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Abstract 

We prIIflDt the BFKL equaticm .. a IegeoR Bethe-s..... eqv.atioa uul 

discaIa the 11M of regeoa diasnms to obtaiJl 2-2 ami 2-4 naeon blterac· 


tical at 0(,·). W. then outline the dispenion thearJ buill of multipaztide 


;-pJue aulJtia uul "cribe how a puge theory can be studied bJ combiD.iq 
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cieri_onofstuoaregeiaatioD, the 0(,') BFICL braeJ., uad 0(,.') correctiona, 


is delcnDed within this formaJiIm. We sive an explicit a:preuioa ror the 0(14) 

fonrard "partonD bmel in terms of loprithma and ewluate the eipnftlaea. 

A separately iDtra-red Auite eompoaerat with a holomorphieaDr factodIabJe 

spectnam i, Ibown to be preIeDt and CODjectured to be a new leadiDg-cri.er 

partial-wave amplitude. A comparison is made with Kinc1mer" dilclulion of 


0(,') contn1>utiOlll from the multi-B.ege effective action. 
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1. INTRODU'ZTION 

In the leading-log approximation, the IDlaJ1.X behavior of patton distributioas 
in QCD ia deriftd &om the BFKL evolution equation(I). It ia weIl-JmOWll that the 
BFKL ker:uel is (and .... derived u) .2-2 JegpoIl iateraction - with the regeon 

being a regeised gluon. For aeneral t C= -q2) the BFKL eqv.ati.on becomes a regeon 
Bethe-,Salpet.er equation .. iIlutrated ia Pia. 1.1 

0: = 0:+ C!:m:C:~ 
Pia. 1.1 Regeon Bethe-Salpeter equatioa 

where F == FCCaI, .... IIa) it (the foaIier tnuform. 01) • two-zegeon .amplitude which 

~eI • partoa diatribution when ... +" = O. TIle two-ft:IPOIl iatermectiate Rate 
ia~iI 

~~ - fi'''''IIa.p(~ +~- ... -'.t) (1.1)kt~ = If JrI w - A(If) - A(JrI) 

where r, = [w - AC~) - ACif)]-t it a two-regeon PlOJNlPior and 

A(q2) = Ni'Jt (9') = ~f __ .-f''' - (1.2) 

The 2-2 regeon interaction K{"" 1Ia,i;, i;) it given by 

1t1 JTI: Iti 
It It It' _N~(~';' + ifi;' ( ... +1Ia)1) (1.3)

2 2 - II ( ... _ i;)' . 

The familiar BFKL kernel it 

K.I'.I'£{it,IIa,Jr;.,"D = KCit,",i;,II;) 
(IA) 

- A{~)i'Cit - 11;) - A{':)i'(1Ia - ~) 
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Generally regeon interactions have been studied by I-channel unitarity calculations[I, 

2, 3, 4, 5]. For example, calculation of the BFKL kernel can be represented schemat
ically as in Fig. 1.2 

~ ---t r."i --. 
~~ P=L1t t 

,...... nptAi\r 

-= ~I"" 
~ :cr:. :s: +:Z: 

+X 
Fig. 1.2 OaI.culation of the BFKL Kernel via I-channel unitarity. 

AltemtJtivelr we can ..... reggeen amplituda tosether via t-channel unitarily. The 
derimion of the BFKL kernel in thit manner will be a core part of these lectures. It 
is inustrated sc:hematic:aBy in Fig. 1.3. 

<>-:rr-x+ooo 
Fig. 1.3 Calculation of the BFKL Kernel via t-channel unitarity. 

The .sewmg- of Fig. 1.3 is well-defined if it is done in the i-plane (where 

i = I +w) by treating the pamc:let appeariq in the intermediate Italel a.Iao &I 

reggeons[6,7]. The analytic continuation of multipartide unitarity equationl in the 

i-plane is a powerful formalism[8, 9), euentially because of the underlying exploitation 

of multipartide dispenion theory[IO, 11} involved. We will briefty describe the full 

formalism later. First we observe that a simple (but ~oo naive") way to sew reggeon 
amplitudes together with reggeona acting &I particles is to use reggeon diagrams 
directly. 

1.1 Reggeon Diagrams 

t-channel unitarity is satisfied at the level of reggeon unitarity (see the later 

discussion) if we conatruct a set of reggeon dia.gr&ml &I f011ows[12]. We introduce a 
triple rege vertex 
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;..r 11111 
- 9 CijIt";;; [w - a'l4 - a'-:] (1.5)V'~1I2 

where 9 is the puge coupliDg, evil is a straclure constant color £actor, and L..1 is a 

"nonsense zero". We introduce propagators 

lr.1/V'\A/ 

Jr.. /V'\A/ 
•ra IIi-l C:'l) (1.6) 

Jr.. /V'\A/ 

We then COlOme vertices and propagators by intepating over trauavene momenta 

• with momentum COIlIIC!!:r'9&t imposed. (A subtlety is that we aduaDy have to 

construct -cat- reggeon ctiacrama for the imagina.ry part of amplituda, but we will 
not elaborate on thit). 

