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ABSTRACT

The conventional calculation of transverse space charge
defocusing effect in circular magnetic accelerators for circular
beam cross-section is improved and extended to take into account
of the realistic elliptical shape of the beam cross-section. This
results in an entirely different trajectory of migration of the operating
point (v. , v ) due to space charge effect and, hence, a different

set of hjfnitng resonance lines. The result indicates that the space

chargf limit of the beam intensity in the ZGS is approximately between
4x10 3 and 7 x 1013 protons/pulse depending on which resonance line
is fatal and the distribution of protons along the equilibrium orbit at
injection. Several effects tending to reduce the space charge limit
are discussed. Close examination shows also that compensation of

the space charge defocusing effect by varying the focusing action of
the guide magnetic field is impractical. On the other hand it is

likely that by artificially injecting free electrons into the vacuum
chamber total neutralization of the transverse space charge defocus-
ing effect can be achieved. This is studied.
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TRANSVERSE SPACE CHARGE EFFECTS

The transverse defocusing effect due to space charge is _,circu'lar. magnetic’
‘accelerators has been investigated by many people, and the space charge limit on
‘the beam intensity for the ZGS has been quoted to be 5 x,],013 protons/pulse. How-
ever the details of the investigation such as ‘the approximations and assumptions
made in carrying out the calculation have not been clearly discussed. This feport
is a detailed discussion of the various steps in the calculation of the space charge

effect starting from first principles.

A. Force on a moving charge due to an infinite line of moving charges.
Let the infinite line of charges be on

the x-axis movihg: with velocity $ in the

AY +X direction and having a linear charge
density v. . . Let there be a point charge
— ’ ‘ e situated at P(o,r) moving alsq with ve -
ppde) o v ' locity ¥ . Then the electric and the
—_— magnetic fields at P due to the charge
R r 3
o element g¢dx may be obtained by a
¢ — . : > X ‘simple Lorentz transformation from the
odx -

v Coulomb field for a stationary charge

element and are given by

(= _ wagR _1-p%
R @ - p° sin %0 )3/?' '
{ | )
| 2
S PN dx  BL-B°) Ca s
B =BTxE = — o @ x R)
- RZ (1-{3Z sin 4 ) )3/2

where E is the vecton from edx to P, B is the angle betwe,en—l’l and Vv andp

FV_ (c = speed of light) (For derivationsee a.g. nThe Classical Theory of Fields"
c

Landau and Lifshitz, p.99). The force on the charge e at P is, therefore,
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& = e(E + B9 XD

2

e (odx) 1-p 2. A 2 A AA
. -85 R+p“@eR) 7

R* 1 - p2 ein® 0)>/2 [ ]

{2)
2 2 2
- e(edx) (1 -B°) sin® ,E: + e {odx) (1L -p)cos® 2
R2 (- ﬁz Sinz 0) 3/2 RZ q - [32 sinZ 9)3/2

where X and ?a_re unit vectors along x and y directions respectively. To get the
force due to the entire line--charge on the x-axis we integrate (2) to gietf £ fd.?

It is clear from symmetry that fx = 0, and for fy we have

2 o0
2 sin B
f = eoc(l-B) dx
r y —e R% (1 - g% sin’ ) 3/2
2 "
- ec (1-52) "'sin 846 ' :
r . a __pZ sinz 6)3/2 (3)
< .
2eq 2 2eq 1
= = -8 = S
4
\ f =o0
x

