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BASICS OF DEEP-INELASTIC SCATrrERING 
\1, Non-Perturbative Aspects of Hadron 

f ' The elementary ideas of DIS can be found in many text books and reviews [3-IO}. In this
Structure Examined Through section our aim is simply to define our notation and collect together the essential formulae. 

Consider the inclusive scattering of a high energy lepton (initial energy E, final ellergy 

E', and scattering angle 0) from a hadronic target (mass M and initial four-momentum 1') as 

illustrated in Fig.l. The spacelike four-momentum transferred to the target is denoted q. For 
A.W.Thomas and W.Melnitchoukl 

an unpolarised target the laboratory differential cross-section for electromagnetic scattering is 

calculated by contacting the lepton tensor L,," with the hadronic tensor W"II; 
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_g"" + q"q" (2)1••••••i ••OII 9"" q2Understanding the structure of the nucleon is clearly one of the most challenging problems in MAY 1 L o 11bO 0032115 2 - - ."'''' .
modern physics. Apart from its intrinsic interest, there is by now a broad appreciation of the 

and 
role its internal structure plays in determining the properties of finite nuclei. While lattie, 

p.q (3)devotees continue to work on the brute force solution of QCD, the range and sophisticatiort,_c, "~y if' = pi' - -q",
q"

of phenomenological models of hadron structure continues to grow. On the other hand, the 

tests usually applied to those models tend to be rather indirect. It is really only in the last and the two arbitrary functions WI and W2 contain all the information we can learn about the 

ten years or so that deep-inelastic scattering data, which is our only direct view of the quarks target from such experiments. After contracting the t~nsors and integrating over phase space 

inside hadrons, has been taken seriously as a source of useful information [1, 21. we find: 

In these lectures we shall outline some of the progress tllat has been made in using deep­
d}q 402(E')2 [ 20 F2 2'" 0 FI] (4)

inelastic scattering (DIS) to refine our knowledge of hadron structure. Of course, in order to dE'dO q4 cos 2-; + sm 2M . 

be reasonably self-contained we need to devote the first few sections to the kinematics of DIS, 
All of the information concerning the structure of the target is now contained in the structure 

the parton model and the standard machinery required to treat DIS within QCD namely 
functions Fl (== MWd and F2 vW2 , with v == E E' the photon energy in the laborat.ory 

the operator product expansion and the renormalisation group. In sectA we turn to recent 
frame) which can depend on at most two variables. It is most usual to choose those to be the 

work which successfully connects the MIT bag model with the measured parton distribution 
Lorentz invariant quantities Q2(== _q2 > 0) and Bjorken x (== _q2/2p· q = Q''12Mv).

functions. We shall see that a number of features of those distributions can be understood 
For v(ii} scattering from an unpolarised target we find a third structure function, F3 , asso­

in terms of familiar physics required in almost an quark models. We also examine a recent 

ciated with parity violation: 


development which treats the spinor structure of the composite nucleon seriously. 


There has recently been quite a bit of interest in the role of the meson cloud of the nucleon d}qll(ii) G2 (E')2 ( M2 )2 [ 0 p,"Cii) 0 F"(ii) E +E' 0 -]
F W 2 2 2 . 2 I ± . 2 F"('" (5) 
in DIS. This is explained in detail in sect.5. Our discussion includes the reasons for preferring dE'dO = 2T Mlv +Q2 cos 2-v- + sm 2M ~slO 2 '3 • 

the infinite momentum frame for the calculation as welt as a detailed comparison with recent 
Finally, for scattering of a polarised electron (or muon) from a polarised, spin-l/2 target there data. In sect.6 we turn to some unexpected surprises which DIS experiments have revealed 
are (at least in principle) two more structure functions (gl and g2) which can be measured. including the apparent violation of the Gottfried sum rule, the proton "spin crisis", and 

Denoting beam and target helicity with arroWs top and bottom respectively we find;
the nuclear European Muon Collaboration (EMC) effect. All of these phenomena are rich in 


information about the non-perturbative structure of the nucleon, free or bound. Ii'inally in d}q (_ _ 402 E' 
 (6)dE'dO -+ -.-) MvQ2E(E+E'cosO)gl -2Mxg21·sect.7 we make some concluding remarks. 

I Address from 1 September 1993: InsLiLuL fUr TbeoreLische Physik, Universitit Regensburg, 0-93040 (Wfi note in passing some recent theoretical arguments [111 which imply a relationship betweell 
Regensburg, GERMANY 

91 and 92, hut we shall not discuss these further here.) In the deep-inelastic regime Q2 and v 

are both very large (Q2 > 2 GeV2 , v > 1 GeV) but x E (0,1). Clearly the second term on 
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the r.h.s. in equ.(6) will be negligible if 9. and 92 are of the same order. For this reason only 

gl has been measured so far. To determine 9'2 one would need to work with a longitudinally 

polarised beam and a transversely polarised target. However, even then the cross-section is of 
order (l/Q) times that given in equ.(6): 

j10 (........) 4a2(E')2 ( 2E92 ] . 
dE'dO t -! = - MIIQ2£ Yl + E+ E' SinO. (7) 

In the late 1960s tremendous excitement was generated by the discovery at SLAC that the 

structure functions were almost independent of Q'2 over a very wide range. That is, they were 

functions of the single variable Bjorkell x. It. is very easy to see that this is what one would 

expect if the nucleon contained a collection of elementary constituents (initially called partons 

by Feynman but later identified with quarks) with low mass, which do not interact strongly 
during the DIS collision. 

For simplicity it is usual to consider this problem ill a so-called infinite momentum frame _ 

e.g. one where the nucleon has momentum P ~ M in the z-direction so that its 4-momentum 

is p (P;O,O, Pl· Suppose a constituent with 4-momcntum yp (yP;O,O, yP), where y is the 

"momentum fraction" of the nucleon carried by the constituent, absorbs the photon. Its final 
invariant mass squared will be: 

(yp +q)'2 = y'2p2 _ Q'2 +2y p. q. (8) 

But p2 <:: Q2 and p' q, and the invariant mass squared of the parton must be small (~ 0) by 

assumption. Then we find y = Q'2/2p . q which was called Bjorkcn x above. Thus we see that 

under the assumptions of the parton model, only a parton with fraction x of the momentum 

of the nucleon can absorb the exchanged photon (or W-boson). In the case that the impulse 

approximation is valid, DIS structure functions then measure the number density of partons in 
the nucleon with momentum fraction x. 

It is usual to define distributions qtl(x) which"give the number density of quarks in the 

target with helicity parallel or anti-parallel to that of the target. (''or example, u(x)xdx gives 

the fraction of momentum of u quarks in the. proton with momentum between xP and (x+dx)P 

in the infinite momentum frame (and with either helicity). By charge symmetry u also gives 
the distribution of d quarks in the neutron. 

The structure functions mentioned earlier are directly related to these distribution functions. 
For an electromagnetic probe one finds: 

fii(x) 
I L c:(q'(x) +ql(x»
4 q 

(9) 

F2 (x) 

91(X) 

2x f't{x) 
1 
2" L c;(q'(;r) - (Jl(x)) 

q 

(10) 

(11 ) 

with e, the charge in units of e of quark flavor q. E<luation (l0) is t.he Callan-Gross relation and 

relies on the partons having spin 1/2 and no transverlle momentum (in the infinite momentum 
frame). In general we have 

1'2 (12) 
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.. 
where R is the ratio of cross-sections for absorbing a longit udinal to that for a transverse f/ 
photon. Experimentally R is small {12} (.!s 0.1) for all x, for CJl ~ 5 Gey2. , , 

For neutrino scattering from an isoscalar target one finds 

Ft) (u+ft+d+d+s+s), (13) 

which measures the total quark content of the proton. Even more important, by combining v 


and ii data one can measure the combination 


f~"'V) (u-u+d-d), (14) 

which isolates the excess of quarks over antiquarks - i.e. the valence quark distribution of the 


nucleon. Clearly we would expect the sum rule (due to Gross and Llewellyn Smith) 


101 
dx FJ"'v)(x) = 3 (15) 

to be obeyed. It will also be useful to define the n'th moment of a structure function like XF3, 


F2 or xFt as, e.g. 


101 

M3n = dx xn- 2 [XF3(X)]. (16) 

Initially the major experimental activity in this field was at SLAC, but for the past 10-15 

years, the emphasis has shifted to the muon and neutrino beams of CERN and Fermilab. For 

a thorough summary of the experiments at these laboratories we refer to the recent review by 

Morfin [13]. While most of data has been been accumulated for Q2 between 5 and 20 Gey2 and 

x between 0.1 and 0.65, Q2 as high as 200 Gey2 and x as low as 10-4 (at HERA) have now been 

obtained. (The latter is particularly relevant for certain sum rules as we shall see.) Figure 2 

illustrates the results typically obtained - "this experiment" is the CDnS neutrino experiment 

[14]. We note that the antiquarks, which form half of the sea of virtual pairs in the nucleon, 

are concentrated at low x (x ~ 0.3). The valence quarks (c.f. equ.(14» dominate the large x 

region. There is impressive agreement between the weak and electromagnetic experiments once 

one allows for the appropriate charges. Actually the situation is a little worse than Fig.l might 

suggest. Because of systematic errors, different muon data sets on the same target may differ 

by as much as 10-20%. These differences are typically within the quoted systematic errors. 

Again such differences can be important whenever an absolute measurement is required e.g. 

in the spin sum rule. 

It is dear from the analysis of the experimental data that even in the Bjorken region the 

structure functions have a weak Q2-dependencc, and therefore so do the distribution functions 

which we write as q(x, Q2). If one sticks to anyone data. set in order to (partially) avoid 

systematic errors, this variation of the structure functions (scaling violation) is essentially 

logarithmic. In order to understand it one must go beyond the naive parton model to QCD. 
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Figure 1: The deep-inelastic cross-section involves a sum over all (unobserved) final states, X. 
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Figure 2: Summary of structure function data taken with neutrinos - from the cons group 
[14} in comparison with data from electromagnetic probes. 
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In developing a theoretical description of the deep-inelastic process shown in Fig.l it is usual to 

assume that the wavefundion of the target has no high-momentum components (i.e. p} ~ Q2). 
Thus any Q2-dependence can only come from the lepton-quark scattering process. Scaling 

results if the quark is treated as point-like and the trivial Q2-dependence of the Mott cross­

section is factored out. On the other hand, in an interacting field theory, the lepton-quark 

scattering amplitude will involve radiative corrections, some of which add coherently (e.g. wave 

function and vertex renormalisation) while others are incoherent (e.g. bremmstrahhmg). It is 

well known that such radiative processes lead to corrections which vary logarithmically with 

the appropriate cut-off scale - in this case Q2. 
For explicit calculations of these radiative corrections, we refer to some excellent texts [3-10). 

It is particularly important from the point of view of application to other systems, that one 

can develop a very physical interpretation of this Q2 variation. This is perhaps best expressed 

through Close's "onion skin" picture, whereby every time We increase Q2, we increase the 

resolution at which we observe the structure of the target - hence revealing more and more 

of its previously virtual quarks and gluolls. The mathematical description of the variation of 

the structure function of Q2 is given by the Altarelli-Parisi equations. If one sticks to anyone 

of the data sets mentioned above (in order to avoid systematic errors), the Q2 variation of 

the structure functions is well described by these equations. However there are discrepancies 

between data sets and difficulties have also been encountered when trying to make a consistent 

fit to the EMC data on different nuclear targets. 

The most rigorous approach to the calculation of structure functions, and the description 

of their Q2 variation, comes through the opera'tor product expansion and the renormalisation 

group. As these are also discussed in many texts, we highlight only those features needed for 

our main consideration, namely the prediction of structure functions from particular quark 

models. 

3.1 The Operator Product Expansion 

As electromagnetic DIS involves a total cross-section for lepton scattering with a single photon 

exchanged, the structure functions are proportional (through the optical theorem) to the imag­

inary part of the forward Compton amplitude for a photon of 4-momeJltum q. The Compton 

amplitude is written: 

iqrl~" i Jcrz e '% (NIT(j,.(z)j,,(O)) IN), (J 7) 

where jll is the electromagnetic current operator. Tlse essential idea of the operator product 

expansion (OPE) is that one can expand the time-ordered product of the currents in what is 

essentially a generalisation of the familiar Taylor series. That is, one writes it as an infinite 

seties, whose terms each involve a (possibly singular) function of Z2 times a local operator, in 

geberal involving ~(O) and derivatives of "'(0). contracted with products of z>. . It is crucial 

that this is an expansion of the operator which is therefore target independent. 
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_. ~YY"'o L.fV,,,,,IJI,L. 11I(])CeS, lor purposes of illustration, one has schematically: 

TUI,(z)j,,(O» = L Ci ...(z2) ZI'I ... z".. O::~···,.. .. (18) 
ifn 

where for example one might have an operator ()::~'"I''' of the form: 

tfi(O)'y!" DIl2 ... D1'ntP(0) (19) 

~(Ohl'l DI'2tP(0)~(0)'y!'l ... D'lntP(O) (20) 

and so on. Now ignoring renormalisation tP has dimensions of [energyp/2, which is usually called 

simply dimension-3/2. Therefore the I.h s. of equ.(18) has dimension 6. Suppose the operator 

OJ,n has dimension Ni , then Ci,n must have dimension 6 +n - Nj. After Fourier transformation 

to give the Compton amplitude ( equ.( 17)) it wiII therefore behave like Q6+n-N,. Since Q2 -+ 00 

in the Bjorken limit, the dominant operators will be those with the largest exponent, or the 

smallest value of (N; - n) which is usually called "twist". One can easily check that the 

operator in equ.(19) is twist-2, while that ill equ.(20) is twist-4. With a little thought one can 

see that twist-2 is the best that can be done, and therefore DIS in the Bjorken limit will be 

entirely determined by twisL-2 ol}cmtors. 

The operator given in equ.{ 19) is called a singlet, twist-2 operator because it involves a trace 

over flavors. The only other twist-2, singlet operator involves the gluons: 

gOtpF"IOt Dil2 ... D""-I p"n{J. (21) 

One can also write down a set of non-singlet operators 

~(Ohl'l D"2 ... D"n AjtP(O), (22) 

where Ai are the flavor-SU(3) matrices. For simplicity we shall concentrate on the non-singlet 

operators from nowon. 
In general the matrix elements of these operators must be of the form 

(NIOrl'''/An IN) li'l ... p"" (NIOi,nIN). (23) 

Returning to equ.(17) we realise that the Fourier transform of Zp is essentially qplQ2, which 

contracted with pP gives Ilx. Thus we find that in the large-Q2 limit, schematically (i.e. 

corresponding to equ.(18)) 

nT "" E Cn(Q2) x- (NIOnI N ), (24) 
n 

and we have incorporated an appropriate number of factors of Q-2 into the (n'th derivative of 

the) Fourier transform of Cn to give Cn' The latter is easily seen to be dimensionless. 

Finally, for the full electromagnetic case one finds 

iqi Jd4z e •
z T(j,,(z)j,,(O)) 

E [(g""lg"/I2Q2 + g"l"q,,(J1l2 + g"/A,q"q"l - g,,,,q"IQ"2)Gi,n(Q2) 
i.n 

q,.q,,) C L (Q2) . Ot {J C3 (Q2)]+ ( g"" -7 q"lq,l, "i.n Jt/lllcr(Jg'lJq q/A2 i.n 

( 2)n l'I"'''nxq"3··· q,ln Q2 OJ . (25) 
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Here we have kept only the twist-2 operators, Ci,n and ctn correspond to the parity con~erving 
transverse and longitudinal contributions respectively while Cln is the parity violating term' 
leading to Fa in v(iI) scattering c.r. equ.(5). t 

3.2 The Renormalisation Group 

The arguments just presented must be modified in a field theory like QCD. The matrix element 

of the currents on the l.h.s. of equ.(25} must be renormalised, as must the matrix elements 

of the operators in the OPE on the r.h.s. This procedure introduces a new mass scale (or re­

normalisation scale), p2, upon which no physical results can depend. It is very important that 

the p2 dependence of the coefficient functions Ci ,n(Q2, p2,g2{p2)) be chosen such that equ.(25) 

is true after renormalisation. From the practical point of view it is crucial that the OPE is an 

operator relationship which holds independent of the target. One can therefore calculate the 

p2 dependence for a simple target, such as a free quark. As this too is found in many texts 
[3-8J we just review it briefly. 

