,
—2ih, Jd'1 <@, Qv W me __@)>,
ranlfd'ta'eo 0.0, @OV, G0 __@)>, .- @20)

. The first and second terms of the L.h.s. of Eqs. (4.19)—(4.20) express the processes
" of emission or absorption of the (st)-bosons and the longitudina] spin—isospin

fluctuation, respectively. The integral parts in Eqs.(4.19)(4.20) are the vertex .

functions for the nucleon—(sr) bosons scattering processes. Thus,
Eqs.(4.19)~(4.20) and hence the W—T relations (4.14)—(4.18) show following pro-
cesses: If there appears the longitudinal spin—isospin polarization in a nuclear
system, this longitudinal fluctuation will be absorbed due to nucleons, and so
form (s1)~bosons with different channels. The (¢t)—bosons may be emited also
due to nucleons, and then appear-the processes of nucleon~(sz)boson scattering
and that of absorption of the (¢t)~bosons due to other nucleons. The later will
again produce the longitudinal spin—isospin fluctuation. This is the qualitative
picture for the appearance and the propagation of spin—isospin waves (or
bosons), the collective excitations of spin—~isospin, in the nuclear matter. The
W-T relations (4.12) and (4.13) show the similar processes if only instead of
spin—isospin fluctuation by spin and isospin fluctuations, respectivly.

The physical meaning of above W~T relations will be more clear when the
discussion is in the momentum space. For this purpose and also for the conve.
nience of later discussion, we now transform the W~T relations(4.3)~(4.20) to
momentum space. To do this, we introduce the momentum representation of the
nucleon propagators as

<hb > = ——(d'pe TS (), @21
r’ u (2x) »

and the momentum representation of three—point vertex functions as

<0, @, N 0>

= (=" pd e TS 0k S L ()

4

Q=)
+85, 0+l G+a0.98 (0O, @], {

N
ha
[
e

<Q,, @, v, 0>
= [ { —1'fa"pd*ge
@2n) .
+85, 0+l _P+apos (A, @] . (4.23)

~i(p+ g)x + Ipy+ igs

5,0+4q)s ()

Where spin (isospin) index p()=1* ,4 . T, and I'®, are the three point
vertex functions in momentum space in which the subscripts (—,3), (~,~), etc label
(ct)~boson states of verter functions. The four—point Green’s functioas are
expessed as o

<Q,,®a,, O, 69 0> .
= <UL Q> <¥, OV, 0> <¥ &N 0>
U G E)> <UL O> <¥ O 0>

i 3. 4 4 . ¢
+l—=1[dpd pdgdqip —q,—-p,—4q,)
@n)
—t.ixi-fqlc-f-l;z;u-u E

3
$,0)A 4 @)
(]
% T e P4 ,iP4,)

o) .
+T (a0, —4,)5,(p, —4q,)

[¢]
xTo (P —a,ip,40)

X e

3
+T, Pua P —4q)5, (P ~9,)
@)
xT P =P, 05, (A, _,G,) . (4.24)

. I‘ﬁ:’_m t.4 ¢ 0 Iisthe momentum representation of the correspondiug vertex

function for the nucleon~(s7) boson scattering process. The five—point Grecn’s
fuctions in momentum spance can be similarly defined. Here Green’s functions
were decomposed into the proper vertices. By means of the expressions
(#.21)—(4.24), we rewrite the W=T relation Eqs.(4.3)~(4.10) in momentum space
as follows: : :

()When M,= <oy(x)> %0, we have

-1 -1 0}
§,P-5, =M T (po;p) . #+.23)
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(2)When M= ér,(x)> #0, we have
s =S =y Ty (2.0:p) (4.26)
T At PPl A R . .

(3)When M,,= < Q;3(x)> 0, we have

-1 -1 o) .