B. Force on a moving charge due to an infinite cylinder of moving charges with

uniform density

I. Circular cross-section

- Let the charge e be the pole of a set
of polar coordinates r and @, and the
center o of the cross-sectionall circle of

radius a be situated on the polar axis at

distance P—O = A from P. From section
-A. above we see that the force on Pis in

the plane of the polar coordinates, and

from symmetry it is clear that the force
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is along the polar axis PO. The magnitude of the component of the force on P along
PO due to the charge element eprdrd® where p is the volumetric particle

density in the beam and e is the charge on each particle, is according to (3)

dfpo . _2e (e g rq.rdﬂ) ‘cos © )

ry
The magnitude of the total force on P is, then

r : Zez | Ze2
f = daf = -—-—-E— cosGdrdB.:—-——E— (r, -r) cos 6d9
| - PO Y 2 y?2 2 1
| circle circle (5)
The equation of the circle is
(r cos 6 - A.)Z + rz sinz 0= aZ
or
2
r2 2(acos0)r+@ala?) = o ()
solving for r we have
+ 2 - '
r = Acos ® - ‘\/&—AZ sin"z e {7)
Casel . A< a viz the pbint P is inside the beam.

Only the positive sign in (7) is meaningful and we have

r, = A cos 8 + "\, a._z.. Az sin2 ;] ' (8)

and that r is obtained by replacing 0 by v + 6 or

rn = -A cos 6 + '\/ai AZ sinz :] ' | (9)
substituting (8) and (9) in (5) we get

-
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R
Z
465 j 2 2 % (na’p)
fA<a. = 3 Acos 8dg = z 2 ‘ A (L0)
v© . a’y :
Case 2 ADa viz point P is outside the beam. Now we have
'r, = A cos 0+ '\/a.—z- AZ alinZ ;] 1)

r1 = Acos®B - a—z- 'Azsihze

substituting (11) in (5) we get

.=l
sin i
2 A
, _ 4e’p -\/z 2 .2
i.A?a = yz ) a— A 8in B cos8d6 12)
-sin a
A
2efwa’p) 1
= : Y

Y

II. Elliptical cross-section

‘Here again we put the charge e at the:
pole and draw the polar axis PQ ” to the
major axis of the cross-sectional ellipse.
We shall assume that the center of the
ellipse is. at x = PQ =A,y= QO : B

from P and that it's semi-major and

-minor axes are-a and b reajpective_ly.

Again the force on P is in the coordinate

plane. However, now, the component of
force L to PQ '(Fy) will, in general, not
vanish .The magnitudes of the. two components

of the force are now
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r
2 2 2 ez
f = af = =L cos pdrde = —F- (r,-r ) cos O
X x 2 2 21
1 Y Y 3
ellipse ellipse
{13)
2 2 2 2
f = [ af = ——eTP— sin 0drd@ = —e—ZE (r,-r)) sin B
y y
L Al ellipse Y ellipse

The equation of the ellipseis

(r cos @ -»A)2

or

(14)

2 2
sine) r +(‘-4A—-+ B -1)
o2 2

. a b

=

B
az b2

2 , 2
rZ‘.cose_‘_sul 9’ -Z(A—.cose+

solving for r we have

2 2 2 2 o2
%— €os 9+%~ sin o -_f\/(l—g—.cos 6-+£:sin 0.)~ -(_A..__ +.§_-1) ‘ cos 6 + Sin 9)
a - a '

- b b2 ‘az b2 az, . b2
cosz‘ 2] sin2 ;]
+
2 2
a b

2 2 ‘
a Bsin®+b A cos etab—\[az sinz_0+b2 cosze - (A sin 9 - B cos 9)2 15)

aZ sin2 0+ bz coxs2 7]

2 2 :
Case 1l 'AZ + BZ < 1 viz point P is inside the beam. Only the positive

a b

sign in (15) is meaningful and we have
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(16)

. : 2 2
az B sin 0 + bf2 A cos B + ab_\/a.z.si_nZ B + b2 cos 6 - (A sin @ - B cos 0)

az sinz 8+ bz <:osz B

and that r, is obtained by replacing 8 by 8+ or

{L7)