Assuming that the operator On is multiplicatively renormalised by Zo~, we define 

og{p2)
(J(g) 

aInp2 (26) 

and 

81nZon 
10.. aIn 1'2 . (27) 

(Note that we have dropped the label i for convenience.) We shall show below that the product 

Cn(Q2,1'2,g2)(NI OnI N } is measurable and therefore cannot depend on 1'2. (It is proportional 
to the n'th moment of the DIS structure function defined in equ.(16) ). For the present we 
write 

d 
I' dp Cn(NIOnIN} 0, (28) 

and hence (in an appropriate gauge) 

0 ag 0 )
( aIn p2 + a In It2 ag - 10n Gn ( Q2, p2, g2) O. (29) 

However we saw above that for twist-2 Gn is dimensionless and therefore can only depend on 

Q2 as Q2/p2. Therefore we can replace a/aln p2 by -a/aIn Q2 and equ.(29) becomes 

( 0 ,:Q' - P(g( Q')) 89tQ') +70.) C. = o. (30) 

The first two terms are easily identiricd as -(JCq(Q2)}d/dg(Q2) so that cqu.(30) implies 

dlnGn -10n 
dg(Q2) p. (31) 

8 



Finally we obtain: 

2 2 2 2) 2 2 2 2 (Q2) '1 ') (32)(19 

Cn(Q ,I' ,g (I') C..(Q ,Q ,g (Q »exp - f3-(lg.
9(1,2) 

In practice one has a series expansion for -y(g/) and P(g/) to only a few terms. In the so-called 

leading order we have 

g2f3og3 

(33)f3(g) = -1611"2' -y(g) = -y~ 1611"2' 

and 

Cn(Q2,Q2,l(Q2» 1. (34) 

Then the integral in equ.(32) is easily performed and we find 

2)dn 

C (Q2 2 2) L!l- a(Q) 0 (35) 
n ,I' ,g (a(1J2) 

and using the calculated value of Po (for NJ quark flavors) and '1;, the anomalous dimension 

dg is 

-y,n 4 ( 2 n)1 (36)d<: 2;0 33 _ 2N 1 - n(n +1) +4 ]..;2 m- .
J 

3.3 The Moments of the Structure Functions 

As we hinted above, there is a direct connection between the moments of the structure functions 

and the Compton amplitude which we have calculated so far. In fact as a function of v for 

fixed Q2, Tpv has two cuts, (Vth'OO) corresponding to the physical region and (-OO,-Vth) 
corresponding to crossed processes. In terms of x, again for fixed Q2, the corresponding cuts 

run from (0,1) and (-1,0). Thus the dispersion relation for T,.v at fixed Q2 has the form 

00
2 __1_ [/-V'h 1 ] dv'(disc)T.IV(x',Q2) (37)Tpv(x,Q) - 2 . + I ' • 

1I"t -00 v,,. V - V 

Replacing Vi by x' and using the optical theorem to replace fmT,.v by the total cross-section, 

which is by definition the structure function, we find 

T,..,(x,Q2) E x-n (I dx'(x't- I W1..,(X',Q2). (38) 
n Jo 

Note that for the various terms in Tpv (see equ.(25) ) the sum over n is restricted to even or 

odd values depending on the crossing properties of the corresponding piece of WPII' 

Comparing equ.(38) with equ.(24) we see that the product or the coefficient function Cn and 

the operator matrix element is measurable. Indeed it is equal to the moment or the appropriate 

structure function as defined in equ.(16). Using the result or the above analysis based on 

9 

the OPE and the renormalisation group, we see that the Q2 variation or the moments of the 

structure functions is given by perturbative QCD. To leading order olle finds: 

Mn(Q2) Mn(Q2) (Q(Q2»)dO (a9)
o a(Q~) 

For fixed Q~ it is then easily shown that 

d!' 
In M,,(Q2) d~' In Mm(Q2) + constant, (40) 

o 

and therefore a log-log plot of allY two moments should be a straight line whose slope is predicted 

by QCD. 

All of the above discussion of Q2 evolution involves non-singlet operators. The Q2 evolution 

of the operators given in equs.( 19) and (21) is more complicated because they mix under 

renormalisation. While the corresponding analysis is not much more difficult (it involves a 2x2 

matrix), it would divert us too much to explain it here. Instead we rder to the appropriate 

texts [3-81- for example there is a concise summary in Table 2 or the review by Altarelli [9]. 

3.4 The Inverse Mellin Transform 

Given an analytic continuation of a set of moments, Mn(Q2), there is a standard method for 

reconstructing the corresponding function - this is the Inverse Mellin Transform (IMT): 

C iOO 
lXF3(X,Q2) = -21 . L+ dn x -

n M3n(Q2). (41) 
1I"t C-ioo 

(Here C is chosen 80 that the integral exists.) If the moments can be written as a product, as 

in equ.(24) or (25): 

M2n (Q2) Cn (Q\lt2) (NIO .. (,,2)1N) (42) 

then the IMT XF3 is just a convolution of the 1M'!' of Cn (denoted by C3) and (NIOnIN) 

(denoted Fa), viz: 

XF3(X,Q2) (I dy C3(X/y,Q2,1J2) (yF3(y,p2». (43)Jz: y 

This is an extremely important result. In particular, C3 is totally independent of the struc­

ture of the target - a property known as factorisation. Clearly ir we can evaluate the structure 

function of the target at any renormalisation scale 1'2, equ.(43) allows liS to calculate it at all 

higher values of Q2. Higher order QCD corrections do not alter this r<!sult in principle, they 

just make C3 harder to compute. For this reason It 2 cannot be too low. 
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4 RELATION TO SIMPLE QUARK MODELS 

At last we have collceled all the results necessary to understand how to relate quark models 

to QCD. (Of course, if one could use non-perturbative QCD (e.g. on the lattice) to calculate 

(NI0•• (1,2)IN) this would be unnecessary. However this is not feasible for more than a few 

moments at the prescnt time sec for example Lissia et al. [15} and Sachrajda [16}.) Since 

the models arc only "QeD motivated", the connection cannot be rigorous. On the other hand 

we know of no sensible alternative to what is proposed here. 

Apart from lattice technology, the only known technique for solving a bound state problem 

in field theory is to make quantum corrections about a classical solution. That is, one calculates 

radiative correelions at some renormalisation scale using perturbation theory and then solves 

(non-perturbative) classical equations of motion. One can then systematically add quantum 

corrections to the classical solutions. We assume that whatever quark model we are using 

represents just such a solution, renormalised at some scale p.2. Although physically measurable 

quantities cannot depend on p.2, the classical approximation may be better for some value. We 

treat the value of 1,2 appropriate to a given model, which we shall call Q~, as a free parameter. If 
one can evaluate the twist-2 target matrix elements within the model, then through equ.(25) and 

(32) (or equivalently (42) and (43)), one can cal<iulate the twist-2 structure function at all Q2, 

Even though the twist-2 contribution may not be dominant at Q~, the general considerations 

presented earlier (sec the discussion of higher twist below equ.(20)) ensure that at high enough 

Q2 it will eventually dominate. 

The most convenient practical method for evaluating the twist-2 moments of the structure 

function of some target follows from important work by Jaffe [17]. However, his article which 

was entitled "parton distribution functions" involved no discussion of renormalisation group 

corrections, and the calculations in it were only made in the Bjorken limit. It would therefore not 

be surprising if the student were confused as to the connection between his parton distributions 

(e.g. calculated for some model) and experimental data. We shall make that connection quite 

clear. 

Following ref.[17} we define a function H(a) (in the A+ = 0 gauge): 

00 

H(o) 2M 1 dze-iMaz(NI1'(tf1t(C)tf1+(O))lN)c' (44)
1!' -00 

Here we understand a sum over the spins of the target (IN), mass M), c denotes a connected 

matrix element and tf1+(~-) is an abbreviated notation for ¥tf1(Zj 0, 0, -z). 
To understand why the second field operator is evaluated at a point on the light-cone with 

respect to the first we recall equ.(17). In the target rest frame we can choose the phot~n four­

momentum q to be (Vj 0,0, -v- Mx) with v -+ 00. (Clearly Q2 is 2Mvx.) The argument oBhe 

exponential in e<lu.(11) is iq· z which becomes i{v(zO +z3)/2 + Mxz3J. The rapid oscillations 

as v -+ 00 drive (ZO + Z3) to zero in the Bjorken limit and hence the process is light-CODe 

dominated. (Causality implies that 4 must be zero if we are to obtain a non-zero contribution 

to the connected matrix element.) 

As a further matter of some practical importance, Jaffe has argued that the time-ordering 

in equ.( 44) can be dropped. In particular, it was shown in re£.l17] that for a connected matrix 
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... 
element involving field operators separated on the light-cone one can write either 

(NIT(¢i({- )¢+(O) }IN}c (NI¢t(C )¢+(O)IN)c (45r 

or equivalently 

(NIT(¢t(C)¢+(O»IN)c -(NI¢+(O)¢i(C)IN)c. (46) 

The only reason for preferring one form to the other is calculational simplicity, because equ.(45) 

has no semi-disconnected contributions for a > 0 while the second form has none for a < O. 

In general one can show that lI(a) = 0 for lal > 1, or alternatively that H(a) has support on 

1

(-1,+1). 

The next step in establishing the significance of 1I(a) is to show that its n'th moment, An: 

+1 
nAn = da a - 1 H(a)

-I (47) 

is just (NI02.nI N) (see sect. 3.2 of ref.[17}) where 02,n is the local twist-2 operator of order n 
associated with the structure function FJ"). Finally one has 

fi")(x) x (//(x) - H( -x)), (48) 

while 

FJ",ii)(x) (H(x) +-fl(-x». (49) 

Comparing with the parton model formulae in equs.(13} and (14) we identify q(x) = H(x) and 
q(x) = -H(-x) for x > O. 

Since, as explained earlier, we view the quark model which we use to evaluate H(a) as an 

approximate solution of the QCD equations at a renormalisation scale Q~, we add the Q~ label 

to q and ij. Using the relations (45) and (46) to simplify the calculation, we find therefore: 

q(x,Q~) ~L: dze- iMS'z(NI¢t(C)tf1+(O)IN)c (50) 

and 

q(a:, Q~) ~L: dze-iMS'%{NI¢+(e-)¢t(O)IN}c' (51) 

(In the last equation we used the translational invariance of the field operators to shift the 

argument {- in tf1t to -{- in tf1+. We then changed the integration variable from z to -z.) 
Before describing some numerical results obtained from equs.(50) and (51), some remarks 

must be made. Whereas we followed ref.[17} in taking the Bjorken limit (Q2 -+ 00) in order to 

obtain these parton distributions, the operator matrix elements needed in equ.( 17) in order to 

reproduce data at some finite Q2 should be evaluated at that Q2. Although there is no rigorous 

proof yet, we believe that the difference between the exact results and the equations we use 

should be of order I/Q2. (This is the case for the simple models which we have considered.) 

Eff~ctively it amounts to a smearing of (NI¢t(zO; 0, 0, z3) ¢+(O)IN) about the point ZO = -Z3 

by an amollnt of order l/v (and therefore of 0(I/Q2». 
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Since we only intend to compare our twist·2 predictions with (lata at high Q2, it is consistent 

.to ignore this correction. Indeed, from this point of view, equs.(50) and (51) arc the twist­

2 quark/parton distributions whose evolution is governed by perturbative QCD. In order to 

establish this result it is crucial that the renormalisatioJl scale is not a momentum cut-off 

(c.f. ref.(18)). It is of course also crucial that the OPE has allowed us to fadorise the target 

dependence from the Q2 dependence of the quark-probe interaction. 

4.1 The MIT bag 

Starting from the usual expression for the twist-two quark distribution in equ.(50), one inserts a 

complete set of energy and momentum eigenstates between the field operators. For the nucleon 

itself and for the intermediate states we usc translationally invariant Pcierls-Yoccoz stat.es. 

These will be two-quark (with mass in the region of 3M/tI) and three-quark + one-antiquark 

(with mass of order 5M/4) states. 
In the calculation of the antiquark distribution ij(x, Q~) (for which .,p and .,pt are interchanged 

in equ.(50» the dominant contribution is from a four-quark intermedialestate (again with lIIasS 

of order 5M/4). One novel feature of this calculation is that it is quite clear that the nucleon 

has an intrinsic sea [19] - even in a model with just valence quarks, like the three-quark bag. 

Furthermore, as a result of the Pauli exclusion 'principle, this intrinsic sea will not be flavor 

symmetric (19]. Indeed we will find more dd pairs in the sea. (This is because, with two spins 

and three colors one can insert d quarks into five different ls-states in a proton bag whereas 

there are only four states available for u quarks.) Clearly an asymmetry such as this will have 

important consequences for the Gottfried sum rule as discussed in sed.6.2. 

The dominant piece of the valence quark distribution calculated from equ.(50) is that in­

volving a two-quark intermediate state. This term is controlled by two parameters, the bag 

radius and the mass. For the latter it is important to take into account [20) the effect of gluoll 

exchange which raises the mass of a pair of quarks with spin 1 and lowers that of a spin 0 pair 

so that the resultant splitting is 200 MeV. 

Rather than using the model for the contribution to the valence distribution from 3q + ij 

intermediate states, we simply use a phenomenological term of similar shape (say (I-x)?) with 

a normalisation chosen to ensure that we have three valence quarks. Under QCD evolution, 

this phenomenological term moves to small x so that there is no significant uncertainty for 

Q' ~ 5 GeV2 and x ~ 0.1 [21, 22]. It is also worth noting that at small x We are sensitive to 

long-distance physics (the important values of z in equ.(50) are roughly up to order (Mxtl) 
which is difficult to handle in any phenomenological quark model, so it will be difficult to do 

better in the near future. 

In Fig.3 we show a comparison between the valence quark distribution of the proton calcu­

lated for a bag radius of 0.8 fm and various phenomcnological fits which will he loosely referred 

to as data. A priori we have no way to specify lhe hag scale It. Instead it is determincd by 

seeing how far one must evolve until the agreement with data at 10 GcV2 is optimal. CI(!arly 

the overall description of the data is rather good. Only at very large values of x (x ;(,0.7) is 

there a significant difference. At such values the struck quark will hav(! a momentum greater 
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Figure 3: The valence quark distributions for the proton in the bag model (R = 0.8 fm) at the 
bag scale iJ2 (0.25 GeV2) and at 10 GeV2 (solid lines) [21, 22). The dashed and dotted lines 
are the Duke-Owens [23) and MRS parametrisations (24) at 10 GeV2. 
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Figure 4: The valence quark distribution of the proton as in Fig.3 but for R = 0.6 fm (21, 22). 
We have also included the fits of EHLQ (25) and DFLM (26). 
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than 1 GeV Ic and one would expect to have to include the effect of correlations. There is an 

additional uncertainty associated with the use of leading order QCD, which may be less reliable 

for higher moments and hence large x. 
On the other hand, the agreement with data for calculations with a bag radius of 0.6 fm 

are essentially perfect (see FigA). The improvement at large x is a consequence of the higher 

average momentum is the smaller cavity. Certainly it would be tempting to conclude that 

0.6 fm is preferred. We choose not to draw that conclusion at this stage in view of the problems 

just cited. Instead we are content to observe that a bag radius in the range 0.6 to 0.8 fm gives 

a very good representation of the data. Particularly for the calculations at 0.6 fm the bag scale 

is rather low (e.g. 0.26 GeV in FigA). For AQCD =0.2 GeV, as used here, this gives a rather 

large value of 0'.(1'2). Other phenomenological studies have used similar values in perturbative 

calculations of QCD evolution [27], but we would be more comfortable with p. closer to 0.7 or 

0.8 GeV. This does seem to be a likely, desirable consequence of including the pionic corrections 

needed to preserve chiral symmetry [28, 29]. While we shall not pursue this discussion now, 

the effect of these pionic corrections on the Gottfried sum rule will be mentioned later. 

Because the quark distributions measured in deep-inelastic scattering involve light-cone 

correlation functions, the energy of the struck quark is as important as its three-momentum. 

This is why, even for SU(6) wavefundions for which the u and d quarks of all spin orientations 

have the same distribution of three-momentum, one finds important differences in utl and dtl 

by including the first-order one-gluon-exchange corrections to the energies of the intermediate 

(diquark) states inserted in equ.(50) (20-22,301. (The lowest mass diquark will give the hardest 

quark distribution.) In particular, in this unsophisticated model one can readily see that the 

ratio d{x)/u(x) tends to zero for x going to one. As a consequence F2nlF2p -+ 1/4 as x -+ 1 [3]. 

Figure 5 shows the general agreement between the data for the dIu ratio and our calculations. 
Only at very large x is there any serious discrepancy and this may also be related to the absence 

of short-range correlations in the bag [31]. 

In Fig.6 we see that this same, simple physics, familiar from low energy spectroscopy, also 

leads to a quantitative understanding of the proton spin structure function, glp(x). The crucial 

feature is that only a u quark with its spin parallel to that of the proton is accompanied by a 

low-mass spin-singlet pair of quarks (in an SU(6) proton). As a consequence u f is the dominant 

parton distribution at large x. 

Of course, because we are using an SU(6) spin-flavor wavefunction, the integral of our glp 

agrees with the Ellis-Jaffe sum rule (331 - unlike the data (32]. A clear indication of this 

problem is the quantitative disagreement at intermediate x in Fig.6. One knows that a more 

sophisticated treatment of the proton wavefunction including gluonic and pionic corrections 

would improve the situation a little [34-36]. However, it is also known that the anomaly plays 

a critical role in the flavor singlet distribution [37-39] and this is still rather controversial [401. 
We defer further discussion of this issue to sect.6.3. 

Independent of the question of the Ellis-Jaffe sum rule, it would be extremely interesting to 

obtain data on the neutron spin-dependent structure function gln(X). It is an exciting prediction 

of the bag model that gIn should become positive at large x. However, a recent extension of 
that work to include pion corrections (29] has led us to question the sensitivity of this prediction 
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to small changes in the model. Morever, if the discrepancy between quark model calculations 

(e.g. Fig,6 above) and the data arises because of the axial anomaly, there could even be a 

change in the sign of gl .. at large x [41, 42]. 

4.2 Relativistic Models 

The advantages of a model such as the one just discussed is its clear connection to hadron 

spectroscopy and low energy properties. One drawback, however, is the fact that the nucleon 

waveCunction used in equ.(50) is essentially non-relativistic - i.e. we need to use a technique like 

Peierls-Yoccoz to construct a state of total momentum zero. H~re we outline some recent work 

in calculating nucleon quark distributions within a relativistic, covariant approach. Further 

details can be found in ref.[43} (see also ref.(44]). 

To see how one can formulate the problem in a relativistic manner, we need to go back to 

the hadronic tensor WI'''' and in particular delve deeper into the Lorentz and Dirac structure 

of the truncated nucleon tensor, that is, one which has its fermion legs amputated. Because of 

the additional spinor degree of freedom the structure of the truncated tensor will necessarily 

be more complicated than that of the full nucleon tensor, Wp ". However, once we identify the 

relevant structures that contribute to the physical tensor in the Bjorken limit, we will be able 

to use these in a fully relativistic, covariant calcuiation of the nucleon structure function. The 

formalism developed here can also be extended to the case of off-mass-shell nucleons, since the 

truncated tensor will generally depend upon p2 as well as q2 and p' q. 

