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Extraction of Z’' Coupling Data From 2’ — jj at the ABSTRACT

LHC and SSC- A recent analysis has shown that it may be possible at the SSC to extract
Information about Z’ couplings via the decay Z' — jj. This technique was
THOMAS G. RIZZO . found to be useful for some extended electroweak models provided the 2’ is
relatively lght. In the present paper, we generalize this procedure to the LHC

High Energy Physics Division and to Z''s which are more massive than 1 TeV. :

Argonne National Laboratory Probing the nature of a newly discovered pariicle at a hadron supercollider can
. be a difficult problem and one that is critical to address. For example, if a Higgs-like

Argonne, 11760439 object is discovered it will be extremely important to determine if it is the conventional
Higgs of the Standard Modei(SM), one of the Higgs' of the Minimal Supersymmetric
Standard Model, or some other more exotic beast. A similar situation would apply to
Abstract the discovery of a new gauge boson(2')-to try and identify which Z’ has been discovered.
This issue has attracted much attention in the literature! during the past fews years
with various techniques being proposed to extract information on the 2”'s couplings
to fermions. Since all of these schemes suffer from some form of weakness it is clearly

mation about Z' couplings via the decay 2’ — jj. This technique was found to be ozf' some importance to have as much artillery available as possible when assaulting the

useful for some extended electroweak models provided the Z’ is relatively light. In the It has recently been shown that it may be possible, at least for relatively light 2''s

arising from certain classes of extended electroweak models{ EEM), to use the 2’ — jj

mode as a potential source of coupling data?>. The main difficulty with this channel

massive than 1 TeV is the enormous background which arises from QCD even after very tight selection

' cuts are applied to the data in the dijet invariant mass range which the 2’ is already

known to nccupy. Sufficient statistical power must be available to fit the dijet mass

distribution quite precisely outside the signal region before a background subtraction

can be performed. Only then is it possible to have any hope of seeing excess events

due to the 2’, provided of course that the Z”s couplings are sufficiently strong. The

usefulness of the dijet channel to probe the Z"s couplings can be quantified by the

< . . resulting statistical significance, S/V/B, of the Z' peak. The purpose of the present

{Contributed to the Proceedings of the Workshop on Physics at Current Acceleralors and the work is to extend this previous analysis to both the LHC and to Z"s with larger

masses. We will see that the canonical order of magnitude higher integrated luminosity

available at the LHC will allow the dijet channel to be a useful probe of Z' couplings
for & much larger range of masses than does the SSC.

A recent analysis has shown that it may be possible at the SSC to extract infor-

present paper, we generalize this procedure to the LHC and to 2’'s which are more
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We begin by a quick overview of the analysis as presented in Ref. 3. We assume
that a Z’ has already been discovered via it’s leptonic modes so that it's mass and width
are relatively well determined. We remind the reader that for most EEM the Z"'s width
to mass ratio is usually rather small, I'/Mz < 0.05, so that excess dijets from the 2’ will
occupy a rather narrow invariant mass range. To reduce QCD backgrounds we demand
that both jets are very central and have high p's, i.e.,, =1 < n;,;, € 1 and p, > 0.2M 2
and we concentrate on the data in the dijet mass range near the 2, i.c., 0.7 < z;; £ 1.5,
where z;; = M;; /M2 with M;; being the dijet invariant mass. For smaller values of z;;,
outside the above range, the shape of the mass distribution is perturbed significantly
by our cuts while for larger values of z;; there is a loss is statistics. Since no real data
exists, both signal and background are generated numerically using a improved Born
calculation! for the QCD dijet background and a two-loop, QCD-corrected ‘K-factor’
for the 2’ production process®. QCD corrections to the 2’ decay were also included and
several different NLO parton distributions were employed to ascertain the sensitivity
of the results to variations in these distributions. Both the signal and background
were smeared assuming a dijet mass resolution of AM;;/M;; = 0.034, integrated over
bins of width 0.025M3z:, following the ATLAS analysis®, and provided with Gaussian
statistical fluctuations. Since almost all of the Z’-induced dijets should lie within the
range My + 2T, we define the range 0.9 < z;; < 1.1 to be the signal regime and fit
the ‘data’ outside this range by a degree-7 polynomial (once it is rescaled by a factor
of z};). Polynomials of higher degree fail to improve the x?/d.o.f. of the fit. The fitted
background is then extrapolated into the signal regime and subtracted from the ‘data’
leaving a potential 2'-induced event excess. This excess dijet distribution is then fit to
either a Gaussian or Breit-Wigner shape and integrated to determine the total number
of 2’ — jj events. Clearly, if the number of signal events is too small in comparison to
the background no obvious excess will be observed. Since the total number of events is
sensitive to a number of overall systematic uncertainties (e.g., the integrated luminosity
and the choice of parton distributions) as well as being sensitive to what we assume the
Z’ can to, we will normalize the number of 2’ — jj events we find to the number of

"-induced dilepton events in the discovery channel which defines the ratio R. (These
leptons are assumed to have rapidities in the range -2.5 < 9 < 2.5.) If §/ VB is too
small, R will suffer from large errors and we will learn little or nothing about the Z''s
couplings.