..(a.2 B sin 0 + bzA. cos 8) + a!;\Az sin‘2 '\ + bZ cosz @ -(Asin@ - B cos 9)2

az sinZ 0+ bZ cos;2 i ]

substituting (16) and (17) in (13) we have, denoting az - bz by éz

™

f E aBschosa+b2Acosze 30
i

'.Y - a?'su.n28+b2 %o

T2
T
2 2 |
=—4-—e2——E O+bzA 2].+C;>8292 de
Y @ +b)-c cos 2@

z .
T2 2 —37 2 2 -

X (a +b’)-c cos28
&

L}

4 el (rabp) (18)
a(a+b) yz
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™
2 2 2 2 2
f 4 e p a Bsin 6+b A sin 8 cos @ de
= - z 2
¥ YZ azs'mze+b'cos e
n
T2

E |
2 .
21-0208292 do+o
(@ +b )-c cos29 :

¥ -
_2
—1.'.'—.
4¢2, a’sm 2 2b °
= z le———=——= de
Y c ' (@ +b')~-c cos20
_ w
=z
2
_ 4e ‘(‘n:a.b p) B (£9)
b (a + b) y’z
casez  a° B ‘
5¢ 5 t = >1 viz.point P is outside the beam. In this case
a b

we have

( - ,
r = aZ B sin B +_b2A cos 8+ab Vaz sinZ 0+ b2 cosz 0 -(Asin 8 - B cos e)2
2 . az sinz 0+ bz cosZ e
( (20)
- a',ZB sinB+bZA, cos @ ~ab \[az sin.28+bZ cosze-(A sine-IBcos_a)Z
1 2 .2 2 2
\ a sin 9+b cos §

and
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ANLAD -59
( '\A b% cos” 8 - (A sin @ - B cos 8)° “
f = ab sm 0 + 2cosZ ,—izsm,z- cos 8) cos 6 d 0
' x sin 0+b cos O
<
\/ 5 6+b2 °6 - (Asing-B 6)°
¢ = 2 p .y in c;)s —2( s;n - B cos §) sin 8 d 8
L ¥ sin. 8+b cos 0

where the integrations are over all values of @ for which the integrands are real.

integrals are not easily evaluated in general. However, in cases where either

These
A or B vanishes the integrals are readily evaluated to give:
B = o
—~
2 2 2 .2 2 2 |

fx - 4ez P ab ‘Ja.-.;)s:LG 9+zb cos_ @ d (sin 8)

_ Y a sin 6+b cos 0O

b ___
.‘/ 2 2
2 ( A - c 2, .2 2 .2
zﬁfz._ﬂ. ab ' : b=(A=c )sin 8 d (sin 8)
4 Y - b2+,cZ sinze
J sino- S — (22)
V_A- cz 4
2
L
c ¥y

f =0

y
-
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f =0
X
f‘\[a sin’ s+(b B)cosZG
f = - 3 d {(cos 8) - (23)
¥ a sm. ©+b cos B

2 ;v+t':

z..é_iz._ﬂ_ab f VEJ (g'l-;)cgs 9 d (cos @)
a

a4 —Cc cos 0

i cos 9-=_ﬁ===7
B +c¢

_ (nabp) [“}B 4 o2 )
22

\
It is interesting to check that (22) and (23) agree with (18) and (19) on the surface of
the beam, i.e. A = a in (22) or B = b in (23), and that (17) (18) (22) and (23) agree

with the case of circular cross-section (10) and (12) whena = b or c = o.

C. Space charge limit of beam intensity in a circular magnetic accelerator
We shall make the following assumptions:
1. The magnetic focusing force is smoothed out to distribute uniformly
around the equilibrium orbit. The frequencies of the betatron oscillations in the
absence of the space charge effect are Yoo and VYO. (For ZGS Voo 0.750, vyo = 0.875).

The equations for the betatron oscillations can be written as

2 2

i% =T vxcf * j—%— = -vyoz y (24)
de a6
where
de = d (distance along equilibrium orbit)  ds

equivalent radius of equil. orbit ® TR
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2. The circulating beam has a constant velocity and a particle volumetric
density p uniform throughout a cross-section of fixed shape (circular or elliptical).
The radius of curvature of the equilibrium orbit is everywhere much larger than the
dimensions of the cross-section of the bea.nfothat the calculations made above for

N

the space charge forces in infinite straight beams can be used as good approximations.