We can firstly observe that the nucleon tensor can be written [45]: 

M WI'''(p,q) ~Tr{('+ M) W""(p,q») (52) 

where we have explicitly separated the nucleon spinors from the remaining interaction. In 

general, W"" must be constructed from the Lorentz tensors (Dirac scalars) g'''', pI', q" and 

Dirac matrices 1,,1',0'1''', ,IJ,5 and ,5. By parity considerations terms involving ,1',5 or ,5 will 

not contribute to the spin-averaged tensor. Furthermore, terms with 0'1''' will not contribute to 

WI'''. Therefore we can write [43] 

WI'''(p,q) g,,11 (IW~ + ,w.; + ,w;) + ... (53) 

where each of the functions on the right hand side is a scalar function of q2, p . q and p2: 

Wf = Wf(p, q) = Wf(p2, p' q, q2). Substituting equ.(53) into (52) and comparing with equ.( I), 
we see that the transverse structure function Wr (Wr = WI = FdM) can be written as a 

linear combination of three independent terms, 

M Wr(p, q) 2 M W~ + 2 M2 W.; + 2 p . q W;. (54) 

We can calculate the functions Wf explicitly by considering the "handbag" diagram, which 

represents the impulse approximation for quarks. As in the operator product expansion, 

this amounts to separating out the q2-dependent part of WIJ" from the q2-independf!nt, non­

perturbative part, which must be described by some model. To calculate the latter we need to 
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consider quark--nucleon vertices that transform as scalars or vectors under Lorentz transforma­

tions (since the intermediate spectator diquark state will have either spin 0 or 1, and we need 

to make an overall Lorentz scalar). It is straightforward to identify the form of the vertices that 

are allowed by Lorentz, parity and time-reversal invariance, however the specific momentum 

dependence has to be determined within a model. In general there will be many independent 

scalar and vector vertex Cunctions. For simplicity we choose a specific form Cor the scalar (say 

I({>S) and vector (,a({>V) vertices. Calculating the functions ~s.v Crom first principles amounts 

to solving the relativistic, many-body, bound-state problem, which present day technology does 

not yet allow, so in practice we use phenomenological input to constrain their functional form. 

Denoting the quark four-momentum and mass by k and mq, respectively, we can take the vertex 

functions as 

(P m!)({>S(k2) 
Ns (k2 - A~)2 

(k2 
- m~)((>V(k2) (55)Nv (k2 _ A~ )1/2' 

chosen to reproduce the correct large-x behaviour of the u and d quark distributions. The 

constants Ns and Nv are determined by the normalisation condition, 

10
1 1 

dx qo(x) 10 dx ql(X) = 1, (56) 

where qO,1 are the distributions for a spin 0, 1 diquark 'state, respectively. Note that the above 

vertex functions incorporate the confinement mechanism, by removing the pole in the quark 

propagator which would have occurred at k2 = m!. 
The result of this calculation is that each of the three Cunctions W~-2 contribute to Wr in 

the Bjorken limit [431. This is extremely important if one wishes to discuss scattering Crom 

off-mass-shen-nucleons. In particular, as shown in reC.[431, it is very unlikely that in scattering 

Crom a nuclear target one would obtain the same linear combination that occurs in the free case. 

As a consequence the usual approximation whereby the nuclear structure Cunction is written as 

a convolution of a nucleon momentum distribution with the structure function of a free nucleon 

breaks down. For further details, including a fit to the free structure functions and application 

to the deuteron and nuclear matter, we refer to ref.[43}. 

5 ROLE OF THE MESON CLOUD 

Simply on the basis of the Heisenberg uncertainty principle we know that the long range struc­

ture of the nllcleon must involve a pion cloud. For example, the non-zero value for the neutron 

charge radius can be easily understood in terms of the emission from a neutron of a light, neg­

atively charged virtual pion, n ---+ p+ 11"-. ("urthcrmore, from PCAC, and from the tremendolls 

successes of chiral quark models [46-49] we expect that the nucleon should have a pion cloud. 

In F'-ddition, because there is no scale at which chiral symmetry can be ignored, the nucleon 

properties will have pionic corrections at all Q2, 
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The possible relevance of the extended pionic structure of tlltl nucleoli in high energy pro­

cesses, such as deep-inelastic scattering, was first suggested by Sullivan in the early 1970s [50]. 

It was shown that the contribution to the inclusive ,.N cross-!wction from pion exchange be­

tween the virtual photon and the nucleon scales in the Bjorken limit. The reason for this is that, 

in contrast to processes such as exclusive pion-production which are suppressed by O(I/Q2 ) 

form factors, here it is the inelastic structure function of the pioll itself that is probed. 

Using this picture of the physical nucleon, it was later noticed [51] that the pion cloud 

could be responsible for generating an asymmetry betwccn the ii and d quark content of the 

proton, through the preferred proton dissociation into a neutron and 1r+. Furthermore, DIS 

data on the momentum fractions carried by antiquarks were lIsed to obtain an upper limit on 

this non-perturbative pionic component. More recently it has been hypothesised {52-56] that 

this asymmetry could account for some of the apparent discrepancy between the naive parton 

model prediction for the Gottfried sum rule !57] and its recently delenniued experimental value 

[58]. 
Since it has by far the smallest mass, the pion was the first meson whose contributions to 

the nucleon structure function were investigated !59, 60]. However, just as other mesons can 

be included to give corrections to low energy nucleon properties, such as the electromagnetic 

nucleon form factors or magnetic moments {6lj, an extended mesonic structure of the nucleon 

may also be relevant in DIS. 

In this section we shall give a detailed account of the calculation of the virtual meson and 

baryon contributions to the nucleon structure functions. Furthermore, we will usc recent DIS 

data to examine the extent to which such a picture may be relevant in high energy reactions. 

The basic hypothesis of this model, in w'hich the nucleon has internal meson and baryon 

degrees of freedom, is that the physical nucleon state (in an infinite momentum frame) can be 

expanded (in the one-meson approximation) in a series involving bare nucleon and two-particle 

meson-baryon states 

IN}phys = .JZ {IN)bare + EJdV d2kT gOMUN cPMB(V, kT) IM(V, kT)i B(1 - v, -kT)) }. (57) 
MB 

Here, tPMB(V, kT ) is the probability amplitude for the physical nucleon to be,in a state consisting 

of a meson M and baryon B, having transverse momenta kT and -kT' and carrying longitudinal 

momentum fractions V and 1 - V, respectively. Z is the bare nucleon probability. Although we 

shall work in the one-meson approximation, we shall include higher order vertex corrections to 

the bare coupling constants 90MBN' Illustrated in Fig.7 is the DIS of the virtual photon from 

the two-particle state 1M; B). In Fig.7(a) the photon interacts with a quark or antiquark inside 

the exchanged meson, while in Fig.7(b) the scattering is from a quark in the baryon component 

of the physical nucleon. 

According to equ.(57), the probability to find a meson inside a nucleon with momentum 

fraction V (= k· q/V' q = k+/V+) is (to leading order in the coupling constant) 

1MB (V) == Z g~MUN Jd2k r IcPlltH(v, kT )12 
• (58) 

This must also be the probability to find a baryon inside a nucleon with momentum fraction 

1 - y. The baryon distribution function, fBM(V'), where V' = p' . q/p . q, is probed directly 

IH 
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Figure 7: DIS from the virtual (a) meson and (b) baryon components of a physical nucleon. 

through the process in Fig.7(b), and should be related to the meson distribution function by 

IMB(Y) IBM(l - y) (59) 

for all y, if the above interpretation is valid. We also demand equal numbers of mesons emitted 

by the nucleon, (n}MB = Id dy hIH(Y), and virtual baryons accompanying them, (n}RA{ 

I~ dy' IBM(Y'): 

{n}MB (n}BM. (60) 

This is just a statement of charge conservation. Momentum conservation imposes the further 

requirement that 

(Y)MB + (Y}BM (n}MB (61) 

where (Y}MB = Id dy y IMB(Y) and (Y}BM = IJ dy' Y' IBM(Y') are the average momentum 

fractions carried by meson M and the virtual baryon B, respectively. Equations (60) and (61), 

and in fact similar relations for all higher moments of I(Y), follow automatically from equ.(59). 

In what follows we shall explicitly evaluate the functions 1MB and IBM, and examine the 

conditions under which equ.(59) is satisfied. The results will be used to calculate the contri ­

butions to the nucleon structure function from the extended mesonic structure of the nucleoli, 

which are expressed as convolutions of the functions I(y) with the structure functions of the 

struck meson or baryon: 

6(MB)F'm(x) 11 dy hlB(Y) F2M(XM) (62) 

6(BM)F·m (x) 11 dy' IBM(Y') F2R(XB) (63) 

with XM = xlv and XB == xlv'. Note that equs.(62) and (63) are correct when physical 

(renormalised) meson-baryon coupling con~tants are ust!d in the functions 1MB and IBM (sec 

sec/l.5.5 for a discussion on this point). Dy comparing against the experimental structure 

functions, we will ultimately test the reliability of the expansion in equ.(57), and also the 

relative importance of the states involving heavier mesons compared with the pion states. 
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5.1 Pions '- Covariant Formulation 

Let us firstly review the previous calculations of the contribution to f2N from the pion cloud. 

Following the original method of Sullivan, the approach has been to simply treat the diagram 

in Fig.7(a) as a Feynman diagram. With a pseudoscalar 1rN coupling, 91fNNU(p) hsu(P), the 

contribution from this diagram to the hadronic tensor of the physical nucleon can be written 

6(lfN)Wp,,(p q) 
, 

,jJ 2 (k2 ) 1J P 9trNN Tr (1/ + M) i),s W/lV(k q) (Jf +M) i),s}
(21r)3(2Po)(k2 - m~Y 2 tr , 

(64) 

where the hadronic tensor for the virtual pion is expressed as 

W"" 
11' 

= -I"'W9 Itr + kPk" __IJ!2 n2tr (65) 
mtr 

and where 9!NN(P) is the interaction strength. 2 It is customary to isolate the P dependence 

of g!NN(k2 ) into the 1rNN form factor: i.e. 9;NN(P) = 9;NN FlfN(k2), where 9trNN is now 

the coupling constant at the pion pole (FlfN( -m;) = 1). We can obtain the contribution to 

the nucleon structure function WI (or W2, by the Callan-Gross relation) by collecting gp" (or 

simply 91''') terms on both sides of equ.(64) [62} to obtain an expression like that in equ.(62). 

Performing the elementary trace gives a factor'2P· p - 2M2 = _k2, so that the distribution 

function of a virtual pion accompanied by a recoiling nucleon is [51, 60} 

flfN(Y) 39~N~ Y lk~..~ dk2 :F;N(P)( _k2) (66)
161r (k2-m;)2-00 . 

Here, k2 = k!.QJ; - 14/(1 - y) is the 4-momentum squared of the virtual pion, with a kinematic 

maximum given by k!.ar :::= _m2y2/(1 - y), and k} is the pion transverse momentum squared. 

We have also included a factor 3 by taking account of the different charge states of the nucleon 

(namely 2 for the dissociation process p ---4 n1r+ and 1 for p -+ P1r°). -In a covariant formulation 

the form factor, FlfN, parameterising the 1r N N vertex, at which only the pion is off-mass-shell, 

can only depend on k2 • In the literature this is most often parameterised by a simple monopole 

or dipole function, 

( A~N - m!)"FtrN(k2
) (67)

A!N k2 

for n :::= 1 and 2, respectively. 

Because we integrate over the recoiling particle's momentum, in principle we could also have 

contributions from processes where a baryon other than a nucleon (e.g. a II isobar) is left in 

the final state in Fig.7(a). It is expected that contributions from the higher mass baryons will 

be suppressed relative to the nucleon, since the maximum value of k2 for which energy and 

momentum can be conserved when a higher mass baryon is produced decreases rapidly as the 

mass of the baryon increases. Nevertheless, the importance of the ll-resonance is well known 

2Since only t.ree diagrams arc ever considered, the pseudoscalar interaction is equivalent to that with a 

pseudovector coupling (f"NN/m,,) ii(p) iror5 lI(P) kO
, providing the coupling constants are related by f.NN =: 

glfNN (m./2M). 

in pion physics. In any quark model the coupling to the Nand II would elllt~r 011 the same 

footing. 

The process where the nucleon emits a pion and leaves behind an on-shell !':l. was previously 

calculated in refs.[56, 63, 64), using the effective interaction (ftrNA/m tr ) iio(p) /..0 u(P), where 

tlQ(p) is the spin-3/2 Rarita-Schwinger spinor-vedor 165}, which ('an be forllled by combining 

the spin-l/2 Dirac spinor u(p, s) with vectors foP): 

ua(p,S) = ~(~Sllm,~s) fo(m)u(p,s). (68) 

The vectors fa can be parameterised, in a frame whcre 1) =: (I'o; c.os<psiIlO Ipl, sin<psinO Ipl, 
cos {} IpD, by 

fo(O) _l_Opl; cos <p sin 0 1'0, sin<psinO Po. cosO IJo)
Mil 

1 (0 0 " . 0'fa(±l) .J2 ; 1= cos <p cos + ZSill tp, 1= Sill <p cos l cos '-P, ±sin 0). (69) 

The energy projection operator' for the Itarita-Schwingcr spillor-vector is 166) 

l: "01('" S)up(p, S) i\aP(P) (70)
s . 

where 

0A () = (..c +M ) (_ + )'o/'/P +',o l)P )'pllo + 2 P 1}{1) (71)OP p p A 9013 3 3 MA :J Ml . 

Equation (71) can be verified by using the explicit parameterisatioll in equ.(69). Using this 

projection operator, we can therefore proceed to evaluate the 1rll tracc factor, which in this 

case is 

~Tr [AaP(P) kCrk P W:"(k,q) (Jf+ M)j (72) 

and arrive at the distribution function for a pion with a II recoil: 

= 4 r;NIl lk~u dk2 :F;1l(k2) !(M +MA)2 - k2}2 !(M MA)2 - k2}
J () (73)lfll Y 3161r2 m2 y (k2 m 2)2 6 M2-00 ­

tr tr A 

where now the kinematic upper limit on k2 is k!ox = -(Ml - (1 - y) M2) y/(1 - y). Note 

that a dipole function for the 1r N!':l. form factor is nccessary to supprcss contributions from 

large IPI. 
Contributions from higher-mass baryon resonances can all he compllted from the formllla,{! 

given above because the lower lying states all have spin 1/2 or 3/2, For the (spill 1/2) Roper 

resonance, which with a mass Mn = 1440 MeV is the next heaviest state after the !':l., the trace 

factor is 

~Tr 1(1/ +M) hs (Jf + Mn) i1's} _k2 +(kIn - 1\1)2. (74) 

With a 1r N R coupling constant of 9;NIl/41r ~ 5.4 the integral over y of the pion distribution 

function for a recoil Roper resonance comes to about 10% of that with a nucleon recoil for the 
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same cut-off parameter. Furthermore, the pion distribution function with a Roper.recoil appears 

at somewhat smaller y than jl{N or jl{A, which means that the convolution in equ.(62) with 

the Roper distribution function will only be potentially relevant at very small x. Furthermore, 

because the Roper has the same quantum numbers as the nucleon, its inclusion as an incoherent 

contribution is somewhat less justified. In what follows we shall therefore restrict ourselves to 

the nucleon and !:1 baryolls only. 

In order to collserve momentum and charge, we must also allow for the incident photon to 

scatter from the recoiling N or !:1 after a pion has been emitted, Fig.7(b). Previous attempts 

at calculating the contributions from these processes within a covariant framework were made 

by several authors, including Hwang et at. (551, Mulders et al. [44J, and Dmitra.sinovic et 

at. [671, although all obtained different results. Partly because there is less phenomenological 

experience with so-called sideways form-factors (where the nucleon, rather than the pion, is 

off-mass-shell) some early work [52, 56,68) simply defined fNK(Y') through equ.(59). However, 

this is unsatisfactory from a theoretical point of view, and ideally we should be able to verify 

explicitly that within our model the functions jl{N and /N1r satisfy equ.(59). In historical 

terms, it was the careful examination of this process that opened up a whole Pandora's box of 

problems, and led to the realisation of the terminal shortcomings of the covariant convolution 

model. This issue was dealt with more deeply in ref. [431 , but let us briefly summarise the origin 

of the problem. 

Clearly the treatment of DIS from an interacting nucleon is considerably more involved than 

that from a free nucleon. As we saw in the previous section, the truncated nucleon tensor W#u. 
which enters this calculation can be written as a linear combination of three independent terms. 

Initial calculations [44) assumed that only the term involving the operator t was relevant. For 

pointlike nucleons this operator would indeed be the only one present, just as it is for a point­

like quark inside a nucleon [69]. Treating the diagram in Fig.7(b) as a Feynman diagram, the 

contribution to the on-shell nucleon tensor from DIS off the virtual (structured) nucleon with 

a pion in the final state can be written 

6(NK)WI-W(P) 2 <Pk F'kK(p2)f 
,q 91{NN (21r)3(2ko)(p2 - M2)2 

x ~Tr [(P +M) i'Ys (p + M) W#U(p, q) (p + M) i'Ysj (75) 

with the tensor WJt(p,q) as defined in equ.(53). Using only the operator cfleads to the virtual 

nucleon distribution function of ref.[44J, namely 

fN1r(Y') 39~NN y' jP~Q% dp2 F'k1{(p2) (_m2 _1 - y' (p2 _ M2)) (16)
161r2 (p2 _ M2)2 1r y'-00 

where p2 = "~ax - p}/(l - y/) is the 4-momentum squared of the virtual nucleon, with the 

upper limit now given by P~ar = M 2y'-m!y'/(1-y'), and Pt denotes the nucleon's transverse 

momentum squared. Apart from possible differences in the form factors, equs.(66) and (76) are 

clearly related by an interchange y' ~ 1 - y. 

