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1.1 Introduction 
In the two-flavor approxinlCLtion, the probability for a neutrino to oscillate from one flavor 

to the other is given by 
(1) 

where 6 is the nlixillg angle, 6.m2 = lm~~ -m~J is measured in (eV/c2)2, L, the dista~ce from 
the source, is measured in km, and E, the beam energy, is measured in GeV (1]. Ifeither 
6.m2 or sin2 26 is zero, there is no oscillation. They might also have small, non-zero values, 
causing the oscillations to be so snlall as to be unobservable in a particular experiment. 
They may also have values which allow us to determine the probability of oscillation, but so 
far no compelling evidence for oscillation exists. The universal method of portraying what 
region of parameter space is explored by a neutrino oscillation experiment is to mark off an 
area on a 6.m2 vs. sin2 28 plot. See Figure 1. Typically, a line is graphed, with the clahn that 
if the experiment finds no evidence of oscillation, one can, for example, be 90% certain that 
.6.m2 and sin2 28 lie within the region below and to the left of the line. Since these plots are 
so widely used, it is useful to understand the process by which they are created. 
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We start with the case where neutrino oscillations are observed. An experiment chooses to ~ ~ ~ = 
measure some variable, x, which is sensitive to neutrino osCillations. Let's say that in the:,~ c:.n 
absence of neutrino oscillations, the expected value of the variable is X, and that if neutrinos~:t' c.o
oscillate, a different value than X would be expected., (::r,,, N 

to e 
.trl x =I Xmecu = x{P) (2) 

where P is the probability of oscillation. (Throughout this note, upper case will be used for 

the expected value of a variable, and lower case for the measured value.) First we consider 
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he case of a Jllonoenergetic beanl at a fixed distance. \Ve solve equation 2 for P to get 
:J = P(xmca.t) and then invert equation 1 

.(3) 


~his equation gives a value for sin' 28 as a function of ll.nt". The allowed values of these 
laral11eters would lie on a curve in the ll..m2 - sin2 28 plane. 

. Next \~e consider the case in which tl~ere is a beal11 spectruIU, nv(E) = rPv(E)o-v(E) 
here nv IS the event rate, tPv the neutrIllO flux and (Tv the neutrino cross section. It 
lay not be possible to solve equation 2 ,for a value of P. There nlay be terms in x like 
f(E)P(E)nv(E)dE with f a known function of energy. Then equation 2 TIIust be solved 

unle:ically. Equation 1 is put into equation 2 wherever P appears. (An exanIple is given in 
quatton 22 below.) At each value of ll.m2 

, 8 can be varied until equation 2 is satisfied. 
A si111pler procedure is available for several tests in which all of the energy dependence 

ppears only as a result of equation 1. We consider 

P = JP(E)nv(E)dE = Sill
2 28 Jsin2(1.27ll.m2~)nv(E)dE 

(4)Jnv( E)dE 	 Jnv( E)dE 

Ihis P, wl1ich we may call P(xmca.), is the average probability of oscillation of the events ill 
le event energy distribution. This is necessary, in part, because no proposed long baseline 
r atnIospheric experiment. can measure E on an event-by-event basis. Often, we will not 
se a distinct notation to distinguish' P from this average P(xmco,,)' Equation 4 lead: to 

• 2 2B P(Xmca.t) Jnv(E)dE
SIn = 	-~~----'----=--~-- (5)Jsin2(1.276m2 ~ )nv(E)dE 

Even when the energy dependence is more complicated than equation 4, it may be useful 
) approximate all energy dependent variables by their average values, and solve for P(xmco.). 

1 the Rp/v test below, for example, this approxiInation is a good one, even though the event 
lergy distributions are slightly different. However a test which uses the rate of upward going 
lUons from atmospheric neutrinos, the entire effect comes from the different P's from two 
ata sets, and the approximation is invalid. Then Equation 2 must be solved numerically. 

. 3 Limit Curves 

1 the more general case, X me08 is not measured exactly, and may not be significantly enough 
ifferent from X to claim neutrino oscillations. Also in the absence of neutrino oscillations, 
uctualions around the mean value of X are expected. We want to know what DliniInUln 
l.lue of Xo i= X can be taken as significant evidence of oscillation. (Here we consider the case 
here x follows a gaussian distribution, but this need 110t be the case. It is straightforward 
) generalize the procedure for any distribulion.) The Ineasured value of x will depend upon 

, the probahili ty of oscillation. 
X(P) - .1\ = 3fT7: 	 (6) 

here s is a constant that depends on the req Hired confidence level (CL). For a one sided 
~al1BBjan distribution, and 90% aL, s = 1.2D. III other words, one expecls a 1.29 signla or 
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luore excess 10% of the tinle. The goal, then, is'lo find thal value of x(P), and hence P for 

which (7)X(P) - X = 1.290": 

If there were in fact no oscillalions, and the true P = 0) then we would expecl Xmc:a. ~ Xo 

less than 10% of the titlle. Thus if we were to llleasi.1re Xmc:as ~ Xo, we would be 900/0 
confident that the true value of P was less than the value itllplied by equation 7. 'Ve denote 
the solution to equation 7 as Pmin) and this is analogous for a Ihuit to the P(xmc:as) in the 
last section. As before, in the nlore c0111plicated exal11ples, we cannot solve for Pmin. Then 
we view x(P) in equation 7 as X(Si1l2 28, llm2 

) and solve 1111111eric ally. 
Again, if the only energy dependence in x conIes fronl p) we can consider an average 


value, and solve as before to get: 


