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1 INTRODUCTION

Understanding the structure of the nucleon is clearly one of the most challenging problems in
modern physics. Apart from its intrinsic interest, there is by now a broad appreciation of the

role its internal structure plays in determining the properties of finite nuclei. While lattic

devotees continue to work on the brute force solution of QCD, the range and sophistication_ *

of phenomenological models of hadron structure continues to grow. On the other hand, the
tests usually applied to those models tend to be rather indirect. It is really only in the last
ten years or so that deep-inelastic scattering data, which is our only direct view of the quarks
inside hadrons, has been taken seriously as a source of useful information [1, 2].

In these lectures we shall outline some of the progress that has been made in using deep-
inelastic scattering (DIS) to refine our knowledge of hadron structure. Of course, in order to
be reasonably self-contained we need to devote the first few sections to the kinematics of DIS,
the parton model and the standard machinery required to treat DIS within QCD - namely
the operator product expansion and the renormalisation group. In sect.4 we turn to recent
work which successfully connects the MIT bag model with the measured parton distribution
functions. We shall see that a number of features of those distributions can be understood
in terms of familiar physics required in almost all quark models. We also examine a recent
development which treats the spinor structure of the composite nucleon seriously.

There has recently been quite a bit of interest in the role of the meson cloud of the nucleon
in DIS. This is explained in detail in sect.5. Our discussion includes the reasons for preferring
the infinite momentum frame for the calculation as well as a detailed comparison with recent
data. In sect.6 we turn to some unexpected surprises which DIS experiments have revealed
~ including the apparent violation of the Gottfried sum rule, the proton “spin crisis”, and
the nuclear European Muon Collaboration (EMC) effect. All of these phenomena arc rich in
information about the non-perturbative structure of the nucleon, free or bound. Finally in
sect.7 we make some concluding remarks.

! Address from 1 September 1993: Institut fiir Theoretische Physik, Universitiat Regensburg, D-93040
Regensburg, GERMANY
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2 BASICS OF DEEP-INELASTIC SCATTERING \Qb

The elementary ideas of DIS can be found in many text books and reviews {3-10}. In this
section our aim is simply to define our notation and collect together the essential formulac.

Consider the inclusive scattering of a high energy lepton (initial energy E, final energy
E', and scattering angle 8) from a hadronic target (mass M and initial four-momentum p) as
illustrated in Fig.1. The spacelike four-momentum transferred to the target is denoted ¢. For
an unpolarised target the laboratory differential cross-section for electromagnetic scattering is
calculated by contacting the lepton tensor Ly, with the hadronic tensor W*":

W"" = W+ Pl (1)
i
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and the two arbitrary functions W, and W; contain all the information we can learn about the
target from such experiments. After contracting the tensors and integrating over phase space
we find:

d'o = + ‘Zsin"g{—ll~ .

4
dE'dQ ()
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All of the information concerning the structure of the target is now contained in the structure
functions Fy (= MW,) and F; (= vWy, withv = E— E the photon energy in the laboratory
frame) which can depend on at most two variables. It is most usual to choose those to be the
Lorentz invariant quantities Q*(= —¢? > 0) and Bjorken z (= —¢*/2p- ¢ = Q*/2Mv).

For v(7) scattering from an unpolarised target we find a third structure function, Fj3, asso-

ciated with parity violation:
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Finally, for scattering of a polarised electron (or muon) from a polarised, spin-1/2 target there

are (at least in principle) two more structure functions (g1 and g) which can be measured.
Denoting beam and target helicity with arrows top and bottom respectively we find:
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(We note in passing some recent theoretical arguments {11] which imply a relationship between

g1 and gz, bul we shall not discuss these further here.) In the decp-inelastic regime Q* and v
are both very large (Q > 2 GeV?, v > 1 GeV) but 7 € (0,1). Clearly the second term on
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the r.h.s. in equ.(6) will be negligible if g, and 92 are of the same order. For this reason only
g1 has been measured so far. To determine g; one would need to work with a longitudinally
polarised beam and a transversely polarised target. However, even then the cross-section is of
order (1/Q) times that given in equ.(6):

([20’ - ind ,|0,2(El)‘2 2Eg? )
dE'dN (T B l) _m [.‘/l + m} sin§. )

In the late 1960s tremendous excitement was generated by the discovery at SLAC that the
structure functions were almost independent of Q? over a very wide range. That is, they were
functions of the single variable — Bjorken z. It is very casy to see that this is what one would
expect if the nucleon contained a collection of clementary constituents (initially called partons
by Feynman but later identificd with quarks) with low mass, which do not interact strongly
during the DIS collision.

For simplicity it is usual to consider this problem in a so-called infinite momentum frame -
e.g. one where the nucleon has momentum P 3> M in the z-direction so that its 4-momentum
is p = (P;0,0, P). Suppose a constituent with 4-momentum yp = (yP;0,0,yP), where y is the
“momentum fraction” of the nucleon carried by the constituent, absorbs the photon. Its final
invariant mass squared will be:

(wp+9) =9 - Q*+2y p-q. @®)

But p?* < Q% and p - ¢, and the invariant mass squared of the parton must be small (~ 0) by
assumption. Then we find y = Q*/2p - ¢ which was called Bjorken z above. Thus we see that
under the assumptions of the parton model, only a parton with fraction z of the momentum
of the nucleon can absorb the exchanged photon (or W-boson). In the case that the impulse
approximation is valid, DIS structure functions then mneasure the number density of partons in
the nucleon with momentum fraction z.

It is usual to define distributions ¢'!(z) which.gim the number density of quarks in the
target with helicity parallel or anti-parallel to that of the target. For example, u(z)zdz gives
the fraction of momentumof u quarks in the proton with momentum between z P and (z+dz)P
in the infinite momentum (rame (and with either helicity). By charge symmetry u also gives
the distribution of d quarks in the neutron.

The structure functions mentioned earlier are directly related to these distribution functions.
For an electromagnetic probe one finds:

R(e) = 66 +'a) )
Fyz) = 2zF\(x) (10)
8@ = 33 ') - o'(@) (1)

with e, the charge in units of ¢ of quark flavor q- Equation (10) is the Callan-Gross relation and

relies on the partons having spin 1/2 and no transverse momentum (in the infinite momentum
frame). In general we have

L+ 1
F, = Tl —
T (12)
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where R is the ratio of cross-sections for absorbing a longitudinal to that for a transverse 4

photon. Experimentally R is small {12} (< 0.1) for all z, for ¢* 2 5 GeV2.
For neutrino scattering from an isoscalar target one finds

FP = (utatd+d+s+s), (13)

which measures the total quark content of the proton. Even more important, by combining v

and 7 data one can measure the combination
F& = (u—i+d-d), (14)

which isolates the excess of quarks over antiquarks - i.e. the valence quark distribution of the
nucleon. Clearly we would expect the sum rule (due to Gross and Llewellyn Smith)

/l dz F"z) =3 (15)
o

to be obeyed. It will also be useful to define the n'th moment of a structure function like z Fs,

Fy or 2K} as, e.g.
i
Ms, = ]0 dz 2" [z Fy(z)]. (16)

Initially the major experimental activity in this field was at SLAC, but for the past 10-15
years, the emphasis has shifted to the muon and neutrino beams of CERN and Fermilab. For
a thorough summary of the experiments at these laboratories we refer to the recent review by
Morfin [13). While most of data has been been accumulated for Q? between 5 and 20 GeV? and
z between 0.1 and 0.65, Q? as high as 200 GeV? and z as low as 1074 (at HERA) have now been
obtained. (The latter is particularly relevant for certain sum rules as we shall see.) Figure 2
illustrates the results typically obtained — “this experiment” is the CDHS neutrino experiment
[14]. We note that the antiquarks, which form half of the sea of virtual pairs in the nucleon,
are concentrated at low z (z < 0.3). The valence quarks (c.f. equ.(14)) dominate the large z
region. There is impressive agreement between the weak and electromagnetic experiments once
one allows for the appropriate charges. Actually the situation is a little worse than Fig.1 might
suggest. Because of systematic crrors, different muon data sets on the same target may differ
by as much as 10-20%. These diflerences are typically within the quoted systematic errors.
Again such differences can be important whenever an absolute measurement is required - e.g.
in the spin sum rule.

It is clear from the analysis of the experimental data that even in the Bjorken region the
structure functions have a weak Q*-dependence, and therefore so do the distribution functions
which we write as ¢(z,Q?). If one sticks to any one data set in order to (partially) avoid
systematic errors, this variation of the structure functions (scaling violation) is essentially
logarithmic. In order to understand it one must go beyond the naive parton model to QCD.
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section involves a sum over all (unobserved) final states, X.

Figure 1: The deep-inelastic cross-
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3 PERTURBATIVE QCD

In developing a theoretical description of the deep-inclastic process shown in Iig.1 it is usual to
assume that the wavefunction of the target has no high-momentum components (i.c. p} <« Q?).
Thus any Q?*-dependence can only come from the lepton-quark scattering process. Scaling
results if the quark is treated as point-like and the trivial @%-dependence of the Mott cross-
section is factored out. On the other hand, in an interacting ficld theory, the lepton-quark
scattering amplitude will involve radiative corrections, some of which add coherently (e.g. wave
function and vertex renormalisation) while others are incoherent (e.g. bremmstrahlung). It is
well known that such radiative processes lead to corrections which vary logarithmically with
the appropriate cut-off scale — in this case Q%

For explicit calculations of thesc radiative corrections, we refer to some excellent texts [3-10).
It is particularly important from the point of view of application to other systems, that one
can develop a very physical interpretation of this Q® variation. This is perhaps best expressed
through Close’s “onion skin” picture, whereby every time we increase Q?, we increase the
resolution at which we observe the structure of the target — hence revealing more and more
of its previously virtual quarks and gluons. The mathematical description of the variation of
the structure function of Q2 is given by the Altarelli-Parisi equations. 1f one sticks to any one
of the data sets mentioned above (in order to avoid systematic errors), the Q? variation of
the structure functions is well described by these cquations. Ilowever there are discrepancies
between data sets and difficulties have also been encountered when trying to make a consistent
fit to the EMC data on different nuclear targets.

The most rigorous approach to the calculation of structure functions, and the description
of their Q2 variation, comes through the opcralor product expansion and the renormalisation
group. As these are also discussed in many texts, we highlight only those fcatures needed for
our main consideration, namely the prediction of structure functions from particular quark
models.

3.1 The Operator Product Expansion

As electromagnetic DIS involves a total cross-section for lepton scattering with a single photon
exchanged, the structure functions are proportional {through the optical theorem) to the imag-
inary part of the forward Compton amplitude for a photon of 4-momentum ¢q. The Compton
amplitude is written:

T = i/d‘z € (N[T(5,(2).(0)) IN), (1)

where j, is the electromagnetic current operator. The essential idea of the operator product
expansion (OPE}) is that one can expand the time-ordered product of the currents in what is
essentially a generalisation of the familiar Taylor series. That is, onc wriles it as an infinite
series, whose terms each involve a (possibly singular) function of z? times a local operator, in
geﬁcral involving (0) and derivatives of 1(0), contracted with products of 2* . It is crucial
that this is an expansion of the operator which is therefore target independent.
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e ewppng LuICUUE MAICES, tor purposes of illustration, one has schematically:

T(u)i(0) = 3 Cinl®) 2+ 2 O™ (18)

where for example one might have an operator O]} of the form:
$(0)y" D* - - D" p(0) (19)
BN D HOFON™ - D™ p(0) (20)

and so on. Now ignoring renormalisation 3 has dimensions of [energy]:‘/ 2, which is usually called
simply dimension-3/2. Therefore the L.h s. of equ.(18) has dimension 6. Suppose the operator
O;n has dimension N;, then C~’,~,,, must have dimension 6 +n — N;. After Fourier transformation
to give the Compton amplitude ( equ.(17)) it will therefore behave like Q*+"~™. Since Q* — oo
in the Bjorken limit, the dominaut operators will be those with the largest exponent, or the
smallest value of (N; — n) — which is usually called “twist”. One can easily check that the
operator in equ.(19) is twist-2, while that in equ.(20) is twist-4. With a little thought one can
see that twist-2 is the best that can be done, and therefore DIS in the Bjorken limit will be
entirely determined by lwist-2 operators.

The operator given in equ.(19) is called a singlet, twist-2 operator because it involves a trace
over flavors. The only other twist-2, singlet operator involves the gluons:

gaapmaDm. cou Dhnet Iﬂl‘nﬂ' (21)
One can also write down a set of non-singlet operators
,}](0)7111 D" .. DR Ah(0), (22)

where ); are the flavor-SU(3) matrices. For simplicity we shall concentrate on the non-singlet

operators from now on.
In general the matrix elements of these operators must be of the form

(NIOB# INY = p" ...p" (N]O;.|N). (23)

Returning to equ.(17) we realise that the Fourier transform of z, is essentially ¢,/Q?, which

contracted with p* gives 1/z. Thus we find that in the large-Q? limit, schematically (i.e.
corresponding to equ.(18))

T ~ Y Ca(@%) =7 {N|0a| N}, (24)

and we have incorporated an appropriate number of factors of Q=2 into the (n’th derivative of

the) Fourier transform of C. to give C,,. The latter is easily seen to be dimensionless.
Finally, for the full electromagnetic case onc finds

i [ d'z ¢ TG(2)3u00)
= Z [(.‘h‘m.‘lvqu + Guuolur + Goua Wl — 9uvqmquz)ci‘ﬂ(Q2)
In
+ (guv - %i) ‘IVI‘IMC:":"(QQ) = i€uapg), qﬂ(Iﬂ?an(Qa)]
2\" i1 i
Xy *** Qun 'Q"‘g‘ 0; - (25)

T

Here we have kept only the twist-2 operators, C;, and C,'"',, correspond to the parity con‘se}ving
transverse and longitudinal contributions respectively while C3, is the parity violating term A
leading to F in »(P) scattering — c.f. equ.(5). ' .

3.2 The Renormalisation Group

The arguments just presented must be modified in a field theory like QCD. The matrix element
of the currents on the Lh.s. of equ.(25) must be renormalised, as must the matrix elements
of the operators in the OPE on the r.h.s. This procedure introduces a new mass scale (or re-
normalisation scale), %, upon which no physical results can depend. It is very important that
the p? dependence of the coefficient functions Cin(@% 1% 9%(u?)) be chosen such that equ.(25)
is true after renormalisation. From the practical point of view it is crucial that the OPLE is an
operator relationship which holds independent of the target. One can therefore calculate the
#? dependence for a simple target, such as a free quark. As this too is found in many texts
[3-8] we just review it briefly.

Assuming that the operator O, is multiplicatively renormalised by 25}, we define
_ O9(u?)
Ala) = Oln p? (26)
and ‘
_ 9InZo,
L TR (27)

(Note that we have dropped the label i for convenience.) We shall show below that the product

Cn(Q?, 1%, ¢*){N|0,|N) is measurable and therefore cannot depend on p2. (1t is proportional
to the n’th moment of the DIS structure function defined in equ.

- (16) ). For the present we
write

d

(28)
and hence (in an appropriate gauge)
I¢] 99 & 2 2 2
(mn u + dlnpu2dg ’YOn) Cu(@ 26" = 0. (29)

However we saw above that for twist-2 C,, is dimensionless and therefore can only depend on

Q? as Q*/u*. Thercfore we can replace 8/d1n y? by =9/8InQ” and equ.(29) becomes

J " J .
(m ~ B(9(Q ))W + 'you) C. = 0. (30)
The first two terms are casily identificd as ~B(9(@%))d/dg(Q?) so that equ.(30) implies
' dinC,  —yp,
dg(Q*) — B (31




Finva:ll‘y we obtain:
99N y
Ca(@% 12, 6% (1) = Cu(@,Q%9%(Q"))exp (“ ],(‘,,, 5“-‘7)~ (32)

In practice one has a series expansion for 7(g’) and B(g') to only a few terms. In the so-called

leading order we have

7 ¢

Blg) = 6 LAy 1(9) = w1655 (33)
and

Cu(@, Q%@ = 1. (34)

Then the integral in equ.(32) is easily performed and we find

£

2 2 2 R0 G(Qz)) ° (35)

Co(@% 1%, 9%) (Ma(“z) ,

and using the calculated value of fo (for Ny quark flavors) and 73, the anomalous dimension

dg is

_ l('_"_ = ______“‘__4 1-— — 44 m” ) 36
b = 28, 33—2N,( n(n+1) ,,z_:, (36)

3.3 The Moments of the Structure Functions

As we hinted above, there is a direct connection between the moments of the structure functions
and the Compton amplitude which we have calculated so Tar. In fact as a function of v for

fixed Q2, T, has two cuts, (v,00) corresponding to the physical region and (—o00, —#4)
corresponding to crossed processes. In terms of z, again for fixed Q?, the corresponding cuts
run from (0,1) and (~1,0). Thus the dispersion relation for T, at fixed Q? has the form

Tw(@@) = 55 U N /,.,]M (37)

v —v

Replacing v’ by z' and using the optical theorem to replace IinT, by the total cross-section,

which is by definition the structure function, we find
1
Tule,@) = Lo [ do'() " Waule', Q7). (38)

Note that for the various terms in T}, (see equ.(25) ) the sum over n is restricted to even or
odd values depending on the crossing propertics of the corresponding picce of W
Comparing equ.(38) with equ.(24) we see that the product of the cocfficient function C,, and
the operator matrix element is measurable. Indeed it is equal to the moment of the appropriate
structure function as defined in equ.(16). Using the result of the above analysis based on

the OPE and the renormalisation group, we see that the @? variation of the moments of the
structure functions is given by perturbative QCD. To leading order one finds:

27\ %
MAQY) = Ma(QY) (Zzgg;) : (39)
For fixed Q7 it is then easily shown that
InM(Q) = ;’:" In M,.(Q%) + constant, (40)

and therefore a log-log plot of any two moments should be a straight line whose slope is predicted
by QCD.