For Proton Beam with Circular Cross-section

The equations for the lateral motions of a proton in the beam due to !

space charge force alone are, from (10) |

( a’x 2e? (wa’p)
my = —— X
L2 2 2
dt a vy .
( ' (25)
.2
dZY 2e% (na? p)
my——sj— = Yy
2 2
dt a vy
\
or
(2, 22 (1% .2
m E
z ° 2 (—") Z x (26)
de mc Ny
.2
dy _ Zez R 2 w.az p
el Z |72 3 y
\ 0 . mec ny
where 1 = Py and m = rest-mass of proton. When both the magnetic focusing
action and the space-charge force are present equations (24) and (26) give
(2 [ 2 2 2 |
d x . - v 2 _‘Ze, R ¥a p _ 2
z X0 zZ | = 2 TE TV X
de i mc ny
{ (27)
2 [ 2 2 2 2
dy _ _ v _ _2e R Ta p - 2
P " yo 2| a 2 y = vy y
\ de i mec - ny
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Thus, we see that for a beam of circular cross-section as the particle density p

varies the operating point (vz, v‘y) moves on the hyperbola

2 2 2 2
14 -V = Vv -V
x x0 y yo
or
: : 2 2 2 2
v 2. v 2 = v -V = (0.875) -(0.750) = .203125
y x yo X0 (28)
This curve is shown in Figure 1 together with all the important resonance lines in
the neighborhood. The important resonance lines are those given by
PV, +q VY = n
‘with positive integral p, q, and n where p + ¢ & 3. Starting from the point
v. =v. = 0,750, v =¥ = 0.875 we see that as p increases the operating
x X0 y yo :
point encounters in succession the following resonance lines
3v. =2, 2v_+tv =2, v_t+t2v =2, 2v_=1
3v =2, v tv =1, 3v =1, 2y +v =1
Yy x b4 x x y
2v =1, v+2y =1, v =o
y X Yy X
where the first 4 points of intersection are
v = 6667 J v, = 6177
A { B
v = .8047 ' v = .7646
v. = .5609 (v =.5000
X x
c { D
v = .7195 v = .6731
Yy =4

Assuming that the protons are distributed uniformly all around the equilibrium orbit

we can, then, write for the total number N of protons, from (27), as




FIGURE 1

2vy, =1
3v, =1 v, =1
/x j}x B
1. 07 Ay = !
N Vyxo = 0.750
\ A Vyo 0. 875
R -
G L,/-Vx + ZvY =2
Circula
0.5 H T 2vy =
/\/3VY =1
[ ]
15
N 3
——vxt v, =1
: Ve + 294r = 1
0 l | I 1 1 1 1 Lvu W
0 0.5 1.0 v
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As p varies the operating point now moves on the hyperbola
2 2 2 2

.'—),(vx -vxo) = b(vy -vY )

or (33)

fl

For 2GS, Veo © 0.750, vyo 0.875 and a and b are respectively the half radial-

width and the half height of the vacuum chamber viz a =40.64 cm., b = 6.667 cm.

Equation (33) now becomes

40. 64 vxz - 6.667 vyz = 17.755 (34)

‘and is plotted also in Fig. 1. As p increases, the operating point encounters in

succession the following resonances

3y =2, v +2v = 2, 2v +v =2, 2v =1
Y x Yy x y Yy

3v =1, v +v =1, 3v =2, v +2vyv =1
v x y X x

v = 0

Yy

with the coordinates of the first 4 points of intersection given by

Vx = .7140 v = .7107
E F x
v = .6667 v, = .6447
y Yy
(35)
v, T - 7033 _ v = - 6913
G H
v = .5934 vy = .5000
Yy Y

Again assuming that the protons are distributed uniformly all along the equilibrium

orbit we have, from (32)
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2 b(a+b) 2 2 2
N = ZwR(wabp):"mc R ——— 1 yl(v -v_ )
2 2 yo Y
16 blath) 2 ZRz 2 (36)
= 2.047 x 10 R-—-(a—?_?- 2y v - v
2R e y

For ZGS at injection for the 4 values of vy given in (35) we have in the same order

N = 4.371 x 10" N, = 4.763 x 10"
(37)
13 13
N, = 5.627x10 N, = 7.07x10°

We see, .therefore, that the space charge limit of the beam intensify in the ZGS is
approximately between 4.4 x 1013 and 7.0 x 1013 depending on whether the 3rd
integral resonances are fatal. Again if we take the stable RF phase into consideration

-we should reduce the numbers given in (37) by a factor of apprbxima.tely 2.