The DOIUIeIlIe RI'OeI cancel many reggeon aingularitiel leaviDa only ptJrlicle 
~~~ laigla-orwkr "fpDfl itdenadiou. The outcome is 
a very limple formalimn[12J for sene.ratinS reggeon interactiona. The interactions 
are automatically obtained in terms of tnauvene momea.Ium ditJ,grarrM which we 
introduce 'ria the vertica and phue-Ipace inteptiona inustrated in Fig. 1.4. 

lr., ~ kl t,
k_!:>~ t._ • k. 

t. Jr.. t. 

Ca) (b) 

Fig. 1.4 (a)Vertica and (b) intermediate states in tranavene momentum. 

The rulet for writinS amplitudes correspondinS to the diagrams are the fonowing 

• For each vertex iDutrated in FiS. 1.4(a) we write a factor 

16'lr36'(E lit - E ~)(E lit )' 

• For each intermediate state iDustrated in Fig. 1.4(b) we write a factor 

(1&.-3)-.. Jttlel ...tt, 114···1c! 
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The reggeization, ofthe gluon, is illustrated in Fig. 1.5 

"'N'M~+ ..~~ 

~+~~+ ~8~+ 

~ 0 . -c::>

Fig. 1.5 Reggeization of the gluon from reggeon diagrams 

The origin of the BFKL kernel is illustrated in Fig. 1.6 

+...X+:S;:+"·+ ~ ~ 

:():. X + 2 =s:: - -<>

Fig. 1.6 The BFKL kernel from reggeon diagrams. 

and the transverse momentum dia.gra.ma derived as 0(94
) interactions in [12] are 

shown in Fig. 1.7. 

:cr. -0- _!-6- _ _-0- +r\+! 
-0- 3___ ~ -L 2 

~ • ,~ - -! ~ + ! + ! ! 
~ /""::: .. ..l 2 2 4 

Fig. 1.70(94 ) reggeon interactions. 

In all of the above cases it can be shown[12J that if reggeon diagrams are used 

to generate the possible transverse momentum diagrams then, in color zero channels, 
gauge invariance determines the relative coefficients uniquely. Gauge invariance is 

imposed by requiring that 

• all infra-red divergences cancel, 

• reggeon interactions vanish when any transverse momentum goes to zero. 

4 

The cancelation of infra-red divergences is, essentially, an obvious consequence of 
gauge invanance. As we now elaborate, imposing the vanishing of reggeon amplitudes 
at zero tranverse momentum is directly equivalent to imposing the defining Ward 

identities of the theory[13J. 

1.2 Gauge Invariance and Reggeon Ward Identities 

A reggeon amplitude is defined via a multi-Regge limit in which, say, Si -+ 00 

i=I,.. ,4. Schematically we can write 

(1.7)n -> w - rr:=1'i" AoI .aJ.aJP4 

~·s ., 
We can alway. find .. Lorentz frame in which the limit '1 -+ 00 is defined by 
p+ -+ 00, _ -+ • .1. where p a.nd _ are as labelled in Fig. 1.8. 

p~h 

k:.

h 
k 

k-O 91.... 

-> -> '~np+ -> CD k... -> 0 

Fig. 1.8 Reduction of a reggeon amplitude to a gluon amplitude. 

The further limit -ol -+ 0 is then equiva.lent to setting _ = O. Reggeization implies 
the reggeon amplitude must give the _ 0 gluon amplitude. Therefore we obtain the 

zero momentum limit of an amplitude which satisfies a Ward identity[13J 

_I' (A,,(_) ... } = 0 (1.8) 

where (A,,(_) ... } is the amplitude involving a gluon with momentum _,.. Dift'erenti
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ating 

o(A., ... } kv = 0 
(A" ... } + ok,.. 

(1.9)
8{A., ... } +00=> 	{A" ... } - 0 if 81e" 

(Ie" - 0) 

If there are no internal infra-red divergences occurring explicitly at zero transverse 

momentum (as will be the case in the absence of massless fermions[14j), then this 

identity requires the amplitude to vanish. Clearly the same argument can be applied 

to each of the reggeons in (1.7). 

1.3 Questions 

A number of closely related questions arise from the reggeon diagram con· 
struction of reggeon interaction kernels. We can list some of the more obvioWl as 

follows. 

1. 	The kernels are .sCtJle.inl1o.na.nt in transl1er.se momentum - whai is the significance 

of this "approximation"? 

2. How is a seale(s) to be added? 

a) 9'/411' _ a.(Q'/I") ? 

b) A Ie.!. cut-of£ ? 

c) An "average" rapidity {'1} as a normalization[151 ? 

It is generally anticipated that a full next-to-leading order ealculation[31 will 
provide an answer to this question. 

3. Why are there only transverse momentum integrals representing t·channel states? 

4. What is the significance of properties related to conformal invariance? 

In the following we will briefty describe a more fundamental derivation of 0(g4) 

reggeon interactions directly from t-channel unitarity[16j. This formalism provides 

a solid basis within which to ask these questions and, at least partly, answer them. 
A major outcome will be the suggestion that scale-invariant contributions that are 
well-defined by unitarity are neces.sarily conformally Invariant. 

6 

2. MULTIPARTICLE j-PLANE ANALYSIS 

To introduce language, we first recall the simplest elements of Regge theory 

for elastic scattering amplitudes. The partIal-wave expansion is 

CD 

A(z,t) = ~::C2i + l)a;(t)P;(z), (2.1) 
;=0 

where 

If+1 	 (2.2)a;(t) = '2 -1 dzA(z,t)P;(z) 

Using the dispersion relation 

A(z,t) = 21 I (..Jdz' )&(z',t) (2.3)
11' JIIl+I£ ;5- - Z 

we obtain 

1 t 1+1 dz (2.4)a;(t) = -4 dz'&(z',t) -(...I)Pj(z)11' 11l+1£ -1 ;5- - Z 

siving "signatured" continuations &om even and odd j 

at(t)= 21 I dz'Q;(z,)&(z',t)±(-IY21 ( dz'Q,(-z')&(z',t). (2.5) 
,... JIll 11' J I" 

The asymptotic behavior of A(z,t) can be studied via the Sommerfeld·Watson trans

form 

A(z,t) = E jd/42j.+IJafCt)(P,(z)±P;(-z»). (2.6) 
% ",&fI.""1 

and a Regge pole in aiCt) at i = aCt) gives 

A(z, t» ...., zo(t) 	 (2.7) 

The simplest example of "j-plane unitarity" is elastic unitarity. 

ai - aj* i pet) ajar T ± (2.8) 

This equation is inconsistent with a fixed pole in the j-plane. But apparently 

aNt) ..... _._1_ (2.9)Q,(z).- r(i + 1) '" J' + 1 =>,--1 	 ,--1 1 + 1 
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and so there is a "nonsense" pole at j = nl + n2 - 1 where, in this case, 
nl == n2 = O. In a gauge theory nl == n2 == 1 is possible and so there is a "nonsense 
fixed-pole" at j == 1. The conflict with unitarity is resolved by the fixed pole mixing 
with the elementary gluon and producing Reggeization. 

To analyse multiparticle unitarity in the i-plane, we need to generalize all of 

the elastic scattering formalism. We require 

• Multiparticle, 	many-variable, dispersion relations. 

The analyticity properties of multiparticle amplitudes are very complicated but 

(20 years ago) it was shown[ll, 10, 91 that, in multi-Regge asymptotic regions, 

the necessary dispersion relations hold. This is sufficient to obtain analytically 

continued partial-wave amplitudes[91. Spectral components ofthe (asymptotic) 

dispersion relations are labeled by hezagrophs. These are tree graphs having 
the form illustrated in Fig. 2.1. 

~ . ~-9-=<' -::<;- <. ~ - - ,.::- ~-- 

(a) 	 (b) 

Fig. 2.1 (a) A hexagraph for the six-particle amplitude (b) cuts through the 
hexagraph 

Possible cuts through a hexagraph, as illustrated, give the multiple discontinu
ities of the spectral component that the graph represents. 

• Continuations to complex angular momenta and helicities. 

For each hexagraph component, distinct continuations are possible and the hex
agraph notation also indicates this. For example, introducing angular momenta 
and helicities corresponding to the elements of the hexagraph as in Fig. 2.2, a 
continuation can be made to complex il, n" and na with i, - n, and ia na 
(which are coupled in the hexagraph) held fixed at integer values. The com

plete set of hexagraph i- and n-plane continuations are sufficient[9J to write 

Sommerfeld-Watson transforms and obtain multi-Regge asymptotic behavior. 
These continuations are also sufficient to obtain the t-channel unitarity contri
butions of multi-Regge pole states that we discuss below. We shall find that 

8 

reggeon singularities are generated os Regge cuts and that particle singularities 
give reggeon interactions. 

Fig. 2.2 Angular momenta and helicities associated with a hexagraph. 

Our ultimate aim is to construct "Yang-Mills reggeon theories" by using j_ 
