
--

f{~'/
ANL-HEP-CP-98-38

~u Gt 1'998

Query EstiIllation and Order-OptiIllized

Iteratiop. in Very Large Federations

\.'

David M. Malon*

for the HENP Grand Challenge Collaboration

The submitted manuscript has been created Argonne National Laboratory by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") 9700 South Cass A venue, Building 900 under Contract No. W·31·109·ENG-38 with

the U.S. Department of Energy. The U.S.

Argonne, IL 60439 USA Government retains for itself, and others act

ing on its behalf, a paid-up, nonexclusive,

irrevocable worldwide license in said article

to reproduce, prepare derivative works, dis

tribute copies to the public. and perform pub

licly and display publicly, by or on behalf of

malon@anl.gov

4 May 1998
the Government.

Abstract

Objectivity federated databases may contain many terabytes of data and

span thousands of files. In such in an environment, it is often easy for a user

to pose a query that may return an iterator over millions of objects, requiring

opening thousands of databases. This presentation describes several technolo

gies developed for such settings:

• 	 a query estimator, which tells the user how many objects satisfy the query,

and how many databases will be touched, prior to opening all of those files;

• 	 an order-optimized iterator, which behaves like an ordinary iterator ex

cept that elements are returned in an order optimized for efficient access,

presorted by the database (and container) in which they reside;

• 	 a parallel implementation of the order-optimized iterator, allowing any

number of processes in a parallel or distributed system to iterate over

disjoint subcollections of items satisfying the query, partitioned by the

database or container in which the items reside.

These technologies have been developed for scientific experiments that will

require handling thousands of terabytes of data annually, but they are intended

to be applicable in other massive data settings as well. In such environments,

significant amounts of data will reside on tertiary storage, accessible via Objec

tivity's recently-anounced HPSS (High Performance Storage System) interface.

*The submitted manuscript has been authored by a contractor of the U.S. Government under
contract No. W-31-109-Eng-38. Accordingly, the U.S. Government retains a nonexclusive, royalty
free license to publish or reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

1

mailto:malon@anl.gov

When deployed in large-scale physics settings later in 1998, the query estimator
will further inform the user of the number of tape mounts required to satisfy the
query, and provide rough time estimates for data delivery. The order-optimized
iterator will be connected to a cache manager that will prefetch from tape to
disk the files needed by the query (known from the query estimation step), and
will decide which items to deliver to the user next according to the order in
which data become available in the disk cache.

Background

High energy and nuclear physics experiments are on the verge of producing many
hundreds (and soon enough, thousands) of terabytes of data annually. Simply storing
so much data is a difficult task; making it usable for analysis is even more daunting.
In such settings, it is critical that the physicist know whether a query will return 100
or 100,000,000 events before he or she launches it and goes home for the evening, and
when an analysis requires a very large number of events, it is essential that the data
be delivered as efficiently as possible, even though much of it may necessarily reside
on tape.

While the technologies described in this paper are designed for large-scale physics
experiments, they are intended to be suitable as well for other applications that

• 	may touch a very large number of objects in many different databases within a
federation;

• 	can potentially determine which objects are of interest in advance of touching
them (e.g., via indexing or via a "tag" database in the parlance of our applica
tion);

• 	 are doing "for each" analysis: an operation must be performed for each object
that satisfies the query, but the order in which the objects are processed is
unimportant.

A Note on Tags: In our target applications, the primary objects of interest
("events") may be large, but physicists are often able to decide which events are
relevant to their analysis on the basis of the values of a relatively small number
(tens or hundreds, but not thousands) of attributes. These attributes collectively
constitute an event tag. One strategy under exploration by several physics data
projects, including this one, involves keeping such tag objects in a separate database
or collection of databases, with each tag containing a reference to (or association with)
its corresponding event. Selection queries are issued against these tag databases or
indexes built thereon. When a tag satisfies a query, it is the associated event, not the
tag itself, that is of interest to the physicist.

2

Queries and Query Objects

In this architecture, a query may be a selection predicate ("numPions > N"), but
it may be a collection of object references (or, equivalently, an iterator over such a
collection). Such a collection may be predefined ("Events from Run 217"), or it may
be the result of a previous analysis task, in which references to events of interest to the
particular physicist have been saved in a personal collection ("myInterestingEvents").
Once selection predicates have been evaluated, these query forms are equivalent-the
optimization task of determining the order in which objects should be delivered is the
same.

A Query object provides the user interface to query construction, estimation, and
execution. It also supports several methods for ascertaining query status.

Q11ery Estimation

The Query Estimator returns a count-approximate or precise-of the number of
objects that satisfy a query, and reports as well the number of databases (and con
tainers, if desired) that will be touched. These counts are precise if the query is in fact
a collection or iterator supplied by the user; for a query that is a selection predicate,
estimates may be approximate or precise at the user's discretion.

Quick versus Full Estimates: For collections of billions of elements, tags con
sisting of only a few dozen attributes per element yield tag databases with sizes in
the hundreds of gigabytes. One consequence is that even when object selection may
be accomplished by examining only tag data, this examination may nonetheless be a
time-consuming operation. We are experimenting with building approximate indexes
that record data values only to within the resolution of a discrete partition of their
range. With a bit-sliced, compressed representation, these should be small enough
to reside in memory, and will provide upper and lower bounds for the number of
objects that satisfy a boolean range query on the indexed attributes. Users will be
able to request quick estimates from this in-memory index before deciding whether
their queries are sensible in terms of the number of objects that qualify and the time
that will be required.