D. Further discussions

I. The above calculation assumes that the protons are uniformly distributed
-all along the equilibrium orbit. The consideration of the stable RF phase range
already cuts the space charge limits given by (37) by a factor of 2. This is, again,
assuming that the entire stable phase region in the RF phase plane (energy spread
AE vs. RF phase angle ¢) is filled. However, in reality, at injection if the energy
spread of the protons from the injector Linac is very small only the shaded strip of

the stable phase region (Fig. 2A) will be filled. A quarter of a synchrotron oscillation
A AE AE

I
| I
- T I

(4) FIGURE 2 (B)
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later the shaded region is deformed to that shown in Fig 2B when the protons

are essentially concentrated over a

Zfr fraction of the entire length of the
equilibrium orbit. In this case the space charge limits given in (37) should be
reduced by a factor—-zéw— where § depends on the energy spread of the injected
beam and could be very small for very small energy spread. This phenomenon
can be remedied by ‘artificia.lly‘ increasing the energy spread of the injected beam.
The optimum condition is clearly that where the energy spread of the injected

beam is about equal to the AE width of the stable phase region.

II. Equation (36) may be written as

blath) 2 2
N co —i%fi~nv'vA(vy)

For the change in vy"z namely A (vyz) we can write approximately
A (vY ) = Z»VY A vy. Since the allowable change in VY before encountering a
fatal resonance line, namely A vy' is approximately 1/4 whatever the value of
Vy' we can write for the ratio between the space charge limits of 2 accelerators

(subscripts 1 and 2) as

. v 2
Nl ~ bl (al * bl) o RZ 41 ",1 Vi (38)
N, =~ b, (a,+Db R v 2 .
2 22 by vy

2)
If we, now, compare ZGS with Brookhaven AGS (RZ =12.846 x 103 cm. ,

a, = 7.620.cm. , b2 =3.335cm. v_ =8.75 and same injection energy) we

Y2
- Nzgs
get T = 4.056, namely that the space charge limit for ZGS is only about -
AGS

4 times better than that of AGS. The reason that in spite of the much smaller

vacuum chamber aperture the space charge limit of AGS is rather good is twofold.
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In the first place, the betatron focusing in AGS is much stronger than that in ZGS,

= 8.75 as against v = 0.875. In the second place, it is clear from

namely v
. Y y

2

b1

the above derivation that for a given vacuum chamber cross-sectional area the

space charge limit is larger the nearer the cross-sectional area is to being

2.285 for AGS as against

circular. The major to minor axes ratio is a

-

2
b 2
!
— = 6.095 for ZGS.
b
1
III. The space charge limit increases as the protons gain energy in the
synchrotron. For ZGS assuming uniform distribution of protons along the

equilibrium orbit we have

N.

N

t (sec.) Y E H
0 1.0533  4.371 x10° 7.017 x 10>
. 00913 1.1 8.760 x 10> 1.406 x 10™
. 02382 1.2 2.002 x 10 3. 24 x 10
.03582 1.3 3.401 x 10° 5.461 x 10°2
. 04650 1.4 5.096 x 104 8.182 x 10*
. 05640 1.5 7.110 x 10'% 1.141 x 10™
. 06692 1.6 9.465 x 10 1.519 x 10°
. 07919 1.75 1.369 x 10™ 2.197 x 10"°
.1004 2.0 2.275 x 10%° 3.653 x 101>
.1789 3.0 9.101 x 10'° 1.461 x 10'°
.3273 5.0 4.550 x 10° 7.305 x 10'°
. 6892 10.0 3.754 x 10°7 6.027x 10"’
1.0000 14.323  1.109 x 10°° 1.780 x 10'8

where t is the time after injection,

From this table we see that even if we take

the optimistic value N_,, the space charge limit will not be as large as 1014 until