IO MIOES 35 SN AL @.27)
-1 -1 a) *

5, @-S, (=M T, (ppo), (4.28)
N “py=M, T 4.29):

S,@-5,0G=M_ N (4.29)
1 -t o

5. @-8 =M T, ,(ppo). #.30)

and

S, +5 (-5, 0-S5,0
PR )
=M,S, (O _ _ (ppo)s ()
2 “)
+ M, S OIT 0., (Pip0)

Rel] £l
+ T, ehps (AT, (p0:p)

FTO_ G09S, T GipoS () . @.31)
and Eq.(4.31) satisfies
S’n(P) = S’u (), S’“ (p)= S”(P) . (4.32)

Similarly, we can rewrite the W-T relations (4.12)—-(4.20) in the momentum
space. For instance, from Eq (4.19), we have

-1

-1 o .
5,08, @A, @+ T, Gar+ - D, 5@
- A,@2 L, @, a2+ D)
= - M "I"?: i PP E g.0) . (4.33)

Eq.(4.20) leads to

o)
(==}

-1
a—,~)

S, PAL L @TE _Gapt-000 @)

-8, @y G+ )

®
=-M, {r (== M=, =)

-1 "
+ 8., O, PT e,y PP+ 4,0)

-1 (O] .
+ 8,0 O e, (2437 + 4,00}

p—
- M T pg00,p+4) . ' (4.34)

(9,0;p+ 4,0)

Where I"?Lf_n 1,1 1 (=) Ctc are the vertex functions for the scattering processes of
nucleon—(st) boson with different states, T™ is five=point vertex function, A,
is the propagator of the longitudinal spin~isospin fluctuation, and I‘f“ is the
vertex function for the process of emission or absorption of the longitudinal
spin—isospin fluctuation due to nucleons.

We may use Feynman diagrams to describe these W-T relations. The
nucleon propagators of Eg.(@.21) and the (sz)=boson propugators of
Eqs.(3.11)—(3.16) are given in Figs.1(@) and 1(b), respectively. The W~T rclaiion
(4.19) or (4.33) is illustrated in Fig.2, while Eq.(4.20) or (4.34) is shown iu Fig.3.

From above discussion we can see that the W-T relations among
many—point Green’s functions given in this section describe the constraint rela-
tions among nucleon—(sr) boson interaction processes. In the limit 0l zero
energy—momentum transfer, these W—T relations are much simplified since the
energy—gapless excitation mode of (st)—bosons, i.e. A3'(q) and A (q) varisk ut
q=0, For example, the first, third and fourth terms in the left sides of Eqs.(4.33)
and (4.34) disappear in the limit g~ 0. These simplified W-T relations will be
useful to the successive approximation calculations of the Green’s functions.
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5. Bound—State Condition and Susceptibility

We have already shown in section 3 that the cellective modes of spin and
isospin excitations in the infinite nuclear system are N—-G modes which are
nucleon bound states. Let us now derive the bound—state condition which is well
known to be determined by the pole singularities of the propagators. Remember
that Qu&x)=y¢*+(x)Q,¥(x) are the Heisenberg operators for the bound states
where (Ik)=(£,0),(0,%), (£,3), 3,£), (£ ,%). Using the relations

<@,,00Q _ 0> = —lim<Q G, W &+e)>,

LR

<0, B0, W> = —lim<@, W, W, G+e)>,

(B3]

<Q,,Q_,0>=-lim¥In, <0, W GW, &+e)>,
LEL} I

<@, X2, MW>=—Ilm¥n, <0,/ (x):#”(x)dv;;(x+e)>,
[T

<Q., K0 __M>=—-lim<Q , W & G+e)>,

—Iim<Q4__(x)wu(x)dr;(x+ £)>

[ 21

<0, ®e_. 0>

(5.1)
and Egs. (3.11)-(3.16) and (4.22)~(4.23), we obtain
. -1 4 q
A =D (Pl - —J4 1
A 0@ =D () o fd'ps, o+ )
o 9, 4 g, -t
xT' _,+ E,P-'Z-,Q)XS“ (P—‘Z—)] ) - (5.2)
A @ =D (@ - —" jates (p+ L)
a0,-) * (272)‘ i1 2
o) -
*To o+ Zip=20) x5, -207", 6.3)
—- 1 .4 q
Ay @=D @ ———Tn [d pS, (2+ )
' Qx) 2
a -
xr(_’j,(p+%;p-—g—,a)xsw (p-%)] b (5.4)

= * 9 q
b () o 4 PSM(P+2)Su(p-—-) ,

| — . .
B oo @ =D, 00 - a—)*rz;.n,fd PS, (b +3)

[1}]
( q

q -
X To (P 3ip—3.4)x S“(p-—%)} Y

2n)

™ q
xI'_ _,(p+ 3

A, _,@=D_ @M~ ( I‘j'dfpS"(p.;.g.) )

Ao u@=D @M -
&, +) (+) (21‘)
) q

. . q q. -
PP T)X S (P4 )]

1. 4 q
i s 0~ 2)

x I 3

Where

D - —— —_ ——
L@ o fa ps, (G+2)5 3 .