Fig. 1 shows two examples of where this technique works quite well for a 1 TeV
Z’ at the SSC assuming an integrated luminosity of 10 f4~', i.e., for the Left-Right
Model(LRM)® with x = ga/g; = 1 and a 2’ with SM-like couplings(SSM). For the
LRM(SSM) the extracted value of R from the ‘data’ is 34.9 £ 4.0(20.4 £ 2.2) while
theory predicts 30.5(18.9). In the LRM case, this converts to the 95% CL bound on
the parameter x: 0.83 € x < L11. Of course, the method works well only because
the statistical significance of the 2’ dijet peak is quite high, S/vB > T, for these
two particular cases. For other models one finds that S/v/B is much smaller even
for much greater integrated luminosities. This arises mainly from the fact that for
most models the 2’ couplings to fermion pairs is somewhat smaller than in either the
LRM or SSM examples. The Alternative version of the Left-Right Model(ALRM) and
the Eg effective Rank-5 models(ER5M)™#, which are described by a parameter 8, are

Fig. 1: Invariant mass distribution, in 25 GeV wide bins, of the excess dijet events due
to the 2’ of the (a)LRM and (b)SSM after QCD background subtraction at the SSC
assuming the same integrated luminosity of 10 f5~). The solid(dash-dotted) curve is
the result of performing a best fit to the excess assuming a Gaussian(Breit-Wigner)
shape for these events.
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Fig. 2: Same as Fig. 1, but for the ERSM x assuming an integrated luminosity of
(a) 10/6-! and (b) 100/~ In the second case, both Gaussian{solid) and Breit-
Wigner({dash-dotted) fits to the pesk are also shown.
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reasonably representative of models in this class. For all values of # one finds that a
1 TeV Z' at the SSC would be essentially impossible to observe in the dijet channel
unless the integrated luminosity was significantly larger than 10 fb-1. Fig. 2 shows
this explicitly for the case § = —x/2, which is usually referred to as model x in the
literature. Among the ERSM, x has essentially the largest dijet cross-section which
implies that for other values of § the situation can be significantly worse. The Z;, peak
is not visible with only 10 £6~* but is much more respectable for 100 f5-! of luminosity.
However, even in this case, the extracted value of R from the ‘data’, R = 12.7+ 2.7,
is found to not only agree with the theoretical prediction for this model, R = 9.6,
but with the predictions of all ERSM with #’s outside the range 9* < ¢ < 39°. Thus
although the increased integrated luminosity has helped us to observe the Z’, it's not
sufficient to provide us with a precise enough determination of R which we need for
model discrimination. Clearly, this implies that a value of S/vB > 5—6 is a minimum
requirement to use this technique.

If we use this minimal criterion as a guidepost for our ability to use R as a
model discriminator, we can ask how well our procedure works for other models, at
the LHC, or for more massive 2’’s. These possibilities are addressed by the results
shown in Figs. 3a-f and Figs. 4a-b to which we now turn. From Fig. 3a we see that the
dijet analysis can be applied to a 2 TeV LRM Z’ at the SSC provided the integrated
luminosity available is increased to about 25 fb~'. Z”s of somewhat greater mass
would appear to be quite hopeless requiring more than 10 standard years of running
to accumulate adequate statistics. At the LHC, however, we see from Fig. 3b that the
factor of 10 larger design luminosity may allow us to use R as a model discriminator
for masses approaching 3 TeV in the LRM case after a few years of running. (It is
important to note that the slopes of the LHC curves are steeper than those for the
SSC due to the LHC's lower value of /5.) Figs. 3c-d show a very similar story for
the SSM 2’ since its production cross section is comparable to but slightly larger than
that for the LRM. For the ALRM 2’ case, shown in Figs. Je-f, the situation is entirely
different however. We see that R can probably never be determined at the SSC, even
for a 2’ mass of 1 TeV, due to the small cross section (although an upper bound might
be obtainable). At the LHC, a 1 TeV 2’ arising from this model might be probed after
several years of running but for larger masses our dijet technique will surely fail.

The situation for the ER5M is not qualitatively different from the ALRM case,
as one might expect, but is still somewhat sensitive to the value of the parameter 4.
For the x-type Z’, we see from Fig. 4a that the SSC with an integrated luminosity
of 100 fb~' just barely manages to satisfy our ‘minimal’ critecia constraint, which is
why R was perhaps not as precisely determined as well as we would have liked in
the discussion above. Larger 2’ masses are clearly hopeless at the SSC. At the LHC,
from Fig, 4b, we see that the couplings of a 1 TeV Z| has a reasonably good chance
of being probed by the present dijet analysis after only 2-3 years of running at the
canonical luminosity. Larger masses seem to be essentially impossible. As noted above,
the x case is realistically the most optimistic of all the ER5SM. To show this explicitly,
we consider a different ERSM which has often been discussed in the literature, called

1. {This corresponds to choosing the parameter § = cos~!,/5/8.) Figs. dc-d show us
directly that for a | TeV Z;, neither collider will be able provide us with coupling
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Fig. 3: Lines of constant 5/v/B in the luminosity-2' mass plane. From bottom to top,
the lines correspond to §/vB =2, 3, 4, 8, 6, and 7 for the LRM at the (a) SSC and
(b) LHC, for the SSM at the {c) SSC and (d} LHC, or for the ALRM at the (e) SSC
and (f) LHC.
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Fig. 4: Same as Fig. 3 but for the ER5M x at the (a) SSC and (b) LHC, and for the
ERSM 5 at the (c) SSC and (d) LHC. -

information with less than a decade of running! This clearly demonstrates the shortfall
of this technique, i.e., it can only be applied for relatively light Z''s and even then only
for certain classes of EEM in which the Z’ has relatively strong couplings to fermion
pairs.

Once a new particle is produced at the SSC/LHC, our work is just beginning.
We must go beyond discovery and be able to determine just what it is that has been
found. Although the procedure that we've described above cannot be used for a 2’
originating from an arbitrary EEM if it is overly massive, it does add an important
ingredient into the mix of techniques with which the Z”s couplings can be probed at
hadron supercolliders.
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