All of the above discussion of Q2 evolution involves non-singlet operators. The Q2 evolution
of the operators given in equs.(19) and (21) is more complicated because they mix under
renormalisation. While the corresponding analysis is not much more difficult (it involves a 2x2
matrix), it would divert us too much to explain it here. Instead we refer to the appropriate
texts [3-8] — for example there is a concise summary in Table 2 of the review by Altarelli [9].

3.4 The Inverse Mellin Transform

Given an analytic continuation of a set of moments, M,(Q?), there is a standard method for
reconstructing the corresponding function — this is the Inverse Mellin Transform (IMT):

eFy(2,QY) = — /::;mdn 2" Myn(Q?). (41)

2me
(Here C is chosen so that the integral exists.) If the moments can be written as a product, as

in equ.(24) or (25):

Man(Q%) = Cu(Q1®) (N0 (1*)IN) (42)

then the IMT zFj is just a convolution of the IMT of C, (denoted by C3} and {N|O,|N)
(denoted F3), viz:

zh(z,Q% = /-Ca(wly, 1) (WFs(y, 1)) {43)

This is an extremely important result. In particular, C; is totally independent of the struc-
ture of the target — a property known as factorisation. Clearly if we can evaluate the structure
function of the target at any renormalisation scale 2, equ.(43) allows us to calculate it at all
higher values of Q. Higher order QCD corrections do not alter this result in principle, they
just make C3 harder to compute. For this reason p? cannot be too low.
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4 RELATION TO SIMPLE QUARK MODELS

At last we have collected all the results necessary to understand how to relate quark models
to QCD. (Of course, if one could use non-perturbative QCD (e.g. on the lattice) to calculate
{N[O.(s*)|N) this would be unnecessary. However this is not feasible for more than a few
moments at the present time — sec for example Lissia et al. [15] and Sachrajda [16].) Since
the models are only “QCD motivated”, the connection cannot be rigorous. On the other hand
we know of no sensible alternative to what is proposed here.

Apart from lattice technology, the only known technique for solving a bound state problem
in field theory is to make quantum corrections about a classical solution. That is, one calculates
radiative corrections at some renormalisation scale using perturbation theory and then solves
(non-perturbative) classical equations of motion. One can then systematically add quantum
corrections to the classical solutions. We assume that whatever quark model we are using
represents just such a solution, renormalised at some scale p®. Although physically measurable
quantities cannot depend on g, the classical approximation may be better for some value. We
treat the value of ;i? appropriate to a given model, which we shall call Q2, as a free parameter. If
one can evaluate the twist-2 target matrix elements within the model, then through equ.(25) and
(32) (or equivalently (42) and (43)), one can calculate the twist-2 structure function at all Q2.
Even though the twist-2 contribution may not be dominant at @3, the general considerations
presented carlier (sec the discussion of higher twist below equ.(20)) ensure that at high enough
Q? it will eventually dominate. .

The most convenient practical method for evaluating the twist-2 moments of the structure
function of some target follows from important work by Jafle [17]. However, his article which
was entitled “parton distribution functions” involved no discussion of renormalisation group
corrections, and the calculations in it were only made in the Bjorken limit. It would therefore not
be surprising if the student were confused as to the connection between his parton distributions
(e.g. calculated for some model) and experimental data. We shall make that connection quite
clear.

Following ref.[17] we define a function H(a) (in the A* = 0 gauge):

@) = g1 [ dse M NI LE W O)IN) (44

Here we understand a sum over the spins of the target (|V), mass M), ¢ denotes a connected
matrix element and ¥4 (£7) is an abbreviated notation for “5‘31/)(2;0,0, -z).

To understand why the second field operator is evaluated at a point on the light-cone with
respect to the first we recall equ.(17). In the target rest frame we can choose the photon four-
momentum g to be (#;0,0, —v— Mz) with v — oo. (Clearly Q% is 2Mvz.) The argument of the
exponential in equ.(17) is iq - z which becomes i{1/(2° + z%)/2 + Mz2%]. The rapid oscillations
as v — oo drive (2% 4 z%) to zero in the Bjorken limit and hence the process is light-cone
dominated. (Causality implies that z& must be zero if we are to obtain a non-zero contribution
to the connected matrix element.)

As a further matter of some practical importance, Jaffe has argued that the time-ordering
in equ.(44) can be dropped. In particular, it was shown in ref.[17] that for a connected matrix

1l

element involving field operators separated on the light-cone one can write either
(NITWLE L O)INY. = (NJpL(E ), (0)N), © sy
or equivalently
(MTELE W+O)IN)e = (N4 (0)L (£7)IN).. (46)

The only reason for preferring one form to the other is calculational simplicity, because equ.(45)
has no semi-disconnected contributions for a > 0 while the second form has none for a < 0.
In general one can show that f{{a) = 0 for |a| > 1, or alternatively that H(«a) has support on
(-1,+1). .

The next step in cstablishing the significance of f/(a) is to show that its n’th moment, A,:

A = /_’:'da o™ H(a) (47)

is just (N]O2,|N) (see sect. 3.2 of ref.[17]) where O,,, is the local twist-2 operator of order n
associated with the structure function Fé")‘ Finally one has

F{) = z (H(z)- H(~2)), (48)
while
F{Nz) = (H(z)+H(~z)). (49)

Comparing with the parton model formulae in equs.(13) and (14) we identify ¢(z) = H(z) and
g(z) = —H(—z) for z > 0.

Since, as explained earlier, we view the quark model which we use to evaluate H(a) as an
approximate solution of the QCD equatiops at a renormalisation scale @2, we add the Q2 label
to ¢ and §. Using the relations (45) and (46) to simplify the calculation, we find therefore:

oo Mo
W(Q0) = 5 [ deemMENIBLE WL O)IV). (50)

and

4(=, Q(z))

1

Moo
= [ _ dzemME NI, ()L (0)IV)... (51)

(In the last equation we used the translational invariance of the field operators to shift the
argument £~ in 1[)1, to —£~ in 4. We then changed the integration variable from z to -2z.)

Before describing some numerical results obtained from equs.(50) and (51), some remarks
must be made. Whereas we followed ref.[17] in taking the Bjorken limit (@* — o0) in order to
obtain these parton distributions, the operator matrix elements needed in equ.(17) in order to
reproduce data at some finite Q should be evaluated at that Q2. Although there is no rigorous
proof yet, we believe that the difference between the exact results and the equations we use
should be of order 1/Q?. (This is the case for the simple models which we have considered.)
Effectively it amounts to a smearing of (N[} (2%0,0, %) $+(0)[N} about the point 2® = —;3
by an amount of order 1/v (and therefore of O(1/Q?)).
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» Since we only intend to compare our twist-2 predictions with data at high Q2| it is consistent
to ignore this correction. Indeed, from this point of view, cqus.(50) and (51) are the twist-
2 quark/parton distributions whose evolution is governed by perturbative QCD. In order to
establish this result it is crucial that the renorinalisation scale is not a momentum cut-off
(c.f. ref.f18]). It is of course also crucial that the OPE has allowed us to factorise the target

dependence from the @ dependence of the quark-probe interaction.

4.1 The MIT bag

Starting from the usual expression for the twist-two quark distribution in equ.(50), one inserts a
complete set of energy and momentum eigenstates hetween the field operators. For the nucleon
itself and for the intermediate states we usc translationally invariant Peierls-Yoccoz states.
These will be two-quark (with mass in the region of 3A//4) and three-quark + one-antiquark
(with mass of order 5M/4) states.

In the calculation of the antiquark distribution §(z, Q2) (for which v and 4! arc interchanged
in equ.(50)) the dominant contribution is from a four-quark intermediate state (again with mass
of order 5M/4). One novel feature of this calculation is that it is quite clear that the nucleon
has an intrinsic sea [19] — even in a model with .just valence quarks, like the three-quark bag.
Furthermore, as a result of the Pauli exclusion principle, this intrinsic sca will not be flavor
symmetric [19}. Indeed we will find more dd pairs in the sca. (This is because, with two spins
and three colors one can insert d quarks into five different 1s-states in a proton bag whercas
there are only four states available for u quarks.) Clearly an asymmetry such as this will have
important consequences for the Gottfried sum rule as discussed in sect.6.2.

The dominant piece of the valence quark distribution calculated from equ.(50) is that in-
volving a two-quark intermediate state. This term is controlled by two parameters, the bag
radius and the mass. For the latter it is important to take into account [20] the cffect of gluon
exchange which raises the mass of a pair of quarks with spin 1 and lowers that of a spin 0 pair
so that the resultant splitting is 200 MeV.

Rather than using the model for the contribution to the valence distribution from 3¢ 4 §
intermediate states, we simply use a phenomenological term of similar shape (say (1 —~z)7) with
a normalisation chosen to ensure that we have threc valence quarks. Under QCD evolution,
this phenomenological term moves to small z so that there is no significant uncertainty for
Q*R 5 GeV?and z 201 [21, 22]. 1t is also worth noting that at small z we are sensitive to
long-distance physics (the important values of 2 in ¢qu.(50) are roughly up to order (Mz)™!)
which is difficult to handle in any phenomenological quark model, so it will be difficult to do
better in the near future.

In Fig.3 we show a comparison between the valence quark distribution of the proton calcu-
lated for a bag radius of 0.8 fm and various phenomenological fits which will be loosely referred
to as data. A priori we have no way to specify the hag scale g Instead it is determined by
seeing how far one must evolve until the agreement with data at 10 GeV? is optimal. Clearly
the overall description of the data is rather good. Only at very large values of z (z 2 0.7) is
there a significant difference. At such values the struck quark will have a momentum greater
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Figure 3: The valence quark distributions for the proton in the bag model (R = 0.8 fm) at the
bag scale 4? (0.25 GeV?) and at 10 GeV? (solid lincs) [21, 22]. The dashed and dotted lincs
are the Duke-Owens (23] and MRS parametrisations [24] at 10 GeV?2.
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Figure 4: The valence quark distribution of the proton as in Fig.3 but for B = 0.6 fm

We have also included the fits of EHLQ [25] and DFLM [26).
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than 1 GeV/c and one would expect to have to include the effect of correlations. There is an
additional uncertainty associated with the use of leading order QCD, which may be less reliable
for higher moments and hence large z.

On the other hand, the agreement with data for calculations with a bag radius of 0.6 fm
are essentially perfect (see Fig.4). The improvement at large z is a consequence of the higher
average momentum is the smaller cavity. Certainly it would be tempting to conclude that
0.6 fm is preferred. We choose not to draw that conclusion at this stage in view of the problems
just cited. Instead we are content to observe that a bag radius in the range 0.6 to 0.8 fm gives
a very good representation of the data. Particularly for the calculations at 0.6 fi the bag scale
is rather low (e.g. 0.26 GeV in Fig.4). For Agcp = 0.2 GeV, as used here, this gives a rather
large value of o,(z?). Other phenomenological studies have used similar values in perturbative
calculations of QCD evolution [27], but we would be more comfortable with u closer to 0.7 or
0.8 GeV. This does seem to be a likely, desirable consequence of including the pionic corrections
needed to preserve chiral symmetry [28, 29]. While we shall not pursue this discussion now,
the effect of these pionic corrections on the Gottfried sum rule will be mentioned later.

Because the quark distributions measured in deep-inelastic scattering involve light-cone
correlation functions, the energy of the struck quark is as important as its three-momentum.
This is why, even for SU(6) wavefunctions for which the u and d quarks of all spin orientations
have the same distribution of three-momentum, one finds important differences in u!! and d'
by including the first-order one-gluon-exchange corrections to the energies of the intermediate
(diquark) states inserted in equ.(50) [20-22,30]. (The lowest mass diquark will give the hardest
quark distribution.) In particular, in this unsophisticated model one can readily see that the
ratio d{z)/u(z) tends to zero for = going to one. As a consequence Fa,/F — 1[4 asz — 1 [3].
Figure 5 shows the general agreement between the data for the dfu ratio and our calculations.
Only at very large z is there any serious discrepancy and this may also be related to the absence
of short-range correlations in the bag {31]. -

In Fig.6 we see that this same, simple physics, familiar from low energy spectroscopy, also
leads to a quantitative understanding of the proton spin structure function, gi,(z). The crucial
feature is that only a u quark with its spin parallel to that of the proton is accompanied by a
low-mass spin-singlet pair of quarks (in an SU(6) proton). As a consequence u! is the dominant
parton distribution at large z.

Of course, because we are using an SU(6) spin-flavor wavefunction, the integral of our g,
agrees with the Ellis-Jaffe sum rule [33] — unlike the data [32]. A clear indication of this
problem is the quantitative disagreement at intermediate z in Fig.6. One knows that a more
sophisticated treatment of the proton wavefunction including gluonic and pionic corrections
would improve the situation a little [34-36]. However, it is also known that the anomaly plays
a critical role in the flavor singlet distribution [37-39] and this is still rather controversial [40].
We defer further discussion of this issue to sect.6.3.

Independent of the question of the Ellis-Jaffe sum rule, it would be extremely interesting to
obtain data on the neutron spin-dependent structure function g;(z). It is an exciting prediction
of the bag model that g, should become positive at large z. However, a recent extension of
that work to include pion corrections {29} has led us to question the sensitivity of this prediction

15

0.8

0.6

0.4

dy(x) / u,(x)

0.2

.

Q%=10 GeV?
0 | { 1

0 0.2 0.4 0.6 0.8 1.0
X

Fi.gl‘xre 5: The bag model prediction for the d/u ratio calculated including the energy shift
arising from one-gluon-exchange (heavy solid curves). For comparison we also show four fits to
world data. The parameters are as for Fig.4.
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Figure 6: The spin-dependent structure function of the proton, g,, calculated in the bag model
in comparison with the data of EMC [32]. ’
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to sﬁmll changes in the model. Morever, if the discrepancy between quark model calculations
{e.g. Fig6 above) and the data arises because of the axial anomaly, there could even be a
change in the sign of g1 at large z [41, 42].

4.2 Relativistic Models

The advantages of a model such as the one just discussed is its clear connection to hadron
spectroscopy and low energy properties. One drawback, however, is the fact that the nucleon
wavefunction used in equ.(50) is essentially non-relativistic - i.e. we need to use a technique like
Peierls-Yoccoz to construct a state of total momentum zero. Here we outline some recent work
in calculating nucleon quark distributions within a relativistic, covariant approach. Further
details can be found in ref.[43] (see also ref.[44]).

To see how one can formulate the problem in a relativistic manner, we need to go back to
the hadronic tensor W,,, and in particular delve deeper into the Lorentz and Dirac structure
of the truncated nucleon tensor, that is, one which has its fermion legs amputated. Because of
the additional spinor degree of freedom the structure of the truncated tensor will necessarily
be more complicated than that of the full nucleon tensor, W,,. However, once we identify the
relevant structures that contribute to the physical tensor in the Bjorken limit, we will be able
to use these in a fully relativistic, covariant calculation of the nucleon structure function. The
formalism developed here can also be extended to the case of off-mass-shell nucleons, since the
truncated tensor will generally depend upon p? as well as ¢ and p - q.