The large-IIiI suppression for the N1fN vertex is introduced by the form factor F N1r , which 
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Figure 8: Distribution functions /1rN(Y) and /N1r(1 - y) with dipole form factors, and cut-offs 
A1rN =: 1 GeV and AN1f = 1475 MeV chosen to give (n)1fN = (n)N1r = 0.235. 

is usually parameterised by a monopole or dipole function [44, 70, 71} 

A2 _ M2)n 
FN,,(p2) = ( :~1r _ p2 (77) 

for n = 1 and 2, respectively. However to satisfy equ.(60), the cut-off parameter AN1r will 

in general have to be different from the cut-off A1rN regulating the 1r N N vertex form factor 

in equ.(66), and a different AN" again to satisfy equ.(61). Furthermore, because the k} and 

pt dependence in the form factors in equs.(61) -and (77) are clearly different, the calculated 

distribution functions /1rN and fN1r will in general not satisfy equ.(59). In Fig.8 we plot /1rN(Y) 

and /N,,(l - y) for dipole form factors, and cut-offs A"N =: 1 GeV and AN1r = 1475 MeV, 

respectively (to give the same values for (n)I{N and (n}N1r' namely ~ 0.235. Clearly the shapes 

are quite different, the most obvious difference being that /N1f(l - y) is finite at Y = 1. 

By using only one operator tin equ.(75) we are of course assuming that the entire structure 

function of the virtual nucleon can be represented by the function Wf in equ.(53). In the model 

calculation of the nucleon structure function in ref.(43J it was shown (using the simple quark­

nucleon relativistic vertex functions described in sectA.2), that generally one has non-zero 

scaling contributions from other functions as well. Furthermore, choosing a different operator 

form for W#u can also lead to unphysical results. For example, with an operator involving I 
rather than t the trace factor in equ.(75) is proportional to -m! (i.e. negative) [67}. 

Problems also arise for the emission of scalar mesons, for which the trace factor in /N<T(Y') 

for the structure t is 4M2 - m~ +(M2 -1,2)(1 - y')/y', which is clearly related to the trace in 

/l1ry(Y) (namely k2 + 4M2) when written in terms of the transverse momentum squared. For 

an operator I, the trace factor in fNI1(y') is 2p2 + 2M2 - m;, which not only violates baryon 

number conservation but also leads to an unphysical (negative) cross-section. For the DIS from 

24 



· 	 a virtual 6 component, these same difficulties will also be present, since the 6 hadronic tensor 

will have a non-trivial spinor structure, similar to that for the nucleon. 

These are the first hints of problems with the covariant approach to calculating DIS proC($SCS 

involving virtual nucleons. Indeed, the convolution formula in equ.(63) appears to be a very 

special case that cannot be easily obtained from the abovc considerations. The prescription of 

ignoring some of the structures in WJ.i" is clearly unsatisfactory, as in principle all should be used. 

Another important assumption in the covariant convolutioll model is that the dependence of the 

virtual meson and baryon structure functions in equs.(62) and (63) 011 the particles' invariallt 

mass squared is negligible. The argument usually made is that the vertex form factor SlIpprE!SSeS 

contributions from the far off-mass·shell configurations (Le. for Ik21~ 10 M2 (56}). However, 

strictly speaking, in this approach even the identification of the off-shell structure functions 

themselves is not very clear. Some suggestions about how to relate the off-shell functions to 

the on-shell ones were made [72, 73) in the context of DIS from nuclei, although these were 

more ad hoc prescriptions rather than theoretical derivations. More importantly, a covariant 

treatment of DIS from virtual nucleons essentially involves both nucleon and antinncleon dcgrccs 

of freedom. In contrast to this, the Fock state expansion in equ.(57), and in particular the 

interpretation of fey) as meson and baryon probability functions, is only meaningful in the 

IMF. Thus, simply put, the difficulties encountered in trying to obtain sensible results from 

the covariant calculation of fey) result from an incompatibility of the covariant formalism 

with the initial hypothesis that the physical nucleon state can be expanded as in equ.(51). 

The challenge is therefore to formulate the problem self-consistently, IIsing a single formalism. 

Since we would like to study the relevance of the virtual meson cloud of the nuclcon, the most 

economical solution would be to keep the Fock state expansion in equ.(57), and reformulate 

the rest of the problem in time-ordered perturbation theory (TOPT), where equ.(57) is well 

defined. In fact, an early calculation of the function ItrN(Y) in TOPT was performed some time 

ago by Giittner et at. (74), in the context of pion electroproduction. More recently the merits of 

this approach were expounded by Zoller [75}, who demonstrated that the distribution functions 

for the 1l'N and 1r6 states calculated in this fashion satisfied equ.(59). 

5.2 Pions - TOPT in the IMF 

An alternative to the use of covariant Feynman diagrams, in the form of "old-fashioned" time­

ordered perturbation theory in the IMF, was proposed some time ago by Weinberg [76J for 

scalar particles. This was later extended by Drell, Levy and Yan (77) to the 1r N system in DIS. 
The main virtues of this approach are that off-mass-shell ambiguities in the structure f1lnctions 

of virtual particles can be avoided, and that the meson and baryon distrihution functions call 

be shown to satisfy equ.(59) exactly. We firstly review the results for the pion cloud, and then 

compare these with the previous, covariant calculations. 

In the time-ordered theory the analogue of Fig.7(a) will now involve two diagrams in which 

the pion moves forwards and backwards in time, Fig.9. However, in a frame of reference where 

the target nucleon is moving fast in the z direction with longitudinal momcntum Pd -t (X)), 
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Figure 9: Time-ordered diagrams for pions moving (a) forwards and (b) backwards in time. 
Time is increasing from left to right. 

only that diagram involving a forward moving pion gives a non-zero contribution. In the IMI<' 

the target nucleon of momentum P = (OT, PL) has energy 

M2 ( 1 ) (7S)Po = PL +2PL +0 Pi . 

Following Weinberg [76J we write the pion 3'momentum as 

k y P+kT 	 (79) 

where kT . P = 0, and conservation of momentum demands that the recoilnuclcon momentum 

is 

p 	 = (l-y)P-kT • (SO) 

Since all particles arc on their mass shells the energies of the intermediate meson and baryon 
must be 

2
P 	+m ( 1 ) (SI)1.0 Ivl PL + {'yiP; +0 Pi 

2
k	 +M2 ( 1 ) 

Po 11 - yl PL + I: I +0 Pi . 	 (S2)n n 

For forward moving particles, Fig.9(a), y and 1 yare positive, and applying the rules of 

TOPT [76J the contribution to the hadronic tensor of the physical nucleon can be written 

£13k g!NN(k)O(,.N)W"'''(p, q) 
 J(21l')3(2Po){2ko)2 (Po - Po ko)2 


x !Tr [(1 +M) h5 W:"(p,q) (,5 +M) i'sj. (83)2 

The energy denominator in equ.(S3) can be rewritten a.') (Po - Po - 1.0) = (1\1 2 S,.N )/2P[" 
where 

P 	+m2
_T ,. +M2___ + -"-__S7fN s7fN(kf,Y) = (Po + ko)2 - (p + k)2 (S4)

Y 1- Y 

is the centre of mass energy squared of the intermediate 1rN state. Changing the variables of 

integration from £13k to dy and dk}, all powers of PL are sccn to cancel when combincd with 
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the vertex factors, (2Pot l and (2kot 2 , leading to a result that is PL-independent. Equating 

coefficients of g"", we find that the 11" distribution function with an N recoil is 

11tN(y) = 3g~NN 100 dk} :F;N(S1tN) (k} +y2M2) (85)
1611"2 Jo (I-y)V(M2-s>rNF I-y 

which means that the result of equ.(66) is reproduced, form factor aside. Obviously because 

here all particles are on-mass-shell, we cannot use the same k2-dependent form factor as in the 

covariant case. In the time-ordered calculation, it is quite natural to choose the form factor 

to be a function of the centre of mass energy squared of the 11" N system, S"N, as was done by 

Zoller (75J. For the functional form of :F"N(S"N) we choose a dipole parameterisation, 

A2 + IYP)2 	
(86):F1tN(S"N) = ( A2 + S1tN 

normalised so that the coupling constant 9"NN has its standard value at the pole (:F(M2) = 1). 
Previously, in refs.{75, 78} an exponential function was used 

M2 - S1tN)
:FwN(S1tN) = exp ( A~ , 	 (87) 

although ref.(75) in addition followed an unconventional normalisation. 

For a backward moving meson, Fig.9(b), V is negative, and in this case the energy de­

nominator becomes (Po - Po - ko) = 2vPL + 0(1/Pd. Therefore in the PL -+ 00 limit this 

time-ordering is suppressed by a power of 1/Pt, and so does not contribute. 

For an interacting nucleon with a pion recoil, the contribution to the nucleon hadronic 

tensor is 

dip 9~NN(P)6(N1f)WI'''(P, q) J	(211" )3(2Po )2(2ko) (Po - Po 1(0)2 

x~Tr [(1 +M) hs (p+ M) WN"(P,q) (p+ M) hsJ. (88) 

The kinematics here are similar to those described above, namely the nucleon and pion move 

with 3-momenta 

P Vi P - kT (89) 

k (1 - V') P +kT (90) 

and have energies 

P 	+ M2 ( 1 ) (91)Po IY/1 PL + {lylIPL +0 Pi 
2

k2 + m ( 1 ) 
ko II-V'I PL+ I~ 'I:~ +0 Pl 	 (92)n 

respectively. Then direct evaluation of the trace in equ.(88) gives 

2 (2P· p 2M2) [gl'" (2MW~ + 2M2W}. + 2p· q Wf) + ...J 


2 (2P· p 2M2) gl''' W1N(p,q) + (93) 
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where now the exact on-shell nucleon structure functioll appears, and automatically factorlscs. 

For a backward moving nucleon, y' is negative, and 2P '11- 2M2 = -4y'Pl +O(IIPL), 
so that the numerator becomes large in the PI, -+ 00 limit. Technically this is due to the 

"badness" of the operator ')'s, which mixes upper and lower components of the nucleon spinors. 

The energy denominator here is (Po - Po - ko) 2y'PI, + O( 11 Pd, and when squared and 

combined with the 11 Pi from the integration and vertex factors, the contribution from this 

diagram vanishes when PL is infinite. Therefore we need only e"aluate the diagram with the 

forward moving nucleon, which gives the result 

00INw(Y/) 3g~NN 1 elk} :F~1t(SN") (ki.+ (1 y/)2M2) 
(94)

1611"2 Jo (I_y/)yl(M2 SN>r)2 y' 

with 

P.+M2 P +m2 
_1__ + _T___".sN,,(k}, y/) s1fN(k·L 1 - V') 	 (95)Vi 1- Vi 

Notice that the integrand is identical to that in equ.(76), when 112 there is written in terms of 

p} (or k}), except perhaps for the form factor. It was shown in (75} that within this approach 

there is an explicit symmetry between the processes in which the intermediate pion and the 

intermediate nuCleon are struck if the form factor in IN" is taken to be 

:FN,,(SN1f) :F1tN(S1tN). 	 (96) 

Then as long as the same cut-olr mass parameter is used ill both vertex functions, equ.(59) is 

automatically satisfied. 3 In Fig.IO we plot the function 11tN(y) evaluated in the IMF, with 

both the v-dependent exponential, equ.(87), and dipole, equ.(86), form factors, and compare 

this with the function evaluated in the covariant approach, with the P-dependent dipole form 

factor in equ.(67). In order to make the comparison meaningful the cut-olrs have been chosen 

to yield the same pion multiplicity (n}1fN (~0.235), for which the cut-olrs are AWN =1 GeV, 

Ae = 1380 MeV and A = 1425 MeV. With the v-dependent exponential form factor IwN(V) is a 

little broader and peaks at around V = 0.3, compared with y ~ 0.2 for the covariant convolution 

model with a dipole form factor. The v-dependent dipole form factor yields a distribution which 

is a little broader still. The consequence of this will be that the convolution of 11fN(V) with F'lM 

for the v-dependent form factors will have a slightly smaller peak and extend to marginally 

larger x (see sect.5.4). 

The processes involving DIS from 7rfj. states can also be calculated in the IMF, although 

some care must be taken when describing the 11" N fj. interaction vertex in TOPT. Namely, 

in TOPT the relevant vertex is uo(p) (P - p)" u(P), rather than uo(p) ko u(P) as in the 

covariant theory, where of course the two are (trivially) identical. Using the same formalism as 

for calcul~ting 11tN, and with the kinematics as giw!u by e<llls.(78) to (82), but with M -+ MA , 

we find that the pion distribution function with a fj. left in the final stat.e is: 

31he form factor in equ.(86) Illay also redllce the nllmber of frcc parameters in models of N N or NN scat­

tering (79), where currently different form factors are necessary for the mesoll- and baryon-exchange diagrams. 
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Figure 10: Distribution functions /~N(Y) evaluated using covariant and time-ordered pertur­
bation theory. The covariant function is as in Fig.8. The TOPT functions are evaluated 
with exponential and dipole form factors, with cut-offs At! = 1380 MeV and A = 1425 MeV, 
respectively, to give the same value for (n)~N =0.235. 

4 r:NA (00 dk} .r;A(8~A)

/~A(Y) 
 3'16m!r2Jo (1-y)y(s~A-M2)2 

{k} +(MA - (1 - y)M)2) (k} + (MA + (1 - y)M)2J2 
(97)

)( 6 M! (1 - y)3 

where S~A = s.,..N(M -+ MA), and we take the same functional form for the 11' N 6. form factor 

as for the 11' N N form factor in equ.(86). 

For an interacting 6. with a pion recoil we need additional information on the truncated 6. 
hadronic tensor, which in this case will involve additional Lorentz indices stemming from the 

fact that the 6. has spin 3/2. For an on-shell 6. the hadronic tensor can be represented as [80}: 

W~II(p,q) iTr (Aap(p) W~lIaIP'(p,q)] (98) 

with AaP(p) the 6. energy projector given in equ.(71). Assuming the simplest structure for the 

truncated 6. tensor, namely (75) 

W~IIOP(p,q) _gOP W~II(p,q) (99) 

where W~II has the same Dirac and Lorentz structure as the truncated nucleon tensor, gives 

the result 

...... 0 2 ...... 1 -2)
W~II(p,q) 2 ( MAWa + MAWA + p·qWA y"l1 + ... (100) 
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Figure 11: Distribution functions /"A(Y) evaluated using covariant and time-ordered perturba­
tion theory. The covariant function is evaluated with a dipole form factor with cut-off mass 
A~A = 1 GeV. The TOPT functions have exponential and dipole form factors, with cut-offs 
Ae = 1565 MeV and A = 1512 MeV, respectively, to give the same value for (n}~N = 0.114. 

so that by comparing coefficients of g'JII we can use the term in parentheses to define the on­

shell 6. structure function. Utilising the form equ.(99) for the truncated 6. tensor, we can then 

evaluate the trace 

~Tr (1 +M) (P - P)a Aaa'(p) W"lIop(p,q) AP'P(p) (P - p)p] 

_I_ (k} + (MA - y'M)') (k} + (MA +V'M)2f 

"-0 2 -1 ...... 2 ) . ( (2MAWA + MAWA +P'qWA) 9,,11 + ... (101) 

so that the on-shell 6. structure function factorises to give equ.(63), with the virtual 6. distri­

bution function given by 

4 r;NA {'JO dk} J1~(SA"")JA,,(y/) 
3' m~ 161f2 Jo (1 - y/) Vi (SA.,.. - M2)2 

[k} +(MA - Vi M)2] [k} + (MA + Vi M)2]2 
(102)

)( 6 Ml Vt3 

Clearly this is related to /"A(V) by equ.(59) if .1".,..A(S"A) = .1"A~(8A~)' where SA~ = SlfA(M -+ 

MA). 
In Fig.II we compare the function /"A (y), calculated in the IMF, with the function given by 

equ.(13). The P-dependent form factor in the covariant formulation is a dipole form (A"A = 
1 qeV), whi1(! the s"A-depcndent form factors are dipole (A 1512 MeV) and exponential 

(Ae = 1565 MeV), with all functions normalised to give the same (n)"A(~ 0.114). Wherea.'> 

for /"N(Y) the v-dependent form factors produced a slight hardening of the distributions when 
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compared with the covariant form factor, here we S('C a marked difference between the two 

calculations, in which the distributions calculated in the IMI~ are considerably broader and 

extend to larger y. 

Having found a useful method for obtaining the pioll distributions in a self-consistcnt man­

ner, we next apply the TOPT/IMP formalism to lIou-psellcloscalarmesons. As we shall see the 

difficulties encountered in attempting to compute the cont.rihutions from vector mesons make 

the covariant approach to this problem very problcmatic, and from a technical point of view the 

vector mesons can only be handled adequately in the 1~1F. From a physical point of view, our 

aim will be to test the relevance or otherwise of the higher mass meson states in the physical 

nucleon. We focus primarily on the vector mesons, but abo brieOy re-examine the importance 

of kaons in the time-ordered formalism. 

5.3 Heavier Mesons 

The importance of vector mesons in nuclear physics is well known. In the cOlltext of meson 

exchange models of the N N force in nuclear physics, it has long been realised that vector mesons 

playa vital role [79,81-86]. For example, the isovector p meson provides some cancellation of 

the tensor force generated by 1r meson exchange,. On the other hand, the isoscalar w meson, 

through its large vector coupling, is responsible for the short range N N repulsive force, and 

also provides most of the spin-orbit interaction. Traditionally it has been necessary to use 

hard vector meson-nucleon form factors in order to fit the N N phase shifts [79]. However, 

alternative approaches have recently been developed ill which the N N data can be fitted with 

quite soft form factors [86-881. 

l.From another direction, the vector meson dominance model of the clastic electromagnetic 

nucleon form factors, in which an isovector photon couples to the nucleon via a p meson, 

provides a natural explanation of the dipole Q2 behaviour of the "INN vertex function. Recent 

analyses [861 have shown that a pN N vertex parameterised by a soft monopole form factor 

(Amonopole IV 800 MeV) provides a good description of the Q2 dependence of the Dirac and 

Pauli form factors. The effect of vector mesons upon nucleon electromagnetic form factors has 

also been explored [61, 89} in the cloudy bag model [47], and ill various soliton models [90]. 