H
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t = .00432 sec when y =1.0738 and will not be as large as 5 xAl.Ol4 until t = . 03367
when y = 1. 2811, In order to get beam intensities as highas 5 x 101.4 protons/pulse
or even l x 1014 protons/pulse, therefore, something has to be done to compensate
for the space charge defocusing action during the time intervals specified on the.

preceding page..

IV. Remembering the lowest order smooth approximation formulas for the
betatron focusing of a synchrotronrwith’ straight section length to magnet length ratio
% and effective field index n, namely

2
v = (l-n)(l+ %)

x =
v Zanae S (39)
,VY = M

we see that by changing n we can only cause the operating point to move on a circle

centered at v, = Vy = o with radius 1+ -Sﬁ Referring to Fig. 1 again, we.

notice that changing n alone can not help to increase the space charge limit. What
. . . 2 ) 2
we would like to do is to increase ¥ and at the same time leave v more or

less unchanged. Putting vx2 = constant = VXO; equations (39) give

2 2 n

S 2 :
v % Yxo 1-n = @ +ﬁ) = Yo (40)
showing that in order to change vyz both n and %{— have to be changed, and that
for a change of v 2 from v 2. .765625 to v 2 + (.765625 - .250000) =
Yy yo yo

1. 281250 ( to compensate for the space charge defocusing effect which shifts vyz

from .765625 to . 250000) n has to change from .5765 to .6949 which is relatively
easy to achieve but also TSJI_ has to change from .328l to .8438 which is quite

impossible to do in practice. This shows conclusively that compensation of the
space charge defocusing effect by varying the focusing action of the guide magnetic

field is impractical. There remains the possibility of neutralizing the space
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charge of the proton beam by free electrons. There is . . indication that partial
space charge neutralization does occur in existing synchrotrons even without

artificial injection of free electrons.

E. Neutralization of transverse space charge effect.

The same calculations as those in sections (A) and (B) and (C) above can
be made to give the space charge force on one of the moving protons in a synchrotron
beam of elliptical cross-section uniformly filled by moving protons of density p and

by stationary electrons of density P The result is

4

2
_4e (mab)
fx " a (a+b) (-;,9-2. B pe‘) *
’ 41
{ i . ‘ (4]
_4e(nab) -
f, = by Tz RV
L Y

The space charge force ? .on one of the stationary electrons in the same beam

can be similarly calculated and is given by

( 2
_4e (mab)
Fx " a (atb) (pe - p)x
< , | . | (42)
_4e (wmab) '
FY = b (a+b) (Pe - P) Y

\.
In the absence of other forces the protons and the electrons in the beam will be

bound together if

Pe
— < S <1 (43)

This, of course, is the same condition for the onset of the 'pinch effect' when
the focusing action of the guide magnetic field on the protons is taken into account,
the equations corresponding to (32) for the transverse motion of the protons in

the beam are
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' 2 2 2
( dzx _ [ 2 _ 4e R (wab) vy ( P ) x= -v  x
2 = Vxo0 Z “a(a+b) 2 ' 2 Pe! = "%
doe | mc n Y
4 | (44)
: 2
oy FV 2 4% R%(nab) Y 2 oy | yz oy
— = - - - Z 2 - = - :
\ deZ i yo mcz b(a+b) n v e Y
The space charge defocusing effect is completely neutralized if
p, = —5— (45)

