
I

-'J ~
1...., __--------,
1'-' imltted menulCript hal bien authontd

(,"', I:ontrlCtor of the U. S. Government

'J contr1lCt No. W-31-1og.eNG-38.

nglv, the U. S. Government retain. a

utive, royalty-fr.. licente to publish

";J oduc:e the published form of thl.
 ANL-HEP-CP-92-100
~" 	 utlon, or allow others to do 110. for

overnment purpo....

Argonne,

ABSTRACT

The concept of providing transparent
access to a collection of liles in a mass
storage system is a familiar one. The goal
of this project was to investigate the feasi
bility of providing similar access to a col
lection of persistent, complex objects.

We describe an architecture for inter
facing a persistent store of complex objects
to a hierarchical storage system.
Persistent object stores support the uni
form creation, storage, and access of com
plex objects, regardless of their lifetimes.
In other words, a mechanism is provided so
that persistent objects outlive the pro
cesses which create them and can be ac
cessed in a uniform manner by other pro
cesses.

We 	 validated this architecture by im

A PROOF-OF-CONCEPT IMPLE:MENTATION OF PERSISTENCE IN A
IDERARClllCAL STORAGE SYSTEM*

Robert Grossman and Xiao Qin
Laboratory for Advanced Computing ,

University of Illinois at Chicago ' . .>
Chicago, Illinois

/>- (~"
David Lifka " /A~ (>A

High Energy Physics Division'

Argonne National Laboratory'

plementing
testing the
These tests
supports the
very large

a proof-of-concept system and
system on two stores of data.
indicate that this architecture
creation, storage and access of

persistent object stores.
INTRODUCTION

We describe an proof-of-concept im
plementation of a persistent object store
for complex objects distributed across a
hierarchical storage system. Persistent
object stores support the uniform cre
ation,storage, and access of complex ob
jects, regardless of their lifetimes. In
other words, a mechanism is provided so
that persistent objects outlive the pro-

Illinois

cesses which create them and can be ac
cessed in a uniform manner by other pro
cesses.

The concept of providing transparent·
access to a collection of Ii Ie s in a dis
tributed environment is a familiar one.
The idea is to be reference files with name
and location transparency throughout a
hierarchy of storage media, with warm files
being cached and cool files being migrated
[5]. The goal of this project was to
investigate the feasibility of providing
similar access to a collection of persistent, '
complete objects.

The motivation for this simple. For
concreteness, consider the analysis of high
energy physics data. The ease of use gained
referencing files with name and location
transparency is well established [9]. These
files typically represent data sets used by
working groups. On the other hand, physi
cists are not interested in the files per Se, '
but rather, in the events contained in the
files. Even t s are objects recorded by the
detector representing particle collisions or
putative collisions of possible interest. For
example, one could query for all events
containing two leptons with equal and op
posite charge, whose energy is between
specified bounds. This is the approach,
taken in [1], [3] and [2]. This approach re
quires that objects (in this case the events)
be referenced· with name and location
transparency.

This is in contrast to the organization
of a typical object oriented database. For

*This work supported by the U.S. Department of Energy, High Energy Physics
Division under Contract NO. W-31-109-ENG-38.

example, one typically establishes a
database by using a create command which
specifies the size and location of the store.
It is then up to the database administrator
to juggle the databases among the available
physical devices-this task becomes in
creasingly difficult as the number and size
of the databases grow.

By an object manager, we mean a system
which creates, stores and accesses objects
in a persistent fashion. An object manager
is the core of an object oriented database,
but an object oriented database also pro
vides additional features, such as transac
tions, back up and recovery, a data
manipulation language, etc. Scientific and
engineering applications typically produce
large amounts of data which must be stored
in an hierarchical storage system. The
analysis of the data is often greatly aided
by using object oriented databases [2] It is
a problem of current interest to marry
these two technologies. In this paper, we
describe one approach-using an object
manager designed to work in a hierarchical
storage system. This provides a solution
which works for data that is historical,
that is data which is write once, read many.
By layering other systems on top of this, it
is possible to add functionality to work
with non-historical data.

