
The submitted manuscript has been authored 
by a contractor of the U. S. Government ANL-HEP-CP.-97-44tblder cone-act No. W-31-1090ENG-38. 
Accordingly, the U. S. Government retains a 1
nonexclusive, royalty-free license to publish 
or repro!3uce the published form of this 
contribution. or allow others to do so for 
U. S. Government purposes. • \ . 

An O~\\G-compatible Testbed Architecture for Scalable 
~\\JM~nagernent and Analysis of Physics Data 1 

"", G«:,~ , \ \~~ 
~ <¢ \ ,. 


~~ ..~~~~'~DaVidM. Malon a, Edward N. Maya 


\'" a Argonne National Laboratory 
9700 South Cass Avenue 
Argonne, Illinois USA 

m,alon@anl.gov, may@anl.gov 

Abstract 

This paper describes a testbed architecture for the investigation and development 
of scalable approaches to the management and analysis of massive amounts of high 
energy physics data. The architecture has two components: an interface layer that is 
compliant with a substantial subset of the ODMG-93 Version 1.2 specification, and 
a lightweight object persistence manager that provides flexible storage and retrieval 
services on a variety of single- and multi-level storage architectures, and on a range 
of parallel and distributed computing platforms. 

Keywords: Object-oriented databases; object persistence; multilevel storage 
management; ODMG 

1 Introduction 

Understanding scalability for physics data analysis requires investigating ap­
proaches to data organization and clustering, caching and migration, repli­
cation, multiple data access paths, nonuniform data access and multilevel 
storage, parallelism, and more. The roles of parallel file systems, mass storage 
architectures, non-dedicated parallel computing platforms, and concurrent use 
of a heterogeneous mix of storage devices must also be understood. To under­
take such studies, we have developed and implemented a flexible, lightweight 
object persistence manager that meets the following design criteria: 

1 The submitted manuscript has been authored by a contractor of the U.S. Gov­
ernment under contract No. W-31-109-Eng-38. Accordingly, the U.S. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published 
form of this contribution, or allow others to do so, for U.S. Government purposes. 

Preprint submitted to Elsevier Science 17 February 1997 
Also in the proceedings of Computing in High Energy Physics, 1997 , L'1'1 (0 ~ 101 
Berlin Germany, April 7-11, 1997. 

mailto:may@anl.gov
mailto:m,alon@anl.gov


2 

- access to every persistent object from every query node; 

- support for efficient reorganization of data, including striping and recluster­

ing, without knowledge of object schemata; 
- extensible support for a variety of storage mechanisms, including local and 

remote disk, raw RAID, Unitree file systems, raw device access to DD2 
and 8 mm tape, parallel file systems such as IBM's Vesta and PIOFS, and 
Internet data access via standard FTP and HTTP mechanisms or cgi-bin 
scripts; 

- support for data replication; 
- support for multiple access paths to data; 
- portability to heterogeneous distributed architectures. 

We have tested the software on a range of platforms, including Argonne's 
IBM SP Power Parallel system, and on a heterogeneous collection of UNIX 
workstations. Experiments have been conducted using both Fermilab DO data 
and the output of ISAJET Monte Carlo simulations. 

While investigations of the sorts outlined above could not have been under­
taken with commercial database software, we have tried nonetheless to provide 
an interface that does not needlessly inhibit coexistence with (and, perhaps, 
eventual migration to) commercial object-oriented databases. To this end, we 
have defined an interface layer that is compliant with a substantial subset 
of the ODMG-93 Version 1.2 specification. In the process, we have learned 
a great deal about potential deficiencies and scalability implications of the 
ODMG specification in general, and of its C++ binding in particular. We 
have also sought to define a minimal interface that any lightweight object per­
sistence manager should support in order that an ODMG-compliant system 
be buildable above it. 