We can firstly observe that the nucleon tensor can be written (45}

M w*(pa) = T[4+ M) W (p,q)] (52)

where we have explicitly separated the nucleon spinors from the remaining interaction. In
general, W* must be constructed from the Lorentz tensors (Dirac scalars) g"*,p*,¢* and
Dirac matrices I,9*, ", 7*ys and 7s. By parity considerations terms involving y#v; or 5 will
not contribute to the spin-averaged tensor. Furthermore, terms with o#* will not contribute to
W, Therefore we can write [43]

We(pq) = 3 (IWR+ pW} + qW3) + - (53)

where each of the functions on the right hand side is a scalar function of ¢%, p - ¢ and p*:
W.} = W’}(p, q) = W}-(p’,p-q, ¢%). Substituting equ.(53) into (52) and comparing with equ.(1),
we see that the transverse structure function Wy (Wy = W, = F;/M) can be written as a
linear combination of three independent terms,

M Wr(pq) = 2M W2 4+ 2M* W} + 2p-q W2 (54)

We can calculate the functions W-} explicitly by considering the “handbag™ diagram, which
represents the impulse approximation for quarks. As in the operator product expansion,
this amounts to separating out the ¢*-dependent part of W from the ¢*-independent, non-
perturbative part, which must be described by some model. To calculate the latter we need to
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consider quark-nucleon vertices that transform as scalars or vectors under Lorentz transforma-
tions (since the intermediate spectator diquark state will have either spin 0 or 1, and we need
to make an overall Lorentz scalar). It is straightforward to identify the form of the vertices that
are allowed by lLorentz, parity and time-reversal invariance, however the specific momentum
dependence has to be determined within a model. In general there will be many independent
scalar and vector vertex functions. For simplicity we choose a specific form for the scalar (say
I9%) and vector (7,®Y) vertices. Calculating the functions &5 from first principles amounts
to solving the relativistic, many-body, bound-state problem, which present day technology does
not yet allow, so in practice we use phenomenological input to constrain their functional form.
Denoting the quark four-momentum and mass by & and m,, respectively, we can take the vertex
functions as

2y (kz—mg)
v = Ny
kz_mz

@V(k?) = NV(A(:—T;T)Q?)IZ, (55)

chosen to reproduce the correct large-z behaviour of the u and d quark distributions. The
constants Ng and Ny are determined by the normalisation condition,

/01 dz go(z) = /ux dz ¢(z) = 1, (56)

where go; are the distributions for a spin 0, 1 diquark state, respectively. Note that the above
vertex functions incorporate the confinement mechanism, by removing the pole in the quark
propagator which would have occurred at k* = m?,

The result of this calculation is that each of the three functions WTo-z contribute to Wr in
the Bjorken limit [43]. This is extremely important if one wishes to discuss scattering from
off-mass-shell nucleons. In particular, as shown in ref.[43], it is very unlikely that in scattering
from a nuclear target one would obtain the same linear combination that occurs in the free case.
As a consequence the usual approximation whereby the nuclear structure function is written as
a convolution of a nucleon momentum distribution with the structure function of a free nucleon
breaks down. For further details, including a fit to the free structure functions and application
to the deuteron and nuclear matter, we refer to ref.[43].

5 ROLE OF THE MESON CLOUD

Simply on the basis of the Heisenberg uncertainty principle we know that the long range struc-
ture of the nucleon must involve a pion cloud. For example, the non-zero value for the neutron
charge radius can be easily understood in terms of the emission from a neutron of a light, neg-
atively charged virtual pion, n — p+ n~. Furthermore, from PCAC, and from the tremendous
successes of chiral quark models [46-49] we expect that the nucleon should have a pion cloud.
In addition, because there is no scale at which chiral symmetry can be ignored, the nucleon
properties will have pionic corrections at all Q.
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The possible relevance of the extended pionic structure of the nucleon in high energy pro-
cesses, such as deep-inelastic scattering, was first suggested by Sullivan in the early 1970s {50}.
It was shown that the contribution to the inclusive y"N cross-section from pion exchange be-
tween the virtual photon and the nucleon scales in the Bjorken limit. The reason for this is that,
in contrast to processes such as exclusive pion-production which are suppressed by O(1/Q?)
form factors, here it is the inelastic structure function of the pion itself that is probed.

Using this picture of the physical nucleon, it was later noticed [51] that the pion cloud
could be responsible for generating an asymmectry between the i and d quark content of the
proton, through the preferred proton dissociation into a neutron and #+. Furthermore, DIS
data on the momentum fractions carried by antiquarks were used Lo obtain an upper limit on
this non-perturbative pionic component. More recently it has been hypothesised [52-56] that
this asymmetry could account for some of the apparent discrepancy between the naive parton
model prediction for the Gottfried sum rule {57] and its recently determined experimental value
[58].

Since it has by far the smallest mass, the pion was the first meson whose contributions to
the nucleon structure function were investigated {59, 60]. However, just as other mesons can
be included to give corrections to low energy nucleon properties, such as the electromagnetic
nucleon form factors or magnetic moments [61], an extended mesonic structure of the nucleon
may also be relevant in DIS.

In this section we shall give a detailed account of the calculation of the virtual meson and
baryon contributions to the nucleon structure functions. Furthermore, we will use recent DIS
data to examine the extent to which such a picture may be relevant in high energy reactions.

The basic hypothesis of this model, in which the nucleon has internal meson and baryon
degrees of freedom, is that the physical nucleon state (in an infinite momentum frame) can be
expanded (in the one-meson approximation) in a serics involving bare nucleon and two-particle
meson—pbaryon states

’N)P’W‘ = \/Z{IN)bm + Z;/dy dsz Jomun ¢M3(ywk7') |M(y,kr);B(l - Y "‘kT)) } (57)
M

Here, ¢ara(y, kr) is the probability amplitude for the physical nucleon to be in a state consisting
of ameson M and baryon B, having transverse momenta k7 and —k7, and carrying longitudinal
momentum fractions y and 1 — y, respectively. Z is the bare nucleon probability. Although we
shall work in the one-meson approximation, we shall include higher order vertex corrections to
the bare coupling constants go,,,,. Illustrated in Fig.7 is the DIS of the virtual photon from
the two-particle state |M; B). In Fig.7(a) the photon interacts with a quark or antiquark inside
the exchanged meson, while in Fig.7(b) the scattering is from a quark in the baryon component
of the physical nucleon.

According to equ.{57), the probability to find a meson inside a nucleon with momentum
fraction y (= k- ¢/p- ¢ = ki /p4) is (to leading order in the coupling constant)

I8 = 2 Gy [k bnnly k). (58)

This must also be the probability to find a baryon inside a nucleon with momentun fraction

1 — y. The baryon distribution function, fpum(y’), where ¥’ = p’ - q/p - q, is probed directly
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Figure 7: DIS from the virtual (2) meson and (b) baryon components of a physical nucleon.
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through the process in Fig.7(b), and should be related to the meson distribution function by

fmsly) = fem(l-y) (59)

for all y, if the above interpretation is valid. We also demand equal numbers of mesons emitted
by the nucleon, (n)mp = f3 dy fus(y), and virtual baryons accompanying them, (n)py =
Jo &y fam(y'):

(r)ms = SOLTE (60)

This is just a statement of charge conservation. Momentum conservation imposes the further
requirement that

(V)mp + (v)em = (n)ms {61)

where (y)mp = Jidy y fms(y) and WM = fldy' v SfBum(y') are the average momentum
fractions carried by meson M and the virtual baryon B, respectively. Equations (60) and (61),
and in fact similar relations for all higher moments of f(y), follow automatically from equ.(59).

In what follows we shall explicitly evaluate the functions fyp and fgps, and examine the
conditions under which equ.(59) is satisfied. The results will be used to calculate the contri-
butions to the nucleon structure function from the extended mesonic structure of the nucleon,
which are expressed as convolutions of the functions f(y) with the structure functions of the
struck meson or baryon:

Il

O Fan(z) = [ dy Jun(w) Fasten) (62)

§BM Fyn(z) _/rl dy' fem(y’) Fn(zp) . (63)

with zy = z/y and zp = zfy’. Note that equs.(62) and (63) are correct when physical
(renormalised) meson—baryon coupling constants are used in the functions fpg and fBMm (sec
sect.5.5 for a discussion on this point). By comparing against the experimental structure
functions, we will ultimately test the reliability of the expansion in equ.(57), and also the
relative importance of the states involving hieavier mesons compared with the pion states.
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5.1‘ Pions — Covariant Formulation

Let us ﬁrsttly review the previous calculations of the contribution to Fyy from the pion cloud.
Following the original method of Sullivan, the approach has been to simply treat the diagram
in Fig.7(a) as a Feynman diagram. With a pseudoscalar 7N coupling, gxnnit(p) i75u(P), the
contribution from this diagram to the hadronic tensor of the physical nucleon can be written

@ on (k) 1o, s W (k ;
s (P) = [ st (i;‘_’_vfnz g e+ M) irs W(kiq) (44 M) i (64)

where the hadronic tensor for the virtual pion is expressed as

pe . mpv ’E”;“:Vu/ 65
Wi = §Wie + o Wae (65)

x

and where g2y (A?) is the interaction strength. ? 1t is customary to isolate the k? dependence
of g2yn(k?) into the TN N form factor: i.e. giyn(k?) = a2yn Fen(k?), where g.nn is now
the coupling constant at the pion pole (Frn(—m}) = 1). We can obtain the contribution to
the nucleon structure function W (or Wy, by the Callan-Gross relation) by collecting gy, (or
simply g"*) terms on both sides of equ.(64) [62] to obtain an expression like that in equ.(62).
Performing the elementary trace gives a factor'2P - p—2M? = —k?, so that the distribution

function of a virtual pion accompanied by a recoiling nucleon is [51, 60]

3gin , [Fhes 2 Fan(K)(=4%)

= k2 TN ) 6
fﬂrN(!/) 1672 y oo k (k2 — m3)2 ( 6)
Here, k? = k2, — k3/(1 — y) is the 4-momentum squared of the virtual pion, with a kinematic
maximum given by &2, = —m?y?/(1 — y), and k3 is the pion transverse momentum squared.

We have also included a factor 3 by taking account of the different charge states of the nucleon
(namely 2 for the dissociation process p — nrt and 1 for p — pr®). In a covariant formulation
the form factor, F,n, parameterising the 7 NN vertex, at which only the pion is off-mass-shell,
can only depend on k2. In the literature this is most often parameterised by a simple monopole
or dipole function,

2 n
Ai{N —m,

Falk) = (G (61)

for n = 1 and 2, respectively.

Because we integrate over the recoiling particle’s momentum, in principle we could also have
contributions from processes where a baryon other than a nucleon (e.g. a A isobar) is left in
the final state in Fig.7(a). It is expected that contributions from the higher mass baryons will
be suppressed relative to the nucleon, since the maximum value of &% for which cnergy and
momentum can be conserved when a higher mass baryon is produced decreases rapidly as the
mass of the baryon incrcases. Nevertheless, the importance of the A-resonance is well known

2Gince only tree diagrams are ever considered, the pseudoscalar interaction is equivalent to that with a
pseudovector coupling (fxnn /1) @(p) ivays u{P) k%, providing the coupling constants are related by fony =
gxnn (mq [2M).
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in pion physics. In any quark model the coupling to the N and A would cuter on the same
footing.

The process where the nucleon emits a pion and leaves behind an on-shell A was previously
calculated in refs.[56, 63, 64], using the cffective interaction (fana/my) fa(p) & u(P), where
u,(p) is the spin-3/2 Rarita-Schwinger spinor-vector [65], which can be fortied by combining
the spin-1/2 Dirac spinor u(p, s) with vectors ¢, (A):

3

wlp,S) = L (55

m

lm,é—s) ex{m) u(p, s). (68)

The vectors €, can be parameterised, in a frame where p = (po; cossind |p}, sinpsin @ |p],

cosd |pl), by
&(0) = X}—(lpj, cospsind pg, singsind py, cosd po)
a
ell) = —%(0; Fceospcosl +ising, Fsinpcosd —icosyp, Lsind). (69)

The energy projection operator for the Rarita-Schwinger spinor-vector is [66]

2 ua(p, S)ip(p, S) = Aap(p) (70)
S
where
Ya¥8 - YeP8— YoPa , 2 PaPp
o = 1, ~Ga —_— .

Equation (71) can be verified by using the explicit parameterisation in equ.(69). Using this
projection operator, we can therefore proceed to evaluate the A trace {actor, which in this

case is
ST [Aanlp) 7K W2 (k,q) (4 + M) (12)

and arrive at the distribution function for a pion with a A recoil:

_4_fina Knor 10 Faa(k?) [(M + Ma)? — K] [(M — Ma)? - 47)
fer(y) - 5167?2 m3 -/-oo dk (k2 — mz)g 6 Mg (73)
where now the kinematic upper limit on &% is £2,, = —(M} — (1 —y) M?} y/(1 —y). Note

that a dipole function for the # NA form factor is necessary to suppress contributions from
large [k?].

Contributions from higher-mass baryon resonances can all be computed from the formulae
given above because the lower lying states all have spin 1/2 or 3/2. For the (spin 1/2) Roper
resonance, which with a mass Mg = 1440 MeV is the next heaviest state after the A, the trace
factor is

%T' P+ M)iys (B+ Mp) ins] = —k*+ (Mp— M)~ (74)

’
With a #NR coupling constant of g2y, /47 = 5.4 the integral over y of the pion distribution
function for a recoil Roper resonance comes to aboul 10% of that with a nucleon recoil for the
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same cut-off parameter. Furthermore, the pion distribution function with a Roper recoil appears
at somewhat smaller y than foyv or fra, which means that the convolution in equ.(62) with
the Roper distribution function will only be potentially relevant at very small z. Furthermore,
because the Roper has the same quantum numbers as the nucleon, its inclusion as an incoherent
contribution is somewhat lcss justified. In what follows we shall therefore restrict ourselves to
the nuclecon and A baryons only.

In order to conserve momentum and charge, we must also allow for the incident photon to
scatter from the recoiling NV or A after a pion has been emitted, Fig.7(b). Previous attempts
at calculating the contributions from these processes within a covariant framework were made
by several authors, including Hwang et al. [55], Mulders et al. [44], and Dmitradinovié et
al. [67], although all obtained different results. Partly because there is less phenomenological
experience with so-called sideways form-factors (where the nucleon, rather than the pion, is
off-mass-shell) some early work {52, 56, 68] simply defined fn«(y') through equ.(59). However,
this is unsatisfactory from a theoretical point of view, and ideally we should be able to verify
explicitly that within our model the functions f,y and fy. satisfy equ.(59). In historical
terms, it was the careful examination of this process that opened up a whole Pandora’s box of
problems, and led to the realisation of the terminal shortcomings of the covariant convolution
model. This issue was dealt with more deeply in ref.{43], but let us briefly summarise the origin
of the problem.

Clearly the treatment of DIS from an interacting nucleon is considerably more involved than
that from a free nucleon. As we saw in the previous section, the truncated nucleon tensor Wj".
which enters this calculation can be written as a linear combination of three independent terms.
Initial calculations [44] assumed that only the term involving the operator ¢ was relevant. For
pointlike nucleons this operator would indeed be the only one present, just as it is for a point-
like quark inside a nucleon [69]. Treating the diagram in Fig.7(b) as a Feynman diagram, the
contribution to the on-shell nucleon tensor from DIS off the virtual (structured) nucleon with
a pion in the final state can be written

Fk Fllr®)
(27)3(2ko) (p* — M?)?

XG0+ M) ins (44 1) Wi prg) (54 M) i) (1)

§NIW(Pq) = goun

with the tensor W}’ (p,q) as defined in equ.(53). Using only the operator ¢leads to the virtual
nucleon distribution function of ref.[44], namely

33 . pzn-x }‘l' 2 1- !
oty = Sy [P ap TR (- 2L am)

16x2

where p? = p2_. — ph/(1 — ¥) is the 4-momentum squared of the virtual nucleon, with the

upper limit now given by p?,,. = M?y'—m?y'/(1 ~y'), and p} denotes the nucleon’s transverse
momentum squared. Apart from possible differences in the form factors, equs.(66) and (76) are
clearly related by an interchange y' «+ 1 — y.

The large-|p?| suppression for the NN vertex is introduced by the form factor Fyy, which

23

T T LA T T
0.6} _
—-—an(y)
-—-fN"(l—y)
0.4 - .
>
Y} Pr i G
0.2} J ERREE
7
.
000l e,
0.0 0.2 0.4 0.6 0.8 1.0
y

Figure 8: Distribution functions fyn(y) and fax(1 — y) with dipole form factors, and cut-offs
Axv =1 GeV and Ay, = 1475 MeV chosen to give (n).n = {n)nx = 0.235.

is usually parameterised by a monopole or dipole function {44, 70, 71]

2 2\ "
for n = 1 and 2, respectively. However to satisfy equ.(60), the cut-off parameter Ay, will
in general have to be different from the cut-off A,y regulating the T NN vertex form factor
in equ.(66), and a different Ay, again to satisfy equ.(61). Furthermore, because the k% and
p} dependence in the form factors in equs.(67) and (77) are clearly different, the calculated
distribution functions f,n and fy, will in general not satisfy equ.(59). In Fig.8 we plot fon(y)
and fn«(1 — y) for dipole form factors, and cut-offs A,y = 1 GeV and Ay, = 1475 MeV,
respectively (to give the same values for (n).y and (r)n., namely = 0.235. Clearly the shapes
are quite different, the most obvious difference being that fy.(1 ~ y) is finite at y = 1.

By using only one operator { in equ.(75) we are of course assuming that the entire structure
function of the virtual nucleon can be represented by the function W} in equ.(53). In the model
calculation of the nucleon structure function in ref.[43] it was shown (using the simple quark-
nucleon relativistic vertex functions described in sect.4.2), that generally one has non-zero
scaling coitributions from other functions as well. Furthermore, choosing a different operator
form for W}’ can also lead to unphysical results. For example, with an operator involving [
rather than { the trace factor in equ.(75) is proportional to —m? (i.e. negative) [67].