ARCHITECTURE

The system is divided into several
modules: a Persistence Manager, a
Persistent Volume Server, and a Persistent
Volume Mover. The Persistence Manager
implements persistence for complex ob
jects. We use a model in which persistent
memory is divided into physical regions
called persistent volumes, or simply vol
u m e s • If the Persistence Manager deter
mines that the object requested is not in a
volume currently loaded into persistent
memory, it sends a request for the volume
to the Persistent Volume Server. The
Persistent Volume Server determines the
bitfile containing the volume and sends a
request for the bitfile to the Bitfile Server,
part of the storage system. The bitfile is
returned by the Bitfile Mover, also part of
the storage system, to the Persistent
Volume Mover, which extracts the volume

from the bitfile, loads the persistent vol
ume into virtual memory, and sends a reply
to the Persistence Manager indicating that
the volume is loaded. See Figure 1.

The Persistent Volume Server and
Persistent Volume Mover should not be
confused with the Physical Volume
Repository, which is part of the Mass
Storage System Reference Model [5].

The primary design consideration for
the scientific applications we have in mind
is performance. Our target applications
contain very large amounts of experimental
or simulated data, which is historical in
the sense it is essentially write once, read
only. For this reason. we have deliberately
kept the architecture simple, and have not
tried to turn it into a general purpose ob
ject oriented database [4]. For example, if
transactions are required, they may be
implemented by constructing appropriate
layers over this architecture.

Persistence Manager

The Persistence Manager is responsible
for creating, storing, and accessing com
plex persistent objects. Objects in a per
sistent object store each have a unique id,
called a persistent id, or pid. A subset of
the objects in the persistent ,store are in
memory, or virtual memory. at anyone
time. The Persistence Manager is also re
sponsible for moving objects from memory
to permanent storage as necessary so that,
objects may persist after the process which
created them terminates and so that
persistent objects may be accessed in
essentially the same way as transient
objects.

Persistent Volume Server

We assume that from the pid of an ob
ject it is possible to infer the volume which
holds the object. If the Persistence Manager
requests an object with a pid correspond
ing to a volume which is not available in
(virtual) memory, it faults. and generates a
request for the volume to the Persistent
Volume Server. The Persistent Volume
Server then determines the bitfile contain
ing the persistent volume and sends a re
quest to the Bitfile Server, which is part of

int db = db_open(-PsiSet-);

root_iterator r;

Event *tl = r.first();

Event *tl = r.next();

db_close(db);

Figure 3: Iterating over the Events in the
collection Psi Set.

FUTURE WORK

Our proof-of-concept system supports
the transparent access of multiple persis
tent stores and persistent stores consisting
of multiple volumes. An application
simply interacts with the Persistence
Manager; it is the task of the Persistent
Volume Server to manage the necessary
volumes.

As mentioned above, we have imple
mented only a bare minimum system. We
are currently making some cosmetic
changes: providing alternate iterators for
objects using sets and other containing
classes; and interfacing the system to a
large scale storage system. We are also
currently working on fundamental issues
related to the system: developing caching
and migration algorithms for collections of
objects; extending the system by support
ing large objects, or objects that extend
over several volumes; and extending the
system so that several volumes may be
loaded into (virtual) memory at one time.

CONCLUSION

In this note, we described an architec
ture for working with very large stores of
persistent objects distributed over a
hiearchical storage system. The architec
ture, in its present form, is suited for
working with large amounts of historical
data - data that is write once, read many.
By layering other systems over this, it is
possible to build the functionality re
quired for working with data that is not
historical.

The architecture is designed so that
persistent, complex objects may be refer

enced with name and location trans-.
parency. The two main components of the
architecture are a Persistence Manager and
a Persistent Volume Server. We .assume
that the persistent store is divided into
logical collections called persistent vol
umes. Applications requiring persistence
interact with the Persistence Manager.
Persistent volumes are transparent to the
applications. The Persistence Manager·
handles persistence for volumes in the
persistent store, approximately 256MB to
1GB in size. If the required volume is not
loaded in (virtual) memory, a fault is gen
erated and a request for the volume is
passed to the Persistent Volume Server.
The Persistent Volume Server then re
quests the bit~ile containing the volume
from the Bitfile Sever, part of the storage'
system.