In previous calculations [55J, the vector meson distributions were evaluated within a co­

variant framework, but with the assumption that the vector meson and nucleon intermediate 

states were on-mass-shell. In this section we extend the analysis of pions ill sect.5.2 to the vec­

tor meson sector. SpecificaUy, we shall demonstrate that the vector meson functions, calculated 

within the TOPT/IMF formalism, can be made to satisfy the relation e(ju.(59) exactly. 

For the effective V N N interaction we include both a vector, gVNN tt(1Jb"'f",U(P), and a 

tensor, /VNN/(4M) u(p) iO''''P{(P", - p",)f(J - (PJ1-1}(J){oJu(P), coupling, where V = p or w, and 

f",(A) is the polarisation vector for a spin 1 mesoll with hclicity >.. III the calcula.tion of the 

vector meson distributions in ref.[78} the tensor coupling was taken to be '" fl(p )iO'°(Jk",ifJU( P) 
[79], In our treatment of the 1rd states in the previous section, the derivative interaction was 

constructed from baryon momenta, Pa - Pcn rather than from the pion momentum k",. For 

overall consistency in calculating contributions from all the meson-baryon states, we therefore 

:lJ 

v 1___q(i Wv"vojI ) '}S ~ v 
'" q 
L') ~ 
~Ll 

w,J1V 
N 

q r­
)0 J1sS' ' 

~~ . ~. :'~iAAl~ 
P 11 P, l1-yl a P p 11 II, It-y" a P 

(8) (b) 

Figure 12: Time-ordered diagrams for the DIS from (a) vector mesons and (b) nucleons with 
recoil vector mesons, that are nOll-zero in the IMP. 

use the above interaction for the tensor V N N vertex also [91]. In both cases, however, one can 

explicitly verify that the probability conservation condition, equ.(59), is satisfied [78]. 

The contribution from the diagram with backward moving vector mesons is suppressed in 

the IMP by the energy denominators, just as for pions. Therefore we only need to evaluate 

the diagram with forward moving vector mesons, which gives the following contribution to the 
nucleon hadronic tensor 

h'(VN)WI'II(p ) - J dJk 1 
,q - (21f)J(2Po)(2ko)2 (Po - Po - ko)2 

1 '" [ 1/ ) ( (k) ",' /VNN(k)2' "''''''' (P. »)x2' ft.Tr ( +M gVNN "I ,+ 4M 10' "''' - P"''' 

.(p+ M) f~,(A)f",(A) WCII"'P(k,q) fp(N)fp,(A') 

( 
)JfJ' /VNN(k). 8"p'. gVNN(k) i + 4M 2u,..- (Pp" - pp") . (103) 

Evaluating the trace gives 

(g~NN(k) A",p + /~NN(k) BOtP + gVNN(k) /VNN(k) G",p) (104) 

where 

AOtp (P - p)2 gOtP + 2 (P",pp + p",PJ1 ) 
2 1 p. PBOtP (P - p) gOtP - (POtPp +POtPP) - 2'(POt - POt)(Pp - pp) + 2M2 (POt +POt)(Pp +pp) 

GOtP 2 (P - p)2 g",J1 - (POt - pp) (Pp - POt) (105) 

are the V N N vertex trace factors for the vector, tensor and vector-tensor interferellcecollplings, 

respectively. For an on-mass-shell vector meson, the spin I tensor WCIIOJ1 , symmetric under the 
interchange of /l i-t II and a i-t p, is given by 

k" kll )WCIIOP(k,q) (gllll WIV{k,q) + m~ W2V(k,q) gl>J1, (106) 

This form guarantees that the vector current is conserved, ko {J1) WCIIOt(J = 0 = q,,{II) WCIIQP. 
Furthermore, it reproduces the correct unpolarised on-shell spin 1 tensor when contracted with 
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the meson polarisation vectors (<'0(1J)) and summed over the V hcliciLy, ). (92): 

W~II(k,q) L:>:().,k) f(1().,k) Wt"o(1(k,q) 
~ 

kokp) W,wo(J(k-goP + 1.;2 v ',q) 	 (107)( 

k" k" 
ex yl''' W)v(k,q) + -2- W'lv(k,q). 

mv 

In the case of DI~ from a vector particle emilted by a nucleon, we contract the spin 1 ten­

sor WCllo(1 with the V N N vertex trace factors in equ.( 105). Equating coefficients of gl'V in 

equ.(103), and using the same IMF kinematics as for the lI'N system, except with m1l' ~ my, 

together with the Callan-Gross relation for the nucleon and vector meson, enables the contribu­

tion to F'lN from vector mesons to be wrilten as a convolution of the vector meson distribution 

function IVN(Y) with the on-shell vector meson structure function F2v(x/V), as in equ.(62), 

where now 

Cv /00 dk} PvN(SVN) 

IVN(v) = 1611''l 10 (1 - V) Y (M'l - SVN)'2 


2

X {2 (k} +v'lM'2 +mir)(k} + y'2M'2 + (I - y)'2m~) + k} +V M'l _ 4M2) 

gVNN V2(1 - v)m~ 1 - V 

(k} + y2M'l - (1 - v)m~)'2 4 (k} + y2M'2») 
+ gVNN lYNN ( 2(1 _ y)'2)m~ + (1 - V) 

'2 ((2 - V)'2 (k} +V2M2 +(1 - v)m~)'l (k} +(4(1 - V) + y2)M2) 
+ lYNN 	 16V2 (1 - v)3M2m~ 


(k} + y'2M'2) (k} +(-4(1 +y) +y2)M'l) 

4{1 - V)2 M'2 


(k} +y'2M'l + (1 - v)2m~ )'2 _ (k} +V2M'l +m~ )2)} 108 
2y'l(1 - y)2m~ 2y'2m~ ( ) 

where Cv = 1 +26v", is the isospin factor (here 6 is the Kronecker-o symbol). The V N cen­

tre of mass energy squared is Sv N =: S1I'N( m1l' ~ mv), and we take the same form factor 

for both the vector and tensor couplings, gVNN(SVN) = gVNN .rVN(SVN) and IVNN{svN) = 
lYNN .rVN(SVN), with .rVN(SVN) defined analogously to equ.(86). 

For the vector meson recoil process, we evaluate the distribution function INv(v/) using the 

full spinor structure of WN" given in equ.(53): 

6(NV)WP"(P ) - J tfJp 1 
,q -	 (211')3(2Po)'2(2ko) (Po - Po - ko)'l 

X ~ ~Tr [(P +M) (9VNN(P) ," + Iv:Zt(P)2iUO '0(Po' - Po')) (,J +M) W~"(p,q) (,J +M) 

(1 IVNN(p). (1'(J ). (]. gVNN(p), + 4M 2tu (P(1' - p(1') fo(>.)('(1).) . (lOg)( 

Performing the contractions over the indices a, (J leads to the convolution integral of equ.(63), 

with the nucleon distribution function I NV(Y/) with a vector meson recoil given by equ.( 108) 
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but with y -t 1 y/, with SNV(~'},y/) = SVN(k}, 1 - V'). Again, we have evaluated only the 

diagram with forward moving lIuci(,OIlS which is nOll-zero in the IMF. Thus we can prove that the 

probability distributions for 111(' \fN intermediate states are related by INv{v/) = IVN(1- V'). 
One should observe that the trace factor inside the braces in Iv N(V) is divergent in the limit 

y -t O. To illustrate one of the problems with the covariant approach to calculating IVN. con­

sider a form factor which behaves likeexp {y (M'l - SVN»). Since P -(k}+M'lV'l)/(I-V), this 

form factor corresponds to a P-dependent covariant form factor proportional to exp!k'l - m~). 

With such a form factor, 6(VN) F'2N{X) would approach a finite value as x ~ 0, much like a per­

turbative sea distribution. lIowever, there are several problems with accepting such a result, 

the most obviolls of whieh is that it would violate charge and momentum conservation very 

badly, since INV{Y') -t 0 for y' -t 1 and -t constant as y' -t 0 when the same form factor 

is used for the diagram where the nucleon is struck (i.e. a form factor which in the covariant 

formalism corresponds to exp [p'l - M'l]). Furthermore, it would lead to a gross violation of 

the Adler slim rule, which integrates the flavor combination u - ii - d +ii, and such a violation 

has not been ohserved in the range I < Q'l < 40 GeV'2 [93}. This gives further evidence for the 

preference of the IMF approach together with the v-dependent form factor in equ.(86) or (87). 

To complete our discllssion of vector mesons, we give the results for the functions describing 

the V~ states. We saw ill the previolls section that the contributions from the 11'.6. states were 

certainly not negligihle ill comparison with the 11' N components of the physical nucleon. For the 

vector mesons, we w011I(1 also like to examine whether the .6. isobar is of any importance. Since 

the w meson is isoscalar. the only vector meson able to cOuple to a nucleon and ~ is the p, and for 

this we use a pselldoveclor coupling {79}, (fpNt::../mp) ii,(P) h61°U(1(P) (P - p)of(1- (P - p)(1fo)' 
Again, we drop those diagrams which give order 1/Pt contributions in IMF (Le. for backward 

moving p mesons or .6.). The contribution from scattering from a p meson with a.6. recoil is 

obtained by evaluating the followillg trace: 

-2
1 

ETr (P + M) i'5'l~ Ao'(J'(p) (P - p)of:'().)fo"().) - (P - p)o'f:().)fa,,{).» 
~,~. 

.W~wo"(1"(k,q) i,5,(1 (P - p)(1,(p,,()./)f(1()./) - (P -p)(1fplI().I)ffJ,(>./») ](110) 

where Wt",o(1 is the p mesoll structure tensor, as given in equ.(106). The resulting probability 

distribution to find a p in the physical nucleon with a ~ recoil is therefore 

J: t::..(Y) = ~ I;Nt::.. {'XJ dk} .r;t::..(spt::..) 

p 3 m~ 161f'2 10 (I - y) V (M'2 - spt::..)2 


4 M M t::.. (' '2 'l) 4 M M t::.. '2
X - 2A-It::..+MMt::..+2M - --'2-«P-p).k){ 3 	 3mp 

~(M~(P.k)2+M'l(])'k)2) + 4 P·P(2M~+4MMt::..+M2) (111)
3n~ 	 3 

4 p. l' :.I ( M2) 'l ( 2P . k p. k P . p) }
+ 3m~ (p. ~.) I M! - 4 (P'I) 1- 3m~M! - 3M! 

with the kinelllatics as given ill C(IUS.(78) I.hrough (82), except with mit -t mp and M ~ Mt::... 
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Figure 13: Vector meson distribution functions in the nucleon. The (dipole) form factor cut-off 
is A = 700 MeV for all curves. 

For the DIS off a virtual 1:1 with a p meson recoil, we need to evaluate the trace 

~ LTr [(I +M) i'Y5'YQ {(P - pttQ'*(A) - (P - p)Q'fo*(>.)) 
,\ 

.AQ'QII(p) W~VQllp"(p,q) Apllp,(p) 

. i'YS'YP {(P - p)P'fP(>,) - (P - p)PfP'p.))) (112) 

It's then straightforward to show, using the kinematics of equs.(89) to (92) that ft.l.p(Y /) = 

fpa(1 - V), when the form factors satisfy .rpa(spa) == .rap(sap). 

In Fig.13 we show the vector meson distribution functions lpN, /wN and /pa as a function 

of V, for the dipole form factor of the form in equ.(86), with A = 700 MeV in all cases. The 

dominant contributions come from the tensor (derivative) couplings, which is reflected in the 

larger pN and pb. distributions in comparison with the wN. Also, the vector distribution 

functions tend to peak at slightly larger V values (y '" 0.5) in comparison with the 11" Nand 11" b. 

functions. 

To conclude this discussion of heavy mesons we consider the DIS process itwolvillg the 

kaon cloud of the nucleon using the time-ordered formalism in the IMF (noting, however, that 

the role of kaons was first examined by Signal and Thomas (94) within a covariant approach). 

Through the proton dissociation processes p ......... [(°I;°(AO) and p -t }(+I;-, the virtual photon 

will probe the quark structure of the virtual strange mesons and hyperons. Such a process will 

naturally generate a non-perturbative strange quark component of the nucleon, as well as a 

different anti strange sea, thereby breaking SU(3) flavor symmetry of the sea in the process. 

Taking a pscudoscalar coupling for the [(N /I vertex, where the hyperon II = E or A, the 

kaon distribution function is similar to the pion distribution function /ffN(V), (~xcept the mass 
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Figure 14: Calculated average meson multiplicities in the nucleon, as a function of the (dipole) 
meson-nucleon form factor cut-off. 

of the recoil state is now different, 

00gkNH 1 dk} J1H(SKlI)fKII(Y) CIl-­
1611"2 0 (1 - y) Y (M2 - sKH)2 

X (kf +V2M2 + (MH - ­M)(MH (1- 2V)M)) 
(113)

I-y 

where the isospin factor is CH = 1 + 26m;. Similarly for the DIS from a strange baryon with 

a spectator [(., repeating the calculation of sect.5.2, we find that the hyperon distribution 

function /HK(V') is given by the right hand side of equ.(1l3) with y -t I-V', thereby satisfying 

equ.(59) exactly. Numerically, the kaon distributions are much smaller than the vector meson 

distributions, and can for practical purposes be dropped from the analysis. 

The relatively small size of the kaon contributions is also clear from Fig.14, where we 

compare the average number of all mesons considered, (n}MB' as a function of the dipole form 

factor cut·off A. For relatively small cut-off masses, A :::. 0.7 GeV, the dominant contribution 

is from the 11" N component. However, the rapid growth with A of the p meson multiplicities 

and momentum fractions means that for large A (~1.2 1.3 GeV) the vector mesons become 

a..'l important numerically as pions. In fact, the strong kT dependence in fpN(Y) and fpt.l.(Y) 
implies that for A ~ 1.4 GeV (n)pN actually exceed (n}ffN. 

Note that for the 11" N component, A = (600.1000,1400) MeV corresponds to an exponen­

tial cut-off Ae ~ (580,1130,1360) MeV, and a covariant dipole form factor cut-off AffN ~ 

(590,760,980) MeV for the same (n)"N' In many nuclear physics calculations quite hard form 

factors of the k2-dependent type are often used, for example in N N potential models, where 

cut-offs of the order of 1.5-2 GeV are typical. Clearly such large cut-offs would imply an 

extremely large number of pions and an even larger number of vector mesons. Whether or not 
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it is reasonable to accept such large heavy meson components in lIucleon DIS is dehatable, but 

obviously we would like some data to teU us whether this is so. 
Up until now the cut-off A has been a free parameter. Indeed, hecause quantities such as the 

average number of mesons in the nucleon are not directly (or unambiguollsly) ext.racted from 

experiment, we cannot draw any conclusions about the size of A from tlte functions h.IB(Y) 
alone. However, we may be able to restrict the range of allowahle valucs of A by comparing 

the calculated meson and baryon contributions with the experimental structure functions, or 

quark distributions. This is where we turn our attention next. 

5.4 Nucleon Quark Distributions 

With the functions 1MB and IBM now calculated, we are able to compute the cOlltributions to 

the quark and antiquark distributions of the proton from the DIS from its virtual meson and 

baryon components. The total contribution to a quark distribut.ion in the proton from this 

process is 

6q(x) E (6(MB)q(x) +6(BM)q(x») (114) 
M,B 

and similarly for the antiquark distribution. Using the Clebsch-Gordan coefficients for the 

various charge states of the meson-baryon combinations we can easily obtain the individual 

flavor distributions. For example, for DIS from virtual1f or p mesons we have contributions 

Jely (5 AI6(w/p N)u(x) J~ I,../p N(Y) (~U"o(XM) + ~UIf+(XM») 11 I ../p N Y)6 V (xIY) 

JdY 1 AI6(tr/p N)d(x) Jd: Iw/p N(Y) (~dlfo (XM) + ~dlf+ (x M») -y/lf/p N(Y)6,1 (XM) 

etc. ( ll5) 

Similar expressions can be deduced for other mesons based solely on SU(3) symmetry. For 

simplicity we have assumed here the same meson valence quark distribution VAl (XM) for all 

mesons (sea components of the meson distributions themselves are not included), 

uW+/P+ J:+/P+ 2u1fo/po/w 2u"'o/po/w 2dlfo/po/w 2dlfo/po/w 

uK+ dJ<O sK+ SKO \1M (116) 

and have used SU(3) flavor symmetry to obtain the others. 

In practical applications, for VM we can usc the experimental pion valence distribution, 

which hac; been determined from Drell-Van proton-pion scattering [95-971. The pion valence 

quark distribution was found to be consistent with a behaviour xVM(x) '" xO.H(I X)O.89 at 

Q2 '" 4 GeV2 [95J. This is in fairly good agreement with the behaviour expected from large-x ("V 
(I-x» counting rules [98] and small-x ( ...... xt/2) Reggc hehaviour {99}. II. wa.c; also found in [100J 
that the ratio of kaon to pion valence quark distributions was {:onsistent with unity over most 

of the x range, although dropping slightly at large x, V"-I\I" '" (I -:1: )O_18±O.07. Unfortunately, 

the vector meson valence distribution hac; flot yet be{~11 determined cxp(~rilllelltally. As a first 

approximation it may seem reasonable to assume that its x-dependence resemhles that of tl){~ 

1f meson. Deviations from this may be expected on theoretical grounds, if olle assumes that a 

spin flip for one of the quarks in a spin 1 meson induces an additional power of (1 x) at large 

x (98]. 
For the diagrams with a meson spectator the contributions from DIS from the virtual baryon 

B can be obtained in a similar way. For example, the change in the u quark distribution of the 

proton is: 

6(N ",/p)u(x) / Jdy' , (1 2)J;,' IN 1r/p(y ) (~ttP(XB) + ~Un(XB)) -:;;- IN w/p(y) 3U(x B ) + 3d(xB) 

etc. (117) 

Again, for simplicity, we relate all of the baryon quark distributions to those of the proton. For 

the neutron this is trivial if one assumes charge symmetry. Since the D. has spin and isospin 

3/2, from the SU(6) quark model we expect that the valence spectator diquark will always have 

spin and isospin of 1. Using this fact we can relate the valence quark distributions in the .a. 
to the d quark distribution in the proton (since the spectator uu diquark in the proton has 

3dAtthe same quantum numbers), u At+ ;;: ~uAt = == 3d, with the distributions for the other 

charge states obtained from isospin symmetry. Similarly for the E and A hyperons, according 

to SU(3) navor symmetry we would expect sE+ == d and uE+ == 2qEo = 2qA == u. 