Problems also arise for the emission of scalar mesons, for which the trace factor in fi,(y")
for the structure ¢ is 4M? —m] + (M? — p*)(1 — y')/y’, which is clearly related to the trace in
Jon(y) (namely k% + 4M?) when written in terms of the transverse momentum squared. For
an operator I, the trace factor in fns(y’) is 2p* + 2M? — m?, which not only violates baryon
number conservation but also leads to an unphysical (negative) cross-section. For the DIS from

24




.« a viﬁ:ual A component, these same difficulties will also be present, since the A hadrouic tensor

will have a non-trivial spinor structure, similar to that for the nucleon.

These are the first hints of problems with the covariant approach to calculating DIS processes
involving virtual nucleons. Indeed, the convolution formula in equ.(63) appears to be a very
special case that cannot be easily obtained from the above considerations. The prescription of
ignoring some of the structures in Wﬁ" is clearly unsatisfactory, as in principle all should be used.
Another important assumption in the covariant convolution model is that the dependence of the
virtual meson and baryon structure functions in equs.(62) and (63) on the particles’ invariant
mass squared is negligible. The argument usually made is that the vertex form factor suppresses
contributions from the far off-mass-shell configurations (i.e. for k2| R 10 M? [56]). However,
strictly speaking, in this approach even the identification of the off-shell structure functions
themselves is not very clear. Some suggestions about how to relate the off-shell functions to
the on-shell ones were made [72, 73] in the context of DIS from nuclei, although these were
more ad hoc prescriptions rather than theoretical derivations. More importantly, a covariant
treatment of DIS from virtual nucleons essentially involves both nucleon and antinucleon degrees
of freedom. In contrast to this, the Fock state expansion in equ.(57), and in particular the
interpretation of f(y) as meson and baryon probability functions, is only meaningful in the
IMF. Thus, simply put, the difficulties encountered in trying to obtain scnsible results from
the covariant calculation of f(y) result from an incompatibility of the covariant formalism
with the initial hypothesis that the physical nucleon state can be expanded as in equ.(57).
The challenge is therefore to formulate the problem self-consistently, using a single formalism.
Since we would like to study the relevance of the virtual meson cloud of the nucleon, the most
economical solution would be to keep the Fock state expansion in equ.(57), and reformulate
the rest of the problem in time-ordered perturbation theory (TOPT), where equ.(57) is well
defined. In fact, an early calculation of the function fyn(y) in TOPT was performed some time
ago by Giittner et al. [74], in the context of pion electroproduction. Morc recently the merits of
this approach were expounded by Zoller {75}, who demonstrated that the distribution functions
for the 7N and 7A states calculated in this fashion satisfied equ.(59).

5.2 Pions — TOPT in the IMF

An alternative to the use of covariant Feynman diagrams, in the form of “old-fashioned” time-
ordered perturbation theory in the IMF, was proposed some time ago by Weinberg [76] for
scalar particles. This was later extended by Drell, Levy and Yan [77] to the 7 N system in DIS.
The main virtues of this approach are that off-mass-shell ambiguities in the structure functions
of virtual particles can be avoided, and that the meson and baryon distribution functions can
be shown to satisfy equ.(59) exactly. We firstly review the resuits for the pion cloud, and then
compare these with the previous, covariant calculations.

In the time-ordered theory the analogue of Fig.7(a) will now involve two diagrams in which
the pion moves forwards and backwards in time, Fig.9. However, in a frame of reference where
the target nucleon is moving fast in the 2 direction with longitudinal momentum Pr(— o),
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Figure 9: Time-ordered diagrams for pions moving (a) forwards and (b} backwards in time.
Time is increasing from left to right.

only that diagram involving a forward moving pion gives a non-zero contribution. In the IMF
the target nucleon of momentum P = (Or, P) has energy

M? 1
P = PL-{-m—i-O('i)z) (78)
Following Weinberg [76] we write the pion 3-momentumn as

k = yP+ky (79)
where k7 - P = 0, and conservation of momentum demands that the recoil nucleon momentum
is

P = (1-y)P-krs (80)

Since all particles arc on their mass shells the energies of the intermediate meson and baryon
must be

k3 4+ m? 1
by = P, +L_ﬂ+o(__) 81
k3 + M? 1
m o= g0 (57). @

For forward moving particles, Fig.9(a), y and 1 — y are positive, and applying the rules of
TOPT (76} the contribution to the hadronic tensor of the physical nucleon can be written

- / d’k gann(k)
(27)3(2po)(2ko)* (Fo — po — ko)?

XS P+ M) i Welp,0) (54 M) i) (89)

sMW (P, q)

The energy denominator in equ.(83) can be rewritten as (Po — po — ko) = (M? — S=n)/2Py,
where

Kopm? Kt M?
‘ senv = san(kd,y) = (po + ko)® — (p + k)? T:m + T1~y
L]

is the centre of mass energy squared of the intermediate 7 N state. Changing the variables of
integration from d°k to dy and dk%, all powers of P, are seen to cancel when combined with

(84)
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the vertex factors, (2po)™" and (2ko)~?, leading to a result that is Pp-independent. Equating
coefficients of g, we find that the = distribution function with an N recoil is

/°° dkj Fan(san) K+ y*M? (85)
o (1-y)y (M —swn)?\ 11—y

which means that the result of equ.(66) is reproduced, form factor aside. Obviously because

_ 3giun
wa(y) = 6x?

here all particles are on-mass-shell, we cannot use the same k2-dependent form factor as in the
covariant case. In the time-ordered calculation, it is quite natural to choose the form factor
to be a function of the centre of mass energy squared of the N system, s,n, as was done by
Zoller {75]. For the functional form of Fxn{s.n) we choose a dipole parameterisation,

A2+M’)2

A%+ s.n (86)

f:N(st) = (
normalised so that the coupling constant g.nw has its standard value at the pole (F(M?) = 1).
Previously, in refs.[75, 78] an exponential function was used

M? -ﬂs,N)

};N(SRN) = exp ( Az (87)

although rel.{75] in addition followed an unconventional normalisation.

For a backward moving meson, Fig.9(b), y is negative, and in this case the energy de-
nominator becomes (Fo — po — ko) = 2yP + O(1/Py,). Therefore in the P, — oo limit this
time-ordering is suppressed by a power of 1/P, and so does not contribute.

For an interacting nucleon with a pion recoil, the contribution to the nucleon hadronic
tensor is

2
6(Nw)w4w(‘o, q) = . dapz ngN(p) 2
(27 )%(2po)*(2ko) (Po — po — ko)
1 . uw ;
xGTe[(f + M) ivs (B4 M) Wi (prq) (F+ M) ins]. (89)

The kinematics here are similar to those described above, namely the nucleon and pion move
with 3-momenta

p = v¥P—kr (89)
k = (1-¢)P+kr (90)
and have energies
K+ M? 1
= Wl P, + L1 —
m o= wip 0 (2) (o)
k3 4 m? 1
ko = H—g¢ T —
o = vt n it o) e

respectively. Then direct evaluation of the trace in equ.(88) gives

2(2P-p — 2M?) [g* (2MW} + 2M*W} + 2 ¢ W2) + .
= 2(2P-p — 2M*) ¢ Win(p.q) + - (93)
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where now the exact on-shell nucleon structure function appears, and automatically factorises.

For a backward moving nucleon, y' is negative, and 2P - p — 2M? = —4y'P} + O(1/PL),
so that the numerator becomes large in the P, — oo limit.” Technically this is due to the
“badness” of the operator s, which mixes upper and lower components of the nucleon spinors.
The energy denominator here is (o — po — ko) = 2y'Py, + O(1/P.), and when squared and
combined with the 1/P? from the integration and vertex factors, the contribution from this
diagram vanishes when P is infinite. Therefore we need only evaluate the diagram with the
forward moving nucleon, which gives the result

n _ 39wy [® _db} FRa(sws) ki + (1 - y')*M?
Mnay’) = 1672 /0 (= )y (M? = s5,)? v (94)
with
, kz‘ M2 kz 2
sunlkhy) = sl 1-y) = LMD b, (95)

yl 1 — yl :
Notice that the integrand is identical to that in equ.(76), when p? there is written in terms of
p% (or k%), except perhaps for the form factor. It was shown in [75] that within this approach

there is an explicit symmetry between the processes in which the intermediate pion and the
intermediate nucleon are struck if the form factor in fy, is taken to be

Fun(snz) = an(_er); (96)

Then as long as the same cut-off mass parameter is used in both vertex functions, equ.(59) is
automatically satisfied. * In Fig.10 we plot the function fyn(y) evaluated in the IMF, with
both the y-dependent exponential, equ.(87), and dipole, equ.(86), form factors, and compare
this with the function evaluated in the covariant approach, with the k*-dependent dipole form
factor in equ.(67). In order to make the comparison meaningful the cut-offs have been chosen
to yield the same pion multiplicity (n}xn (== 0.235), for which the cut-offs are A,x =1 GeV,
A, = 1380 MeV and A = 1425 MeV. With the y-dependent exponential form factor San(y) isa
little broader and peaks at around y = 0.3, compared with y ~ 0.2 for the covariant convolution
model with a dipole form factor. The y-dependent dipole form factor yields a distribution which
is a little broader still. The consequence of this will be that the convolution of f,n(y) with Fypy
for the y-dependent form factors will have a slightly smaller peak and extend to marginally
larger  (see sect.5.4).

The processes involving DIS from 7A states can also be calculated in the IMF, although
some care must be taken when describing the # NA interaction vertex in TOPT. Namely,
in TOPT the relevant vertex is .(p) (£ — p)* u(P), rather than #i,(p) & u(P) as in the
covariant theory, where of course the two are (trivially) identical. Using the same formalism as
for ca}culéting fxn, and with the kinematics as given by equs.(78) to (82), but with M — M,,
we find that the pion distribution fuuction with a A left in the final state is:

3The form factor in equ.(86) may also reduce the number of free parameters in models of NN or NW scat-
tering [79), where currently different form factors are necessary for the meson- and baryon-exchange diagrams.
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Figure 10: Distribution functions f,,N(y) evaluated using covariant and time-ordered pertur-
bation theory. The covariant function is as in Fig.8. The TOPT functions are cvaluated
with exponential and dipole form factors, with cut-offs A, = 1380 MeV and A = 1425 MeV,
respectively, to give the same value for (n}.n = 0.235.

a (o dE F2u(5:a)
fraly) = 5167:;2’/ (1 —Ty)y (Sr: — M2)?
x{ 34+ (Ma — (1= y)M)*] [k} + (Ma + (1 = y)M)?]
6 M (1-y)°

(o7

where 5,4 = $;n(M — My}, and we take the same functional form for the 7 NA form factor

as for the 7NN form factor in equ.(86).

For an interacting A with a pion recoil we need additional information on the truncated A
hadronic tensor, which in this case will involve additional Lorentz indices stemming from the
fact that the A has spin 3/2. For an on-shell A the hadronic tensor can be represented as [80}:

WEpa) = 3T [Aase) W27 (p,0)] (98)

with A®#(p) the A energy projector given in equ.(71). Assuming the simplest structure for the
truncated A tensor, namely {75]

Wel(p,q) = —g¢*° Wi(p,q) (99)

where WK" has the same Dirac and Lorentz structure as the truncated nucleon tensor, gives

the result

Wi(p) = 2(MaWQ + MAWL + p-qW3) 3 + - (100)
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Figure 11: Distribution functions f,a(y) evaluated using covariant and time-ordered perturba-
tion theory. The covariant function is evaluated with a dipole form factor with cut-off mass
Asa = 1 GeV. The TOPT functions have exponential and dipole form factors, with cut-offs
A. = 1565 MeV and A = 1512 MeV, respectively, to give the same value for (n),ny = 0.114.

so that by comparing coeflicients of g* we can use the term in parentheses to define the on-
shell A structure function. Utilising the form equ.(99) for the truncated A tensor, we can then
evaluate the trace

STr {w + M) (P =)o A°'(p) Wonas(p,9) A”?(p) (P - p)s]
' = aiys (6 + (Mo —y'MP?) (k4 (Mo 4y M)’
((2MaWR + MEWA +p-qW) G + ) (101)

50 that the on-shell A structure function factorises to give equ.(63), with the virtual A distri-
bution function given by

4 Jena (> _dkp _ Fi.(sar)
far(y) = mz 16”?/ (1 =30y (san — M?)?
[+ (Mo — y'M)"] [k} + (Ma +y' M)
X
6 M "

(102)

Clearly this is related to fra(y) by equ.(59) if Fra(sza) = Fax(3ax), where sax = s,a(M —
Ma).

In Fig.11 we compare the function fya(y), calculated in the IMF, with the function given by
equ.(73). The k*-dependent form factor in the covariant formulation is a dipole form (A, =
1 GeV), while the sya-dependent form factors are dipole (A = 1512 MeV) and exponential
(Ae = 1565 MeV), with all functions normalised to give the same {n},a(~ 0.114). Whereas
for frn(y) the y-dependent form factors produced a slight hardening of the distributions when
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compared with the covariant form factor, liere we see a marked difference between the two
calculations, in which the distributions calculated in the IMF are considerably broader and
extend to larger y.

Having found a useful method for obtaining the pion distributions in a self-consistent man-
ner, we next apply the TOPT/IMF formalism Lo non-psendoscalar anesons. As we shall sce the
difficulties encountered in attempting to compute the contributions from vector mesons make
the covariant approach to this problem very problematic, and from a technical point of view the
vector mesons can only be handled adequatcly in the IMF. I'rom a physical point of view, our
aim will be to test the relevance or otherwise of the higher mass meson states in the physical
nucleon. We focus primarily on the vector mesons, but also brielly re-examine the importance
of kaons in the time-ordered formalism.

5.3 Heavier Mesons

The importance of vector mesons in nuclear physics is well known. In the context of meson
exchange models of the NN force in nuclear physics, it has long been realised that vector mesons
play a vital role [79,81-86]. For example, the isovector p mcson provides some cancellation of
the tensor force generated by = meson exchange. On the other hand, the isoscalar w meson,
through its large vector coupling, is responsible for the short range NN repulsive force, and
also provides most of the spin-orbit interaction. Traditionally it has been neccessary to use
hard vector meson—nucleon form factors in order to fit the NN phase shifts [79]. However,
alternative approaches have recently been developed in which the NN data can be fitted with
quite soft form factors [86-88}.

i From another direction, the vector meson dominance modcl of the clastic clectromagnetic
nucleon form factors, in which an isovector photon couples to the nucleon via a p meson,
provides a natural explanation of the dipole @? behaviour of the yNN vertex function. Recent
analyses (86] have shown that a pNN vertex parameterised by a soft monopole form factor
(Amonopote ~ 800 MeV) provides a good description of the @* dependence of the Dirac and
Pauli form factors. The effect of vector mesons upon nucleon clectromagnetic form factors has
also been explored [61, 89] in the cloudy bag model [47], and in various soliton models {90].

In previous calculations [55], the vector meson distributions were cvaluated within a co-
variant framework, but with the assumption that the vector meson and nucleon intermediate
states were on-mass-shell. In this section we extend the analysis of pions in sect.5.2 to the vec-
tor meson sector. Specifically, we shall demonstrate that the vector meson functions, calculated
within the TOPT/IMF formalism, can be made to satisfy the relation equ.(59) exactly.

For the effective VNN interaction we include both a vector, gvnn 4(p)7*eau( P), and a
tensor, funn/(4M) @(p) io®P[(Pa — pa)es — (Pa — pa)ea)u{ P), coupling, where V = p or w, and
€a{A) is the polarisation vector for a spin 1 meson with helicity A. In the calculation of the
vector meson distributions in ref.{78] the tensor coupling was taken to be ~ d@(p)ioPk,equ( P)
[79]. In our treatment of the #A states in the previous section, the derivative interaction was
constructed from baryon momenta, P, — pq, rather than {rom the pion momentum k,. For
overall consistency in calculating contributions from all the meson-baryon states, we therefore
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Figure 12: Time-ordered diagrams for the DIS from (a) vector mesons and (b) nucleons with
recoil vector mesons, that are non-zero in the IMF.

use the above interaction for the tensor VNN vertex also [91]. In both cases, however, one can
explicitly verify that the probability conservation condition, equ.(59), is satisfied [78].

The contribution from the diagram with backward moving vector mesons is suppressed in
the IMT" by the cnergy denominators, just as for pions. Therefore we only need to evaluate
the diagram with forward moving vector mesons, which gives the following contribution to the
nucleon hadronic tensor

- / dk 1
(27)3(2po)(2ko)? (Po — po — ko)?