As a final remark, note that there is
nothing in this approach to preclude it
from working with data stored using a re
lational model. We are currently investi
gating this. We implemented a base line
proof-of-concept system. From the results
of this system, it looks like this approach
is worth developing.

ACKNOWLDEDGEMENTS

This research was supported in part by
NASA grant NAG2-513, DOE grant DE
FG02-92ER25133, and the Laboratory for
Advanced Computing.

We are grateful to members of the PASS.
Project for contributing to this work.

References

[1] A. Baden and R. Grossman, "Database
computing and high energy physics, "
Computing in High-Energy Physics 1991,
edited by Y. Watase and F. Abe, Universal
Academy Press, Inc., Tokyo, 1991, pp. 59-.
66.

[2] A. Baden, L. Cormell, C. T. Day, R.
Grossman, P. Leibold, D. Lifka, D. Liu, S.
Loken, E. Lusk, J. F. MacFarlane, E. May,
U. Nixdorf, L. E. Price, X. Qin, B. Scipioni,
and T. Song, "Database Computing in HEP
Progress Report," Computing in High
Energy Physics 1992, to appear.

[3] A. Baden, C. Day, R. Grossman, D. Lifka,
E. Lusk, E. May, and L. Price, " Analyzing
High Energy Physics Data Using Database
Computing: Preliminary Report,"
Laboratory lor Advanced Computing
Technical Report. Number LAC91-R17,
University of Illinois at Chicago,
December, 1991.

[4] E. Bertino and L .. Martino, "Object-ori
ented database management systems:
Concepts and Issues," Computer, Volume
24-4, 1991, pp. 33-47.

[5] S Coleman and S. Miller, editors, "Mass
Storage System Reference Model: Version 4
(May, 1990)," to appear.

[6] R. L. Grossman, S. Mehta, X. Qin, "Path
planning by querying persistent stores of
trajectory segments," Laboratory lor
Advanced Computing Technical Report
Number 93·3, University of Dlinois at
Chicago, 1993, to appear.

[7] R. Grossman and X. Qin, "PTool: A
Software Tool for Working with Persistent
Data", Laboratory lor Advanced Computing
Technical Report Number 93-5,
University of Illinois at Chicago, 1993, to
appear.

[8] E. Shekita and M. Zwilling, "Cricket: A
mapped, persistent object store," in A.
DearIe, G. M. Shaw, and S. B. Zdonik,
Implementing Persistent Object Bases:
Principles and Practice, Morgan
Kaufmann, San Mateo, California, 1991, pp.
89-102.

[9] J. D. Shiers, "Distributed storage man
agement in high energy physics," Eleventh
IEEE Symposium on Mass Storage Systems,
IEEE Computer Society Press, Los Alamitos,
California, 1991, pp. 109-112.

[10] I. Williams and M. Wolczko, "An ob
ject-based memory architecture," in A.
Dearie, G. M. Shaw, and S. B. Zdonik,
Implementing Persistent Object Bases:
Principles and Practice, Morgan
Kaufmann, San Mateo, California, 1991, pp.
89-102.

~-¥...~,~~. •...... "";,

~ .. \• r
... -.;..,......

the storage system, for the bitfite. The
Persistent Volume Server also sends a mes
sage to the
the specified
quired.

Persistent Volume Mover
persistent volume is

that
re

Persistent Volume Mover

In response to a request to the Bitfile
Server for a bitfile, the storage system re
sponds by moving the bitfile from the
Bitfile Mover, which is part of the storage
system, to the Persistent Volume Mover.
The Persistent V olume Mover extracts the
volume from the bitfile, loads it into
(virtual) memory, and sends a reply to the
Persistent Manager indicating that the
persistent volume has been loaded.

Although the Persistent Volume Server
and Persistent Volume Mover could be
combined into a single module, we have
found it useful to separate them. One rea
son is that a high speed data path may be
available to move the volumes, while the
request for volumes may come along an...
other path. This reason also contributed to
the decision by the Mass Storage System
Reference Model to separate the Bitfile
Server and the Bitfile Mover. Another rea...
son is that we found we convenient to im...
plement several different Persistent
Volume Servers: all shared essentially the
same Persistent Volume Mover.