-

2

D @=L 50 id'rs G+)s (12
ec(l) (21!)4 - ,.). w(P, 2) 1“(P 2),

D, ‘(4)-—1211 d'ps w+ Dys =9 .
331 (2;1)4 T LI i 4 2) ll(p 2) 3

i q q

2x

— 1 q q
D - -1 4
at(+)(q) (21‘)0 J’d PSN (p 2 )S“ (P«}- 2 ) )

ﬂ‘m)fv 1 le’ l(ﬂ.)zt,

-1 Jor @)=} .

. q q ., -1
iP— '2~.q) x§ (p- 5)] .

t

(5.5)

(5.0)

G.7)

(5.8)
(5.9)

(5.10)

(5.11)
(5.12)

(5.13)

(5.14) ‘

In Eqs (5.2)-(5.13), the integration path for dp,  is taken along the half circle in
the upper plane for complex Py-
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The condition for the bound-state energy of (s1)—bosons is given by the
" pole singularities of the propagators (5.2)—(5.7), i.e. the digpcrsion equations

‘/—\;afn(")= 0, ; G.15)

with (Lk)= (;-,0), ©,-), =3), 3,-), (=,~) and (+,=). It leads to following equa-

ﬁons;;){. Id”’gtn(p*' g—)l“?:‘"(p+ %;p-—%,q)x S‘“(p—%)a b ' .16,
ﬁjd‘ps,,(p+ %)rzfy,(p+ Tp-Laxs, - =1, G.17)
(2;)‘ z’:nﬂj‘j’psw(p-l-%)l‘:’_'_”(p%- g’”"%"')‘* S“‘(p—%)sl 618
L fdps, Gk %’rg.);‘)"‘””%"" 30X Sue-p=1. 619
(2;)‘; jd‘pS“(pfg-)I'?:_)(D-i- ;—;p— %.‘q)x s, (- ‘{;—)‘= L, (5-20$)
(2;){‘ jd'psn(p—%)l‘?_)l“(p—%,41_94-%)’.‘ S0+ ;—)= b 6.2

They determine the spectra @yg,, of the correcsponding spin and isospin

excitations of the system. At q=10, the bound-—state energy vaunishes, i.e.,

wyg(0)=10, as we have shown in section 3. In this case;, Eqs(5.16)-(5.21) become
so called gap equations which determine the polarization of the system in ques.
tion. 4

In fact, the polarizations M,, M., and M,, can be calculuted from
Egs.(2.16), (2.17), and (2.18) by the similar procedure as done in Eq.(5.1). We
have

M, =—=Lfd'pls () - 5,00, (5.22)
27) ‘

M,=—Lid'ps, -5, , (5.23)
@2=)

M, = (2")", Ja'pls ()= § ,(B) = S, (D) = 5, ()], (5.24)
T

'Cambining the W—T relations (4.25)~(4.31) with Eqs.(5.22)—(5.24), we obtain a

set of gap equations which are same as Eqs.(§.16)-(5.21) at ¢ =10. This shows the
energy—gapless of spin and isospin excitations, implied just as by the Gddstone
theorem. ' )

The response of the system to external field h¢h=h,, b, or h,) can be des-
cribed by formula (5.2)=(5.7) if all quanta §,, and I® arecalculaied in the ¢x-
istence of external field h. To explicitly label this point, we write the response
functions or susceptibilities as

~ 0 ¢4 q.,- 9, 9
A, @h)=D, @n0l- P [d°ps, (+ 3 TP+ 3ip=34)
x 8, (p— %)1’l : (35.15)
‘ — i 4 q o q
A, (g,h)= D"(q'““““(zu)‘ [47pS b+ 3 (04 Zip- f;-,
) ‘_ A
x 8 (p- %)1 Y , {3 20)

and the similar expressions for A (q,b), & ,;qy(a,h) & 5, @,h) and &, (0.1,
corresponding to Egs.(5.2)-(5.14). Where use was made of the nctatious
a=RB(-0), =B{@,-), a@)y=B@3,~), a13)=B(-=3), oer=B(-,~) and
agt{+)=B(—,+) in order to specify the response functions. To solve exactly these
equations are very difficulty, since we need ™ i order to get I“”, while we
need T to get Fm, and so on. To simplify the discussion, here we consider the
situation of zero energy—momentum transfer limit. In this case, the W~T rela-
tions among vertex functions, i.e., Eqs. (4.25)—(4.34), may be used to write the
formulas for the static response functions or susceptibilities & ,(h),...28, (h). Even
so, it is still hard to solve exactly. Therefore, making certain approximution is
needed, which will be examined in next section.