• 2 Pmin f nv(E)dE (8)
sin 20 = fsi112(1.27~m2~)nv(E)dE 

Long Baseline, !lnc/cc test for vJL -r Ve 

As a first exanlple, consider searching for Vp. -4 Ve oscillation by measuring the Tne/ ee , the 
ratio of the nunlber of neutral current interactions (defined here as interactions which do not 
produce a muon) to the number of charged current interactions (defined here as i11te~actions 
which do produce a muon). If no oscillation occurs) the nunlber of neutral current interactions 

R (9)Nne = Ntot( 1 +R) 

where N tot is the total number of neutrino interactions and R is the expected value for the 
:atio in the absence of oscillations. (In this paper, wherever R appears without a subscript, 
It, refers to the expected neutral current to charged current ratio.) The number of charged 
current interactions 

1 
Nee = Ntot( 1 +R)' (10) 

Suppose, now, that there is probability P of oscillation. All of the Vc interactions will be 
counted as neutral current interactions, since none of them will produce a nluon. Thus, the 
nunlber of apparent neutral current interactions will increase to 

NtoLR PNlot 
(11)nne=l+R+l+R 

and the number of apparenl charged current interactions will decrease 

Ntot 

nee = 1 + R (1 - P). (12) 

Combining these two expressions, we find the measured value of the ralio 

R+P 
r= (13)1- p' 

3 



SolVillg for P, 
r-R 

p=-- (14)l+r 
This corresponds to P( xmc:(u) or Pmin. as the case llUty be. In the fonner case, we use equation 
5 to solve for O. In ~he latter we need to calculate .Ur , the error on I. Equation 7 can be 
written 

(15) 


COlubining with equation 14, this can be partially solved 

SUr 
Pmin. =- --. (16)l+T 

Note the Pmin. depends on the measured ratio T nc/ ec • However, this problelu can be sidest.epped 
by first setting nne and nce equal to Nnc and Nee, the values one would expect in the absence 
of oscillations. One then obtains a value r =- R - sur(Nnc , Nee), which one uses ill equation 
14. Having found a value for the probability of oscillation, one can use this probability 
in equations 11 and 12 to find more accurate values for nne and nee- This process call be 
iterated, and Pmin converges quickly. 

3 Long Baseline Rnc/ cc test for vp. ~ VT 

As a second example, consider using the sanle test to look for lip. ~ JlT oscillatioll. Two 
factors cOluplicate the situation. First, there is 17% chance that a liT charged current 
iuteraction will produce a muon. This is the branching ratio B. Second, the liT charged 
current cross-section is significantly smaller than the lip. charged current cross-section. Let 
1J(E) be the ratio of ~T to lip. cross-sections. Taking these two difficulties into account, one 
finds that the number of neutral current interactions becomes 

NtotR P Ntot{l - B)1] 
(17)nne=l+R+ l+R 

and 
Ntot(l - P) "IBP Ntot (18)

nee = 1 +R + 1 + R . 

Conlbining these, one obtains 
R +P(l- B)1] 

r= (19)
(l-P)+l1BP 

and thus, 
r-R (20) 
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Long Baseline R JL / V test for vlL -+ Vr 

As the nexl exatnple, con.sider looking for V ,1 ~ Vr oscillation by tneasuring the ralio of the 
llUlll.ber of 11l.UOnS entering the detector frOlll interactions with the rock upstrecl.111 (rtll ) to the 
llUluber of neutrinos interaction within the detector (nv). If we assunle for the l~lol11ent that 
B = 0 and 71 = 1, then nil = NIl(l - P), and nv = Nv) where Nil and .Nv are the values 
expected for nil and nv in the absence of oscillations. If B is still zero, but 1] ::j:. 1, then 
m = NIl {1 - P) and n = Nv{l - P) + NvP(IT:R + l~R)' Finally taking B into account, one 
obtains m = NIl (1 - P +P71B). n reluains as before. For a nlonoenergetic beal11, we get, 

NIl (1 - P +P71B)
Tlllv = +R (21)

Nv [1 - P + P(7+R)] 

For a beanl spectrunl, however, 

JdENIl(E)[1- peE) +P(E)71(E)B] 
(22)

Tlllv = JdENv{E)[1 peE) +P(E)(TJ(:2~R)] 

Nil (E) is the neutrino energy distribution for the rock muon events that we see. It has nl0re 
,high energy events thaI,1 Nv(E) because the range of the nluon is proportional to energy. 
This equation cannot be solved for P, or even for an average P because there is nlore than 
one process involved. For a particular observed ( or 10% likely) value of Tlllv , it can be 
solved numerically to find sin2 28 as a fUllction of 6.m2 

• However, for this process, it is a 
useful approxllnation to replace the terms inside the integral with their average values, and 
proceed. 

(23) 


5 Atmospheric Neutrino test using the flavor ratio 

Nucleon decay detectors have measured the flavor ratio of the atmosplleric neutrino flux 
as a possible indication of nucleon decay.[2, 3, 4] The ratio of nluon neutrinos to electron 
lleutrinos is measured 

(24) 


If there is a probability P of VIl --+ VT) then we will measure Tille = Rllle(l - P), which we 
can solve for P, , 

P = Rille - Tille (25) 
Rille 

The error on the measurenlent of Tille is 

(26) 
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For this case, the solution to equation 5 involves an integration over both energy and distance: 

-R ( _JJP(E,L)nv(E)dEdL) (27)rp/e - pIe 1 J J nv(E)dEdL 

The neutrino energy and distance distributions are uncorrelated, and it is convenient to 
express the latter as a function of the zenith angle. 

L = [r21 - (r - d)'2 sin2 ep/2 - (r - d) cos e 	 (28) 

so 	that 
_ R (1 _ J~1I' J peE, e)nv(E)dEed( cos e) 

(29)rp/e - pIc 	 2i1" Jnv(E)dE 
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