VALIDATION STUDY

To validate this approach, we did a
proof-of-concept prototype using a sim
plified version of the architecture. We had
already implemented a Persistence
Manager called PTool [7]. For this study,
we implemented proof-of-concept versions
of the Persistent Volume Manger and
Persistent Volume Mover. We simulated
hooks into a storage system complient with
the Mass Storage System Reference Model
[5] by using simple look-up tables which
accessed bitfiles from disk and tape as
appropriate.

We tested the system using two stores:
a store of trajectory segments arising in
path planning problems [6] and a store of
collider events from a high energy physics

experiment [2]. We are currently complet
ing benchmarks of these tests.

Virtual
MemoIy

Figure 1: An architecture for interfacing a
persistent object store to mass storage
system.

PTool

In this section, we follow [7]. PTool
views the persistent object store as one
large persistent memory: the persistent
memory is divided into volumes. PTool as...
sumes that one or more of these volumes
are in virtual memory at a time. Associated
to the volumes of persistent memory in
virtual memory is a physical collection of.
disk blocks. The mapping between persis
tent memory and disk blocks is transpar...
ent to the PTool clients. Users do not
explicitly read or write to persistent
memory, but rather simply indicate upon
whether the object belongs to persistent or
transient memory by using the standard
(transient) allocation function (for exam...
pie, "malloc" or "new") or a persistent·
allocation function (for example, "palloc"
or an overloaded "new"). In both cases, ac...
cessing the persistent objects is the same
as for regular (transient) data. See Figures
2 and 3. In other words, the' protocol for
allocating transient dynamic memory at
run time or persistent memory at run time
is essentially the same, but the persistent

memory is available later by other pro
cesses. See [8] and [10] for a description of
this approach to persistence.

In order for applications using Prool to
access the persistent objects, the applica
tions need a mechanism to iterate over
collections of persistent objects. In other
words, the application must access each
persistent object in turn. For the proof-of
concept system, we used a simple iterator,
as illustrated in Figure 3. For other appli
cations, we have typically used a container
class, such as a set or linked list. In either
case, the iterator simply needs to access
the entry point, or starting address, of
each persistent object stored. This is done
by accessing an auxiliary data structure
maintained by Prool.

We assume that the pid of an object is
of the form (VolumeID, Location). The
Location identifies the location of the ob
ject within the volume. Two different ob
jects in different volumes may have the
same Location number. The Location num
bers are essentially virtual memory ad
dresses, or, more accurately, together with
an off-set, determine the virtual memory
address.

VTool

We wrote a software tool called VTool to
implement the Persistent Volume Server
and Persistent Volume Mover, which we de
scribe in this section. Each physical
(persistent) volume corresponds to a fixed
size region of persistent memory. A vol
ume consists of four parts:

Header. The top portion is the header and
contains identifier information about the
volume.

Object Table. The second portion is the
object table and contains the entry points
for all the objects stored in the volume.

Object Area. The third portion is the
object area and contains the persistent
objects themselves.

Free Area. The fourth portion is the free
area and contains available space for
adding new objects to the volume.

We are currently exploring the effect
of the size of the physical volumes upon
the performance of the system. Volumes
are divided into physical segments. The
current implementation allows for only one
volume to be in persistent memory at a
time; future implementations will allow
different segments from different volumes'
to be in persistent memory at the same
time. Note that this design does not sup
port objects that span across volumes. This
again will be addressed in the next proto
type.

class Event
public:

int runNumber;
int tapeNumber;
int eventNumber:
float vertex:
Lepton *lepton1;
Lepton *lepton2;
};

class Lepton {
public:

float p[4];
float charge;
};

maine)
{

Event *t1 = (Event*)

palloc(db, sizeof(Event»;

t1->lepton1 = (Lepton*)

palloc(db, sizeof(Lepton»;

t1->lepton2 = (Lepton*)

palloc(db, sizeof(Lepton»;

t1->tapeNumber = 2984;

t1->runNumber = 684;

t1->eventNumber = 1849583;

(t1->lepton1) ->charge = 0 .. 892;

root-push(db, tl);

db_close(db);

Figure 2: Using PTool to create a persis
tent Event, consisting of two persistent
Leptons, together with several persistent
integers and a persistent float.