The Storage Services Architecture 

The ODMG-93 Release 1.2 C++ binding defines the user interface to our per­
sistence manager-briefly, persistent objects reside in a database instantiated 
by the ODMG-defined class d_Database, and references to persistent objects 
of class T are made via a template class d_Ref<T>. Details appear in the cur­
rent ODMG draft standard [1]. Argonne's portable ODMG-compliant fron­
tend to object persistence managers is summarized later in this manuscript, 
and described in greater detail in [2]. Internal to the Argonne object persis­
tence manager, data are organized logically into stores. Within each store, 
objects are allocated in contiguous blocks of bytes called segments. Segments 
are the fundamental units of data transfer to and from a query process-when 
a reference to a persistent object is dereferenced, the corresponding segment 
containing the object is located and moved or mapped into memory. 

2 



For a variety of reasons, segments are generally inappropriate as the highest­
level units for storage management-there are too many of them, and they are 
far too small for efficient storage and retrieval on high-latency devices (unless 
they are far too large to be appropriate for memory caching when a single 
object is touched). 

Segments may instead be aggregated arbitrarily to form folios, which are the 
units in which storage devices will deal with the data. Examples of folios in­
clude an ordinary Unix file containing one or more segments, a raw DD2 tape 
partition containing n consecutive segments of a store, a raw R.A.ID parti­
tion contiguously containing every kth segment of a store, and a Unitree file 
containing the k most frequently accessed segments. Folios have appeared in 
other lightweight object persistence managers such as PTool [4], but the de­
sign differences between PTool and the .Argonne software are substantial. In 
PTool, a persistent pointer names the folio in which the object is contained. 
In our software, folios are orthogonal to persistent pointers. vVe can reorganize 
segments into arbitrary folio arrangements, and all persistent pointers will be 
unchanged and valid. A storage server is free to rearrange segments without 
knowledge of segment contents, and without concern for external references 
to objects within the segment. 

Physical location and access method identification for segments are maintained 
in metadata represented by an ordered list of retrieval rules. Dereferencing a 
pointer to a persistent object identifies the store number and segment number 
containing the object data..A. Segment Locator, which is in general replicated 
on each compute node, provides a whohas() method to map this ordered­
pair segment identification into a segment retrieval rule, customarily the first 
retrieval rule in the list matching the segment id. A getServer() method in turn 
accepts a retrieval rule as an argument, and returns a pointer to a segment 
server capable of reading and writing the corresponding segment. 

An abstract SegmentServer base class defines the interface to the handful 
of methods that all segment servers must provide, such as segment creation, 
retrieval, and updating. Segment servers for particular devices are derived from 
this base class. To add a new storage medium to the list of supported devices, 
one need only implement the SegmentServer methods for the particular device, 
add a new reserved word to the retrieval rule lexicon, and update the getServer 
method to associate the new reserved word with the new Segment Server-all 
other code continues to operate unchanged. 

What does a retrieval rule look like'? For a single segment, it may be as simple 
as associating a hostname (or localhost), a device type, and an address (for 
example, a Unix file name, an offset for a raw device, or a partition number 
and an offset for a tape) to a (store, segment number) pair. A single rule 
may define a placement convention for all the segments in a store by use 

3 



of a wildcard character in place of the segment number. Such a rule might 
specify, for example, that each segment k should be stored in Unitree with 
the pathname /mss/username/MyDatabase.k). If a particular segment is to 
be handled differently, perhaps because it has been locally cached, all that is 
necessary is to place a rule corresponding to that particular segment number 
earlier in the rule list than the default rule for segments of that store. Retrieval 
rules may also define segment-level striping (e.g., place segments in contiguous 
blocks of four, in round-robin fashion, into three Unitree files, repeating the 
process until the files are 32 segments long, then build three new Unitree files 
and repeat the process). 

In practice, one often begins with a master retrieval rule list that describes the 
location of data segments (often in mass storage). When a segment is cached 
or copied or moved to another storage location, a new retrieval rule list is 
derived, either by replacing the original rule, or by adding a rule for reaching 
the new location earlier in the retrieval rule list. A segment locator using the 
new rule list will match the segment id to the retrieval rule it encounters first. 