plane unitarity directly. We can by-pass momentum-space calculations completely by 
using the following elements. 

[AJ Gauge invariance is input via the Ward identity constraint _ that r~ggeon inter
actions va.nish at zero transverse momentum. 

[BJ The IInonsense" zero/pcJe structure required by general analyticity properties is 
imposed, in addition to Ward Identity zeroes. 

[C1 The group structure is input via the triple reggeon vertex. 

(DJ t-channel unitarity is ued to determine both j-plane Regge cut discontinuities 

and particle threshold discontinuities due to "nonsense" states. 


[EJ The j-plane and t-plane discontinuity formulae are expanded simultaneously 
around i = 1 and in powers of g'. 

2.1 Regeon Unitarity 

We first go through a 30 year 0Id[8, 9} manipulation of t-channel unitarity 
which, a-priori, is independent of gauge invariance. Consider the four-particle inter
mediate state as illustrated in Fig. 2.3. 

=&-=0)= = =€E(0= 
Fig. 2.3 The four-particle intermediate state. 

9 



The i denotes an amplitude evaluated on the unphysical side of the four-particle 
branch-cut. (We will avoid discussing subtleties associated with the definition of i am

plitudes, in particular the specification of the additional boundary-values involved.) 
We use multipartic1e partial. wave amplitudes corresponding to the "coupling scheme" 
illustrated in Fig. 2.4. 

1
nl 1 tl 

t ~12 
t2n 2 

Fig. 2.4 Partial-wave coupling scheme for the 2·4 production amplitude 

II (I,) and ftl (-nl) are respectively the angular momentum andhelicity (in the 

overall center of mass) of the two-particle state with invariant energy tl (tl ). 

The partial-wave projection of Fig. 2.3 is 

a.i(t)-a~(t)=/dp E E E a;lft(t,!>a;'ft(t,!) (2.10)
Inl +00:.1:5; 11~""1 ll~lntl - - -

where, if all particles have mass m but are not identical, 

f dp(t,tt,t,) = (211'~124' / dt1dtl 

(2.11) 
x [A1/I(t;t1,tl)] [Al/l(t1~~I,ml)J [A1/1(t2~~I,ml)J 

with the integration region defined by A ;;:: 0, for each of the three A functioJUl. 

>-QP-< 

Fig. 2.5 Hengraph contributions to the unitarity integral. 

Temporarily ignoring signature problems, the continuation to complex j for the hex
agraph contributions of Fig. 2.5 is given by 

sinll'j I dftldnlE 
-+ - ~ lCi sinll'ftlSift'lrn:asiftll'(j - nl - ftl) (2.12) 

j ~ "1+"2 
nl~O. "2~O 

10 

where the integration contour is defined so that, for j - -1/2, Cj == [n,. 

-1/4 + ill,. , -00 < II,. < 00 , r =l,2J. 

We consider the contribution of Regge poles as illustrated in Fig. 2.6. 

~ =0~~0= 
Fig. 2.6 Regge poles in the production amplitude. 

We consider, specifically, 11 =ftl and II = ftl. Writing 

1 
a;"l ftl",,,,(t,t1,t2) = .401 1112 [I HI 1Ptf32 eli: aCt,) , (2.13)

1 -al 1- al 

utilising two-particle unitarity, and picking out the nonsense pole at i = ft1 + ftl - 1 

gives 

i &ift'lri dftldft2j d-La'-a·: --- p" 2'11' Cj &inll'nl&ift1l'ft1(i - ftl - ftl + 1) 
(2.14) 

x ~A~/(nl - al)(n, - al) 

where now 
l/1

j d- = _i_jdt dt [A (t,t1!tl )] (2.15)
p 2'r l:a t 

U sing the threshold behavior 

[A(t, ~l' t:a)t-Gt1 
-

Gt2 
) (2.16)A~ 

l-o 

we obtain 

. . &iftll'i j dt1dtl AaAh 
aj - ai -I 2111'3 A1/ I (t,t1! t :a) _ _ 

(2.17) 
1 

x +... 
Siftll'al&inll'a2(i - al - a, + 1) 

This leads to the two-reggeon branch-point at i =2a(t/4) - 1 generated by 

j = a(tl) + a(t:a) -1, A(t,t/4,t/4) = 0 (2.18) 

11 



J 
Since 

dtla.t2 = 2 Jd21c (2.19)
,\lJ2(t,tt,t2) 

the two-reggeon contribution can naturally be written a.s a transverse momentum 

integraL The thruhold behavior (2.16) at the nonsense pOint i = nl + n2 - 1 is crucial 

for this. Specializing to i -- 1, taking a(t) = 1 + Ll(t) = 1 + a't + ... (and absorbing 

factors of a' in ~ and A~), gives for the two-reggeon discontinuity 

s {} 1 J ePic 
III a... 231r2 1!2(I! al2 A~A~6(w - 6 1 - 6 2) (2.20) 

Comparing with (1.1) it is clear that introducing a general 2-2 reggeon interaction 

will lead to a generalized form of the BFKL equation. 

The above analysis of the two-reggeon cut generalises straightforwardly to the 
analysis of the N-reggeon cut - which originates from a nonsense state of N-reggeons 

i.e. j = l:~=1 cr. - N + 1. A self-contained set of reggeon unitarity equations 

can be wriUen[8, 9] for multireggeon scattering amplitudes. All the multireggeon 

discontinuity formulae can be written in terms of transverse momentum integrals. 

We emphasize that this is a property of the phase-space generating the branch-point 
and is not a perturbative result. 

Until this point we have effectively ignored signature in our discussion of the 
two-reggeon cut. However, for the branch-point to actually be generated there must 

be no "nonsense-zero" of ~ at i = al +el2 -1. The dispersion integral representation 

for partial-wave amplitudes implies that oddrsignature amplitudes have such zero.! and 
so the cut appears only in the even signature amplitude. 

2.2 Reggeization 

Before specializing to a gauge theory we consider, in general, the "two-reggeon 

contribution" in the odd-signature channel that (in the gauge theory case) will contain 

the reggeized gIuon. We again consider Regge poles in the four-particle unitarity 

integral as illustrated in Fig. 2.6. Before allowing for (square-root) nonsense zeros 

the i-plane contribution is (with signature effects now included) 

AaAa 

isiniu -1) Jd
p

fj _ ell - a2 +1][8in;(a: - 1)][.!inj(a2 - 1)] (2.21) 

12 

We focus on the threshold singularity in t, which is generated when 

al == 	 a(tt) == 1, a2 == a(t2) == 1, 

A(t, t1 , t2) == O. (2.22) 

We set al == a2 = 1 and consider the leading t-dependence for i '" 1. Since i == 1 
is the nonsense point relevant for the phase-space integration, we obtain a transverse 

momentum integral_lor the leading threshold behavior. The two-reggeon phase-space 
gives (for w = j - 1 ..... 0) 

5, {a..,(t)} == ~ 5", {Jl(q2)A~A~} 
(2.23) 

where J1(q2) is defined by (1.2). As illustrated in Fig. 2.1, 

~-~-~ =-Ot 
Fig. 2.1 Discontinuity of the 2-2 reggeon amplitude. 

the cU.continaity formula obtomed holdo aIoo Cor the 2-2 __ ...pJjtade ~ .. .4........ 
defined at the nonsense point j =a) +a2 - 1 == a3 + a.c _ 1. 

We now consider a gauge theory specifically. We input gauge invariance and 
the color structure of the theory, as we have discussed, by requiring 

• Regge pole behavior 

• the color structure of the triple Regge vertex 

• a nonsense zero 

• the Ward identity constraint. 

The lowest-order form of ~ is then determined to be 

9
2 

Aa E!l c.. i,iac.. islit w r 
(w - A(q2» (2.24) 

13 



The discontinuity formula of Fig. 2.7 gives directly 

.!l(q2) = l E c:J•• q2 Jl(q2) = g2N q2 Jl(q2) (2.25)i.
which is the fa:m.iliar leading log form of the gluon trajectory function. 

2.3 The BFKL Kernel 

We consider the six-particle unitarity integral and analyse it with partial-wave 
amplitudes corresponding to the coupling scheme shown in Fig. 2.8. 

tl 

t2 
-----«t]

1] 


Fig. 2.8 Coupling scheme for the 2-6 produdion amplitude 


The partial-wave projection of the unitarity integral is 


"J(t) - ,,~(t) =Jdp E E E E E E 
/na+n&I:$i ia.+-tI~1t ',2:ia.1 1,2:""'1 '.2:/na1 1.2:1-.1 

(2.26) 
X ai!!(t, !),,!!!(t,!) 

The heJicity integrals arising from the continuation to complex j of the he1icity sums 
in (2.26) are (from even signature in j and odd signature in the n.,.) 

1 . 'If'J dnsdn.-lJIn-, . ft • • ft 

2' 2 ,,,ni(' - na - n.).sani(na - 1) 

(2.27)dn1dn:aJ.... '!!.(
nl - n:a +1)8ini(nl - 1)8ini(n:a - 1) 

and 

Jdp(t, tll t2, ta, t.) J dp(t, t3 , t.) J dp(t., t .. t2) 
A(t,t3,t.»O A(t••t"ia»o (2.28) 

We are interested in the three-particle threshold generated by Regge poles at 
l'&i = eli, i = 1,2, 3 when 

Oil = a2 = a3 = 1 , 

(2.29)A(t., t .. t2) = A(t, t3, t.) o. 

14 

and in the two reggeon cut generated by Regge poles at na = 0i3 and n. == Oi• 