6.The Corrections of Spin=Isospin Waves to Susceptibilities
So far our discussions are based on the requirements of the basic SU)
rotational invariance of the theory, and so the obtained results including the ex-

pressions for the susceptibilities are exact for the system under consideration. To

— 2"—-
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solve the susceptibility expressions in static limit is still very difficult task. In this
scction, we cxamine a consistent approximation apptoach to the calculation of
the static susceptibilities in the infinite nuclear system of nonarelativistic nucleons.
To begin with iet us consider a simplified model of the infinite nuclear matter in
which only cenltral force between nucleons is considered. The Lagrangian for this

model is given by

L) = T} @iis,— e (7))~ > Tfa' v [ 26 )
% L4

XV, =, 000 ()+hi ] as b, @.1)

i

W here the subscript a(8) of the Heisenberg fields y_{x) labels the spin and
isospin states of a nucleon, le., a(f)=4u. We now only consider the
symmetry~breaking term hw"(x)a,r,w (x). The discusion for the case of existence
of term h,0,4(x) or h,7,(x) is similar and more simpler. The equations of motion

corresponding to Eq.(6.1) is

s, — €(v) ¥, ()= J [Wx]— ha,t,¥ ), 6.2)
with .
J Wixis Lid v, 0V _x = vib, b 50, ®.3)
s .

For the convenience of discussion, we set V_(x—y)=g.d(x—y).
To calculate nucleon propagator $,,(p) in the expressions of susceptibilities,
we use the Dyson a;:qu::tti«:u:qs(m which are given by

5,=5_ @+, OL (PSP ' : (6.4a)
S, =8 __@+S__(L (s B, (6.46)
s, M=5_ M+ S_“r(P)Z‘,;(P)S“(f). (6.4¢)
S, =5__@+5__®L (5 6.4d)

where S, , are the propagators of bare nucleon with different spin and isospin

states:

8(E(A) B(-ED) 6.5)
p,— €M) +ie p,— E(P)— e

S (p)=

ab

with ; ‘
€(p)= e(p)—2(a x b)Yk . . 6.6)

Where a(b)= +,~. The self~energy parts 'Y ,,(p) are defined by

<J, Wixly, ) > = Elrfd‘pe Teiy W PS5, () . w.7)

Now let us concentrate our attention on the calculation of the static Suscep-
tibilities. Using the W—T relations (4.25)—(4.31), and the following relatious

1 -1 -1 1
E(S"‘ (P)—S“ (2)) == —5}';(2"@)-2“@)) , (6.5.4)
i y 1 t 1
s En @ =5, )= =@ -5, o), (©.8b)

which are derived by inverting Egs.(6.4a)~(6.4d), we may write the expressions
for the gtatic susceptibilities in the form
%@

m » (0.9)

A )=

Where index a represents 4, t, at(3), a(3)1,0%, ar{+). Df,'"(h) are given by
Eqs.(5.8)-(5.13) at q =0 case, while the nucleon propagators may take the lowest
order form or what you need. k,(h) are given by k

x, () = —D;m(h)D‘:(h)A;l(ll)-;‘—‘fd‘p _
. (2x)
' 1
XS, - (L ) =L (DS ()

: v
+5, (p)i—’;( ):“ ) - ):N ®)s ()

®) -1
- @,m-0,60,; M, 6.10)

for a'¥ﬁ=a,t,¢t(3), and a(3)7; and '
kL 0= =D2wD ' wia m—rfa'p
@=)

1
x (8, () (L, @ = L (DS, (0)
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+S, (p) 5 (L, @)=L, (NS, )] . Z:?(h)n -g,——i-'-;—-j'd‘k(S“'(k)+Su(k)+Su(k)), ©.150)
. . . 2n) .
+4hA (A L GIA L (2')‘ fd"px .5, . .
] : 8] { +
L ()= —g —Jd ks, ®K)+S &) +S, k), - (6.15b)
“gi (L, @=L, 008, )= €, )= L (o)S, ) ' i an’ LR
~1 _ .
4RO A L A T () ——-—~(2 ~Jd'p Sy ' ) %= —g,z;’;;-jd‘k(su(k)+s,,(k)+ 5.6, 6150
T