Rearranging data is straightforward: a utility for that purpose can be built 
essentially by incorporating a segment locator to read the current retrieval 
rules, and an array of segment servers to read segments and write them else­
where. The point is that no knowledge of the underlying object schemata is 
required-storage can be managed orthogonally to the data store's content. 

Local Caching and Replication: When a segment is copied, a correspond­
ing updated retrieval rule list reflects its new location. Since each query node 
may have its own segment locator, each may use its own retrieval rule list. 
The consequence is that there is a choice-one could have each node i retrieve 
data from node j rather than from mass storage, for example, by sharing node 
j's rule list, or have each node talk only to its own disks and to mass storage 
by not sharing retrieval rule lists. 

Preloading Local Disks: Recommended policy on many massively parallel 
architectures is to preload data, particularly shared read-only data, onto local 
disks before running the computational portion of a job. This is important in 
order to avoid serial bottlenecks (often especially paralyzing when hundreds 
of nodes are trying to read the same AFS- or NFS-mounted file, or even 
different files from the same file system). Systems often provide utilities to copy 
data to P parallel nodes in log P time. When data segments are preloaded, 
corresponding retrieval rule lists are built to reflect the new locations. As noted 
above, these lists may be different on every query node, but when the same 
segment is replicated, things are generally simpler. If segment k of a certain 
data store contains, for example, calibration data needed in the analysis of 
each event, segment k may be replicated on each query node's local disk, and 
a corresponding retrieval rule matching the segment id to, for example, a disk 

4 



3 

file named /tmp/scratch/username/MyDatabase.k on localhost, would likely 
be identical on every node. 

Multiple Access Paths: The architecture allows multiple retrieval rules 
for a single data segment. The design is intended eventually to support, for 
example, finding the first matching retrieval rule for a segment, trying it, and 
if it fails to return in an acceptable amount of time, trying the next matching 
rule, or even associating estimated costs with each candidate retrieval rule 
and optimizing the choice. We have not taken advantage of either of these 
approaches to date. Different processes may today, however, follow different 
access paths to the same data by using different retrieval rule lists. 

The User Interface Layer 

The Object Database Management Group (ODMG) is an industry consortium 
of database vendors and others who have come together to agree upon aspects 
of a common specification for object databases. These efforts have resulted in 
an emerging standard (currently ODMG-93 Release 1.2 [1]) whose components 
include: an object model; an Object Definition Language (ODL); an Object 
Query Language (OQL); a C++ binding for ODL and OQL, and a C++ 
Object Manipulation Language; a Smalltalk binding for ODL and OQL, and 
a Smalltalk Object Manipulation Language. vVhile ODMG-93 is an object 
database specification, a significant subset of it can be supported in a natural 
way by many lightweight object persistence managers. 

Our primary goal in defining an 0 D M G-aware interface layer has been to pro­
vide high-performance access to the functionality of the underlying persistence 
manager, while maintaining compatibility wherever possible with the ODMG­
93 standard's C++ binding. Where this has not been possible, we have striven 
to document carefully the differences and the reasons for them. 

Along the way, we have tried to define and maintain a clear and consistent 
boundary between the ODMG-aware interface layer of our software and the 
underlying persistence manager. To this end, we have asked the question, 
"What is the minimal interface that any persistence manager should support 
in order that it be possible to build an ODMG-compliant database on top 
of it?" We have evolved an interface that we believe is a viable first draft 
of an answer to this question. One measure of our success is that it should 
be possible to implement our ODMG-aware software on top of a wide range 
of lightweight object persistence servers other than our own, as long as they 
are capable of supporting this minimal interface. To date, we have tested 
this idea in two implementations, one using the Argonne Lightweight Object 
Persistence Manager as the underlying persistence service, the other using a 

5 



locally enhanced version of the PTool[4] software from the University of Illinois 

at Chicago. 


In our definition of the user interface layer, we have endeavored to provide, in 

an ODMG-compliant way, the functionality that users of our scientific data 

stores demand. Salient features are object schema definitions that do not re­

quire extensions to the C++language , databases that may be opened in read­

write or read-only mode, Ref-based access to persistent data consistent with 

C++ pointer usage, support for object naming, support for string storage and 

retrieval, and provision of collection classes and their associated iterators. 


