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1.1 Introduction

In the two-flavor approximation, the probability for a neutrino to oscillate from one flavor
to the other is given by

L
Pyyos, = sin® 26 sin?(1.27 Am’ —E—-) (1)

where 6 is the mixing angle, Am? = |m2_—m2 | is measured in (eV/c?)?, L, the distance from
the source, is measured in km, and E, the beam energy, is measured in GeV [1]. If either
Am? or sin® 24 is zero, there is no oscillation. They might also have small, non-zero values,
causing the oscillations to be so small as to be unobservable in a particular experiment.
They may also have values which allow us to determine the probability of oscillation, but so
far no compelling evidence for oscillation exists. The universal method of portraying what
region of parameter space is explored by a neutrino oscillation experiment is to mark off an
area on a Am?vs.sin®? 20 plot. See Figure 1. Typically, a line is graphed, with the claim that
if the experiment finds no evidence of oscillation, one can, for example, be 90% certain that
"Am? and sin® 20 lie within the region below and to the left of the line. Since these plots are
so widely used, it is useful to understand the process by which they are created.

1.2 Measuring Neutrino Oscillation Parameters | f

1

. . . . . | oo
We start with the case where neutrino oscillations are observed. An experiment chooses torﬁ
measure some variable, x, which is sensitive to neutrino oscillations. Let’s say that in the; =
absence of neutrino oscillations, the expected value of the variable is X, and that if neutrinos/ ¥

oscillate, a different value than X would be expected.

X # @maas = =(P) (2)

where P is the probability of oscillation. (Throughout this note, upper case will be used for
the expected value of a variable, and lower case for the measured value.) First we consider
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he case of a monoenergetic be i
: getic beam at a fixed distance. We solve equation 2 f.

: . : o -
> = P(Zmeq,) and then invert equation 1 ! PPl gl
Sillz 29 = — 5 P(xmcas)

sin (1.27Am2§[’-) -(3)

g s . . N . .
'his equation gives a value for sin?26 as a function of Am?,
arameters would lie on a curve in the Am? — sin? 24 plane.

Next we consider the case in which there is a beam spectrum, n,(E) = ¢,(E)o,(E)
here n, is the event rate, ¢, the neutrino flux and o, the neutrino cross s:.cti'onv It
1ay not be possible to solve equation 2 for a value of P. There may be terms in x. like
f(E)P(E)n,(E)dE with f a known function of energy. Then equation 2 must be solved
umerically. Equation 1 is put into equation 2 wherever P appears. (An example is given in
quation 22 below.) At each value of Am?, § can be varied until equation 2 is satisfied.

A simpler procedure is available for several tests in which all of the energy dependence
ppears only as a result of equation 1. We consider

The allowed values of these

P JP(E)n,(E)E _ sin® 20 [ sin®(1.27Am?£)n, (E)dE s
I nu(E)dE I n(E)dE | )

his P, which we may call P(zn.q,), is the average probability of oscillation of the events in
ie event energy distribution. This is necessary, in part, because no proposed long baseline
- atmospheric experiment. can measure E on an event-by-event basis. Often, we will not
se a distinct notation to distinguish P from this average P(zmca,). Equation 4 leads to

P(zmeas) [ n(E)dE 5
Jsin®(1.27Am2£)n, (E)dE (3)

sin? 26 =

Even when the energy dependence is more complicated than equation 4, it may be useful
> approximate all energy dependent variables by their average values, and solve for P(z,ca,)-
1the R, test below, for example, this approximation is a good one, even though the event
aergy distributions are slightly different. However a test which uses the rate of upward going
tuons from atmospheric neutrinos, the entire effect comes from the different P’s from two
ata sets, and the approximation is invalid. Then Equation 2 must be solved numerically.

.3 Limit Curves

1 the more general case, T,cq, is not measured exactly, and may not be significantly enough
ifferent from X to claim neutrino oscillations. Also in the absence of neutrino oscillations,
uctuations around the mean value of X are expected. We want to know what minimum
alue of zo 3% X can be taken as significant evidence of oscillation. (Here we consider the case
here x follows a gaussian distribution, but this need not be the case. It is straightforward
» generalize the procedure for any distribution.) The measured value of x will depend upon
, the probability of oscillation.

z(P) - X = so, (6)

here s i5 a constant that depends on the required confidence level (CL). For a one sided
iaussian distribution, and 90% CL, s = 1.29. In other words, one expects a 1.29 sigma or
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more excess 10% of the time. The goal, then, is to find that value of x(P), and hence P for
which

z(P) — X = 1.290- )

If there were in fact no oscillations, and the true P = 0, then we would expect Zmeas 2 To
Jess than 10% of the time. Thus if we were to measiire Tmeqs = To, We would be 90%
confident that the true value of P was less than the value implied by equation 7. We denote
the solution to equation 7 as Pnin, and this is analogous for a limit to the P(zmeas) in the
last section. As before, in the more complicated examples, we cannot solve for Ppin. Then
we view x(P) in equation 7 as z(sin? 26, Am?) and solve numerically. .