Xy ST [ ) (svnnt) 7 4 Ly, o)
AN

(F+ M) €(Nea(X) Wi (k,q) e5(X)ea(N)

(ovmntty 2 + LBy, )] - 109

§NW(P,q)

Evaluating the trace gives

(5 wn(K) Aup + finn(k) Bas + gunn(k) funn(k) Caﬁ) (104)
where
Aag = (P=p) gap + 2(Paps + paPp)
1 P.
Bug = (P—p)’ gop — (PaPs+paps) — 3(Fa = pa)(Fa —~ps) + ”—2MI;(P<~ +pa)(F5 + ps)
Cop = 2(P—p)*9ap — (Pa—ps) (Ps—pa) (105)

are the VNN vertex trace factors for the vector, tensor and vector-tensor interference couplings,
respectively. For an on-mass-shell vector meson, the spin 1 tensor W symmetric under the
interchange of pu «+ v and o « f, is given by

v, ~uy k Z'y
Wi b(k,q) = (g“ Wiv(k,q) +

$H
2
my

Wzv(k,Q)) 3. (106)

'
This form guarantees that the vector current is conserved, kamW§"™ = 0 = g, Wie?,

Furthermore, it reproduces the correct unpolarised on-shell spin 1 tensor when contracted with
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the meson polarisation vectors (€4() and summed over the V helicity, A [92):

S (M k) ep(A, k) WP (k,q)
A

kak 1304 §
(—m ' ") Wk, q) (107)

Wy¥(k,q)

i

k2
o

k* kv
2 W‘IV(k' q)'
iy

7

x §m’ WlV(k,Q) +

In the case of DIS from a vector particle emitted by a nucleon, we contract the spin 1 ten-
sor Wi**# with the VNN vertex trace factors in equ.(105). Equating coefficients of g in
equ.(103), and using the same IMF kinematics as for the #N system, except with m, — my,
together with the Callan-Gross relation for the nucleon and vector meson, enables the contribu-
tion to Fpn from vector mesons to be written as a convolution of the vector meson distribution
function fyn(y) with the on-shell vector meson structure function Fav(z/y), as in equ.(62),
where now
ev (e _dkp  Fin(svn)
Fn) = oz |, (g (M~ sen?
2 [ty M2 mb) (kF+ M7+ (L —y)’ml) | K +yPM? 2
x {!IVNN ( 201 — F) + — —-4M )
y* (1 —y)mi 1—y

+ gvwn fvn (-(k%- + M- (L= ymb) 4 (4 y’MZ))
2(1 ~ y)*)mi} (1-y)
. (@—9) (B +yPM?+ (1 —y)m})’ (k) + (401 — ) + y*)M?)
+ fown ( 16y2(1 — y)°M?m,
(M ™M) (R + (—4(1 +y) + )M
4(1 —y)2M?
(B + M + (1 —yP'm})’ (k%+y’M2+m2v)’)} (108)
- 22(1 - y)Pm} 2y*m},

where ¢y = 1 + 26y, is the isospin factor (here 6 is the Kronecker-§ symbol). The VN cen-
tre of mass energy squared is syny = Sxn(ms — my), and we take the same form factor
for both the vector and tensor couplings, gynn(svn) = gvnn Fyn(svn) and funn(svn) =
fvnn Fvnl(svn), with Fyn(syn) defined analogously to equ.(86).

For the vector meson recoil process, we evaluate the distribution function fyv(y’) using the
full spinor structure of Wg” given in equ.(53):

_ / &p 1
—J (27)%(2po)?(2ko) (Po — po — ko)?

g 1[04 1) (svnto) 7+ LBt — ) ) (4 ) W) (54 )
A

§NIW(p,q)

: (!JVNN(P) 7 + %@2ioa'ﬂ(Pa' - Pa')) 62(/\)60(*)] . (109)

Performing the contractions over the indices a, 8 leads to the convolution integral of equ.(63),
with the nucleon distribution function fyv(y') with a vector meson recoil given by equ.(108)
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but with y — | — ¥, with syv(k%,y') = syn(k2,1 —¢'). Again, we have evaluated only the
diagram with forward moving nucleons which is non-zero in the IMF. Thus we can prove that the
probability distributions for the VN intermediate states are related by fyv(y') = fun(l —y').

One should observe that the trace lactor inside the braces in fyn(y) is divergent in the limit
y — 0. To illustrate one of the problems with the covariant approach to calculating fvw, con-
sider a form factor which behaves likeexp [y (M? — syy)). Since k2 = —(k34+ M?y?)/(1-y), this
form factor corresponds to a k2-dependent covariant form factor proportional to exp [k* — m}].
With such a form factor, §Y¥ Fn(x) would approach a finite value as z — 0, much like a per-
turbative sea distribution. However, there are several problems with accepting such a result,
the most obvious of which is that it would violate charge and momentum conservation very
badly, since fav(y’) — 0 for ¥ — 1 and — constant as y' — 0 when the same form factor
is used for the diagram where the nucleon is struck (i.e. a form factor which in the covariant
formalism corresponds to exp[p? — M?]). Furthermore, it would lead to a gross violation of
the Adler sum rule, which integrates the flavor combination u — @ — d + d, and such a violation
has not been observed in the range 1 < @? < 40 GeV? [93]. This gives further evidence for the
preference of the IMF approach together with the y-dependent form factor in equ.(86) or (87).

To complete our discussion of vector mesons, we give the results for the functions describing
the VA states. We saw in the previous section that the contributions from the 7 A states were
certainly not negligible in comparison with the # NV components of the physical nucleon. For the
vector mesons, we would also like to examine whether the A isobar is of any importance. Since
the w meson is isoscalar, the only vector meson able to couple to a nucleon and A is the p, and for
this we use a psendovector coupling (79}, (fova/m,) #(P) ivs7°u?(p) (P - p)ats— (P — P)pta)-
Again, we drop those diagrams which give order 1/ P} contributions in IMF (i.e. for backward
moving p mesons or A). The contribution from scattering from a p meson with a A recoil is
obtained by cvaluating the following trace:

ST [P+ M) v AP () (P = PlaceNear(D) = (P = PlarchWear(N)

AN
W (k,q) insy” (P = Plyreu(N)ea(X) ~ (P = p)acgu(N)eg(X)) |(110)

where W;,“’"” is the p meson structure tensor, as given in equ.(106). The resulting probability
distribution to find a p in the physical nucleon with a A recoil is therefore

4 fona [ db} Flu(s,a)

Joalw) = gmg 1672 Jo (1 —y)y (M? — s,4)?
AMMa (), 0 n A MM, )
X {— (2ME + MM, +2M?) — W((P —p)-k)
4 4 P. )
- (MACP -k + MP(p - k)?) + ——3—1’ (2M% +4MMa + M?)  (111)

4P-p 4 M? 2 2P-kp-k P-p
k- ) g (1- 5
Bt P )( Mg) (P-p) 3mIMI  3M3
]

with the kinematics as given in equs.(78) through (82), except with m, — m, and M — M.
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Figure 13: Vector meson distribution functions in the nucleon. The (dipole) form factor cut-off
is A = 700 MeV for all curves.

For the DIS off a virtual A with a p meson recoil, we need to evaluate the trace

ST+ i1670 (P =) = (P =)

Aararr(p) W (p, q) Agupr(p)
“irsys (P =pV' () = (P - p)Pe' ()] (112)

It’s then straightforward to show, using the kinematics of equs.(89) to (92) that fa,(y') =
foa(l —y), when the form factors satisfy Foa(s,a) = Fa,(sa,).

In Fig.13 we show the vector meson distribution functions f,n, fun and f,a as a function
of y, for the dipole form factor of the form in equ.(86), with A = 700 MeV in all cases. The
dominant contributions come from the tensor (derivative) couplings, which is reflected in the
larger pN and pA distributions in comparison with the wN. Also, the vector distribution
functions tend to peak at slightly larger y values (y ~ 0.5) in comparison with the 7N and A
functions.

To conclude this discussion of heavy mesons we consider the DIS process involving the
kaon cloud of the nucleon using the time-ordered formalism in the IMF (noting, however, that
the role of kaons was first examined by Signal and Thomas [94] within a covariant approach).
Through the proton dissociation processes p — K°£°(A°) and p — K*E", the virtual ploton
will probe the quark structure of the virtual strange mesons and hyperons. Such a process will
naturally generate a non-perturbative strange quark component of the nucleon, as well as a
different antistrange sea, thereby breaking SU(3) flavor symmetry of the sea in the process.

Taking a pseudoscalar coupling for the K NH vertex, where the hyperon H = ¥ or A, the
kaon distribution function is similar to the pion distribution function fen(y), except the mass
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Figure 14: Calculated average meson multiplicities in the nucleon, as a function of the (dipole)
meson-nucleon form factor cut-off.

of the recoil state is now different,
gkwu [° A} Fhu(sku)
1672 Jo (1 -y)y (M? - skn)?
" (k} +y°M? + (My — M)(My — (1 - 2y)M))
-y

Jeu(y) = cu

(113)

where the isospin factor is cy = 1+ 26yz. Similarly for the DIS from a strange baryon with
a spectator I, repeating the calculation of sect.5.2, we find that the hyperon distribution
function fyx(y’) is given by the right hand side of equ.(113) with y — 1—y/, thereby satisfying
equ.(59) exactly. Numerically, the kaon distributions are much smaller than the vector meson
distributions, and can for practical purposes be dropped from the analysis.

The relatively small size of the kaon contributions is also clear from Fig.14, where we
compare the average number of all mesons considered, (n)ma, as a function of the dipole form
factor cut-off A. For relatively small cut-off masses, A < 0.7 GeV, the dominant contribution
is from the # N component. However, the rapid growth with A of the p meson multiplicities
and momentum fractions means that for large A (R 1.2 — 1.3 GeV) the vector mesons become
as important numerically as pions. In fact, the strong kr dependence in f,n(y) and f,a(y)
implies that for A 2 1.4 GeV {n),n actually cxceed (n).n-

Note that for the 7N component, A = (600, 1000, 1400) MeV corresponds to an exponen-
tial cut-offl A. =~ (580,1130,1360) MeV, and a covariant dipole form factor cut-off A,y =~
(590,760,980) MeV for the same (n).n. In many nuclear physics calculations quite hard form
factors of the k*-dependent type are often used, for example in NN potential models, where
cut-offs of the order of 1.5—2 GeV are typical. Clearly such large cut-offs would imply an

extremely large number of pions and an even larger number of vector mesons. Whether or not
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it is reasonable to accept such large heavy meson components in nucleon DS is debatable, but
ebviously we would like some data to tell us whether this is so.

Up until now the cut-off A has been a free parameter. hndeed, because quantitics such as the
average number of mesons in the nucleon arc not dircctly (or unambiguously) extracted from
experiment, we cannot draw any conclusions about the size of A from the functions fars(y)
alone. However, we may be able to restrict the range of allowable values of A by comparing
the calculated meson and baryon contributions with the experimental structure functions, or
quark distributions. This is where we turn our attention next.

5.4 Nucleon Quark Distributions

With the functions fyp and fpu now calculated, we are able to compute the contributions to
the quark and antiquark distributions of the proton from the DIS from its virtual meson and
baryon components. The total contribution to a quark distribution in the proton from this
process is

Sq(z) = 3 (6MPg(z) + 6(PM)g(x)) (114)

and similarly for the antiquark distribution. Using the Clebsch-Gordan coefficients for the
various charge states of the meson-baryon combinations we can casily obtain the individual
flavor distributions. For example, for DIS from virtual 7 or p mesons we have contributions

8trle Ny(z)

i

J & o o) (397 @)+ 50 @) = [ Ly w5V )

0 2 4 d 1
ete Mdz) = [ f’}fﬁp w) (3" ) + 307 @) = [ Lhugo o)V om)
etc. (115)

il
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Similar expressions can be deduced for other mesons based solely on SU(3) symmetry. For
simplicity we have assumed here the same meson valence quark distribution V*(zp) for all
mesons (sea components of the meson distributions themselves are not included),

BTN A AW L O T L R ¥ o Ly DS A g

= uft = dF° = K = K o M (116)

and have used SU(3) flavor symmetry to obtain the others.

In practical applications, for VM we can usc the experimental pion valence distribution,
which has been determined from Drell-Yan proton—pion scattering [95-97]. The pion valence
quark distribution was found to be consistent with a behaviour V¥ (x) ~ z%4(1 — £)089 a¢
Q? ~ 4 GeV? [95]. Thisis in fairly good agreement with the behaviour expected fromn large-x (~
(1—2)) counting rules [98] and small-z (~ z'/?) Regge behaviour [99]. 1t was also found in [100]
that the ratio of kaon to pion valence quark distributions was consistent with unity over most
of the x range, although dropping slightly at large =, VA JV™ ~ (1 — £)0182007 s (oriunately,
the vector meson valence distribution has not yet been determined experimentally. As a first
approximation it may secem reasonable to assume that its z-dependence resembles that of the

37

7 meson. Deviations from this may be expected on theoretical grounds, if one assumes that a
spin flip for one of the quarks in a spin 1 meson induces an additional power of (1 — z) at large
z [98].

For the diagrams with a meson spectator the contributions from DIS from the virtual baryon
B can be obtained in a similar way. For example, the change in the u quark distribution of the
proton is:

x/p — dy’ 4 1 3 2 n — ﬂ F _{ g
SN *Phy(z) = /‘Ffzv 1oy’ (5" (zs) + ¢ (zs)) = / " In x/p(y)(31‘($8)+ 3d($a))
etc. (117)

Again, for simplicity, we relate all of the baryon quark distributions to those of the proton. For
the neutron this is trivial if one assumes charge symmetry. Since the A has spin and isospin
3/2, from the SU(6) quark model we expect that the valence spectator diquark will always have
spin and isospin of 1. Using this fact we can relate the valence quark distributions in the A
to the d quark distribution in the proton (since the spectator uu diquark in the proton has
the same quantum numbers), v®** = gum‘ = 3d%* = 3d, with the distributions for the other
charge states obtained from isospin symmetry. Similarly for the £ and A hyperons, according
to SU(3) flavor symmetry we would expect sE* = d and uB* = 29" = 2¢* = u.

For our numerical results we use experimentally determined coupling constants, all of
which are referred to the nucleon pole. For the nNN coupling we use the recently deter-
mined value gy n/47 = 13.6 [101], which is marginally smaller than the “traditional” value
[102). The vector meson—nucleon couplings are obtained from analyses of 7N scattering data,
g:NN/41I' - 055, prN/gpNN = 6.1 [103}, and gf,NN/41r = 8.1, waN/ngN =0 “04] For the
kaon-hyperon—nucleon couplings we use g&ny,/47 = 13.1 and g%y /47 = 3.7, as in ref.[94]
(although this K N coupling is somewhat larger than the ones determined from KN forward
dispersion relations [105] or in some hyperon—nucleon potentials [106], however even so the
strange contributions are still very small). Finally, we use the quark model to relate the 7 NA
and pNA couplings to other experimentally measured ones {107}, f2y, = (72/25)fyn, and
fina = (Final Finn) Gonn (mo/2M)? (14 fonn/gonn ).

Apart from the coupling constants, the only other parameters in the model are the meson-
baryon form factor cut-offs, A. The initial idea about how one might use DIS data to constrain
A was to compare (y)mg with the measured momentum fractions carricd by the antiquarks
[51]. Even more stringent constraints can be achieved by demanding that the shape of the
meson exchange contributions to §(z) (i.c. 6(MP)g(x)) are consistent with the shape of the
experimental antiquark distribution.

As mentioned in the previous section, the fact that the old f.n(y) calculated in a covariaut
framework peaked more sharply and at smaller y compared with the f,n calculated in the
IMF means that the quark distributions in equs.(115), (L17) will also peak at smaller z for
the covariant k*-dependent form factor. Because the TOPT/IMF formulation generally gives
broader antiquark distributions, the limits on the cut-offs will be more severe than for the
covariant case, since at intermediate z (z 2 0.2) the TOPT/IMF distributions are still large
compared with thc experimental data.
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Figure 15: Proton SU(2) flavor antiquark distributions for DIS on the various meson-baryon
components of the nucleon. The dot-dashed and dashed curves represent the contributions
from N and wN + wA states, respectively, for A = 700 MeV. The solid curves are the total
contributions from all meson-baryon states, for A = 700 MeV (lower curve) and 900 MeV
(upper curve). The data, indicated by the dotted lines, are from refs.[108, 109].