For our numerical results we use experimentally determined coupling constants, all of 

which are referred to the nucleon pole. For the 1rN N coupling we use the recently deter­

mined value g!NN/47r = 13.6 {101], which is marginally smaller than the "traditional" value 

[102]. The vector meson-nucleon couplings are obtained from analyses of 1f N scattering data, 

g!NN/41r = 0.55, IpNN/gpNN =6.1 [103], and g~NN/47r =8.1, IwNN/9wNN = 0 [1041. For the 
kaon-hyperon-nucleon couplings we use g'f<NA/41f = 13.1 and gkNE/47r = 3.7, as in ref. [94] 
(although this I( NE coupling is somewiJat larger than the ones determined from [( N forward 

dispersion relations [105] or in some hyperon-nucleon potentials [106J, however even so the 

strange contributions are still very small). Finally, we use the quark model to relate the 1f N D. 
and pN.a. couplings to other experimentally measured ones [107], I;NA == (72/25)/;NN' and 

I;NA = (f;NAII:NN ) g!NN (m p/2M)2 (1 + IpNNlgpNN)2. 
Apart from the coupling constants, the only other parameters in the model are the meson­

baryon form factor cut-oft's, A. The initial idea about how one might use DIS data to constrain 

A wac; to compare (Y)MB with the measured momentum fractions carried by the antiquarks 

[51J. Even more stringent constraints can be achieved by demanding that the shape of the 

meson exchange contributions to q(x) (i.e. 6(MB)q(x)) are consistent with the shape of the 

experimental antiquark distribution. 

As mentioned in the previous section, the fact that the old I .. N(Y) calculated in a covariallt 

framework peaked more sharply and at smaller Y compared with the I ..N calculated in the 

IMF means that the quark distributions in equs.(115), (1l7) will also peak at smaller x for 

the covariant k'l-dependent form factor. Because the TOPTIIMF formulation generally gives 

broader antiquark distributions, the limits on the cut-offs will be more severe than for the 

co;ariant case, since at intermediate x (x ~ 0.2) the TOPT/IMF distributions are still large 

compared with the experimental data. 
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Figure 15: Proton SU(2) flavor antiquark distributions for DIS on the various meson-baryon 
components of the nucleon. The dot-dashed and dashed curves represent the contributions 
from 1r Nand 1r N + 1ra states, respectively, for A =700 MeV. The solid curves are the total 
contributions from all meson-baryon states, for A :::; 700 MeV (lower curve) and 900 MeV 
(upper curve). The data, indicated by the dotted lines, are from refs.[108, 109]. 

Figure 15 shows the contributions to the SU(2) antiquark distribution x(u + d)/2 from all 

of the meson-baryon components of the nucleon, Cor A == 700 and 900 MeV - in equ.(S6). This 

is compared with recent empirical data (as parameterised by Morfin and Tung {109}, Owens 

[lOS), Eichten et al. [25] and Diemoz et al. [26D for (u + d)/2 at Q' = 4 GeV'. Also shown 

are the calculated results (for A = 700 MeV) for the 1r Nand 1rN + 1J"a states alone. Clearly 

the SU(2) ij content of the nucleon is well saturated for A ~ 700 MeV in the intermediate-x 

region when all meson-baryon components are included. The main contributions in this region 

come from the pN and pa states, since the distribution functions fpN(A)(Y) generally extend 

to larger Y compared with the pion distributions. As mentioned above, one uncertainty in 

the treatment of the vector meson contributions arises from the fact the structure Cunction 

for a spin 1 meson may deviate at large x Crom the behaviour observed for the pion structure 

function. The effect on the pN contribution to x(u +d)/2 of including an extra power of (1- x) 
in the p meson structure function is a slightly softer distribution, so that this would allow for a 

marginally larger cut-off mass when comparing against the data in Fig.I5. If only the 11" N states 

are included, slightly harder form factors could also be accommodated, with A ~ 1 GeV. In 

either case, for the 1r N N vertex this corresponds to a dipole form f(l,ctor cut-off in the covariant 

formulation of AwN""" 700 - 800 MeV (to give the same value of (n),..N ....., 0.10 - 0.15), which is 

still considerably smaller than that used by many authors. 

5.5 Renormalisation, Incoherence 

A subtle, but nonetheless important, point that needs to be made concerns the renOl'llIalisation 

of the total quark distributions in the presence of mesons. The meson and baryon exchange 

diagrams in Fig.7 describe physical processes (inclusive baryon and meson leptoproduction) 

whose cross-sections involve physical (renormalised) coupling constants. When integrated over 

the recoil particles' momenta these yield the inclusive DIS cross-sections, which are proportional 

to the total quark (and antiquark) distributions 

q(x) Z f/bare{x) + E (6(MB)q(.:z:) + 6(BM)q(x)). (llS) 
M,B 

Therefore 6(MB)q(x) and 6(BM)q(x), and the convolution integrals in e<lus.(62) and (63), arc 

expressed in terms of renormalised coupling constants contained in the functions h,B(Y) and 

fBM(Y'). In equ.(llS) we also identify tlte bare nucleon probability 

Z = 1 - E(n)MB (119) 
M,B 

chosen such that the baryon number and momentum sum rules are satisfied. We emphasise 

that all quantities in equs.(l1S) and (119) are evaluated using renormalised coupling constants. 

We could, of course, choose to work at a given order in the bare coupling constant, and 

explicitly verify that the various sum rules are satisfied. For example, to lowest orcler(g~) the 

total quark distributions would be [29) 

q(x) Z {qba.re(X) + L (6(MB)q(O)(x) + 6(BM)q(O)(X»)} (order g~) (120) 
M.B 

with 

Z (1 + L {n(O»)MB)-1 (order 9~) (121 ) 
M.B 

where the subscript (0) indicates that the functions f(y) are evaluated using bare couplings. 

Equations (118) and (119) are easily recovered since the bare couplings, to this order, are defined 

by 95 == 9:en/Z, It would, however, be inconsistent to lise (120) and (121) with renormalised 

coupling constants, especially with large form factor cut-offs. As long as the form factors are 

soft, the difference between the bare and renormalised couplings is not very large. However, 

with large cut-off masses the bare couplings would need to be substantially bigger than the 

physical ones. (In fact, the form factor cut-off dependence of the bare 11" N coupling cOllstant 

in the cloudy bag model [48} showed some 40% difference for very hard form factors or 

small bag radii, ....., 0.6 fm.) In addition, with large values of A the higlwr order diagrams 

involving more than one meson in the intermediate state would become non-negligible, and 

the initial assumption that the series ill equ.(57) can be truncated at the one-meson le\'ei 

wo...ld be seriously in doubt. Fortunately, we need not consider the multi-meson contributions, 

since Fig.I5 clearly demonstrates the difficulty in reconciling the empirical data with quark 

distributions calculated with such large cut-ofrs. 

39 40 



6 

Finally, we need to make some additional comments regarding the justification of our cal­

~lIlation iLl terms of an incoherent summation of cross-sections (rather than amplitudes) for 

the various meson exchange processes. A possible breakdown of incoherence may arise when 

there are different exchange processes leading to the same final state. For nucleon final states, 

because of the pseudoscalar nature of the 7r N N vertex, there will be no interference between 

7r meson and vector meson exchange. Furtherm~re, no mixing will take place between the w 

and p exchange configurations due to their different isospins. In fact, all of the meson exchange 

processes with a recoil N considered in this analysis can be added incoherently. For a A recoil, 

the only mesons coupling to N and A are the 7r and p, but since they have different G-parities, 

interference effects from these will again be excluded. However, the possibility exists in the 

pion exchange process that the decay products of a A recoil, namely 7r and N, may mix with 

the state containing an N recoil together with a 11" from the hadronic debris X of the shattered 

exchanged pion. Interference between the 7rN and 7rA states could therefore occur if the 7r from 

the debris had very low momentum, enabling the combined system to have an invariant mass 

squared '" M~. However the vast majority of semi-inclusive meson events in lepton-nucleon 

DIS are those with high momentum mesons (slow hadrons are almost exclusively baryons), so 

that the probability of interference arising from such processes will not be large. A similar 

argument can be given for the potential interference from hyperon decay into N7r. 

For the baryon exchange processes, the requirement of the same recoil meson eliminates 

interference from most states, except from DIS off N and A with 7r (or p) in the final state, 

and from DIS off a EO and AO with a J(+ recoil. For the latter, the different isospin quantum 

numbers of the A( J = 0) and E( J = 1) rule out interference, just as for the pN and wN states. 

A similar argument can be made for excluding interference contributions from N(I = 1/2) and 

A(I = 3/2) exchange. Once again, the fact that the decay products of the recoil mesons have 

low momentum, while the pions from the baryonic debris are fast, will again reduce the size of 

any interference effects. 

Therefore we see that by considering only the lowest lying meson and baryon states (i.e. by 

excluding resonances having the same quantum numbers as the mesons and baryons considered 

here) we can avoid potential problems with interference, and certainly for the values of A 

allowed by the data, the only relevant states are those with the lowest masses. 

CHALLENGING PROBLEMS 

It is a widely held belief that the best laid plans of mice and men often go astray! This is at least 

as true of DIS as of any other field of study. In this section we study several topical examples 

which have generated a great deal of excitement (and consternation!). The first concerns the 

nature of the sea of qq pairs in the nucleon. According to perturbative QCD these are generated 

from gillons which in turn carry no flavor information. As a consequence one expects to find 

equal numbers of uii and dd pairs. The Gottfried sum rule was built on this idea. Yet recent 

results from the New Muon Collaboration (NMC) at CERN have confirmed earlier hints that 

the sum rule is badly violated. Clearly this is more than a curiosity it contains fundamental 

information about the non-perturbative structure of the nucleon. We explore some of the ideas 

proposed to explain the result in sects.6.1 and 6.2. 

Spin-dependent measurements have often been the graveyard of otherwise successful the­

ories. In DIS this would probably be a fair summary of the situation immediately after the 

discovery by the EMC of a violation of the Ellis-Jaffe slim rule. This result, which was initially 

christened the proton "spin crisis", has since led to important advances in our understanding 

of how the U(l) axial anomaly is realised. Although the dust has not yet settled, and a lot 

more experimental and theoretical work is needed, we outline the current situation in sect.6.3. 

Our final outstanding problem, dealt with in sect.6.4, is the old nuclear EMC effect - the 

variation of nuclear structure functions. At various stages over the past decade it has seemed 

like the problem was understood. This is certainly not the case - even now. However, we have 

reached a stage of illumination where we can at least say that the physics required in a decent 

theoretical treatment is now known. 

6.1 ~lavor asymmetry 

One of the more interesting observations that can be made within the meson model is that it 

predicts that contributions from DIS off virtual mesons and baryons to the u, d and s quark (and 

the corresponding antiquark) distributions in the proton (equs.(1l5), (117)) will be different. 

Because the contributions to sand s from DIS from kapns and hyperons are very much smaller 

than those from the non-strange mesons and baryons to the u and d distributions (mainly 

because mK :::;P m lf ) we see that the meson model produces significant SU(3) flavor symmetry 

violation. Furthermore, it is apparent that the contributions to the u and d (and ii and it) 
quark distributions themselves are not the same, so that SU(2) flavor symmetry of the proton 

sea is also broken. In the case <}f the pion cloud, the simple origin of this is asymmetry is the 

predominance of the dissociation process p -10 n7r+ over p -10 P7r°. In the former, the 7r+ valence 

quark content is dii, while in the latter the ratio of ii to it quarks is the same. This process 

certainly respects isospin symmetry, which simply says that the dissociation p -10 n7r+ is as 

likely as n -10 P7r-, or at the quark level, u -10 d(ud) is as likely in the proton as d -10 u(dfi) in 

the neutron. But it clearly implies an excess of d quarks in the proton, and an equal excess of 

ii quarks in the neutron. 

If the masses of quarks were identical (i.e. SU(3) flavor symmetry limit) then the ratio 

of strange to non-strange antiquark distributions in the proton would be 1:2. From neutrino 

experiments (at Q2 "" 4 GeV2
) the measured ratio was found to be about 1:4 [14}, which can 

be understood semi-quantitatively from the heavier mass of the strange quark. On the other 

hand, because charge symmetry is such a good symmetry in strong interaction physics, it was 

naively expected that SU(2) flavor symmetry of the sea would be an excellent approximation. 

Indeed, this expectation has been built into almost all of the analyses of the nucleon structure 

function data. Thc main reason for believing this has been the simple picture, motivated by 

pcrturbative QCD, in which the mechanism for producing antiquarks is gluon splitting into 

qij pairs. However, unless isospin symmctry is genuinely violated (by giving a non-zero mass 
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Figure 16: Calculated d - u difference from the various meson-baryon states. For the dotted, 
dashed and lower solid curves a dipole form factor cut-off of A = 700 MeV iR lIsed, while the 
upper solid curve is calculated with A= 900 MeV. 

difference between the u and d quarks), the perturbative process 9 --+ qq should be SU(2) flavor 

symmetric, as the gluons of QCD are flavor-blind. Therefore a d - u difference cannot be 

produced by perturbative QeD. Actually, this statement should be qualified by saying that al. 

lowest order in Qs there is no asymmetry. A higher order perturbative QCD calculation of d- ii 

was performed some time ago by Ross and Sachrajda [IlO}, who found a non-zero reRult for this 

difference, although the absolute value was very small. This means that the calculated d - u 
difference will essentially be preserved in QeD evolution. But the fact that we get a non-zero 

d - it difference in the meson-baryon model is not surprising, since this is a non-perturbative 

model, and its predictions are not in conflict with QeD, nor with isospin symmetry. 

In Figs.16 and 17 we plot the d- u difference, and the ratio (d - u)/(d +u), respectively, 

calculated within the meson-exchange model of the nucleon. Fig.16 shows that the inclusion of 

1ft:::.. states (with A = 700 MeV) eliminates some of the d excess, since here the dominant proceRS 

is P --+ t:::..++1f-, which at the quark level, d --+ u(du), is seen to produce a u excess. However, 

adding the vector meson components (lower solid curve) restores the original J excess at small 

x, and enhances the excess at larger x. At larger values of A (= 900 MeV) tile J - tt difference 

is larger still (upper solid curve), although the ratio (d - u)/(d +u) is smaller, Fig.17. On 

similar grounds the processes p --+ KOE+ and p --+ I(+~(A) will introduce not only a different 

strange quark content of the proton than a non-strange, but also a different oS distribution a.'i 

well. However, because of the very small magnitude of the strange contributions it will be 

difficult for these effects to be observed in DIS experiments in the near futun!. 

Of course the idea of an asymmetric proton sea is not a new one. The earliest, and perhaps 

most obvious, suggestion for why we should expect u =I- d was made hy Feynman and Field 

(Ill). As mentioned in sectA.l, because the proton has an unequal numb(:r of val<:lIce It and 
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Figure 17: Ratio of the difference and sum of the calculated SU(2) antiquark distributions in 
the proton. The cut-off for the dotted, dashed and upper solid curves is A = 700 MeV, while 
the lower solid curve is calculated with A = 900 MeV. 

d quarks, by the Pauli exclusion principle we would therefore expect creation of additional 

qq pairs inside the proton to be sensitive to the number of quarks of each flavor already in 

the proton. Since there are 2 valence u quarks in the proton compared with only 1 valence 

d quark, we therefore expect a larger J. sea since uit pair creation will be suppressed relative 

to dd. In ref.[lll} the d and ii distributions were parameterised by xd = 0.17(1 - X)7 and 

xu 0.17(1 - x)lO, see Fig.l8. With these, the integrated difference is Jdx(d - it) =: 0.057. 

An early calculation of the u and d sea quark probabilities in the proton, incorporating the 

effects due to the Pauli principle, was made by Donoghue and Golowich [112] using the MIT 

bag model. However, this involved calculating the one-gluon-exchange induced qij admixture 

in the proton wavefunciion. This is quite a different effect from that discovered in the recent 

work of Signal and Thomas (19) when calculating the of quark distribution functions in the 
MIT bag (see sectA.l). Their work suggested a quantitative method of calculating the intrinsic 
sea associated with the different vacuum structure of the bag from that in free space. They 

also showed that the Pauli exclusion principle implied a J. - u difference as well. In particular 

these intrinsic antiquark distributions arose only from 4 q intermediate bag states. Thus the J 
distribution required the intermediate state to consist of 2 u and 2 d quarks, while DIS from 

a It quark implied a 3u + Id intermediate state, which, because of the Pauli principle, has a 

smaller probability. Furthermore, in ref.[191 the d excess associated with the Pauli effect was 

(!qual to the d excess and satisfied the condition 

10
1 1 

dx dexce88(X) = 10 dx (dsea(x) - usea(x)) =: 10
1 

dx PN(X) == PN. (122) 

Here, PN(X) denotes the piece of the valence quark distribution associat.ed with a four quark 

intermediate state (all in a Is state), while I - PN is the integral over the distribution function 
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Figure 18: Difference between J. and fi quark distributions in the proton, for the Feynman and 
Field parameterisation [111], and a parameterisation of the function PN( x) '" XO.

62
( 1- x)1, with 

normalisation PN =0.05,0.15 and 0.25. 

associated with a two quark intermediate state. In ref.[191 the calculated distributions were 

found to peak at x 'V 1 - Mint!M, where Mini is the mass of the intermediate spectator state. 