combining with the nonsense pole at i == n3 +n. - 1. A nonsense zero prevents a 
two reggeon cut involving Oil and 0i2 from occurring in the I. channel and so no three 

reggeon cut is generated in the overall i-plane. Nevertheless, for i .... 1 we have 

Cl4 - i - aa + 1 - 2"': aa - 1 .... al + 0i2 - 1 (2.30) 

and so the nonsense condition '. = n. = nl + n2 - 1 is satisfied (even though no 

two reggeon cut is generated). This second condition holds in addition to the j == 
na +n. -1 nonsense condition required for the Regge cut. Since both conditions hold, 

threshold factors combine to give the right jacobian factors to change to transverse 

momentum variables. (This implies that in the fonowing derivation, the BFKL kernel 

arises enti.rely from nonsense states.) The three-particle discontinuity is then 

6',{o.w(t)} == 6'", {J:a(q:a)~A;} (2.31) 

where 

1 J 4'lel 4'Ita (2.32)J:a(i) = (16r):a kf~(q -let -lta):a 

There is a !actor of w-1 missing compared to (2.23) because we have extracted non

sense zeroes from the amplitudes. 

The lowest-order two-pariicle/three-reggeon amplitude is determined by fac

torisation. Since n. =(; - aa + 1) and (n. - Cl4) = (w - As - a.) we have 

R£ gCii_
Aa = ~~ -x ,.,.r.r .r( w- 4a- 4. 

(2.33) 

Rt. (n.- ex.)-1 
R.'ItI 

where Rll is the triple reggeon vertex (except that since we have extracted a nonsense 

zero there is no momentum factor) and R£ is an external vertex which we can take 

to be a constant carrying zero color i.e. we write R£ = 5,;. 

Working to O(g2) in the overall discontinuity and summing over colors we 
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obtain 

2 } l N {J cPk1cPka 1 }
0tr' { aj(q) (161r3)20tr' kflei(q k1 - karl! (w - a'kj a'(q k3)2)2 

(2.34) 
92 N {J IPka J1«q - k3)2) } 

= (161ra) 0tr' lei (w - a'iei al(q ka)2)2 

This is the discontinuity of the reggeon diagram shown in Fig. 2.10 

~ 

Fig. 2.10 A reggeon diagram 

if the reggeon interaction is the disconnected part of the BFKL kernel. 

We must also consider the off-diagonal product of reggeon diagrams shown in 

Fig. 2.11. 

<::9< 

Fig. 2.11 An off-diagonal product of reggeon diagrams. 

The right-hand amplitude has a simple form in the partial-wave coupling scheme 

illustrated in Fig. 2.12. Unfortunately, this partial-wave projection is quite distinct 
a.nd it is non-trivial to express the new amplitude in the coupling sceme of Fig. 2.8. 

11 
n 1 _ ( tl 

t2 
t] 

Fig. 2.12 Alternative coupling scheme 

However, if we consider the leading threshold beha.vior a.t t q2 = 0, there 

is a simplification. To obtain rt = 0 from three "massless" particles, i.e. with 
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k? = 0, i = 1,2,3, all three momenta must be parallel. This implies that in this 

special case the relevant variables of Figs. 2.8 and 2.12 degenerate. The helicities of 

the three particles can be identified, the angles conjugate to j and n4 can essentially 
be identified within each scheme and also in the two schemes. In this special kinematic 

configuration we can write kl, 
RL RR 

(2.35)k2~ w di - di3 


ka 


where d23 a'(k2+ k3)2, RR 50; and RL is the triple reggeon vertex. 

Combining (2.35) and (2.33) and inserting in (2.31) we again obtain a reggeon 

diagram of the form of Fig. 2.10. Adding the two possible off-diagonal products 

we obtain the forward connected BFKL kernel (1.3). The sign is determined by a 

detailed disCUJlsion of the helicities of the reggeons involved. The remaining (kl +k,)2 
component has no discontinuity in rI and can not be determined by unitarity. It is 

immediately determined as the first correction away from rI = °once we impose the 
Ward identity constraint that is our input of gauge invariance. Therefore the full, 
conformally invaria.nt , BFKL kernel is determined by the combination of t-channel 

unitarity a.nd Ward identity constraints. 

2.4 0(94 ) 2-2 Regeon Interactions 

We study the eight-particle intermediate state a.nd consider the reggeon con

tributions shown in Fig. 2.13. 

-> < 
'----< -> ~ 

Fig. 2.13 Reggeon contributions to eight-particle unitarity. 

17 

http:invaria.nt


Naively we might expect the previous analysis to generalise straightforwardly as il
lustrated in Fig.2.14. 

(~+::) (~+~) 

-> a --c:>-- + 1:1 + ., + d -0- + • --E:::T 

--c:>-- ~ --

Fig. 2.14 Reggeon interactions. 

This would be the kernel given by the reggeon diagram analysis. The coefficients 
a, b, c, d, e are determined by the Ward identity and infra-red finiteness constraints 
and might be expected to emerge simply from the unitarity analysis. It is not so 
simple. We can summarise the subtleties as follows. 

i) The diagram (with coefficient) a is not present, it can be reduced to a sum of 

reggei.zation contributions. In fact this diagram requires a minimum rapidity 
cut-off' for it's definition. 

ii) c, d and e all involve the 1-3 reggeon coupling (which in principle could be zero). 

As a result nonsense conditions do not follow and only the combination of infra
red finiteness and Ward identity constraints implies that all the diagrams are 
present as transverse momentum integrals in the infra-red region. 

iii) In the infr ... red region, diagram b directly generates a transverse momentum in
tegral but only lor the leading threshold behavior in the reggeon mass variable.. 
Also, the product of distinct partial-wave amplitudes involved generates an 
overall normalUation ambiguity in tran.s/orming from one partiGl-wave to the 
other. 

We shall see in the next Section that the component of diagram b that emerges 
as moat unambiguously defined indeed has special importance. 

3. PROPERTIES OF THE 0(g4) KERNELS 

We noW return from the unitarity analysis to the kernels that we initially con

structed using reggeon diagrams[12]. We first discuss the properties of these kernels 
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and then return to the issue of how they contribute as higher-order corrections to 

the BFKL kernel. As we outlined above, and is described in more detail in [12]. the 

con.struction procedure is to use reggeon diagrams to generate all possible transverse 
momentum diagrams and then use Ward identity and infra-red finiteness constraints 
to determine the relative coefficients. 

3.1 The 0(g4) 2-4 Kernel 

We discuss this only briefty. The complete 2-4 kernel is given by 

K~~(ilJ",ka,k..lks,A:e) = E 2...3~(~(ka - A:e)K~~(it,i3,k..,ill)
'<->1 

+ ~(ka - ks)K~~(it,ka,k..,A:e) + 6J(~ - k..)Kf~(il,ka,~,A:e) (3.1) 

+ 6J(~ - "')Kf'(it'k..,~,A:e») - Ki~(i1t~,ka,k..,ks,A:e)c 

The last term K~~(it, ..,A:e)c is the connected pari of the kernel and is generated by 

the reggeon diagrams shown in Fig. 3.1 

~.~ ~.~ 

...,.N' 

~.~ ~ ~ 


~~ , 
~ 

~. ~ ~ :&~ ~ 

Fig. 3.1 Reggeon diagrams for the connected 2-4 reggeon kernel 

The resulting transverse momentum diagrams have already appeared in Fig. 1.7. In 
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detail we have 

-4 	 (4)( ) "" (L .le)' (Ie~(let + le, + lee)'
9 	 K,.4 lel•le,. leS•le",le" lee c L.., 51'" 2 - (le -le )'

1<->3 	 t s 

~(lIs + le, + lee)' ~(~ + let + lee)' le:(~ + let + 1cs)') 
+ 	 (let let)' + (let -le,)' + ~(-:7-le-t_-lee::-7::')l~ 

1 ( 	 ~J4 ~Ie: ~Ie: ~~)
-	 i (Tc, -k.)2 + (Tc, let)' + (Tc, -1cs)2 + (lis -lee)' 

+ !( ~(1cs+lee)2 + ~(1cs+1.)2 + leUlet+lee)' 

2 (le, -1cs - lee)' (k, -1cs - 1.)2 (Ie, -let -lee)' 


+ 	 ~(1cs + lee)2 + ~(Ie, + leS)2 + ~(1cs + let)' ) 

(Ic:a 1cs -lee)2 (Ic:a -1cs - lis)' (Ic:a 1cs -let)' 


1 ( 	 ~~(Iet + lee)' ~~(1cs + lee)' ~~(1cs + let)' 
+ 	2 (let -1cs)'(1c:a -lee)' + (let - 1.)'(1c:a -lee)' + (let - lee)'(1cs -lee)' 


~~(~ + lee)2 ~~(1. + lee)' ~~(lee + lee)' ) 
 (3.2)
+ 	(let -let)'(1c:a lee)' + (let ~)2(Tc, -lee)l + (let -1cs)'(1cs -let)' 


1( ~~Ie: ~~~ 

-	 i (let -1cs)'(1c:a -lee - lee)' + (let -1cs)'(1cs -let - lee)' 