Figure 15 shows the contributions to the SU(2) antiquark distribution z(@ + d)/2 from all

of the meson-baryon components of the nucleon, for A = 700 and 900 MeV - in equ.(86). This
is compared with recent empirical data (as parameterised by Morfin and Tung {109], Owens
[108], Eichten et al. [25] and Diemoz et al. {26]) for (@ + d)/2 at Q% = 4 GeV?2. Also shown
are the calculated results (for A = 700 MeV) for the x N and #N + 7A states alone. Clearly
the SU(2) § content of the nucleon is well saturated for A ~ 700 MeV in the intermediate-z
region when all meson-baryon components are included. The main contributions in this region
come from the pN and pA states, since the distribution functions f,n(a)(y) generally extend
to larger y compared with the pion distributions. As mentioned above, one uncertainty in
the treatment of the vector meson contributions arises from the fact the structure function
for a spin 1 meson may deviate at large = {rom the behaviour observed for the pion structure
function. The effect on the pN contribution to z(@ +d)/2 of including an extra power of (1 —z)
in the p meson structure function is a slightly softer distribution, so that this would allow for a
marginally larger cut-off mass when comparing against the data in Fig.15. If only the = N states
are included, slightly harder form factors could also be accommodated, with A a2 1 GeV. In
either case, for the 7 N N vertex this corresponds to a dipole form factor cut-off in the covariant
formulation of Ayy ~ 700 — 800 MeV (to give the same value of {n),ny ~ 0.10 — 0.15), which is
still considerably smaller than that used by many authors.
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5.5 Renormalisation, Incoherence

A subtle, but nonetheless important, point that needs to be made concerns the renorimalisation
of the total quark distributions in the presence of mesons. The meson and baryon exchange
diagrams in Fig.7 describe physical processes (inclusive baryon and meson leptoproduction)
whose cross-sections involve physical (renormalised) coupling constants. When integrated over
the recoil particles’ momenta these yield the inclusive DIS cross-sections, which are proportional
to the total quark (and antiquark) distributions

2z) = Z qoan(z) + 3 (5(’"5)(](17) + 6(3"“()(1')) . (118)
MB
Thercfore §MPlg(z) and §BMg(z), and the convolution integrals in cqus.(62) and (63), arc
expressed in terms of renormalised coupling constants contained in the functions fyg(y) and
Fem(y')- In equ.(118) we also identify the bare nucleon probability

Z =1~ ) (nus (119)
M.B
chosen such that the baryon number and momentum sum rules are satisfied. We emphasise
that all quantities in equs.(118) and (119) are evaluated using renormalised coupling constants.
We could, of course, choose to work at a given order in the bare coupling constant, and
explicitly verify that the various sum rules are satisfied. For example, to lowest order (g2) the
total quark distributions would be {29}

oz) = 2 {(Ihm(x) + A%(g(MB)q(O)(m) + 6<BM)Q(0)($))} (order ¢3) (120)

with

-1
Z = (1 + Z(n(o))nm) (order ¢2) (121)
M.B

where the subscript (0) indicates that the functions f(y) are evaluated using barc couplings.
Equations (118) and (119) are easily recovered since the bare couplings, to this order, are defined
by g2 = ¢2.,/Z. It would, however, be inconsistent to use (120) and (121} with renormalised
coupling constants, especially with large form factor cut-offs. As long as the form factors are
soft, the difference between the bare and renormalised couplings is not very large. However,
with large cut-off masses the bare couplings would need to be substantially bigger than the
physical ones. (In fact, the form factor cut-off dependence of the bare 7N coupling constant
in the cloudy bag model {48] showed some 40% difference for very hard form factors — or
small bag radii, ~ 0.6 fm.) In addition, with large values of A the higher order diagrams
involving more than one meson in the intermediate state would become non-negligible, and
the initial assumption that the series in equ.(57) can be truncated at the one-meson level
wopld be seriously in doubt. Fortunately, we need not cousider the multi-meson contributions,
since Fig.15 clearly demonstrates the difficulty in reconciling the empirical data with quark
distributions calculated with such large cut-offs.
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F.inally, we need to make some additional comments regarding the justification of our cal-
culation in terms of an incoherent summation of cross-sections (rather than amplitudes) for
the various meson exchange processes. A possible breakdown of incoherence may arise when
there are different exchange processes leading to the same final state. For nucleon final states,
because of the pseudoscalar nature of the # NN vertex, there will be no interference between
= meson and vector meson exchange. Furthermore, no mixing will take place between the w
and p exchange configurations due to their different isospins. In fact, all of the meson exchange
processes with a recoil N considered in this analysis can be added incoherently. For a A recoil,
the only mesons coupling to N and A are the 7 and p, but since they have different G-parities,
interference effects from these will again be excluded. However, the possibility exists in the
pion exchange process that the decay products of a A recoil, namely = and N, may mix with
the state containing an N recoil together with a 7 from the hadronic debris X of the shattered
exchanged pion. Interference between the 7N and 7 A states could therefore occur if the 7 from
the debris had very low momentum, enabling the combined system to have an invariant mass
squared ~ M2. However the vast majority of semi-inclusive meson events in lepton-nucleon
DIS are those with high momentum mesons (slow hadrons are almost exclusively baryons), so
that the probability of interference arising from such processes will not be large. A similar
argument can be given for the potential interference from hyperon decay into Nx.

For the baryon exchange processes, the requirement of the same recoil meson eliminates
interference from most states, except from DIS off N and A with = (or p) in the final state,
and from DIS off a £° and A® with a K¥ recoil. For the latter, the different isospin quantum
numbers of the A(J = 0) and ©(J = 1) rule out interference, just as for the pN and whN states.
A similar argument can be made for excluding interference contributions from N(I = 1/2) and
A(I = 3/2) exchange. Once again, the fact that the decay products of the recoil mesons have
low momentum, while the pions from the baryonic debris are fast, will again reduce the size of
any interference effects.

Therefore we see that by considering only the lowest lying meson and baryon states (i.e. by
excluding resonances having the same quantum numbers as the mesons and baryons considered
here) we can avoid potential problems with interference, and certainly for the values of A
allowed by the data, the only relevant states are those with the lowest masses.

6 CHALLENGING PROBLEMS

It is a widely held belief that the best laid plans of mice and men often go astray! This is at least
as true of DIS as of any other field of study. In this section we study several topical examples
which have generated a great deal of excitement (and consternation!). The first concerns the
nature of the sea of ¢ pairs in the nucleon. According to perturbative QCD these are generated
from gluons which in turn carry no flavor information. As a consequence one expects to find
equal numbers of uit and dd pairs. The Gottfried sum rule was built on this idea. Yet recent
results from the New Muon Collaboration (NMC) at CERN have confirmed earlier hints that
the sum rule is badly violated. Clearly this is more than a curiosity — it contains fundamental
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information about the non-perturbative structure of the nucleon. We explore some of the ideas
proposed to explain the result in sects.6.1 and 6.2.

Spin-dependent measurements have often been the graveyard of otherwise successful the-
ories. In DIS this would probably be a fair summary of the situation immediately after the
discovery by the EMC of a violation of the Ellis-Jaffe sum rule. This result, which was initially
christened the proton “spin crisis”, has since led to important advances in our understanding
of how the U(1) axial anomaly is realised. Although the dust has not yet settled, and a lot
more experimental and theoretical work is needed, we outline the current situation in sect.6.3.

Our final outstanding problem, dealt with in sect.6.4, is the old nuclear EMC effect - the
variation of nuclear structure functions. At various stages over the past decade it has seemed
like the problem was understood. This is certainly not the case - even now. However, we have
reached a stage of illumination where we can at least say that the physics required in a decent

theoretical treatment is now known.

6.1 Flavor asymmetry

One of the more interesting observations that can be made within the meson model is that it
predicts that contributions from DIS off virtual mesons and baryons to the u, d and s quark (and
the corresponding antiquark) distributions in the proton (equs.(115), (117)) will be different.
Because the contributions to s and 3 from DIS from kaons and hyperons are very much smaller
than those from the non-strange mesons and baryons to the u and d distributions (mainly
because mg > m,) we see that the meson model produces significant SU(3) flavor symmetry
violation. Furthermore, it is apparent that the contributions to the u and d (and @ and d)
quark distributions themselves are not the same, so that SU(2) flavor symmetry of the proton
sea is also broken. In the case of the pion cloud, the simple origin of this is asymmetry is the
predominance of the dissociation process p — na* over p — pr®. In the former, the 7% valence
quark content is dii, while in the latter the ratio of @ to d quarks is the same. This process
certainly respects isospin symmetry, which simply says that the dissociation p — nx* is as
likely as n — prr~, or at the quark level, u — d(ud) is as likely in the proton as d — u{da) in
the neutron. But it clearly implies an excess of d quarks in the proton, and an equal excess of
@ quarks in the neutron.

If the masses of quarks were identical (i.e. SU(3) flavor symmetry limit) then the ratio
of strange to non-strange antiquark distributions in the proton would be 1:2. From neutrino
experiments (at Q% ~ 4 GeV?) the measured ratio was found to be about 1:4 [14], which can
be understood semi-quantitatively from the heavier mass of the strange quark. On the other
hand, because charge symmetry is such a good symmetry in strong interaction physics, it was
naively expected that SU(2) flavor symmetry of the sea would be an excellent approximation.
Indeed, this expectation has been built into almost ail of the analyses of the nucleon structure
function data. The main reason for believing this has been the simple picture, motivated by
perturbative QCD, in which the mechanism for producing antiquarks is gluon splitting into

qq pairs. llowever, unless isospin symmetry is genuinely violated (by giving a non-zero mass
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Figure 16: Calculated d — @ difference from the various meson-baryon states. For the dotted,
dashed and lower solid curves a dipole form factor cut-off of A = 700 MeV is used, while the
upper solid curve is calculated with A = 900 MeV.

difference between the u and d quarks), the perturbative process g — ¢ should be SU(2) flavor
symmetric, as the gluons of QCD are flavor-blind. Therefore a d — @ difference cannot be
produced by perturbative QCD. Actually, this statement should be qualificd by saying that at
lowest order in s there is no asymmetry. A higher order perturbative QCD calculation of d i
was performed some time ago by Ross and Sachrajda {110}, who found a non-zero result for this
difference, although the absolute value was very small. This means that the calculated d — i
difference will essentially be preserved in QCD evolution. But the fact that we get a non-zero
d — @ difference in the meson-baryon model is not surprising, since this is a non-perturbative
model, and its predictions are not in conflict with QCD, nor with isospin symmetry.

In Figs.16 and 17 we plot the d — @ difference, and the ratio (d — @)/(d + @), respectively,
calculated within the meson-exchange model of the nucleon. Fig.16 shows that the inclusion of
7\ states (with A = 700 MeV) eliminates some of the d excess, since here the dominant process
is p — At+x~, which at the quark level, d — u(dit), is seen to produce a u excess. However,
adding the vector meson components (lower solid curve) restores the original d excess at small
z, and enhances the excess at larger z. At larger values of A (= 900 MeV) the d — @ difference
is larger still (upper solid curve), although the ratio (d — @)/(d + @) is smaller, Fig.17. On
similar grounds the processes p — K°Z* and p — K+E°(A) will introduce not only a different
strange quark content of the proton than a non-strange, but also a different § distribution as
well. However, because of the very small magnitude of the strange contributions it will be
difficult for these effects to be observed in DIS experiments in the near future.

Of course the idea of an asymmetric proton sea is not a new one. The carliest, and perhaps
most obvious, suggestion for why we should cxpect @ # d was made by Feynman and Field
{111]. As mentioned in sect.4.1, becausc the proton has an unequal number of valence u and
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Figure 17: Ratio of the difference and sum of the calculated SU(2) antiquark distributions in
the proton. The cut-off for the dotted, dashed and upper solid curves is A = 700 MeV, while
the lower solid curve is calculated with A = 900 MeV.

d quarks, by the Pauli exclusion principle we would therefore expect creation of additional
q§ pairs inside the proton to be sensitive to the number of quarks of each flavor already in
the proton. Since there are 2 valence u quarks in the proton compared with only 1 valence
d quark, we therefore expect a larger d sea since ufi pair creation will be suppressed relative
to dd. In ref.[111} the d and @ distributions were parameterised by zd = 0.17(1 — z)? and
zii = 0.17(1 — z)'°, see Fig.18. With these, the integrated difference is f dz(d — @) = 0.057.

An carly calculation of the u and d sea quark probabilities in the proton, incorporating the
effects due to the Pauli principle, was made by Donoghue and Golowich [112] using the MIT
bag model. However, this involved calculating the one-gluon-exchange induced ¢§ admixture
in the proton wavefunction. This is quite a different effect from that discovered in the recent
work of Signal and Thomas {19} when calculating the of quark distribution functions in the
MIT bag (see sect.4.1). Their work suggested a quantitative method of calculating the intrinsic
sea associated with the different vacuum structure of the bag from that in free space. They
also showed that the Pauli exclusion principle implied a d — @ difference as well. In particular
these intrinsic antiquark distributions arose only from 4 ¢ intermediate bag states. Thus the d
distribution required the intermediate state to consist of 2 u and 2 d quarks, while DIS from
a @ quark implied a 3u + 1d intermediate state, which, because of the Pauli principle, has a
smaller probability. Furthermore, in ref.[19] the d excess associated with the Pauli effect was
equal to the d excess and satisfied the condition

/ "4 deen(z) = / o (dyea() = theea(x)) = / ' dz pu(z) = Pw. (122)

Here, pn(x) denotes the piece of the valence quark distribution associated with a four quark
intermediate state (all in a 1s state), while 1 — Py is the integral over the distribution function
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Figure 18: Difference between d and @ quark distributions in the proton, for the Feynman and
Field parameterisation {111], and a parameterisation of the function py{z) ~ 2%6%(1 —z)7, with
normalisation Py = 0.05,0.15 and 0.25.

associated with a two quark intermediate state. In ref.[19] the calculated distributions were
found to peak at z ~ 1 — Min/M, where Miy is the mass of the intermediate spectator state.
Since the 4-quark intermediate states have mass greater than M, the antiquark distributions
will peak at negative z. Therefore in the physical region (z > 0), pny(z) should resemble a
typical sea quark distribution, namely be finite at z = 0 while dropping rapidly to zero by
z ~ 0.2 — 0.3. For simplicity, we can parameterise the large-z behaviour by a py(z) o« (1 — z)7
form [25, 56]. On theoretical grounds, we can also expect that due to the lack of Regge f — A,
exchange degeneracy, at small z the d — @ difference should be proportional to py(z) ~ z7,
where a(~ 0.5) is the Regge intercept [113, 99]. The overall normalisation Py was calculated
in ref.[52] to be less than about 0.25 for bag radii R < 0.8 fm.

In Fig.18 we compare the Feynman & [FField parameterisation with the function pn(z),
normalised so that Py = 0.05,0.15 and 0.25. Also shown is the effect of using a slightly more
singular small-z behaviour, a = 0.62, as suggested by the NMC data on %, — 3, [58].

Unfortunately at the present time there are not sufficient data on d — i to make definitive
conclusions about these various mechanisms for SU(2) flavor symmetry breaking. However,
there have been a number of interesting suggestions for experiments that could directly probe
the light sea quark content of the proton, and we bricfly review these now.

Recently it was suggested by Martin, Stirling and Roberts [114] that one could lcarn about
the SU(2) sea by observing the W-boson asymmetries in pp collisions, pj — W*X. The simnple
idea is that a u(d) quark in a proton interacts with a d(#) antiquark in an antiproton to produce
a WH(W~) boson. Because the u(ii) quark in the proton (antiproton) carries more momentum
(lies at larger z) than the d(d) quark, W*(W =) bosons will be predominantly produced in the
proton (antiproton) direction. Iowever, in addition there will be W+ (W~)-bosons produced
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by the annihilation of d(i) quarks in the proton with d(u) quarks in the antiproton. Thus at
large energies the asymmetry in the W-boson rapidity (yw) distribution

ot o~ _ u(x)d(za) + d(z1)d(x2) ~ d(x1)u(x2) — d(z2)d(2:1)
ot +o= 7 u(r)d(zz) + d(z)u(zs) + d(z)ulzs) + d(z2)d(zy)’

Ayw) (123)

+

il

where o do/dyw(W1*), would be sensitive to the antiquark distributions in the proton.
Here, 2,2 = Mw/\/sexp(Fy), s is the centre of mass encrgy squared, aud the W-boson ra-
pidity is defined by yw = (1/2) In(q-/q4), with ¢ the W-boson momentum. Furthermore,
since only left-handed quarks (right-handed antiquarks) couple to W-bosons, in the resulting
W — ev decay the electron (positron) distribution will gencrally follow the direction of the
incoming proton (antiproton). It was suggested in [114] that the experimental et asymmetry,
A(ye) = (do [dye+ (ye+ ) — do [dye-(y.-))/(do | dy.+ (ye+ ) + do [dye~(y.-)), could then serve as an
independent check on the @ and d distributions in the proton. The claim in ref.[114] was that
their existing parameterisations with no SU(2) flavor asymmetry are consistent with the data
on A.(y.) taken at the Collider Detector at Fermilab (CDF) [115]. However, the error bars in
this experiment are quite large, and the data at present will have difficulty in discriminating
between SU(2) flavor symmetric parameterisations, and those with a small d — @ difference,
such as that suggested by the meson model in the previous section. On the other hand, a large
d — @ difference, such as that arising from the meson model with large form factor cut-offs A,
may well introduce a detectable difference.

In another experiment, performed some than 10 years ago by the 13288 Collaboration at
FNAL [116], the slope of the rapidity distribution for proton-nucleus Drell-Yan production was
measured, and found to be sensitive to the #/d ratio. In that experiment, the quantity

d d*o
—In{s——=—- 124
dy ( d\/de) y=0 (124)

was measured as a f{unction of /7, where 7 = M} /s. It was found that a parameterisation
with d > @ improved the quality of the fit [117]. However, since the analysis of this experiment
required the quark and antiquark distributions in the nucleus, any conclusions reached about
the nucleon sea distributions were obviously dependent upon any nuclear assumptions made.
In fact, it was later shown by Ericson and Thomas [L18] that a similar improvement in the fit
could be made by assuming a small difference between the § distributions in the nucleon and
in a nucleus.

Proton-nucleus Drell-Yan production was also studied recently by the E772 Collaboration
at Fermilab. It was found that by comparing the yield per nucleon in a proton collision with
a neutron-rich target such as tungsten with that for an isoscalar nucleus, the resulting ratio
would also be sensitive to the d — @ difference. However, it has since been argued by Eichten
et al. [119] that this too may not be a sensitive enough experimeut for a small non-zero d — i
difference to be discernable from no difference.