1
xﬁ(Zn(p)—Z“(p»S (p) (Z (P = Zu(p))Sm;e)

) H 4 . .
P ; L, W= - —fd k(S )+ S )+ S R) . (6.154)
+ u.a“(h)(z ~fd'ps (T ¥ (9,0:0,0)5 (M} ' )
P , ;
- (D » (h)— D :‘3 (1))D ;x(“ R : 6.11) We obtain the second order nucleon self—energy parts as follows:
Z"< P)m g ——Jd'k{S. (= B)A &)= D (k)
for 2= g7, and a similar form for z= a7 (+). ( %)
Thus the calculation of the static susceptibilities is now reduced to the prob- + S“(p k)(Aua; k)-D na)(k))
lem of calculating the nucleon seif—energy in the presence of some disturbing ' +Su (p~ k)(/_‘\.'(k)— D’(k))
external field. The formula (6.9) is still a formal but consistent expression for the + 85, (= k)A ,, 6)~ &)

static susceptibilities, since it involves A (k) self in x, and the as yet
undertermined propagators A (k) in Y u(p) as shown later. To solve this prob. )
lem, we make the approximation expansions for the nucleon seif—energy as LRI - .

+g . T fd k(S”(p k)(é‘_\n(kH— A“(kH- A.‘;(k)) , (6.16)

+S5,-0@B G ~D, @)}

Z ()= (p)+z‘ @+ ... (6.12) g

Lo - g}(—z-—';;w‘k(sﬂ G+ B, 0= D, k)
4 .

Where the indexes (1),(2) represent the first- and second order

approximation, respectively. Substituting Eq.(6.12) into Eqgs.(6.4a)—(6.4b), we get + S" (P + £)NL #e0) () - ] ®))
the following suceessive approximation expressions for the nucleon propagators: +5,(+)L &)~ ,,(H(k))
o o +8, 0+ )AL Kk)-D k)

s E)m =5, P+S (p)E" (h)&'n ®) . (6.13) S+ S, A €)= D N} ‘

§. (=S (p) + S (p)Z (p.a 820, (6.14) : i ¢ :

it +g‘f2—n—)ﬂd kS e+ A, O+ A, G+ S (- KA K)] .

: 6.17)

Where “...... ” denote the expressions for 5‘1"‘ s S‘:),, S‘:’i, S‘;““ S; 1 S?)‘ ,and . . :
the more high order approximation of §,,. Zm(p) = g’_LTId‘k.rg P+ EMA &)~ D &)

The nucleon self-energy in n—th order approximation can be calculated i “(2z) " ' y
directly from Eq.(6.7). . : + 85, PN, G)-D ok(k))

The first order nucleon self-energy parts are given by 5, (- E)NA oy &) = [73))

as{+

n(ﬂ
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http:Eqs.(6.4a)-(6.4b
http:Eq.(6.12

+ 5, (p— kXA )= D (k)
+5,0 —’k)(A &) =D q kM)

n gf—(—-‘-)—;fd‘krsu G+DA  E)+ 5, (0= 6+ 0 6],
2n .

or(3}

(6.18)

L2 =gl jd k{5 0+ DO K= D G
Q2n)

+ 5, (+ XA Kk)- D (k)
+ 8 (.o+k)(a,m,(k) D ., &)
+8,(+k)A K)-D (k))

L5, o+ B _,‘,,m D 6

¥ gﬂ————(z < jqr ;‘csu(p-i- A, &)+ A &)+ A &) . 6.19)
T : .

Where D_(k), 2=¢, t,01(3), 6(3)1, 07, 61(+), are given by Eqs.(5.8)—~(5.13). A (k)
are (st)~boson propagators in momentum space, which are defined by
Eqs(3.ll)—(3.l6) VAN X} (k),& Pt (k), A [ (k) and A; 4 (k) are defined as

<UTW,, W, (W, G, G0 >

—jdtka  we T (6.20)
@n) .

with 1(u)= * ,{ , which are, in fact, the nucleon density correlation functions.
" Graphically the first order nucleon self-energy S'_' (" and the second order
nucleon self~energy ¥ ¢ ’, are respectively shown in Flgs(4) and (5).