~~~ 	 ~~~ 
+ (let -1cs)2(Jc, -let -1cs)2 + (let -let)'(Jc, -lee -lee)' 

~~~ 	 ~~~ 
+ (let -let)'(1c:a -lea - lee)2 + (let - let)l(Jc, -1cs -1cs)2 

+ ~~~ + ~~J4 
(let -Irs)2(Ie, -1cs lee)' (lel les )'(1cs -let - lee)2 

+ ~~~ + ~~~ 
(lel -Irs)'(le2-let -leS)2 (let -lee)2(Tc, -1cs -Ie.)' 

~14~ 	 ~~J4))
+ (let -lee)2(le2 let -lea)' + (lei -lee)2(le2 .. -1cs)2 

The remaining terms in (3.1) are disconnected components and involve the 1-3 reggeon 

interaction K~~(Ie, let. Tc" les), which is given by the reggeon diagrams of Fig. 3.2 
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-", 
A-"."."""",,~ 

'M{~ 
"'~V' 

Fig. 3.2 Reggeon diagrams giving K~~. 

and can be written &I 

(4)( 1 f d11et d1Jc, '2Kt,s 1e,1e.,Ic:a,1cs) = (2...)1 kf""if Ie 6 (Ie-let -Ic:a) (3.3) 

x K~~(Iet, Jc,,1cs, let, lee) 

where 

g-4K~~(",Ic:a,1cs,Iet,lee) = E (let+Jc,)2- (~(Iet+_~r
1<->2 

~(1cs +1cs)' ~(1cs + let)') 1 ( ~~ 
+ (let -let)' + (let -1cs)' + i (1cs -1cs)' (3.4) 

~Ie: ~~) 2( ~ij~
+ 	(Jc, -let)' + (k, -1cs)2 + i (let -1cs)'(k, -1cs)2 