’Perhaps the experiment that is most sensitive to the light sea quark distributions was
that recently proposed by Ellis & Stirling [120], who suggested measuring the asymmetry
between the pn and pp Drell-Yan production (i.e. pN — {*1~ X) cross-sections at zero rapidity,
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Apy = (0P — 0P*) /(0" 4 o**), where 0P o d®0PN [d\/Tdy|,=0. Neglecting terms involving
annihilation of sea quarks in the (beam) proton and (target) nucleon, the cross-sections can be
written

(v -D)As =D+ (v = DAs - 1) (125)
T @ HD0s+ D+ + D(3As + 1)

Apy

where Ay = uy/dy and As = ﬁ/J_ The advantage of measuring this ratio is that it would be frec
from any nuclear dilution effects, and the complete asymmetry could be determined from ratios
of valence and sea quark distributions alone. Since the dy fuy ratio is well determined, Apy
would then serve as an accurate indicator of As. In Fig.19 we plot this Drell-Yan asymmetry
as a function of /7 = \/Q—’Tl; with s ~ 1500 GeV? (corresponding to a proton beam energy
of about 800 GeV) calculated using the quark and antiquark distributions of the meson model
{with A = 700 MeV). This is compared with the asymmetry arising from the parameterisation
of Morfin & Tung [109] for the valence quarks (dotted curve), and from the dy fuy ratio fixed at
0.57(1 — z) [25] (dashed curve), with As = 1 in both cases. It is clear that even small deviations
of @i/d from unity will have a big impact upon Apy. )

An extension of this idea was discussed in ref.[121], where it was argued that one could
directly measure the difference d — @ by going to large projectile momentum fractions z, but
small target fractions z,. In that case the term in Apy involving the product of projectile sea
and target valence distributions could be neglected and the asymmetry reduced to

o (4hv - D)(As — 1)

Apy ~ ¥ MAs— )
by (@ +D)0s +1)

(126)
Unfortunately, there are as yet no data on Apy, although a proposal has been made {122] for an
experiment to measure the Drell-Yan cross-sections for hydrogen and deuterium targets. Such
data would be eagerly anticipated.

Finally, an interesting observation was made by Levelt, Mulders and Schreiber [123], who
found that semi-inclusive charged-hadron production could be used to obtain information on
the integrated d — @ difference. Following earlier work by Gronau et al. [124] and Field and
Feynman [111] on the parton model for semi-inclusive DIS, Levelt et al. showed that the
integrated difference should be proportional to the measured difference between the charged
pion and kaon production rates from DIS on protons and neutrons. However, the available data
from the EM Collaboration at CERN on semi-inclusive charged-meson production [125] are not
yet sufficiently accurate to discriminate between SU(2) flavor symmetry and asymmetry.

However, the most important impact on the question of SU(2) flavor symmetry in the proton
sea, and certainly the stimulus for the close attention this question has received in recent times,
has come from the measurement by the NMC of the difference between Fy, and F, [58], and
the consequent determination of the Gottfried sum rule. We will now discuss the issues involved
in this experiment more fully.
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Figure 19: Asymmetry for pp and pn Drell-Yan production. The @ = d predictions, with the
valence quark parameterisation of Morfin and Tung [109] (dotted) and with a fixed valence
ratio dyfuy = 0.57(1 — z) [25], are compared with the meson model calculation with @ # d
(for A = 700 MeV).

6.2 Gottfried Sum Rule

The Gottiried sum rule [57] is perhaps the most famous consequence of SU(2) flavor symmetry
of the sea. Because this measures the z-integrated difference between the proton and neutron
structure functions, it is sensitive only to the non-singlet SU(2) content of the nucleon. Let us

firstly define the quantity

Se@1) = [ L (Fyle) = Funle). 121)

Relating the proton and neutron structure functions to the quark distributions in the proton
(i.e. using charge symmetry), we have

Sg(z,1)

I

1 i _
) L de! (u(a") + (") - d(=') - d(")) (128)
_ I ’ ! ’ 2 N PTG il '

- §/, ' (uy(z') — dy (') — §L da' (d(=') - a(z")) (129)
where the valence quark distributions are defined by gv = ¢ — §. Since the number of valence
quarks in a hadron does not change, we obtain the Gottfried sum rule

S = Se(0,1) = -;- [QPM] (130)

provided we make the additional assumption fj dz d = [ dz i, as would be expected in the
simple quark-parton model (QPM).

The early experimental data for S5g(z,1) did in fact suggest a value lower than 1/3, but with
errors large enough to be consistent with it. However, armed with the theoretical expectation
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of SU(?) flavor symmetry, most authors believed that Sg would tend to 1/3 as the accuracy of
the data improved. To the surprise of many, tlie recent, accurate determination of S by the
NMC appears to support the idea that @ # d [58, 126]. Neglecting nuclear effects, the NMC

found
Se(Zmin, 1) = 0.229 + 0.0157 (131)

where Zmin = 0.004. Included in (131) is an extrapolation from = = 0.8 to 1, the contribution
from which was estimated to be 0.002 + 0.001 if a smooth extrapolation of F,/F, to 1/4 at
z = 1 is assumed. From the unmeasured region (x < 0.004), using the extrapolation

Fyp(z) — Foo(z) — a2’ asz— 0 (132)

with a = 0.21, 8 = 0.62; the contribution was found to be Sg(0, Tmin) = (a/B) 22, = 0.011.
With the conventional Regge theory assumption that 8 = 0.5, Sg(0, Zmin) would be 0.014. The
combined integral over the whole range of z was therefore

S¢ = 0.240 40.016 [NMC) (133)

with errors added in quadrature. 4 Although not the only one, the most natural explanation

for the smaller than expected value of Sg is that d(x) # i(x) (see later for a discussion of other
possibilities). Taken at face value, the NMC result would imply that

/0 "dz (d(z) - a(z)) = 0.14 4 0.06. (134)

The various mechanisms discussed in sect.5.2 are then potential candidates for generating such a
difference. Before turning to more exotic explanations, it seems more sensible that the simplest
possibilities should be exhausted first. The most compelling, and most economical from the
theoretical point of view, appear to be those based on the Pauli exclusion principle, and on the
presence of a small pion (and perhaps other meson) cloud.

We therefore examine the consequences of both of these mechanisms on the p — n structure
function difference and the Gottfried sum rule. Firstly note that because the non-strange
baryon recoil contributions to the quark and antiquark distributions are related by

§MBly(z) = §MBV (<), SMB)(z) = §MBg () [M = non — strange] (135)

the contributions to S¢ from DIS from pions or vector mesons would cancel. Furthermore, since
the strange content of the proton and neutron should be the same, contributions from kaons
and hyperons to S¢ should also vanish. However, the Pauli blocking effect should be present
in DIS from virtual K® K+ and L*, since these contain unequal numbers of u(it) and d(d)
quarks. It will not be present in DIS from Z° or A®. This raises the interesting possibility that
we may pick up a non-zero strange quark contribution to Sg from the Pauli principle, if the

“From a very recent re-evaluation of the ratio Fin{Fzp based on newly measured values of Fyp the NMC
found a slightly larger value for Sg, namely Sg = 0.258 + 0.017 [127], although this is still consistent with the
original value.
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Pauli effect in DIS from K with I recoil and in DIS from £ with K recoil are different (and in
principle they should be), which would spoil the cancellation of these components. Still, having
secn that the role of strange mesons in the DIS process is negligible, we can be fairly confident
that by dropping the strange contributions our results will not be significantly affected.

What may be more significant is the possibility that the shape of the Pauli d— contribution
from DIS off a virtual A, with 7 or p recoil (labelled pa(z)) may differ from the shape of the
Pauli difference from DIS off a nucleon with a 7 or p recoil, py(z). In principle these should
be different because the spins of the 4-quark intermediate states (which arise when the @ or d
quarks are probed) in the nucleon and A are different. This means that, for example, while a
quark inserted into a (spin 1/2) proton can produce a state with spin 0 or 1, one inserted into
a (spin 3/2) A* could produce either a spin 1 or spin 2 intermediate state. One way to make
spin 0, 1 or 2 four-quark states is to construct them from spin 0 or spin 1 diquarks, and since
a vector diquark is more massive than a scalar diquark (see ref.[20]), and thercfore has a softer
z-distribution, the result is that the Pauli blocking function pa(z) should have a softer shape
than py(zx). Furthermore, the integral over pa(z) (denoted P,) need not necessarily equal Py.
Having said this, it is probably also truc that the uncertainty introduced in taking these to be
the same will be much smaller than the overall uncertainty in the absolute normalisation of
d — it due to Pauli blocking in the nucleon.

The final expression for Fy, — F3,, including meson and Pauli effects, is

Fale) = Fan(e) = 3 (zuv(z) - 2dv(z) - 2epn(a)
= 5 [ Unela)+ ) = 3wa ()

x (zpuv(zp) — vpdy(zp) — 2zapn(z8))

[ a5 (faey) + forls)) aodv(zn) ~ 2ompaan)  (136)
[ fouly) (200" (25) ~ 228p3(s)

"y (frel) - 3fxalv)) (V™ (nr) — 22mpc(am))

+
D) = S|P D)W
S S,

.~

Making the above approximations, we plot the resulting z distribution in Fig.20. Note that
kaons and w mesons contribute to the structure functions themselves, even though their contri-
butions will cancel when the structure functions are integrated over z. (We include the K and
w contributions only for the sake of completeness, as dropping them altogether has numerically
negligible consequences.)

The most noticeable consequence of the meson cloud is a decrease in the peak value of
Fy, — Fa, at £ ~ 0.3. Since here the parameterisation clearly overestimates the NMC data, the
effect of mesons is to move the curve in the right direction. At the same time, however, the
structure function difference becomes larger for z < 0.1. Here, the action of the =N states is
to decrease Fy, — I3, at small x, while adding the 7A tends to do the opposite. However, it is
only with the addition of the vector mesons that there is an increase over the parameterisation
in this region. Because the parameterisation is already too large in this region compared with
the NMC data, it’s clear that mesons alone cannot improve the fit at small z.
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Figure 20: Effect of the Pauli exclusion principle on the proton ~ neutron structure function
difference, as a function of z. The dotted (without meson corrections) and solid (with A = 700
MeV meson corrections) curves are for P = 0 (largest curves) 0.05, 0.1, and 0.15 (smallest
curves).

At large z the meson-corrected curves consistently lie beneath the NMC data points. This
is a consequence of the original parameterisation [109] underestimating the NMC F,, — F,,
results (in fact most other parameterisations {25, 108] also have this property). If we had a
parameterisation which could better reproduce the large-z data, the quality of the fits for the
corrected curves would naturally improve. We should add, however, that the NMC did not

report much data at x 2 0.4. In any case, the discrepancy between the NMC data and the -

quark parameterisations at large z is unrelated to the failure of the Gottfried sum rule, and is
therefore not our primary concern.

The Pauli correction is largest in the small-z region, for 0.01 2 z £ 0.1. By reducing the
absolute value of Fy, — I, at small z the Pauli correction brings the parameterisation (with
d = 1) into better agreement with the data in that region. However, for larger z (0.1 £ z < 0.3)
the peak in the distributions is still too large to be consistent with the NMC data. On the
other hand, when combined with a small mesonic correction (for A = 700 MeV), a very good
fit is possible with Py ~ 0.1.

Integrating the structure function difference between = and 1, we plot in Fig.21 the function
Sc(z,1) including both meson and Pauli effects. The parameterisation is clearly Ltoo large
for z < 0.1. With the addition of the meson correction, the fit is clearly improved, but still
overestimates the NMC data at very small z. This is partly remedied when a small Pauli
blocking correction is added. In particular, the apparent saturation of the sum rule below
z = 0.01 is better fitted by including the Pauli term. (In a more recent experiment, the E665
Collaboration at Fermilab reported an even more dramatic saturation of the Gottfried sum
rule for = < 0.125, fos dz(Fyp — Faa)/z = —0.07 £ 0.07 {128].) In the intermediate-a region
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Figure 21: Effect of Pauli blocking on the Gottfried sum integrand with no mesons (solid
curves), and with mesons for A = 700 MeV (dotted curves). The three curves in cach case are
for Py = 0 (largest curves), 0.05 and 0.10 (smallest curves).

(z 2. 0.3) the meson-corrected curves appear to underestimate the NMC data. This can be
understood from the shape of the original Fy, — F3, distributions in Fig.20, where for z above
~ 0.3 the curves tend to lie beneath the NMC data points.

For the Gottfried sum, from equs.(136) and (119) we obtain

S¢ = SMB (1-2Py) + %q('PN*'PA)((n)An‘}‘(n)Aﬂ)

2 2
+ 5(37’~+7’K—4?’n)(n)2x + 3 (Pv = Px) (nhax (137)
where
mp _ L[ 4nlne 4nlnp | 2An)ar | 2(n)a, ‘
sMB - 3 (1 3 3 t—3 t—5 ) (138)

is the sum rule with meson/baryon corrections only. Dropping the negligible strange contri-
butions, and assuming that the difference between the Pauli blocking in the nucleon and A is
not large, only the first term in equ.(137) remains. In Fig.22 we show the variation of S¢ with
both A and Py. It is clear that the net effect of the virtual meson-baryon states is to decrease
Sg. The =N state alone can reproduce the quoted value of Sg for A ~ 1.3 GeV. The addition
of A components would require a slightly larger cut-off (since this produces an excess of i
over d, which cancels some of the d excess generated by the # N states). Including the piV state
however restores, and actually enhances, the d excess, although some of this is again cancelled
by the pA states. With all components included, the NMC value of Sg can be reproduced with
A~ 1.1 - 1.2 GeV. For A £ 700 MeV, as suggested by the antiquark data in the previous
section, mesons can generate only about half of the asymmetry required to satisfy the experi-

52




i i 0.35 ,y,.,_,.'...._.__._7_,._,.—,-q,—.«-.—,‘-r‘.~- ¥ T 1
K——1/3 - - - -Mcsons only

] ~---Mesons + Pauli ]
0.30F Tl ]

©0.25 b—0u N

0.20F T U N :

0.4 0.6 0.8 1.0 1.2 1.4 1.6
A(GeV)

Figure 22: Gottfried sum rule with mesonic and PPauli corrections. The solid curves represent
Pauli normalisation of Py = 0.05 (largest), 0.1 and 0.15 (smallest).

mental sum rule. For A = 0.7 GeV, the experimental sum rule can be obtained with Py = 0.1.
Thus various phenomenological constraints scem to imply the need for both mechanisms.

Before finishing this discussion, we should mention some alternative explanations for the
Gottfried sum rule violation. It was suggested by Martin, Stirling and Roberts [114] that there
may not be any violation of the quark-parton model S prediction at all, if large contributions
to the Gottfried integral come from the unmecasured, z < 0.004, region. By parameterising
their valence quark distributions to be more singular at small z than what would otherwise be
expected from Regge theory (namely, qv ~ 27%%), and also compared with what the NMC used
in their z — 0 extrapolation, it was shown in refl.[114] that a value of 1/3 could be recovered.
Although this more singular behaviour seems rather artificial, without data at such small z it
remains a possibility. However, one problem with this hypothesis of late onset (in the sense of
decreasing z) of Regge behaviour is the data from the E665 Collaboration [128], which suggests
early saturation of the Gottfried sum rule, and would therefore tend to rule out this option.

It was also suggested by Kaptari and Umnikov [129] that nuclear effects in deuterium may
introduce errors in the extraction of the neutron structure function from the deuteron DIS
data. In particular, it was claimed that meson exchange currents in the deuteron could lead to
substantial antishadowing corrections, so that [y, extracted in a naive manner would be overes-
timated. With this correction taken into account, it was argued that a value roughly consistent
with 1/3 could again be recovered. Furthermore, although expected to be small, genuine nu-
clear shadowing in deuterium could also introduce corrections to the naively-extracted neutron
structure function {130, 75]. In ref {131} the nuclear effects in deuterium were investigated for
a variety of deuteron models. It was found that the combined effects of shadowing resulted in
an increase for Fy, of < 1 — 2% for = ~ 0.004. Consequently, including shadowing corrections

would mean that the experimental value for Sg should be lowered from 0.24 to = 0.22 when the
“true” neutron structure function is used. Within the above model such a decrease can easily
be accommodated by increasing the Pauli blocking correction from Py = 0.1 to = 0.15, if the
meson—baryon form factor cut-off is kept at the same value (A & 0.7 GeV). Of course a larger
A could also produce a smaller Sg, but, as we saw in the preceding sections, increasing A would
also produce a depletion in Fy, — Fy, at intermediate z, together with an increase at small .
This would be contrary to the behaviour of the shadowing-corrected proton—neutron structure
function difference seen in Fig.20. A reduction of f5, — Fy, at 2 £ 0.3 can only be explained
by a larger Pauli blocking correction, such as the one required to reproduce the corrected Sg.