Implementation of "full" estimates is more straightforward. One approach is to
maintain a multimap (using, for example the transient STL available with Objectiv
ity jDB 5.0) with the keys being the database ids extracted from object references
and the values being object references within that database, sorted by database and
container (and page and slot, if desired).

With the help of the Storage Manager, the Query Estimator can determine from
this list of databases which of them currently reside on tape and which are available
on disk. In future implementations, the Query Estimator will also estimate total data
retrieval time based upon this information and the concurrent query load.

3

Storage Manager

The Storage Manager maintains knowledge of which databases are on disk and which
are on tape at any given time. Because queries pass through an executeO interface,
the Storage Manager can, in principle, determine all the files that all concurrent
queries will need. This allows the Storage Manager to do intelligent prefetching-it
attempts to optimize tape access within a query, and among concurrent queries as
well.

Order-Optimized Iterator

The Order-Optimized Iterator is the means by which programs iterate over elements
in a large collection. It has exactly the same interface as an ordinary iterator such
as the template class d_Iterator<T> in ODMG 2.0. Only its implementation is
different: it returns elements in a retrieval order that has been optimized to account
for physical clustering and caching on disk. Its intended use is as the mechanism by
which physics codes iterate over events satisfying selection queries when those events
must be retrieved from tertiary storage.

In its implementation, the iterator talks to a Storage Manager, and gets a (sub)list
of references to objects that both satisfy the query and reside in a single disk-cached
database. When the user invokes, for example, iter.next(currentRef) , a reference
is returned from this sublist. When the sublist is exhausted, iter.next(...) causes
the iterator to get a new sublist from the Storage Manager (which has, presumably,
prefetched another database if necessary from tertiary storage).

Note that order optimization occurs on two levels: first, object references are
delivered having been presorted by database (and container, and so on); second, which
database's object references are delivered next depends upon what is available in the
disk cache. The fact that the architecture knows the complete list of database ids that
the user requires means that the Storage Manager can attempt to prefetch databases
to be served to the user later (via the iterator) while the application program is
dealing with its current list of object references.

An Example

//Step 1:
Query* myQuery = QueryFactory::newQuery(IIVanilla Query",

II attrl > a AND attr2 <= bit);

/***
begin optional stuff

//Step 2 (optional):
myQuery->doQuickEstimate();

4

if 	(myQuery->minNumEvents() > tooMany) II even lower bound is too high?
doSomethingElse();

IIStep 3 (optional):
myQuery->doFullEstimate();
if 	«myQuery->numEvents() > tooMany) I I (myQuery->numSeconds() > tooLong))

doSomethingElse();

end optional stuff
***1

IIStep 4.
myQuery->execute();

IIStep 5.
OrderOptlterator* mylter =OOIteratorFactory: :create(myQuery->token());

d_Ref<Event> thisEvent; II or an appropriate object reference type

II Step 6.
while (mylter->next(thisEvent)) {

II ... physics analysis goes here
}

Parallelism

A unique Query Token is assigned to each executing query, and is used in the con
struction of the Order-Optimized Iterator. (See Step 5 in the example above.) When
the iterator asks for the next sublist of object references from the Storage Manager, it
passes this token to identify which query's next sublist should be returned-essential
in a multiquery environment.

This approach makes parallelization straightforward: one simply broadcasts the
query token to all collaborating processes, and initializes their iterators with it. All
processes in the parallel application will thus ask for sublists corresponding to the
same query. The Storage Manager serializes these requests, ensuring that each sublist
is delivered to exactly one of the processes. The result is a disjoint partition of the
query workload among parallel processes, with each process dealing with a different
subset of the databases containing objects of interest.

Status and Future Work

While a prototype C++ implementation of the work described herein has been built
and tested, much of the real work of building a system remains. The bit-sliced index

5

technology and the cache manager with HPSS connections both exist, but have not
as of this writing been integrated into the order-optimized iteration environment.
Interfaces are certain to change; we are aware, for example, of both the Object Data
Management Group's Query object definition in its C++ binding, and the Object
Management Group's Query Services Specification. All of our components will need
to operate in a multi-ORB CORBA environment. Preliminary integration of CORBA
versions of the architectural components will take place in May 1998. The litmus test
for th~s architecture will occur in August 1998 as part of the Relativistic Heavy Ion
Collider's first Mock Data Challenge. We have yet to connect this architecture to
more than a few gigabytes of physics data, and we know we have much to learn about
indexing, prefet ching , data clustering (and reclustering!) and cache management.
We're looking forward to it.

Acknowledgments

This work is one part of a larger Grand Challenge Application in High Energy and
Nuclear Physics, funded by the U.S. Department of Energy. The design is the work
of many people, and its ultimate implementation will be the work of many more.
The project spokesman is Douglas Olson at the Lawrence Berkeley National Labora
tory (DLOlson@lbl.gov). Please feel free to contact him or the author for additional
information.

References

[1] 	 Object Management Group, CORBA/IIOP 2.2 (OMG, March 1998).

[2] 	 R.G.G. Cattell et aI, The Object Database Standard: ODMG-2.0 (Morgan Kauf

mann, SaIl Francisco, 1997).

[3] 	 The HENP Grand Challenge Application Website,

http://www-rnc.lbl.gov/GC/default.htm

1
---~

"... ----l,I-------~--..
, __~_,"_'~~ , 1

i
t

_C,M, v'-'~'-'-L'1 ,~"--"..-.-,-" -i

i I -- ~-.-'~ i
\

_ ...,j

6

http://www-rnc.lbl.gov/GC/default.htm
mailto:DLOlson@lbl.gov