Beyond the requirements of functionality, our aim has been to enable use of 

as much of the ODMG-93 C++ binding as possible without requiring query 

language parsing or preprocessing object schemata. We support 


- the d_Database class; 

- the templated collectionfacilitiesd_Collection<T>, d_Bag<T>, d_List<T>, 


d_Set<T>, and d_ VArray<T>, and their auxiliary iterator class d_Iterator<T>, 
except for the four d_Collection<T> methods that require parsing OQL 
query strings; 

- the time utility classes d_Date, d_Time, d_Timestamp, and d_Interval; 
- the d_String class; 
- reference-based object access via the template class d_Ref<T> and the class 

d_Ref_Any; 
- a rudimentary d_Object implementation (but classes need not derive from 

it to be persistence-capable); 
- the semantics of d_Transactions, and the use of d_Transactions either 

as scoping rules only (for efficiency), or as a means to allow checkpoint, 
commit, and abort operations. 

Because we do not currently parse OQL, the ODMG-93 class d_OQL_Query is 
not supported, nor is the global d_oql_execute function. 

The lack of schema preprocessing has a number of implications. A beneficial 
consequence of this approach is that users may allocate any object in persistent 
memory without our software being aware of the object's schema. There are, 
however, ODMG non-compliance consequences as well: for example, while 
ODMG-93 prescribes that a d_Error object be thrown if an assignment of 
a d_Ref<B> to a d_Ref<A> is attempted when a B is not an A, we do not 
detect this problem. More significantly, we do not yet support Relationships. 
Maintaining referential integrity of this sort is currently the responsibility of 
the user. 

We have attempted to be quite parsimonious in what we require of the un­
derlying persistence server. We require the existence of two classes, which we 
denote by Store and Pptr, as underlying implementation classes for ODMG­

6 



4 

93's d_Database and d_Ref<T> classes, respectively. vVe assume that we can 
open and close a Store, and allocate contiguous blocks of bytes therein. We 
assume that the persistence server can convert a persistent pointer (a Pptr) 
that refers to an object in a Store into a valid memory address of that object's 
image. Only a few additional features are required; these are described in [0]. 

Status and Directions 

vVe have implemented the architecture described above on the Argonne 128­
node IBM SP system, and on networks of Unix workstations, including the 
Parallel Distributed Simulation Facility at the National Energy Research Sci­
entific Computing Center. We have developed segment servers for all of the 
storage devices mentioned in the text. vVe have used these facilities both to 
provide access to storage on parallel and distributed platforms with a heteroge­
neous mix of storage media, and as a testbed to begin study of the complicated 
issues involved in physical data organization-alternative striping strategies, 
caching, replication, use of multilevel storage, and the role of parallel file sys­
tems. The ability to rapidly reconfigure our storage utilization without wor­
rying about data store contents has proven invaluable. Future work on the 
storage server will involve tools for managing retrieval rule lists, and smart 
(e.g., configuration-aware) tools for automating storage reorganization. 

Development efforts on the user interface layer are directed toward supporting 
a more extensive subset of ODMG-93, and toward providing parallelism and 
access to the persistence server's underlying multilevel storage allocation and 
management without compromising ODMG-93 compliance. 

References 

[1] 	R.G.G. Cattell et al, The Object Database Standard: ODMG-93 Release 1.2 
(Morgan Kaufmann, San Francisco, 1996). 

[2] 	n.M. Malon and E.N. May, On persistence interfaces for scientific data stores, 
ANL-HEP-CP-96-09 (submitted for publication, 1996). 

[3] 	n.M. Malon and E.N. May, Flexible storage services for parallel data mining, 
ANL-HEP-CP-96-40 (submitted for publication, 1996). 

[4] 	R. L. Grossman and X. Qin, "'Ptool: a scalable persistent object manager," 
Proceedings of SIGMOD 94 (ACM, 1994) page 510. 

7 