6.3 'The EMC Spin Effect

In the past few years a great deal of attention has focussed on the QCD improved parton model
as a result of the EMC spin effect {or proton “spin crisis”). The EMC [32] extended the earlier
SLAC measurement [132] of the structure function g1,(z, @?) of the polarised proton to smaller
z and hence improved the accuracy with which the first moment was determined. In the naive

parton model g, is written as:

ule) = 5 T eidate) (139)
where
Aq(z) = (¢' +7)(=) - (¢ +7')(z) (140)
is the polarised quark distribution. It is helpful to rewrite g),(z) in terms of the SU(3) flavor
combinations:
Au(z) - Ad(z), Au(z)+ Ad(z) — 20s(z) ' (141)
and
Au(z) + Ad(z) + As(z). (142)

Then the first moment of the flavor singlet picce is related to the fraction of the proton’s spin
which is carried by its quarks. After a smooth Regge (z — 0) extrapolation of their data
(g1, ~ 7°12) EMC determined this quantity to be [32]

Au+ Ad+ As = 0.120 £ 0.094(stat.) 4 0.138(syst.) (143)

which is consistent with zero and two standard deviations from the Ellis-Jaffe hypothesis, which
says that strange quarks should not play a significant role. Qur present discussion closcly follows
that of Bass and Thomas {39}, in which a detailed review of the EMC spin experiment and its
theoretical interpretation was given.

This result is a violation of Zweig's rule in the flavor singlet channel {133]. As this is the only
one of the three SU(3) flavor combinations which can involve the U(1) axial anomaly it seems
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highly likely that this might be the source of the spin effect. If this is the case, and we strongly
suggest that it is, it is clearly an important experimental problem to map out the = dependence
of the axial anomaly in the inclusive DIS cross-section. We wish to discuss how important
information may be obtained about this in current and future experiments, in particular we
examine the (C-odd) spin dependent structure function gs,(x) and also the polarised deuteron
structure function gy4(z).

As discussed in sect.3, in QCD the inclusive decp-inelastic process is described by the
operator product expansion (OPE) and the renormalisation group. The interesting physics of
1p is in the flavor singlet part, which receives contributions from both quark and gluon partons,
viz.

o @ = 32 [ [t @105 @) + 50l @K @] 100

The C-even, spin dependent quark Ago(z,Q?) and gluon Ag(z,Q?) distributions are defined
with respect to the operator product expansion. Their odd moments project out the target
matrix elements of the renormalised, spin odd, composite operators

k
2Msy(pa) [ do 2 Ban(z, @) = sITO D) S ONGHp)es  (145)

and
2Msy (py )™ /o dz £ Ag(z, Q) = (p,sl[Tr Gral0)iD4 ™G ONELp,s)e (2 1). (146)

iFrom unpolarised DIS experiments we know that the gluon distribution is concentrated at
small z. In polarised DIS the hard photon scatters from a gluon via a quark-antiquark pair,
described in C9(z, o). This dissipates the gluon’s already small momentum so that Ag(z,Q?%
is relevant to g, only at-small z (z < 0.03) {134]. It makes a negligible contribution to the
measured sum rule between z = 0.01 and 1, where the three constituent quarks are expected
to dominate.

The clue to understanding the spin effect lies in the identification of the axial-vector current
(and the higher spin axial tensors in equ.(145)) with spin. Classically the axial vector current
looks like a gauge invariant operator, with the quark field operator transforming as

q(z) — U(z)q(=) (147)

and

(@11 — (211U (z) (148)

under a given gauge transformation U/. On the other hand, in quantum field theory the axial
vector current operator is not just g(0)v,vs multiplied by ¢(0). It is a composite operator which
has to be renormalised and there are extra divergences which are intrinsic to the operator itself.
It turns out that one cannot renormalise the axial tensor operators in a gauge invariant way
so that they describe spin at the same time. In general, for a given choice of renormalisation
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prescription R, the renormalised axial tensor operator differs from the gauge invariant operator . t

1
(70123 Dss Do) = [011.35 D D@+ Ao ], (149

by a multiple of a gauge-depeadent, gluonic counterterm kg, . 4n» Viz.
R e}
Q? Q
where the cocfficients Mg, are fixed by the choice of renormalisation prescription. This axial
anomaly was discovered for the axial vector current in QED [135, 136},

Not ouly does the axial anomaly lead to a difference between the renormalised axial currents
which preserve gauge invariance and chiral symmetry, but in addition the gauge invariant axial
current is scale dependent (in this case the scale is Q?). (The anomalous dimension of the first
moment, Agg, was first calculated in QCD by Kodaira [137].) This means that one cannot
derive the generators of the spin algebra SU(2) from it. It follows [138] that the gauge invariant
axial-vector current and the higher spin operators which appear in equ.(145) do not describe a
distribution of quark spin in the proton. One can construct a distribution which does measure
spin. It differs from the physical distribution Ag(z,Q?) which is measured in deep-inelastic
scattering by by a gauge dependent gluonic term related to the k.. ,,, in equ.(149) — the
anomaly. In other words, one can say that the gauge symmetry screens the spin of the quarks.

We now compare ¢, with the other structure functions measured in deep-inelastic scattering.
The axial anomaly is not relevant to the unpolarised quark distributions, which are described
in OPE language by the operators §(0)74(¢04)"¢(0). Nor is it relevant to g3, which is the
polarised version of I5. Since g; is odd under charge conjugation, and gluons are C-even, it
can have no anomalous gluonic contribution. This means that it does make sense to talk about
I\, I3 and g3 in terms of quarks with explicit spin degrees of freedom — the clash of symmetry
between gauge invariance and spin does not manifest itself in these structure functions.

It is clearly an important problem to map out the x dependence of the anomaly in gy,
and a comparison between gy, and gy, would be the ideal way to do it. Unfortunately, the
cross-section for DIS with a neutrino bean and proton target is very small — enough to make
direct measurements of g3, impracticable at the present time. However, if one assumes that
the quark fragmentation functions are spin independent it may be possible to extract the C-
odd distribution from the g, measurements by detecting fast pions from among the final state
hadrons [139]. This experiment is planned by the HERMES collaboration at HERA [140].

Important information about the z dependence of the axial anomaly in polarised deep-
inclastic scattering will also come from measurements of gi.(x, Q?). The axial anomaly occurs
only in the flavor singlet part of g; and therefore it will be present equally in g, and ¢;, as a
function of x. If the anomaly acts to screen the quark spin at large « in gy, it follows that the
same should be true in g;,. The combination appearing in the Bjorken sum rule (g1, — g1n)
has no flavor singlet component and is anomaly free. On the other hand, the flavor singlet
component is enhanced in the deuteron structure function gia = (g1p + g1n)/2, which has no
isotriplet picce Ags(z,@%). Thus the deuteron structure function g4 is an ideal place to test
model predictions about liow the anomaly should contribute in the nucleon structure function
9z, Q).

As we saw in scct.4.1 the usual quark model calculations, which do not include the anomaly,

suggest that g, will change sign and become small and positive at large = {141, 20, 22]. To the
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Figure 23: Prediction for the structure function of the deuteron [41] based on the bag model
(with R = 0.8 fm) - solid curve. The dashed line shows the effect of adding a phenomenological
term representing the effect of the axial anomaly on both the proton and the neutron. The

data is from SMC [143].

extent that these models do not include any OZI violation, a large-z anomaly would tend to
render gy, negative at large z. As a specific example we consider the quark model calculation
of the structure functions described in sect.4.1. As we have seen these calculations provide
reasonable agreement with the unpolarised structure function data. However the bag model
has not yet been extended to satisfy the U(1) chiral Ward identity. That is, it does not include
an OZI violation induced by the anomaly. On the other hand it does seem reasonable that
these model calculations for gy(z) might describe g3(z) at large z — i.e. correspond to a world
without the OZI violations due to the anomaly.

As we saw in Fig.6 the bag model prediction for g1,(x) overestimates the data throughout
all of the large-z region. Hence, it is tempting to associate the difference between the model
results and the data as that associated with the anomaly. In this case, the same flavor singlet
correction should therefore be applied to the neutron. In recent work Bass and Thomas [41)
have added a purely phenomenological correction to the bag model results to fit the proton data.
Adding the same correction to the prediction for the neutron and combining them to get the
deuteron structure function they obtained the result shown in Fig.23. (For the present purposes
we make the simple approximation that g1 = (g1, + 912)/2, thus ignoring corrections due to
shadowing, Fermi-motion and the D-state probability of the deuteron. These arc expected to
be important at the few-percent level {142, 130, 131} -~ well below the present experimental
accuracy.) The corrected curve is in good agreement with the recent SMC measurement of the
deuteron spin structure function zgi4(z,Q?) [143].

To summarise the results of this section, we have discussed how one could map out the z

dependence of the axial anomaly in g;. If the anomaly is a large-z effect then it can be isolated
as a finite difference between g; and gy in the large-z bins. If it is purely a small-z cffect
the anomaly would be lost among the sea and gluon distributions which dominate the data at
small z (say < 0.1). We stress that the comparison with g3 is the only definitive experimental
test of whether the anomaly is a large or a small z effect. Certainly, it is an intrinsic part
of the spin dependent quark distribution and there is no good theoretical reason to believe
that it is confined to small z. We strongly urge that consideration be given to the challenging
experimental problem of how to measure g;. In the interim it would be very useful to obtain
more data (with reduced errors) on the deuteron spin structure function g?. ''lhis deutcron
data will help constrain theoretical models of the structure functions.

6.4 Nuclear structure functions

Since the discovery by the EMC that the structure functions of nuclei did not all have the same
shape [144-146] there has been considerable further investigation. On the experimental side
some features of the data, like the apparently dramatic increase in the sea with mass number,
have become much less distinct. Other new features such as shadowing at sinall z have become
apparent. However the outstanding feature of the data, namely the softening of the valence
quark distribution below z = 0.7 (at which point Fermi motion takes over) has not changed
much [32, 147, 148]. In our discussion of the nuclear EMC effect in this section we will closely
follow Saito et al. [149, 150].

While one would eventually like a unified theoretical treatment of all the features of the
EMC data, we shall concentrate on the softening of the valence quark distribution, which is
possibly its most surprising feature. Early attempts to understand this aspect of the data were
based upon conventional ideas like nucleon binding, calculated in impulse approximation {IA)
[151-154] — for a review sce Bickerstaff and Thomas [155]. Other ideas included a possible
enhancement of the cloud of virtual pions around a nucleon in a nucleus [156, 157, 68]. More
exotic proposals included the possibility of multi-quark clusters [158-160] and quark percolation
through the nucleus [161]. Extensive work has also been put into the idea that the nucleon may
swell in the nucleus (dynamical rescaling) {162]. Our approach has been to extend to nuclei the
same technique that has been successfully used to calculate free nucleon structure functions for
the MIT bag model — see sect.4.1.

An earlier investigation by Thomas et al. [163} used the Guichon model [164], in which
nuclear matter consists of non-overlapping bags bound in mean-field-approximation (MFA) by
the self-consistent exchange of scalar (o) and vector (w) mesons. The results emphasised that
the EMC effect provides information on the momentum and energy distribution of quarks in
nuclei. In particular the usual impulse approximation based on nuclear binding was shown to

significantly overestimate the suppression of the nuclear valence quarks because of the neglect

of the binding of the quarks that are spectators to the hard collision. This conclusion remains
valid in the more recent work which is significantly more sophisticated [149, 150]. Morecover,
in that treatment it is possible to understand the experimental data quantitatively for finite

nuclei.
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Figure 24: Local density model for the ratio of the structure functions of Fe and D. See the
text for details - from ref.[150].

Because it is the energy and momentum distribution of quarks that matters one needs a
quark model for nuclear matter. At the present stage of development such models are necessarily
quite crude. We have used both the Guichon model and a further development along the lines
of the Boguta model [165] — which enables us to fit not only the binding encrgy and saturation
density of nuclear matter, but also its surface energy and thickness. In order to apply these
models to finite nuclei we have used the local density approximation

&ei) = [ 47 olr) [ dy 1(50) o000, (150)

Here p is the nuclear density distribution, f(y, p) accounts for Fermi motion and qg) is the twist-
2 quark distribution of the bound nucleon. Note that the recent discovery that convolution fails
in a more sophisticated treatment of the off-shell behaviour of the nucleon structure function
— c.f. sect.4.2 — has not yet been incorporated in any calculation of the EMC effect.

In Fig.24 the solid curve is the complete calculation for the ratio of the structure functions
of Feand D (at 10GeV?), for the case where the frce bag radius, R, is 0.6 fin. (There is in fact
little sensitivity to Ry [150].) For comparison we also show the most recent data from EMC,
BCDMS and SLAC {32, 147, 148]. Clearly the calculation provides a semi-quantitative descrip-
tion of the data. Notice that one cannot use the local density approximation for deuterium.
Instead a conventional convolution model which allowed for 8 MeV binding and recoil was used.
The nucleon momentum distribution in the deuteron was given by the Paris potential. This
particular calculation of the nuclear structure functions included no nuclcon momenta higher
than about 1.3 fm~!. Thercfore a cut-off (p.) at 1.3 fm™! was also imposed on the deuteron
momentum wave function. In fact, this only affects the EMC ratio at large z {150].

The Guichon model [164] predicts the ratio shown by the dotted curve in Fig.24 which is

n
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not quite as good. From the phcnomenological point of view it is important to know whether
our earlier conclusion about the inaccuracy of the impulse approximation remains true. The
dashed curve in Fig.24 shows the cffect of ignoring the interaction of the residual two-quark bag
with the nucleus. Clearly it dramatically overestimates the EMC effect. On physical grounds
this makes good sense. Deep-inelastic scattering measures the encrgy-momentum distribution
of the struck quark, not the struck nucleon.

Let us now briefly summarise our conclusions and comment on what remains to be done.
It is very satisfying that a quark level description of nuclear matter, together with the local
density approximation and a microscopic method of calculating twist-two structure functions
does give a reasonable fit to the EMC data on Fe. Although it is disappointing in some ways
that the impulse approximation fails, we have seen that there is a sound physical reason for
this failure, namely that it effectively assigns the binding of an entire nucleon to a single struck
quark. On the positive side we can be sure that nuclear deep-inclastic scattering does tell us
about the binding of quarks in nuclei.

Of course, having achieved this much one necessarily wants much more. One would like
to go beyond the local density approximation which would require a quark model for the
structure of finite nuclei. It is also unsatisfactory to be limited to a mean-field approximation
for non-overlapping bags. Even though o- and w-exchange may be viewed at least partly as a
macroscopic treatment of more complicated short distance processes (perhaps involving quark
and gluon exchange) one would like to do better.

The MIT bag model is also a fairly crude representation of nucleon structure. One should
explore the consequences of using more sophisticated models — e.g. with a more reasonable
surface, a better treatment of c.m. motion and perhaps a pion cloud. (The latter might
eventually help us understand why there is no evidence for an enhancement in the pion field
of the nucleus in recent Drell-Yan data [166].) As we have explained elsewherc [167], we are
limited to leading order QCD unless the model used has a well defined connection to QCD. -

In view of our findings in sect.4.2 [43] it will be crucial to go beyond the convolution model
in the treatment of nucleon Fermi motion. Finally, our analysis has not yet had anything new
to say about the nuclear sea or shadowing at small z. Eventually one may hope to understand
all the features of the data within a single unified theory.

7 CONCLUSION

In these lectures we have covered an cnorinous amount of ground, beginning with elementary
kinematics, and finishing with some of the exciting problems that remain unsolved. Along
the way we have seen how we can make a clear connection between familiar low-energy quark
models and the parton distributions measured in high-encrgy deep-inclastic scattering. This is
a very exciting and enouraging step along the way to meeting the ultimate challenge of nuclear
physics — understanding the relationship between QCD and low-energy nuclear physics.

We have seen in detail that pions and possibly heavier mesons are needed if we are to
make sense of some of the recent deep-inelastic scattering data. Certainly it is quite likely
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that a meson cloud around the proton is at least partially responsible for the observed flavor
asymmetry in the proton sea. In addition, a meson cloud may also play a role in the spin
structure of the proton, since some of the spin (as well as flavor) quantum numbers may
actually be carried by the cloud.

While still not a completely understood subject, it is clear that a fully consistent description
of the spin structure of the nucleon requires a thorough re-examination of the very foundations
of the parton model. To shed some light on this fundamental question we cagerly anticipate new
data on the polarised structure functions of protons and neutrons with which we can compare
some of the model predictions.

Finally, we have touched briefly on the important question of how the nuclear medium affects
the properties of quarks inside nucleons. In particular, we now understand that microscopic
structure is indeed crucial to any quantitative description of nuclear properties as seen by
high-energy probes. Furthermore, improvements in calculating nuclear structure functions by
incorporating relativistic effects also indicate the necessity of including both quark and nuclear
degrees of freedom within a fully consistent treatment.

If we have succeeded in passing on on some of the excitement we feel about this field, then
the effort of preparing the lectures has been worthwhile. With an energy upgrade underway at
SLAC, new experiments planned at CERN and Fermilab, CEBAF about to come on line and
ELFE (in Europe) a real possibility, this is a field that is just beginning to flower.
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