Again, if the only energy dependence in x comes from P, we can consider an average
value, and solve as before to get:

Prin [ 0 (EYdE (®)
[ sin?(1.27Am?* £)n,(E)dE

sinZ 26 =

2 Long Baseline R,/ test for v, — v.

As a first example, consider searching for v, — v. oscillation by measuring the 7,../cc, the
ratio of the number of neutral current interactions (defined here as interactions which do not
produce a muon) to the number of charged current interactions (defined here as interactions
which do produce a muon). If no oscillation occurs, the number of neutral current interactions

R ‘
— (9)
1+ R
where N, is the total number of neutrino interactions and R is the expected value for the

ratio in the absence of oscillations. (In this paper, wherever R appears without a subscript,

it refers to the expected neutral current to charged current ratio.) The number of charged
current interactions

Nnc = Ntol(

1
Ncc = Ntot(ﬂ)- (10)

Suppose, now, that there is probability P of oscillation. All of the v, interactions will be

counted as neutral current interactions, since none of them will produce 2 muon. Thus, the
number of apparent neutral current interactions will increase to

_ NtotR PNtol

Mne

“1+RTTIvR (11)
and the number of apparent charged current interactions will decrease
e = i%ﬁﬁ(l — P). (12)
Combining these two expressions, we find the measured value of the ratio
po P '
=P (13)
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Solving for P,
r—R
P= 1+r (14)

This corresponds to P(T,mear) O Prin as the case may be. In the former case, we use equation

5 to solve for 8. In the latter we need to calculate o,, the error on r. Equation 7 can be
written

r(P)—-sta‘,.:s(:"c) ! 1

cc nnc nCC

(15)
Combining with equation 14, this can be partially solved

S0,

sz'n= 1+T. (16)

Note the P,,;, depends on the measured ratio Tnejcc- However, this problem can be sidestepped
by first setting n,. and n. equal to N, and N, the values one would expect in the absence
of oscillations. One then obtains a value r = R — $0.(Npe, N..), which one uses in equation
14. Having found a value for the probability of oscillation, one can use this probability
in equations 11 and 12 to find more accurate values for n,. and n.. This process can be
iterated, and P,;, converges quickly. '

3 Long Baseline R, test for v, — 1,

As a second example, consider using the same test to look for v, — p, oscillation. Two
factors complicate the situation . First, there is 17% chance that a v, charged current
interaction will produce a muon. This is the branching ratio B. Second, the v, charged
current cross-section is significantly smaller than the v, charged current cross-section. Let
7(E) be the ratio of v, to v, cross-sections. Taking these two difficulties into account, one
finds that the number of neutral current interactions becomes

_ NutR  PNi(1- By

= 17
"= I1+R 1+R (17)
and '
_ Ngog(l - P) 'I]BPNgag ‘ (18)
"= T1+R 1+R
Combining these, one obtains :
T = R+ P B (19)
~ (1= P)+nBP
and thus,
P r- X (20)

= 7(0=B)+r(1- By)
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4 Long Baseline R,, test for v, — v,

As the next example, counsider looking for v,, — v, oscillation by measuring the ratio of the
number of muons entering the detector from interactions with the rock upstream (n,) to the
number of neutrinos interaction within the detector (n,). If we assume for the moment that
B =0 and 5 =1, then n, = N,(1 — P), and n, = N, where N, and N, are the values
expected for n, and n, in the absence of oscillations. If B is still zero, but 7 # 1, then
m = N,(1— P) and n = N,(1 — P) + N,P({Jz + 11g)- Finally taking B into account, one
obtains m = N,(1 — P 4+ Py B). n remains as before. For a monoenergetic beam, we get,

_ N,(1- P+ PyB)

L = 21
N1 - P+ P(ER)] (21)

For a beam spectrum, however,

__ JAEN(E)1 - P(E) + P(E)(E)B] )
*Iv = TAEN,(E)[1 - P(E) + P(E)(*ELE)]

1+R

N,(E) is the neutrino energy distribution for the rock muon events that we see. It has more
high energy events than N, (E) because the range of the muon is proportional to energy.
This equation cannot be solved for P, or even for an average P because there is more than
one process involved. For a particular observed ( or 10% likely) value of r,/,, it can be
solved numerically to find sin®2 as a function of Am?. However, for this process, it is a

useful approximation to replace the terms inside the integral with their average values, and
proceed.

R, —7 .
P = — u/v plv 93
Tup(T5R) = Rupu(1B — 1) . (23)

- 5 Atmospheric Neutrino test using the flavor ratio

Nucleon decay detectors have measured the flavor ratio of the atmospheric neutrino flux

as a possible indication of nucleon decay.[2, 3, 4] The ratio of muon neutrinos to electron
neutrinos is measured n
u
Ry = - ) (24)

-4

If there is a probability P of v, — v;, then we will measure 7,,/, =
can solve for P,

pte(1 — P), which we

R e e ’
p = 2#le " Tule (25)
Rye
The error on the measurement of /. is
1 1
g, = n"i — + — (26)
ne\ny 7.

[$24



For this case, the solution to equation 5 involves an integration over both energy and distance:

P(E, L)n,(E)dEdL
ruge = Fug 1= f(fn,,()E)egEBIL ) @)

The neutrino energy and distance distributions are uncorrelated, and it is convenient to
express the latter as a function of the zenith angle.

L = [r*1 — (r — d)*sin® 9]1/2 —(r—d)cosf - (28)
so that = P(E,8)n,(E)dE6d(cos 6)
. ,0)n, COs
Tuje = Rupe(1 = 27 [ (E)dE (39
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