~~~ ~~~))
+ (let -let)2(1cs -1cs)2 + (let -1cs)2(k, -let)' 

It is straightforward to check{12J that all the Ward identity constraints are 

satimed by K~~. This vertex is essentially that calculated directly by Bartels and 

Wu.thoff117J, although to obtain precisely the same result it is necessary to include 

the relevant color facton correctly. Note that the existence of K~~ immediately 

implies that there is no closed BFKL equation at O(a!). To obtain such an equation 
we have to artificially restrict the discussion to 2-2 reggeon interactions. 

3.2 The O(g4) 2-2 Kernel 

As we discussed earlier, reggeon diagrams containing four-reggeon intermediate 
states generate the sum of transverse momentum diagrams for the 2-2 kemelshown 
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in Fig. 1.7 and give five kinematically distinct terms. 

(g2~)2Ki~")(lel,le2,le3,1C4) K~4) + Ki
4
) + Ki

4
) + K~4) + K~4) . (3.5) 

with 
K~4) E 1e:~Jl(Ie~)Jl(~)(161r3)c52(le2 ~ le3 ) , (3.6) 

(3.7)K~4) = -i E ~J2(~)Ie~(1611"3)c52(kz -le3 ) 

K(4) = _,,(~Jl(~)~~ +~~Jl(lenle:) (3.8) 
, L.L (let - *,,)' , 

K~4) = E ~1e!Jl((lel k,.)') , (3.9) 

and 
(3.10)Ki4

) = ~ E ~~-:Ie! I(lehkz,ka,k,.), 

where Jt(Ie') is defined by (1.2) and 

2 (3.11)J,(1e ) = 1:r J'q(1e ~ q),Jt (q2) , 

and 


1 
 (3.12)
J(let, kz, ka, k,.) = 1~3 J'p"(p + 1et )'(p +let - k,.)'(p + le3 )2' 

We can demonstrate, diagrammatically, that the Ward identity infra-red finite

ness constraints are satisfied as follows. For an external leo-line 

• 	 leo --+ 0 gives zero if the line carrying leo is the single line of a 1-2, 2-1, or 1-1 
vertex. 

• 	In general, leo --+ 0 gives the subdiagram obtained by removing the line carrying 

leo. 
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Infra-red divergences occur when the momentum leo of an internal line vanishes. If we 

use a mass regulation, then, as m 2 -+ 0, this gives 

2 r2T 
2 1 J dletPleo 1(1eo)/(lel + m ) --+ 2" (kJ +im2) Jo dB 1(0) --+ 11' logm2 1(0) (3.13)J 

where (apart from a factor of (16r3)-1) 1(0) is obtained from the original diagram 

by removing the line carrying leo. 

The Ward identity constraint is satisfied by the relation 

- 3l----- + ~C - 0 	 (3.14) 

(with the notation - - - :: leo -+ 0) and so determines the relative weight of K, 
and K3 • There are two infra-red finiteness requirements, leading to three constraints 
that determine the relative weights of the remaining components. First we require 
that the connected part of the kernel is infra-red finite before integration. This gives 

(3.15)+ 3L> t(X:;C ) - 0 

and determines K4 relative to K, and K3 • Taking the Ward identity zeroes into ac

count, infra-red finiteness after integration requires cancellation, by the disconnected 
parts, of two divergences due to the connected part. First the poles of K2 require the 
cancellation 

4 c5= -2 	 - cL .. 0 (3.16) 

Secondly K 3 generates a divergence, when both exchanged lines carry zero transverse 
momentum, which requires the cancellation 

-	 2 + + o (3.17) 

This last constraint determines Kf4) relative to Ki4) + Ki4)+ K!4) and the previous 

constraint then determines the relative weight of K~4). 
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The most complicated part of K(4n) is clearly K!4) since it contains the box 
diagram 14• Using the notation illustrated in Fig. 3.3 

kl k4 
P-P1 

r t P-P4
P-P2 r 

)---i-

P-P, 
k2 k, 

Fig. 3.3 Notation for the box diagram 

we write 

f oil 
2 -	 tfP n. ---_ Pi)2 ~~ (3.18)1.(Pt,P2,Pa,P4,m) - $::1 f(p - m 

14 can be evaluated[16] aa a sum of logarithm., i.e. 

1.= E AillFill (3.19) 
i<1I 

where the Ai' are "tree-diagrams" obtained by putting internal lines j and k on-shell 

and, writing Pi' = (Pi - PII)2, 

2
i'll" (p" - 2m - ,\1/2("'" m2, m2)] 

(3.20)Fi" = ,\1/2(",,,,m2, m2)Log ",,, _ 2m2 + ,\1/2(",., m2, m2) 

Explicit expressions for the Aill are obtained by introducing dual vectors to the Pill 
giving e.g. 

au 
Au = b	 (3.21) 

12 

where 

au == [lei' k:a2- k12 k,2J 

X[kl • k:a 2- kl . k2 kl . k3 - A:1 2k2 2 + k1 2 k2 . k3 

2+(k1• k, + k2 )(k1 • k2 - A:l ·1e3 + k22 - 2k2 • ~ + k32)1 (3.22) 

24 

b12 == 	 [-k1 . k22 + k12 k22 ~ (k1 • k2 + k2
2)2J 

X [- (kl . k2 2 - kl . k2 kl . k3 - k12 k2 2 + k12 k2 . k3)
2 

+(kl' k/ - k12 k22»)(kl . k2 - k1 · k3 + k22 - 2k2 · k3 + k/)2] 

(3.23) 

In this way we obtain the box diagram as a sum of six logarithms of two types: 

(1) external line "reggeon mass" thresholds, -+ four logarithms. 

(2) "s" and "t" thresholds, -+ two logarithms. 

The complete kernel can then be written in terms of logarithms with rational poly
nomial factors. (In fact a greatly simplified expression can be found in [18]). 