Using the expansion expressions for Z;“ and 8, , we may write k, as

K=Ky ke @.21)

x
Where x(,” corresponds to that in which the nucleon propagator and self-energy
take the first order approximation given respectively by Eqs.(6.13) and (6.15),
while xm is thatin which §;, and ¥ i 4re taken up to the second order approx.

imation given by Eqs.(6.14) and (6.16)=(6.19). Substituting Eqs.(6.15a)=(6.15d)
into Eq.(6.10) and (6.11), we have
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k=M

x (= g'ebl;,—;d‘usn(k)- S, NS}

T

+ S:‘f“’)(*" g,a%rfd'kwntk)- 5, &8, o)
n

=g (D (h)+D (Il))/2=g p® ") . 6.22)

u(l)
Where we have used Eqs.(3.19)—(3.22) and (3.27)—(3.28) and (5.24), and ignored
the terms~ G(ge) which may be attributed to xm Thus, Eq.(6.9) to the first order
approximation leads to

)
A k)=
t+¢g. D (k)

H

®) Dm(h) .
(b) (6.23)

1+g,0"®w p" k)
which is the standard RPA results"’. when g.=0, Eq.(6.23) gives
a®0=0"0), (6.24)

which of course is the results for free nucleon gas“™.

The static susceptibilities to the second order approximation have the form

A (0) D:”(h) 6.25)
= . (6.25
ot 1+gcg°’(;,)+,¢°’

Hence xm represents the correction to the RPA, and it can be obtained from

Eqs.(6.10)—(6.11) in which the nucleon propagators and self—energies tﬂkm
and E ) in those terms~ l](g) The obtained expressions for x? and :cm are |\
still tather formal since they involve undetermined propgators A (k) and A, (k) \
as seen from Eqs.(6.16)~(6.19) and (6.10)~(6.11). Here we do not like to perform
the detail approximation calculation for u:g), which will be examined elsewhere.
What we are now mtarested in is to analyse the mechanism given by x (21 From
the expressions of ¥ & ixc namely Eqs.(6.16)—(6.19) as well as Fig.(7), we sez that .):m

@L\come from the contributions of the spin—isospin waves (or bosons) to the

T G;,t and Zm as well ag )


http:Eqs.(6.16)-(6.19
http:6.10)-{6.11
http:Eqs.(6.16)-(6.19
http:Eqs.(6.11J)-(6.11
http:3.27)-(3.28
http:q5.(3.19)-(3.22
http:Eq.(6.l0
http:Eqs.(6.14
http:Eqs.{6.13
http:Eqs.(1.1l)-(3.16
http:qs.(5.8)-(5.13

nucleon self-energies in infinite nuclear medium. Hence, kf’ represent the cor-
~ rections of spin—isospin waves to the susceptibilities, which are in fact equivalent
to the contributions from 2p2h excitations. ) :

7. Quenching of Spin~Isospin Transitions,
and the Correlations among Collective M odes

In this section, we first brifely discuss how the approach given in this paper
is used to describe the quenching of spin—isospin. transitions including
Gamow-Teller, isoscaler and isvector magnetic, and Fermi—type transitions.
And then we discuss the correlations among collective modes. :

(1). Quenching of Gamow~Teller transition.

Empirically one finds that the GT strength in heavy nuclei carries only about

. 60 per cent of the sum rule resalt™ To interpret the quenching of GT strength,
we may use the resuits of last section. Recalling the definition for the GT
excitation strength '

B:(Gl’)z <ifgr1J> < joc _li>
= <lile_t_|f> <thrt|t>
+ <iic:r=(j> <j]a:1x|1>
+ <ile T 4/> < }la,r:}1> s ’ (7.1)

we may write the corresponding expression for B, (GT) in our approach as

B G =0, @+D @+ A,5..,@ . | a2

ss(t) oQelx )

In the limit q—~0, by using the formula (6.25) we obtain, for instance

ax

B_(GT)m— 2
' 1+g,0% +x?

3

D D
ve(+ ) a{He . (73}

N
() @ © @)
l+¢ D + K l+g¢D + Ko

+

The RPA resultis

B, G =D, +D, +D, I — 0 . a.4)

sr{+) a3 ©)
l+¢ D

which gives the familiar quenching factor. Of course, this only is & qualiwative ex-
planation. Quantitative interpretation needs to cailculate x® and to include the
contribution from A=isobar degree of freedom.