Y

The trouble with this procedure is that it is difficult to keep condition (45) satisfied
for all values of y throughout the acceleration cycle. If condition (45) is satisfied
at injection (y = Y, = 1.0533 for ZGS) and if nbthing is done to extract the free
electrons from the beam, then, since condition (43) is satisfied at all times during
the acceleration period, all the electrons will remain in the beam. Rewriting the

second equation of (44) as

2
v - .2 R . Y ( N2 - Ne)
Yo ¥ fmec ‘b(a+b) n Y
. . (46)
2 ,
2e R Y 1 1
= 2 z =7 -——=7z ) N
wTmec b(a+b) n Y Y,

where N = 2nR (wabp) and Ne = 2nR (nabpe) are the total numbers of protons

and electrons in the beam assuming again uniform distribution all along the

equilibrium orbit we get for ZGS at N = 1014 and N 5x 1014 (over)

L]
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t (sec.) Y vY (N=1014) | vY (N=5 x 1014)
0 1.0533 .875 | .875
. 00913 1.1 .901 1.000
. 02382 1.2 .929 1.118
.03582 1.3 .943 1.175
. 04650 1.4 .951 1.208
. 05640 _ 1.5 . 956 1.228
. 06692 1.6 .960 1.244
. 07919 1.75 ' .962 1.252
.1004 2.0 .964 1.258
.1789 3.0 _ .958 1.234
.3273 5.0 . 941 1.168
. 6892 10.0 .918 ' 21,072

1.0000 14.323 .908 1.029

Here we have used the adiabatically damped beam cross-sectional dimensions a

and b calculated in LCT-6. This table shows that if the trapped electrons are

not extracted from the beam during the acceleration cycle VY (and also vx) will

rise very quickly from VY to a maximum value at about y = 2.0. For N = 1014
o

this maximum value for VY is about .964 which, although being uncomfortably close
to the VY =] resonance, may still be tolerable and for N =5 x 10]'4 the maximum
value of vy is about 1. 258 which means a crossing of the VY = 1 resonance and is,
-therefore, not permissible. The values of vY calculated above are affected by the

following considerations. In the first place, here again, we assumed uniform
distribution of protons and electrons along the equilibrium orbit. The discussion

in (D) (I) should be applied here. This means that the VY values given in the

above table may be too low. In the second place, we have assumed that N

remains constant throughout the acceleration. In actuality, of course, there is
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a big reduction of the number of protons during the first few synchrotron oscil -

lations. This indicates also that the vy values given above are too low. In the
third place, with the VY so close to VY = 1 resonance the beam cross-sectional

dimensions a and b may well be larger than those computed under the assumption

of pure adiabatic damping. This would make the v values given above too h1gh

However this can at most be only a small effect..
When all are taken into account we can now make a semi-quantitative conclusion.

. When space charge neutralization is employed to get synchrotron beam intensities

above that given by the space charge limit free electrons should be injected

(This can be accomplished by either a hot therm-ionic emitting .wire or a photo-

electric emitting surface running the whole length close to the 'top or the bottom

of the vacuum chamber) into the vacuum chamber at the time of injection of the '

protons. Clearing electrodes should be provided across the vacuum chamber so

that when the acceleration of the protons commences the trapped.electrons in

the beam can be gradually extracted so that the relation

total number of electrons = -%— (total number of protons)
y .
is satisfied at all times.

We have, in the above, discussed only one of the many problems we
have to face in order to get beam intensities higher than, say, 1014 protons /pulse.
. We shall now list some of the other problems: )

1. The longitudini;.l space charge effect -- this amounts to a
defocusing action on the phase oscillation.

Z. The image effects -- the charge and current images in the
vacuum chamber walls and the magnet poles of the very intense
bearm will produce non-negligible defocusing actions on the beam
itself.

3. The radiation effects -- both the coherent and the incoherent

radiations from the very intense beam may now be quite noticeable.
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4. The beam-cavity interaction -- the heavy loading of the

intense beam on the accelerating RF cavity may shift the syn-

chronous phase (hence, the energy gain per turn) and reduce the

stable phaée area in the synchrotron oscillation phase plane.

All these problems should be investigated and solved before beams more

intense than 10]'4 protpns /pulse can be obtained.
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