3.3 The 0(94
) Parton Kernel 

For parton evolution, we require only the much simpler "forward" kernel 

k ,-:;--r Jr.' 
K~~)(k, -k, k', -k') == K(')(Ie, k') 	 (3.24)-Jr.~-Jr.' 

In the forward direction it is straightforward to combine the type (2) logarithms from 

the box with the logarithms of the connected components K~4) and K~4), giving 

K(4)(k k') 1 (k2k/2 [(A: - kl)4] 
, c ...-;:0 8'11"2 (k _ k')2 Log --;;;;;r

(3.25) 
k2k,2 [(k + k/)4])Log - ( A:2 )+ (k+k')2 ~ 

where 

1 k2 k/2( k2 
_ A:/2 

) [le2 
] 

(3.26)A:2 = 4'11"2 (k + A:/)2(k _ k')2 Log k/2 

is separately infra-red finite as m2 -+ 0 and contains only the type (1) logarithms, i.e. 
the external reggeon mass thresholds. 	A:2 will be very important in the following. It 
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is the part of the boz-diagram that emerged as a well-defined transverse momentum 
integral contribution via the unitarity analysis. 

To obtain the full set of eigenvalues of K(4) we first show diagrammatically 
that 

K(4) = !(KBFKL)2 - K.2 (3.27)
4 

where KSFKL = KSFKL(k, -k, k', -k') is given by (1.4). Using the notation of [6) 
that E indicates summation over all permutations of initial, final, and intermediate 
states, we have 

(KSFKL)2 (3.28)L(-Y~+ ==-i xf 

· It {=8=+ -(X)-_2 ~-2:SO=-2=2= 
(3.29)

-2=L+2~+2=ZS==-)C>(- X - X) 

Using the forwa.rd identities 

-o-_-(X) ~==2= :so== y-0- - 
(3.30) 

=rL-=ZS= )<::::;<='X = X =0 

then gives 

(KSFKL)2 I (=8=-2Y-2=2=+2~) (3.31) 

(3.27) then follows for the connected components involved. To include the discon

nected parts it is necessary[6} to utilise the relation 

4k'[J2{k2 )1 = 3[k2J1(k2)12 (3.32) 

which holds when dimensional regularization is employed. 
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3.4 Eigenvalues and Holomorphic Factorization 


We use the complete set of orthogonal eigenfunctions 


q,,,,..(k) = (k2)1/Hw e''''' U E ( -00,(0), n = 0, ±1, ±2, ... (3.33) 

where k = (lklcosS, IklsinS). The eigenvalues of KSFKL are ~ x(u, n) where 

x(u, n) = '1/1(1) - Re'l/1( IAI2+ 1 + iu) (3.34) 

with 'I/1(z) = ~r(z). From (3.27) the eigenvalue spectrum of K(4) is given by 

N2g4&(u,n) where 

1
&(u,n) = -(x(u,nW - A(u,n).,.- (3.35) 

and A(u, A) are the eigenvalues of X;2. 

To find the A(u, A) we use the dimensionally regularized form of X;2, i.e. 

X;D{k k') = 1 k
2
k,2(k

2 
- .,2) (k2)D/2 -1 _ (k/2)D/2 -1)

2, 2,.-2(D _ 2) (k +kI)2(k _ .,)2 . 

(3.36) 

We tint evaluate 

,... einIY 


1,[AJ == fo dS' 1 _ z(k, .,),iA2 (S _ 8') 


4,2.,'
.1[', '1 = - . -- (3.37) 

where co,S =.k· z and cosS' = .,. z. We get by residui (for A> -1) 

'W,,+l 

1.[Al = -4ie''''' d'W w" 2(2 )'f z + -Z'W+Z 

. (k2 _"2) [( ')" (kl 

)" ]2,.-6...2.11
14''''' ,2 +,,2 -;;; 8!" - '1 - i' 8[' - "1 . 

(3.38) 

2M is an even integer - this will be important in the following. 
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It is then straightforward to show that 

Jt:~;X;f(k, k')¢I",n(k') = A(II, n)¢I",n(k) (3.39) 

where, as D - 2, 

A(II,n) - ''-2~~ _ 2) (P(lnI/2 +D/2 +11-1/2) 

- P(lnl/2 - D/2 - II + 3/2) - (,8(lnI/2 + D + II - 3/2) (3AO) 

+ ,8(1n1/2 - D -II +5/2») , 

P(z) is the incomplete beta function, i.e. 

,8(z) = l d,l1l--1 [1 + lItl 
(3.41) 

= ~(y,(z;l)_,p(i»), 

and so, at D =2, 

A(II n) = _ ~(p,(lnl + 1 +'") + If( Inl + I _ '"») (3.42), 411' 2 2 

where we can write 

P'(z) = ~(,pI(z;l)_,p'(i»). (3.43) 

with 
00 I 

(3.44),,'(z) = ~ (1' + Z)2' 

Using (3.43) we can show that the A(II, n) have the important property of 

holomorphic jacto'l'ization that is very closely related to conformal symmetry[19}. 
That is we can write 

A(II, n) = "[m(l - m)} + ,,[m(l - m)} (3.45) 
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where m = 1/2 + ill + n/2 and m= 1/2 + ill - n/2 are conformal weights. We use 

167rA(II,n) = - 4(P'(m} + P'(I-m») 

= ,,' (m; 1) _ ,,'(~) + ,p'C~m) _ ,p'C~ m) 
00 

• (3.46)1 
~ 1 n -+-1!!-
L...J (1' + - +.. 2,,=0 " 

00 1 

E( +l+!!-r
,.~.. 
-A l' " " 

We next show that this expression is unchanged if we simultaneously send m - I - m 

and m - 1 - m, i.e. n - -n, 11- -II. At this point it is crucial that n is an even 
integer. Writing n = 2M, we obtain 

00 001 1 
16'l1"A( -II, -n) =E ( 1 .:!W. W)2 E ( I -II .... 

,.=0 1'+.+ 2 -2 ,.=01'+.+2-2 
(3.47) 

00 00I 1 

+ E (1' +! + .:!W. + ~)2 - E (1' + ! + =1l +i-- 
,,=0 .. 2 :I ,.=0 .. 2 2 

and 80 

16'l1"(A(-II, -n) - A(II, n» 
-1 1 -1 1 


= E (.I + ! + M±.! ~}2 - E (.I + ! + M _ ~)2

.=-11 .. 2 2 .=-11 ":I :I 

-1 1 -1 1 
1 


.=-11 .. 2 :I
+ E (.I + 1 + M±.! + ~)2 - ~ M+~.!:M (.I + .. + ., 
(3.48)

M/:I -1 1 11/2 -1 1 
E E(3 W 1 W 

t=-M/2 (t + i - 2)2 t=-M/2 -t - i - 2 

M/2 -1 1
E ---1--", 

(=-11/2 ( -t - i + 2 

o 
From this symmetry, we can write 

1611'A(II,n) = - 2(P'(m) + P'(I- m) + P'(I - m») + pl(m») 
(3.49) 

_ "[m(l - m)] + ,,[m(1 - m)} 
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as required. 

