
ANL-HEP-CP-94-31

PARALLEL QUERY PROCESSING FOR EVENT STORE DATA ...

D. Malon, D. Lifka, E. May
Decision and Information Sciences, Mathematics and Computer Science, -LI

The submitted manuscriPt hat been authored
by is contractor of the U. S. Govefnment
under contract No. W.31.109-EN~.38.
Accordingly, the U. S. Government reta'"~ a
nonexclusive, royalty-fr.. license to pubhS~
or reproduce the published form of thiS
contribution. or allow others to do so, for
U. S. Gover!1"'ent purposes.

and High Energy Physics Divisions, «
,II".....

Argonne National Laboratory - f"-
a
<iArgonne, IL 60439 USA :E -J

0: :::> Q,
"""':)tu 0:

R. Grossman, X. Qin, W. Xu tL.
Laboratory for Advanced Computing and

Department of Mathematics, Statistics, and Computer Science
I a University of Illinois at Chicago

.n
•

r
~

•
t\...
\J,

Q...

UI

::c.

I
...I
-Z
<C

Chicago, IL 60607 USA

Abstract

Enormous data volumes and large, geographically dispersed user

communities characterize the next generation of experiments in high

energy physics and other scientific disciplines. Parallel processing

will be integral to the solution of the information storage and re­

trieval problems that these experiments will engender.

We describe several approaches to parallel query processing that

have been implemented in the early stages of the PASS (Petabyte

Access and Storage Solutions) project. These have been tested on an

object-oriented persistent event store built from Fermilab CDF data,

and evaluated on the !28-processor IBM SP-! at Argonne National

Laboratory, as well as on networks of workstations.

The nature of high energy physics
INTRODUCTION data makes effective parallelism possible

at a number of levels-individual queriesResponding to queries directed to

may be parallelized, data servers and file
petabyte-scale scientific databases In
systems may be parallelized, and evenlarge multiuser environments will require
straightforward multiuser parallelism issignificant parallel processing capabili­
relatively free of degradation due to lock ties.
contention since the preponderance of

"'The submitted manuscript has been au­ data are accessed by most users in read­
thored by a contractor of the U.S. Government only fashion. The following sections
under contract No. W-31-109-Eng-38. Accord­ describe ongoing research in the PASS
ingly, the U.S. Government retains a nonexclu­

project in the area of query paralleliza­
sive, royalty-free license to publish or reproduce

tion for large object-oriented scientificthe published form of this contribution, or allow

others to do so, for U.S. Government purposes. databases.

------. - ~----

http:W.31.109-EN~.38

The focus of our parallel query pro­
cessing work to date has been upon repli­
cated query strategies, and upon paral­
lel strategies for caching and migration of
physically contiguous units of persistent
storage, known as folios, in which collec­
tions of persistent objects reside.

REPLICATED QUERY STRATEGIES

Replicated query strategies follow the
SPMD (single program, multiple data)
model of parallel programming. Such a
model applies when typical queries have
the form "for each event that satisfies cri­
terion A, return the derived data pro­
duced by computation B." Such queries
can be parallelized readily by replication
into queries against disjoint database sub­
sets if events are essentially independent,
or if events can be partitioned into essen­
tially independent collections.

Two replicated query strategies have
been studied in various guises. In the
first, queries are sent to worker processes,
who each satisfy the query against their
local data and send results back to the
master process. In the second, a work­
load queue is constructed, and workers in
turn remove the first workload chunk that
they can handle (e.g., for which they have
access to the requisite database folios).
When a worker completes a chunk of
work, it sends results back to the master,
and checks the queue for another chunk
of work for which it has the resources.
The process continues until the queue is
empty, or until no worker can handle any
of the remaining workload chunks.

PARALLEL FOLIO SERVERS

Work has also been undertaken on a
different approach, in which references to

nonlocal data generate requests to a fo­
lio manager, who arranges delivery of the
physical unit of persistent storage (folio)
in which the desired object resides from
one or more of a collection of parallel data
servers.

IMPLEMENTATIONS

Trial implementations of these ap­
proaches have been tested on the Ar­
gonne and Fermilab IBM SP-l PowerPar­
allel systems, and on heterogeneous net­
works of UNIX workstations. The under­
lying database was built from Fermilab
CDF data, and follows an object-oriented
model formulated as part of the PASS
project. An Argonne-enhanced version of
PTool64, developed at the University of
Illinois at Chicago, was used as the per­
sistence manager. Interprocess communi­
cation in the parallel query tests was im­
plemented using the Argonne-developed
p4 package. To date we have developed
an FTP-based implementation of the par­
allel folio server strategy, and a mecha­
nism to move database folios directly over
socket connections. We have also used
IBM's Vesta parallel file system on the
Fermilab SP-l to parallelize delivery of
database folios to single-user queries.

COMPARISONS

These approaches and their varIOUS
implementations differ in both theoreti­
cal and practical ways. Differences in­
clude single-user and multi-user speedup,
whether user code, database code, or stor­
age system interface code needs to be par­
allelized, potential for load balancing, ad­
judication of access to shared data, lev­
els of data communication traffic, parallel
work queue management, data caching,

and satisfying queries that cannot be sub­
divided into pieces that can be handled by
a single node.

Both replicated query strategies are
relatively easy to parallelize, and do not
require parallelization of (possibly propri­
etary) database packages. In our test im­
plementations, parallel queries were con­
structed by hand from serial queries writ­
ten in C++, but with a modicum of
control at an Object Query Language
(OQL) interface, automatic paralleliza­
tion should be possible in many cases.
The first query replication strategy re­
quires only the ability to initiate the
parallel queries and to aggregate the
returned data; it does, however, rely
upon the assumption that parallel work­
ers have access to disjoint portions of th~
database. The workloa,d queue) imple­
mentation correctly 'handles the problem
of shared data and implicitly provides dy­
namic load balancing when data are in
fact shared, but the workload queue in­
troduces the potential for a serial bot­
tleneck when the number of parallel pro­
cesses is large. Such a bottleneck should
be avoidable by making workload chunks
sufficiently large.

Parallel folio server strategies rely on
the ability of the database package to
connect to parallel and high-performance
data servers, and may result in high data
traffic. Parallel speedups derive from par­
allel data paths to multiple queriers, par­
allelism implicit in the data server (e.g.,
the Vesta parallel file system), and the
potential for parallel prefetching.

It is likely that in a very large
database environment, queries will ben­
efit from parallelism both in the query
processing and in the data services. It
is also likely that a hybrid strategy that

partitions the query workload between
the querying node and the database host
nodes may prove the most promising. We
have done some preliminary theoretical
performance analysis along these lines,
and we plan to investigate such strategies
in the coming year.

REFERENCES

1. 	 R.G.G. Cattell, editor, The Ob­
ject Database Standard: ODMG-93,
Morgan Kaufmann Publishers, San
Mateo, CA, 1994.

2. C.T. Day, R. Grossman, D. Malon,
E. May, L.E. Price, D.R. Quarrie et
aI, "The PASS Project Architectural
Model," Draft, January, 1994.

3. R. 	 Grossman, X. Qin, "PTool: A
Low Overhead, Scalable Object Man­
ager," Proceedings of SIGMOD 94, to
appear.

4. 	 E. Lusk, R. Overbeek, et aI, Portable
Programs for Parallel Processors,
Holt, Rinehart, and Winston, Inc.~

New York, 1987.

._-------------- ­