Since the 4-quark intermediate states have mass greater than M, the antiquark distributions 

will peak at negative x. Therefore in the physical region (x ~ 0), PN(X) should resemble a 

typical sea quark distribution, namely be finite at x = 0 while dropping rapidly to zero by 

x 'V 0.2 - 0.3. For simplicity, we can parameterise the large-x behaviour by a PN(X) <X (1 xf 

form (25, 56). On theoretical grounds, we can also expect that due to the lack of Regge f - A2 

exchange degeneracy, at small x the J. - fi difference should be proportional to PN(X) x"','V 

where a(~ 0.5) is the Regge intercept (113, 99]. The overall normalisation PN was calculated 

in ref.[52) to be less than about 0.25 for bag radii II ,:s 0.8 fm. 

In Fig.18 we compare the Feynman & Field parameterisation with the function PN(X), 
normalised so that PN = 0.05,0.15 and 0.25. Also shown is the effect of using a slightly more 

singular small-x behaviour, a = 0.62, as suggested by the NMC data on F2p F2n (58]. 
Unfortunately at the present time there are not sufficient data on d - it to make definitive 

conclusions about these various mechanisms for SU(2) flavor symmetry breaking. However, 

there have been a number of interesting suggestions for experiments that could directly probe 

the light sea quark content of the proton, and we briefly review these now. 

Recently it was suggested by Martin, Stirling and Roberts (114] that one could learn about 

the SU(2) sea by observing the W-boson asymmetrieR in 1JP collisions, pp --+ W±X. The simple 

idea is that a u( d) quark in a proton interacts with a d( ii) antiquark in an antiproton to produce 

a W+(W-) boson. Because the u(u) quark in the proton (antiproton) carries more momentum 

(lies at larger x) than the d(d) quark, W+(W-) bOliolls will be predominantly produced in the 

proton (antiproton) direction. However, in addition there will be W+(W-)-bosons produced 

4fi 

by the annihilation of d( ii) quarks ill the proton with d( u) quarks in the antiproton. Thus at 

large energies the asymmetry in the W-boson rapidity (yw) distribution 

0-+ - 0-- _ u(J:.)d(X2) +d(x.)d(:t:2) d(xi )tt(X2) d(X2)d(xl) ( 23)
A() - .. , 1Yn' ­+0-- u(X.)d(X2) +d(XI)U(X2) +d(X')U(.1:2) +d(X2)d(x.) 

where o-± = do-/dyw{W±), would be sensitive to the antiquark distributions in the proton. 

Here, XI,2 = Mw/y'Sexp(=FY), s is the centre of mass energy squared, alld the HI-boson ra­

pidity is defined by Yw = (1/2) In(q_/q+), with q the HI-boson momentum. Furthermore, 

since only left-handed quarks (right-handed alltiquarks) couple to HI-bosons, in the resulting 

W -+ ev decay the electron (positron) distribution will generally follow the direction of the 

incoming proton (antiproton). It was suggested in [114) that the experimental e± asymmetry, 

A(Ye) = (do-/dYe-f-(Ye-f-) do-/dYe-(Ye- ))/(duldYe-f-(Yet) +duldYc(lIc », could then serve as an 

independent check on the it and d distributions in the proton. The claim in ref.l1l4) was that 

their existing parameterisations with no SU(2) flavor asymmetry are consistent with the data 

on Ae(Ye) taken at the Collider Detector at Fennilab (CDF) II 15J. However, the error bars in 

this experiment are quite large, and the data at present will have difficulty in discriminating 

between SU(2) flavor symmetric parameterisations, and those with a small d - ii dilTerence, 

such as that suggested by the meson model in the previous section. On the other hand, a large 

J. - fi difference, such as that arising from the meson model with large form fador cut-olTs A, 
may well introduce a detectable dilTerence. 

In another experiment, performed some than 10 years ago by the E288 Collaboration at 

FNAL (116], the slope of the rapidity distribution for proton-nucleus Drell-Yan production was 

measured, and found to be sensitive to the fild ratio. III that experiment, the quantity 

( dd In $--

20-) (124)
dy dJrdy 11=0 

was measured as a function of Jr, where T = M,\,_/s. It was found that a parameterisation 

with d> it improved the quality of the fit [1171. However, since the analysis of this experiment 

required the quark and anti quark distributions in the nucleus, allY conclusions reached about 

the nucleon sea distributions were obviously dependent upon any uuclear assumptions made. 

In fact, it was later shown by Ericson and Thomas 1118) that a similar improvement in the fit 

could be made by assuming a small dilTerence between the ij distributions in the nucleon and 

in a nucleus. 

Proton-nucleus Drell-Yan production was also studied recently by the E772 Collaboration 

at Fermilab. It was found that by comparing the yield per lIuclcon ill a proton collision with 

a neutron-rich target such as tungsten with that for an isoscalar nucleus, the resulting ratio 

would also be sensitive to the d - ii difference. However, it ha.c; since bC<!lI argued by Eichten 

et al. [119] that this too may not be a sensitive enough cxperimcllt for a small non-zcro d - ii 

difference to be discernable from no dilTercnce. 

,Perhaps the experiment that is most sensitive to the light sea quark distributions was 

that recently proposed by Ellis & Stirling [1201, who suggested rnea.';uring thc asymmetry 

between the pn and PP Drell-Yan production (i.(!. pN -+ 1+1- X) cross-sections at zero rapidity, 
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Aoy = (uPP - upn)/(uPP + u pn 
), where u PN ex JloPN IdVidylll=o. Neglecting terms involving 

annihilation of sea quarks in the (beam) proton and (target) nucleon, the cross-sections can be 

written 

(4 Av -l)(As -1) + (.\v -l)(4.\s - 1) 
(125)

Aoy (4AV + l)(.\s + 1) +(.\v + 1)(4As + 1) 

where AV = uvldv and AS == fLld. The advantage of measuring this ratio is that it would be free 

from any nuclear dilution effects, and the complete asymmetry could be determined from ratios 

of valence and sea quark distributions alone. Since the dv luv ratio is well determined. Aoy 
would then serve as an accurate indicator of AS. In Fig.19 we plot this Drell-Yan asymmetry 

as a function of Vi = JQlls with s '" 1500 GeV2 (corresponding to a proton beam energy 

of about 800 GeV) calculated using the quark and antiquark distributions of the meson model 

(with A = 700 MeV). This is compared with the asymmetry arising from the parameterisation 

of Morfin & Tung [109} for the valence quarks (dotted curve), and from the dv Ittv ratio fixed at 

O.57(1-x) (25) (dashed curve), with AS = 1 in both cases. It is clear that even small deviations 

of fLld from unity will have a big impact upon ADY. 

An extension of this idea was discussed in ref.(121}, where it was argued that one could 

directly measure the difference d- fL by going to large projectile momentum fractions Xl, but 

small target fractions Xl- In that case the term in Aoy involving the product of projectile sea 

and target valence distributions could be neglected and the asymmetry reduced to 

(4AV -1)(AS - 1) 
(126)Aoy ~ (4 Av +1)(AS +1)' 

Unfortunately, there are as yet no data on Aoy, although a proposal has been made [122] for an 

experiment to measure the Drell-Yan cross-sections for hydrogen and deuterium targets. Such 

data would be eagerly anticipated. 

Finally, an interesting observation was made by Levelt, Mulders and Schreiber [123), who 

found that semi-inclusive charged-hadron production could be used to obtain information on 

the integrated d - il difference. Following earlier work by Gronau et al. [124) and Field and 

Feynman [U1} on the parton model for semi-inclusive DIS, Levelt et al. showed that the 

integrated difference should be proportional to the measured difference between the charged 

pion and kaon production rates from DIS on protons and neutrons. However, the available data 

from the EM Collaboration at CERN on semi-inclusive charged-meson production [125} are n~t 
yet sufficiently accurate to discriminate between SU(2) flavor symmetry and asymmetry. 

However, the most important impact on the question ofSU(2) flavor symmetry in the proton 

sea, and certainly the stimulus for the close attention this question has received in recent times, 

has come from the measurement by the NMC of the difference between Flp and F2n [58}. and 

the consequent determination of the Gottfried sum rule. We will now discuss the issues involved 

in this experiment more fully. 
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Figure 19: Asymmetry for pp and pn Drell-Van production. The fL =d predictions, with the 
valence quark parameterisation of Morfin and Tung (109) (dotted) and with a fixed valence 
ratio dvluv = 0.57(1 - x) (25), are compared with the meson model calculation with fL -:/: d 
(for A = 700 MeV). 

6.2 Gottfried Sum Rule 

The Gottfried sum rule [57} is perhaps the most famous consequence of SU(2) flavor symmetry 

of the sea. Because this measures the x-integrated difference between the proton and neutron 

structure functions, it is sensitive only to the non-singlet SU(2) content of the nucleon. Let us 

firstly define the quantity 

1
1 dx' 

SG(x,l) ,- (Flp(x') - F2n(x'». (127) 

:r: X 

Relating the proton and neutron structure functions to the quark distributions in the proton 

(i.e. using charge symmetry), we have 

111SG(x, 1) :3 :r: dx' (u(x') + il(x') - d(x') - d(x'») (128) 

~ 11 dx' (uv(x') - dv(x'» - ~ 11 dx' (d(x') - u(x'») (129) 

where the valence quark distributions are defined by qv ;: q - ij. Since the number of valence 

(IUarks in a hadron does not change, we obtain the Gottfried sum rule 

SG ;: SG(O, l) :31 
[QPM} (130) 

provided we make the additional assumption f~ dx d f~ dx il, as would be expected in the 

siIl)ple quark-parton model (QPM). 

The early experimental data for SG(x, 1) did in fact suggest a value lower than 1/3, but with 

errors large enough to be consistent with it. However, armed with the theoretical expectation 
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• of SU(2) flavor symmetry, most authors believed that So would tend to 1/3 as the accuracy of 

~he data improved. To the surprise of many, the recent, accurate determination of Sa by the 

NMC appears to support the idea that u f; J [58, 126]. Neglecting nuclear effects, the NMC 

found 

Sa(Xmin, 1) = 0.229 ± 0.0157 (131 ) 

where Xmin = 0.004. Included in (131) is an extrapolation from x =0.8 to 1, the contrihution 

from which was estimated to be 0.002 ± 0.001 if a smooth extrapolation of }'2p/F2n to 1/4 at 

x = 1 is assumed. From the unmeasured region (x < 0.004), using the extrapolation 

F2p(x) - F2n(x) -+ 0 xfJ as x--+ 0 (132) 

with 0 = 0.21,p = 0.62; the contribution was found to be Sa(O,xmin) = (o/P) X!in = 0.011. 

With the conventional Regge theory assumption that P= 0.5, Sa(O,xmin) would be 0.014. The 

co~bined integral over the whole range of x was therefore 

So 0.240 ± 0.016 (NMC] (133) 

with errors added in quadrature. .. Although not the only one, the most natural explanation 

for the smaller than expected value of So is that d(x) f; u(x) (see later for a discussion of other 

possibilities). Taken at face value, the NMC result would imply that 

11 dx (d(x) - u(x)) 0.14 ± 0.06. (134) 

The various mechanisms discussed in sect.5.2 are then potential candidates for generating such a 

difference. Before turning to more exotic explanations, it seems more sensible that the simplest 

possibilities should be exhausted first. The most compelling, and most economical from the 

theoretical point of view, appear to be those based on the Pauli exclusion principle, and on the 

presence of a small pion (and perhaps other meson) cloud. 

We therefore examine the consequences of both of these mechanisms on the P - n structure 

function difference and the Gottfried sum rule. Firstly note that because the non-strange 

baryon recoil contributions to the quark and antiquark distributions are related by 

6(MB)U(X) =6(MB)J(x), 6(MB)d(x) = 6(MB)u(x) [M = non - strange] (135) 

the contributions to So from DIS from pions or vector mesons would cancel. Furthermore, since 

the strange content of the proton and neutron should be the same, contributions from kamls 

and hyperons to So should also vanish. However, the Pauli blocking effect should be present 

in DIS from virtual 1(°,1(+ and E+, since these contain unequal numhcrs of u(u) and d(d) 

quarks. It will not be present in DIS from EO or AO. This raises the interesting possibility that 

we may pick up a non-zero strange quark contribution to So from the Pauli principle, if the 

"From a very recent re-evaluation of the ratio F2n /F2p hased on newly measured values of F·w the NMC 

found a slightly larger value for Sa. namely Sa == 0.258 ± 0.017 (127J. although this is still consistent with the 
original value. 

Pauli effect in DIS from I( with E recoil and in DIS from E with I( recoil are different (and in 

principle they should be), which would spoil the cancellation of these components. Still, having 

se(~n that the role of strange mesons in the DIS process is negligible, we can be fairly confident 

that by dropping the strange contributions our results will not be significantly affected. 

What may be more significant is the possibility that the shape of the Pauli d-u contribution 

from DIS off a virtual il, with 11" or p recoil (labelled PA(X)) may differ from the shape of the 

Pauli difference from DIS off a nucleon with a 11" or p recoil, pN(X). In principle these should 

be different because the spins of the 4-quark intermediate states (which arise when the u or d 
quarks are probed) in the nucleon and 6 are different. This means that, for example, while a 

quark inserted into a (spin 1/2) proton can produce a state with spin 0 or 1, one inserted into 

a (spin 3/2) il+ could produce either a spin 1 or spin 2 intermediate state. One way to make 

spin 0, 1 or 2 four-quark states is to construct them from spin 0 or spin 1 diquarks, and since 

a vector diquark is more massive than a scalar diquark (see ref.[20]), and therefore has a softer 

x-distribution, the result is that the Pauli blocking function PA(X) should have a softer shape 

than pN(X). Furthermore, the integral over PA(X) (denoted P A ) need not necessarily equalPN. 

Having said this, it is probably also true that the uncertainty introduced in taking these to be 

the same will be much smaller than the overall uncertainty in the absolute normalisation of 

d - ii due to Pauli blocking in the nucleon. 

The final expression for F2p - F2n , including meson and Pauli effects, is 

F2p(x) - F2n(x) "3z 
(xuv(x) - xdv(x) - 2XPN(X)) 

~ 11 dy' (fN1f(y') + fNp(Y') - 3fN1f(Y'» 

x (XBUV(XB) - xBdv(XB) - 2XBPN(XB)) 

+ ~ 11 dy' (fA1f(y') + fAP(y')) (xBdv(XB) - 2XBPA(XB)) (136) 

+ ~ 11 dy'h;I«Y') (~XBU~+ (XB) - 2XBP~(XB)) 

~ 11 dy (fI<E(Y) - 3fI<A(Y)) (xMVM(XM) - 2XMPI«XM)). 

Making the above approximations, we plot the resulting x distribution in Fig.20. Note that 

kaons and w mesons contribute to the structure functions themselves, even though their contri­

butions will cancel when the structure functions are integrated over x. (We include the I( and 

w contributions only for the sake of completeness, as dropping them altogether has numerically 

negligible consequences.) 

The most noticeable consequence of the meson cloud is a decrease in the peak value of 

F2p - F2n at x '" 0.3. Since here the parameterisation clearly overestimates the NMC data, the 

effect of mesons is to move the curve in the right direction. At the same time, however, the 

structure function difference becomes larger for x ~ 0.1. Here, the action of the 1I"N states is 

to decrease F2p - F2n at small x, while adding the 1I"il tends to do the opposite. However, it is 

only with the addition of the vector mesons that there is an increase over the parameterisatiofl 

in this region. lJecause the parameterisation is already too large in this region compared with 

the NMC data, it's clear that mesons alone cannot improve the fit at small x. 
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Figure 20: Effect of the Pauli exclusion principle 011 the proton neutron structure function 
difference, as a function of x. The dotted (without meson corrections) and solid (with A = 700 
MeV meson corrections) curves are for P = 0 (largest curves) 0.05, 0.1, and 0.15 (smallest 
curves). 

At large x the meson-corrected curves consistently lie beneath the NMC data points. This 

is a consequence of the original parameterisation [109] underestimating the NMC F2p - F2n 

results (in fact most other parameterisations [25, 108) also have this property). If we had a 

parameterisation which could better reproduce the large-x data, the quality of the fits for the 

corrected curves would naturally improve. We should add, however, that the NMC did not 

report much data at x ~ 0.4. In any case, the discrepancy between the NMC data and the 

quark parameterisations at large x is unrelated to the failure of the Gottfried sum rule, and is 

therefore not our primary concern. 

The Pauli correction is largest in the small-x region, for 0.01 ~ x ~ 0.1. By reducing the 

absolute value of F2p - F2n. at small x the Pauli correctioll brings the parameterisation (with 

J = it) into better agreement with the data in that region. However, for larger x (0.1 ~ x ~ 0.3) 

the peak in the distributions is still too large to be consistent with the NMC data. On the 

other hand, when combined with a small mesonic correction (for A =700 MeV), a very good 

fit is possible with PN ~ 0.1. 

Integrating the structure function difference between x and 1, we plot in Fig.21 the function 

Sa(x,l) including both meson and Pauli effects. The parametcrisation is clearly loo large 

for x ~ 0.1. With the addition of the meson correction, the fit is clearly improved, but still 

overestimates the NMC data at very small x. This is partly remedied when a small Pauli 

blocking correction is added. In particular, lhe apparent saturation of the sum rule below 

x ~ 0.01 is better fitted by including the Pauli term. (In a more recent experiment, the E665 

Collaboration at Fermilab reported an even more dramatic saturation of the Gottfried sum 

rule for x ~ 0.125, f:C:;[ dx(F2p - F2n )/x = -0.07 ± 0.07 [128).} In the intermediate-x region 
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Figure 21: Effect of Pauli blocking on the Gottfried sum integrand with no mesons (solid 
curves), and with mesons for A = 700 MeV (dotted curves). The three curves in each case arc 
for PN =0 (largest curves), 0.05 and 0.10 (smallest curves). 

(x ~ 0.3) the meson-corrected curves appear to underestimate the NMC data. This can he 

understood from the shape of the original F2p - F2n distributions in Fig.20, where for x above 

I'V 0.3 the curves tend to lie beneath the NMC data points. 