(2) Quenching of magnetic transitions™, )

According to the definition of the magnetic spin operator

g2%F + gM?t, s

we may write the relative isoscaler, and isovector maguetic spin excitation
strength parts B(M;S) and B(M [;V)as follows:

BMLS)= A, @)+ 5 ,(@) . 3 a.5)

BML)=A, @+ 4 ,6) . 1.6

ws5(3)
Where A, and A 4 respectively denote the longrtuamnal spin ana spin--isospin
fluctuations, as shown in section 4. In the limit g0, we have from Eq.(6.15)

D
BM1iS)m ——— .7
1r5,0° vkl

and
D

25(3) ’
BMLV)= ——52 | a8

)
i+g D +X

which give the qualitative interpretation for the quenching of magnetic spin tran.
sitions. ’ - ‘

(3) Quénching of Fermi Transition

Similar to above discussion, we may write the Ferim excitation strength in q
~-0 limit as

D, : .

B(F)= ———————— ) (7.9)
1+g D% 4 x

e By € .

Maybe since empirically the GT transitions dominate by far over the

F—transitions, so far no one seems to discuss the quenching of F—transition. Here

we hope to point out that the existence of the quenching of F-transition, like the



quenching of other spin—isospin transitions, is a natural and necessarian result in
our approach.

{4) The correlations among collective modes.

"We have found in section 3 that the appearance of the collectlve modes of
spin and isospin excitations, i.e., spin—isospin waves, is a result of the
sponontaneous breaking of SU(4)— rotational invariance, which is described by
the W~—T relations (3.5)~(3.10). We notice that Eqs.(3.9) and (3.10) show the
coupling relations among different modes, which in fact describe the correlations
among (63 74 ), 6(3)r and ¢v¢(3) modes. Eqs (3.7) and (3.8) show that ¢(3)z and
o1(3) modes may be excited individually. Thus, Eqs.(3.9) and (3.10) show that (s,
t, )-modes are accompanied by ¢(3)r and 41(3) modes.‘Physically this means
that the GT excitations are always accompanied by the magaetic spin excitations.:.
From the calculation for the static susseptibilities or the GT excitation streagth
we find that the correlation between GT and M1 does nét appear in the normal
RPA result as shown by Eqs(6.23) and (7.4), and should appear in the result be.
yond RPA as seen by Eqs (6.25) and (7.3). This is easy to understand in physics.
In fact, the M| operator 37, is just an isospin rotation of the GT operator az4 2.
This rotation are now performed by propagating the spin—isospin waves ap-
peared in the treatment beyond RPA. It is very interesting to find the correlation
nature in experiment.

8. Conclusions

We investigated the spin and isospin excitations in an infinite noarelativistic
“nuclear system by using the quantum field theory method. The Ward-Takahashi
relations among various many—point Green’s functions were derived from the
requirement of the rotational invariance in the spin and isospin SU(4) space in
the presence of some symmetry breaking force. We found that there exist six
N-G bosons:(sz)-bosons or (st)-waves, i.e., the spin, isospin, and spin—isospin
waves in six channels, which appear to be a result of one of the W~T relations,
namely, the result of the spontaneous breaking of the SU{#) symmetry. These
collective modes may be identified to well~known low—energy nuclear spin and
isospin excitations.

The W-T relations also determine many useful properties of {(sz)~bosons,
e.g., nucleon—(at) boson interactions in the zero~momentum limit, etc. Some of
the W-T relations in momentum space were used to obtain a consistent expres.
sion for the static susgeptibility in terms of nucleon self~energy. Then we gave a
qualitative interpretation for the quenching of spin—isospin excitation strength of
nuclei. In particular, the W~T relations determine the correlations among collec-
tive modes.

=33

We hope to emphasize that the above rather formal results are exact and

model independent for an infinite nonrelativistic nuclear system, since our discus-.

sions were based on the requirements of symmetry of the system with -
spontaneously broken symmetry. :

Finally we would like to.mention the effect of some explicit symmetry break.
ing forees included in the effective interaction, i.e., the spin and isospin depen-
dent terms. The situation seems to be similar to that of the spontaneous break.
down of chiral symmetry in which a N~G boson acquires mass due to the explicit
breaking of chiral symmetry explaining the pion with a finite mass. In analogy it
should be stressed that explicit breaking of SU(4) symmetry may lead to u finite
energy of those (o7)-bosons, which will be discussed in the further work.
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