We conclude that K:% shares many of the nice properties of the leading-order 

SFK L kernel. It is infra-red finite, scale-invariant and has a new eigenvalue spectrum 
satisfying holomorphic factorization. It is very interesting to ask whether there is a 

new conformally invariant, non-forward, kernel associated with K:2 • (In fact it is shown 

in [6] that K:, is the forward component of a new partial-wave amplitude that appears 

for the first time at 0(94 ) and in [18] a candidate for the non-forward conformally 

invariant kernel is constructed). 

3.6 Numerical Evaluation 

We consider now the numerical significance of the eigenvalues of K(4'. The 

leading eigenvalue is at 11 = n = 0, as it is for the OCr) kernel. Using the reggeon 

diagram normalization, the correction to 00 is given{16}, by 

994E(0,0)/(16...*) . 	 (3.SO) 

Since 

1
A(O, 0) 2...P'(1/2) 

.. 11 ( ..8... E __ 1_ ?; (,. + 3/4)2)
r=O (3.51) 

1 ( 16 16 16 16 ) 
- 8... 16 + 25 + i1 + '" 49 + ...9' 

1.81 
... 

we obtain from K:2 alone 

299" _16.3 0 
•	 (3.52)16...3A(0,0) ~2 

The complete K(....) gives 

'" 1~;4 ([2ln2]2 - 1.81) 
(3.53) 

994 0.2 

'" 16~4 X 0.11 -;; 

giving a very small positive effect. 
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At this point we note that the disconnected part of K(4) contains diagrams, the 

first kind appearing in (3.31), which can not be interpreted in terms of reggeization 

effects. Since reggeization is the only consistent interpretation of disconnected pieces, 
these diagrams can not be present in the full kernel. Elimination of the unwanted 

diagrams, while retaining scale-invariance, 'gives[16] uniquely 

k(4) = K(....) _ (KBFKL)' , (3.54) 

This is a consistent scale-invariant 0(94
) kernel which can be added to the OCr) 

kernel. In this case, we replace E(1I, n) by £(1', n) where 

-E(1I,n) = 3 - -[x(1I,n)}2... - A(v,n). (3.55) 

This gives, .. a modification of 00, 

9 ,,£(0,0) _ 
9 1611" 

99 
4 

X (-5.76-1.81)
1611'4 

2 
(3.56) 

-68~ 
...2 

which is a substantial negative correction - of the order of SO". 

Unfortunately .. we have dilc:uaed in the lut Section there is, even in the 
best determined component K:2, an overall normalization uncertainty which reduces 
the immediate significance of these numerical estimates. 

4. 	THE 0(g4) KERNEL FROM THE B-CHANNEL 
EFFECTIVE ACTION 

Kirschner[15J h .. discussed the relationship of the "t-channel" reggeon diagram 

construction of non-leading kernels to the ",·channel" multi-Regge effective action[41 

derived from the leading-log approximation. The full effective action is written as a 
sum of components 

C = Cilia + C. + Cp + C, 	 (4.1) 

C, contains the triple-gluon vertex for longitudinal gluon fields A+, A_, describing "t
channel" exchanged gluons (".I-channel" produced gluons are described by A.L fields), 

i.e. 

C, = t88"A~(8+1A+T'"A+) + 88-A:'(8:1A_T'"A_) (4.2) 
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In momentum space the triple vertex has the form 

. (lel +~)2
19Cobc L + (~,b) <-> (lel,e) (4.3) 

11;2+ 

and is, essentially, the three-reggeon vertex that we use to construct reggeon diagrams. 

Kirschner has shown that graphs involving triple-gluon vertices can be re
garded as reggeon diagrams, if contributions with a-channel gluons close to mass-shell 

are added. The 0(g4) kernel we have discussed arises from the product of interactions 
shown in Fig. 4.1 

~ 

Fig. 4.1 Reggeon Interactions from the Multi-Regge Effective Action 

together with additional contributions from 8-channel gluons. (This is clearlyanalagous 

to the product of reggeon diagrams illustrated in Fig. 2.14.) H the resulting diagrams 
are written as transverse momentum integrals, the formalism suggests that the orig
inal presence of additional rapidity integrations produces both 

• an overall normalization uncertainty 

• additional (perhaps slowly varying) tranaverse momentum dependence. 

Since these results are completely consistent with our results, the effective lagrangian 
gives a valuable understanding of the reggeon diagram approximation. 

Kirschner also gives an interesting representation for A:,. Introducing complex 
momenta" whose real and imaginary parts are the two components of conventional 
transverse momenta 

2,,2,,/2 J 1 
,c2("'''') = (2r)3 d'"II"II("II_" + ,,/)(,," _ ")"(,," + "I). + c.c. (4.4) 

This formalism is used in [18] to construct the non-forward extension of A:2 and is 
anticipated to be very useful for studying conformal symmetry properties. 

32 

5. CONCLUSIONS 


Used directly, the scale invariant 0(g4) transverse momentum kernel gives a 
large reduction of the BFKL small-z behavior of parton distributions. However, both 
t-channel unitarity and the multi-Regge effective action imply that the introduction 
of scales will modify the nOMJ1aiization and significantly modify the kernel at large 

q2, Ie', W2• Indeed the outcome of the non-leading t-channel unitarity that we have 
outlined in Section 2 can be compactly summarized[6] by writing, for the full kernel 

K2,2{q, Ie, lei), 

(5.1)K2.,{9,Ie,Ie/) - g'KBFKL + 0(g4){KBFKL)2 + 0(l)A:2 

rt.k'","'-o 

indicating that both the overall normalization and the relative normalization of the 

new A:2 kernel to (KBFKL)2, are not determined. 

A reggeon interaction derived from t-channel unitarity, is necessarily scale
invariant and only an infra-red approximation. Extrapolation away from the infra-red 

region is controlled by the Ward identity constraints and in [16] we conjecture that 
these condraints lead to cooformal invariance. The BFKL kernel, the triple Regge 
kernel[17, 12, 20], and the A:, kernel we have derived, are the only interactions studied 

so far and existing results are consistent with this conjecture. 

In [7] we have outlined a program whereby the scale-dependence of non
leading reggeon amplitudes can be studied via the Ward identity constraints. We 

hope to study this possibility in the future. Of course, completion of the full O(a!) 
calculation[3] should greatly clarify the role of scale dependence in the 2-2 kernel. 
Comparison with the reggeon diagram formalism may then suggest how yet higher

order contributions can be suitably approximated. 
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