For the Gottfried sum, from equs.(136} and (119) we obtain 

So So (1 - 2 PN) + "9 (PN ­MB 10 PD.) ({n))Air + {n Ap ) 

+ 2 
g(3PN + PK - 4Pd {nh::K + 3

2 
(PN - PK) (n}AK (137) 

where 

~ (15MB _4{n}NIr _ 4(n)Np 2{n)AIr 2(n)AP) (1:18)a 3 3 3 + 3 + 3 . 

is the sum rule with meson/baryon corrections only. Dropping the negligible strange contri­

butions, and assuming that the difference between the Pauli blocking in the nucleon and L'l is 

not large, only the first term in equ.(137) remains. In Fig.22 we show the variation of 5'0 with 

both A and PN. It is clear that the net effect of the virtual meson-baryon states is lo decrease 

So. The 1fN stale alone can reproduce the quoted value of So for A I'V 1.3 GeV. The additioll 

of 1fL'l components would require a slightly larger cut-off (since this produces an excess of jj 

over J, which cancels some of the J excess generated by the 1f N states). Including the pN state 

however restores, and actually enhances, the J excess, although some of this is again cancelled 

by the pL'l states. With all components included, the NMC value of So can be repro<luced with 

A ~. 1.1 - 1.2 GeV. For A ~ 700 MeV, as suggested by the antiquark data in the previolls 

section, mesons can generate only about half of the asymmetry required to satisfy the (~xperi-
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Figure 22: Gottfried sum rule with mesonic and Pauli corrections. The solid curves represent 
Pauli normalisation of PN == 0.05 (largest), 0.1 ami 0.15 (smallest). 

mental sum rule. For A ~ 0.7 GeV, the experimental sum rule call be obtained with PN ~ 0.1. 

Thus various phenomenological constraints seem to imply the need for both mechanisms. 

Before finishing this discllssion, we should mention some alternative explanations for the 

Gottfried sum rule violation. It was suggested by Martin, Stirling and Roberts [I 14] that there 

may not be any violation of the quark-parton model Sa prediction at all, if large contributions 

to the Gottfried integral come from the unmeasured, x < 0.004, region. By parameterising 

their valence quark distributions to be more singular at small x than what would otherwise be 

expected from Regge theory (namely, qv x-o.S ), and also compared with what the NMC used f'V 

in their x -t 0 extrapolation, it was shown in ref.(1l4J that a value of 1/3 could be recovered. 

Although this more singular behaviour seems rather artificial, without data at such small x it 

remains a possibility. However, one problem with this hypothesis of late onset (in the sense of 

decrea.~ing x) of Regge behaviour is the data from the E665 Collaboration (128], which suggests 

early saturation of the Gottfried sum rule, and would therefore tend to rule out this option. 

It was also suggested by Kaptari and Umnikov [129) that nuclear effects in deuterium may 

introduce errors in the extraction of the neutron structure function from the deuteron DIS 

data. In particular, it was claimed that meson exchange currents in the deuteron could lead to 

substantial antishadowing corrections, so that FllI extracted in a naive manner would be overes­

timated. With this correction taken into account, it wa..') argued that a value rOllghly consistent 

with 1/3 could again be recovered. Furthermore, although expected to be small, genuine nu­

clear shadowing in deuterium could also introduce corrections to the naively-extracted neutron 

structure function (130, 75]. In ref.(13 1 ] the nuclear effects in deuterium were investigated for 

a variety of deuteron models. It was found that. t.he combined effects of shadowing resulted in 

an increase for F2n of :s 1 2% for x "" 0.004. Cons(!quently, including shadowillg corrections 

would mean that the experimental value for Sa should be lowered from 0.24 to ~ 0.22 when the 

"true" neutron structure function is used. Within the above model such a decrease can easily 

be accommodated by increasing the Pauli blocking correction from PN ~ 0.1 to ~ 0.15, if the 

meson-baryon form factor cut-off is kept at the same value (A ~ 0.7 GeV). Of course a larger 

A could also produce a smaller Sa, but, as we saw in the preceding sections, increasing A would 

also produce a depletion in F2p - 1-2" at intermediate x, together with an increase at small x. 

This would be contrary to the behaviour of the shadowing-corrected proton-neutron structure 

function difference seen in Fig.20. A reduction of F21' - 1'211 at x :s 0.3 can only be explained 

by a larger Pauli blocking correction, Stich as the one required to reproduce the corrected Sa· 

6.3 The EMC Spin Effect 

In the past few years a great deal of attention has focussed on the QCD improved parton model 

as a result of the EMC spin effect (or proton "spin crisis"). The EMC [32] extended the earlier 

SLAC measurement [1321 of the structure function 9I1'(X, Q2) of the polarised proton to smaller 

x and hence improved the accuracy with which the first moment was determined. In the naive 

parton model 91 is written as: 

91,,(X} ~ L>!~q(x) 	 (139) 
q 

where 

~q(x) = (qt + qt)(x) - (ql + ql)(x) 	 (140) 

is the polarised quark distribution. It is helpful to rewrite 9\1'(X) in terms of the SU(3) flavor 

combinations: 

~u(x) - Ad(x), 	 ~U(x) +~d(x) - 2~s(x) (141 ) 

and 

AU(X) +~d(x) +~s(x). 	 (142) 

Then the first moment of the fla\'or singlet piece is related to the fraction of the proton's spin 

which is carried by its quarks. After a smooth Regge (x - 0) extrapolation of their data 

(911' f'V x-O.12 ) EMC determined this quantity to be [32} 

~u + ~d+ ~s ;::: 0.120 ± 0.094(stat.) ± 0.138(syst.) ( 143) 

which is consistent with zero and two stan'dard deviations from the Ellis-Jaffe hypothesis, which 

says that strange quarks should not playa significant role. Our present discussion closely follows 

that of Bass and Thomas 139}, in which a detailed review of the EMC spin experiment and its 

th<fJretical interpretation was given. 

This result is a violation of Zweig's rule in the flavor singlet channel 1133]. As this is the only 

one of the three SU(3) flavor combinations which can involve the U( 1) axial anomaly it seems 
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highly likely that this might be the source of the spin effect. [f this is the case, and we strongly 

suggest that it is, it is clearly an important experimental problem to map out the x dependence 

of the axial anomaly in the inclusive DIS cross-section. We wish to discuss how important 

information may be obtained about this in current and future experiments, in particular we 

examine the (C-odd) spin dependent structure function 93p(X) and also the polarised deuteron 

structure function gld(X). 

As discussed in sect.3, in QeD the inclusive deep-inelastic process is described by the 

operator product expansion (OPE) and the renormalisation group. The interesting physics of 

glp is in the flavor singlet part, which receives contributions from both quark and gluon partons, 
viz. 

2 I 1 fill dz [ 2 q X 2 I 2 9 X 2)9Ip(X,Q ) S = aVa ~ -; 6.Qo(z,Q )CsC;,O'a(Q )) + .j66.9(z,Q )CS(;,O'.(Q)) (144) 

The G-even, spin dependent quark 6.Qo(x, Q2) and gluon 6.g(x, Q2) distributions are defined 

with respect to the operator product expansion. Their odd moments project out the target 

matrix elements of the renormalised, spin odd, composite operators 

2Ms+(p+)2n 10
1 

dx x2n~qk(X,Q2) = (1),s\[q(Oh+1's(iD+)2n~k q(O)}g{lp,s)c, (145) 

and 

2Ms+(p+)2n fal dx x2n~g(x,Q2) = (p,sl[Tr G+o(0)(iD+)2n-lQo+(0)}g{lp,s)c (n ~ 1). (146) 

i,From unpolarised DIS experiments we know that the gluon distribution is concentrated at 

small x. In polarised DIS the hard photon scatters from a gluon via a quark-anti quark pair, 

described in cg(x,O'a)' This dissipates the gluon's already small momentum so that ~9(X, Q2) 

is relevant to glp only at-small x (x ~ 0.03) {I34]. It makes a negligible contribution to the 

measured sum rule between x =0.01 and 1, where the three constituent quarks are expected 
to dominate. 

The clue to understanding the spin effect lies in the identification of the axial-vector current 

(and the higher spin axial tensors in equ.(l45)) with spin. Classically the axial vector current 

looks like a gauge invariant operator, with the quark field operator transforming as 

q(x) -t U(x)q(x) (147) 

and 

q(xh,.1's -t q(xhl'1'sut(x) (148) 

under a given gauge transformation U. On the other hand, in quantum field theory the axial 

vector current operator is not just q(Oh,.1's multiplied by q(O). It is a composite operator which 

has to be renormalised and there are extra divergences which are intrinsic to the operator itself. 

It turns out that one cannot renormalise the axial tensor operators in a gauge invariant way 

so that they describe spin at the same time. In general, for a given choice of renormalisation 
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prescription R, the renormalised axial tensor operator differs from the gauge invariant operator • 

by a multiple of a gauge-dependcnt, gluonic cotlnterlerm kp/1 t"'l'ln' viz. 

[q(Oh,.1'sD"l ... Dl'l"q(O)];l = [q(Oh,1'sD"t ... Dl'lnq(O)]:: + AR,n [kI'Pl ...P2n]Ql (149) 

where the coefficiellts AR,n are fixed by t.he choice of renormalisation prescription. This axial 

anomaly was discovered for the axial vector current in QED 1135, 136). 

Not olily docs the axial anomaly lead to a difference between the renormalised axial currents 

which preserve gauge invariallce and chiral symmetry, but in addition the gauge invariant axial 

current is scale dependent (in this case the scale is Q2), (The anomalous dimension of the first 

moment, 6.qo, was first calculated in QCD by Kodaira [I37}.) This means that one cannot 

derive the generators of the spin algebra SU(2) from it. It follows [I38} that the gauge invariant 

axial-vector current and the higher spin operators which appear in equ.(I45) do not describe a 

distribution of quark spin in thc proton. One can construct a distribution which does measure 

spin. It differs from the physical distributioll 6.q(x, Q2) which is measured in deep-inelastic 

scattering by by a gauge dependent gluonic term related to the k"PI'''l'ln in equ.(149) - the 

anomaly. In other words, one can say that the gauge symmetry screens the spin of the quarks. 

We now compare 91 with the oUler structure functions measured in deep-inelastic scattering. 

The axial anomaly is not relevant to the unpolarised quark distributions, which are described 

in OPE language by the operators q(Oh+(iD+)nq(O), Nor is it relevant to 93, which is the 

polarised version of F3 • Since 93 is odd under charge conjugation, and gluons are C-even, it 

can have no anomalous gluonic contribution. This me~ns that it does make sense to talk about 

F I , F3 and 93 in terms of quarks with explicit spin degrees of freedom - the clash of symmetry 

between gauge invariance and spin does not manifest itself in these structure functions. 

It is clearly an important problem to map out the x dependence of the anomaly in glp) 

and a comparison between 91p and ,gap would be the ideal way to do it. Unfortunately, the 

cross-section for DIS with a neutrino beam and proton target is very small- enough to make 

direct measurements of 93p impracticable at the present time. However, if one assumes that 

the quark fragmentation functions are spin independent it may be possible to extract the C­

odd distribution from the 91p measurements by detecting fast pions from among the final state 

hadrons 1139}. This experiment is planned by the HERMES collaboration at HERA 1140}. 

Important information about tile x dependence of the axial anomaly in polarised deep­

inelastic scattering will also come from measurements of gln(X, Q2). The axial anomaly occurs 

only in the flavor singlet part of 91 and therefore it will be present equally in 91p and 91n as a 

function of x. If the anomaly acts to screen the quark spin at large x in 91p it follows that the 

same should be true in 91n' The combination appearing in the Bjorken sum rule (91p - 91n) 

has no flavor singlet component and is anomaly free. On the other hand, the flavor singlet 

component is enhanced in tile deuteron str1lcture function gld = (91p +91 .. )/2, which has no 

isotriplct piece 6.Q3(X, Q2). Thus the deuteron structure function 91d is an ideal place to test 

model predictions about how the anomaly should contribute in the nucleon structure function 

gl(;r,Q2). 

As we saw in sectA.l the uSllal quark model calculations, which do not include the anomaly, 

suggest that 91n will change sign and become small and positive at large:1: [141, 20, 22}. To the 

5fi 



0.10 

0.05 

~ 
U 
'7 

0' 
x 

-0.00 -fTr!~--
-0.05~__~~~~~~L-__~__~~~~ 

0.01 	 0.10 1.00 
x 

Figure 23: Prediction for the structure function of the deuteron [41} based on the bag model 
(with R = 0.8 fm) solid curve. The dashed line shows the effect of adding a phenomenological 
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data is from SMC (143). 

extent that these models do not include any OZI violation, a large-x anomaly would tend to 

render gin negative at large x. As a specific example we consider the quark model calculation 

of the structure functions described in sectA.I. As we have seen these calculations provide 

reasonable agreement with the unpolarised structure function data. However the bag model 

has not yet been extended to satisfy the U(I) chiral Ward identity. That is, it does not include 

an OZI violation induced by the anomaly. On the other hand it does seem reason able- that 

these model calculations for gl(X) might describe g3(X) at large x i.e. correspond to a world 

without the OZI violations due to the anomaly. 

As we saw in Fig.6 the bag model prediction for g}p(x) overestimates the data throughout 

all of the large-x region. Hence, it is tempting to associate the difference between the model 

results and the data as that associated with the anomaly. In this case, the same flavor singlet 

correction should therefore be applied to the neutron. In recent work Bass and Thomas (41) 

have added a purely phenomenological correction to the bag model results to fit the proton data. 

Adding the same correction to the prediction for the neutron and combining them to get the 

deuteron structure function they obtained the result shown in Fig.23. (For the present purposes 

we make the simple approximation that gld = (glp +gln)/2, thus ignoring corrections due to 

shadowing, Fermi-motion and the D-state probability of the deuteron. These are expected to 

be important at the few-percent level [142, 130, 131) well helow the present experimental 

accuracy.) The corrected curve is in good agreement with the recent SMC mea.'lurement of the 

deuteron spin structure function xgld(X,Q2) [143]. 
To summarise the results of this section, we have discuss(!d how one could map out the x 

dependence of the axial anomaly in g •. If the anomaly is a large-x effect then it can be isolated 

as a finite difference between gl and g3 in the large-x bins. If it is purely a small-:r effect 

the anomaly would be lost among the sea and gluon distributions which dominate the data at 

small x (say ~ 0.1). We stress that the comparison with g3 is the only definitive ex peri mcntal 

test of whether the anomaly is a large or a small x effect. Certainly, it is an intrinsic part 

of the spin dependent quark distribution and there is no good theoretical rea.')oll to believe 

that it is confined to small x. We strongly urge that consideration be given to the challcnging 

experimental problem of how to measure g3- In the intcrim it would be vcry useful to oMain 

more data (with reduced errors) on the deuteron spin structure function g( This deuteron 

data will help constrain theoretical models of the structure functions. 

6.4 Nuclear structure functions 

Since the discovery by the EMC that the structure functions of nuclei did not all have the same 

shape [144-146] there has been considerable further investigation. On the experimental side 

some features of the data, like the apparently dramatic increase in the sea with Illa.c;s number, 

have become much less distinct. Other new features such as shadowing at small x have become 

apparent. However the outstanding feature of the data, namely the softening of tlte valence 

quark distribution below x = 0.1 (at which point Fermi motion takes over) has not challged 

much [32, 141, 148}. In our discussion of the nuclear EMC effect in this section we will closely 

follow Saito et al. [149, 150]. 

While one would eventually like a unified theoretical treatment of all th(! features of the 

EMC data, we shall concentrate on the softening of the valence quark distribution, which is 

possibly its most surprising feature. Early attempts to understand this aspect of the data were 

based upon conventional ideas like nucleon binding, calculated in impulse approximation (fA) 

[151-1541 - for a review see Bickerstaff and Thomas [155]. Other ideas included a possible 

enhancement of the cloud of virtual pions around a nucleon in a nucleus (l56, l57, 681. More 

exotic proposals included the possibility of multi-quark clusters {l58-160] and quark percolation 

through the nucleus (161]. Extensive work has also been put into the idea that the nucleon may 

swell in the nucleus (dynamical rescaling) (162). Our approach has been to extend to nuclei the 

same technique that has been successfully used to calculate free nucleon structure functions for 

the MIT bag model - see sect.4.I. 

An earlier investigation by Thomas et al. [163) used the Guichon model [161J, ill which 

nuclear matter consists of non-overlapping bags bound in mean-field-approximation (MFA) hy 

the self-consistent exchange of scalar (u) and vector (w) mesons. The results emphasised that. 

the EMC effect provides information on the momentum and energy distrihution of (Itwrk!; in 

nuclei. In particular the usual impulse approximation based 011 nuclear hinding was shown to 

-significantly overestimate the suppression of the nuclear valence quarks hecallse of the neglect 

of the binding of the quarks that are spectators to the hard collision. This conclusion remains 

valid in the more recent work which is significantly more sophisticated (149, 150J. MoreoV(~r, 

in that treatment it is possible to understand the experimental data quantitat.ively for fillite 

nuclei. 
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Figure 24: Local density model for the ratio of the structure functions of Fe and D. See the 
text for details from ref.[1501. 

Because it is the energy and momentum disLribution of quarks that matters one needs a 

quark model for nudear matter. At the present stage of development such models are necessarily 

quite crude. We have used both the Guichon model and a further development along the lines 

of the Boguta model (1651- which enables us to fit not only the binding energy and saturation 

density of nuclear matter, but also its surface energy and thickness. In order to apply these 

models to finite nuclei we have used the local density approximation 

q~)(X'1l2) = Jd? p(r) 1dy J(y,p) q~)(;,p,/). (150) 

Here p is the nuclear density distribution, J(y, p) accounts for Fermi motion and q~) is the twist­

2 quark distribution of the bound nucleon. Note that the recent discovery that convolution fails 

in a more sophisticated treatment of the off-shell behaviour of the nucleon structure function 

- c.f. sectA.2 - has not yet been incorporated in any calculation of the EMC effect. 

In Fig.24 the solid curve is the complete calculation for the ratio of the structure functions 

of Fe and D (at 10GeV2), for the case where the free bag radius, Rt" is 0.6 fm. (There is in fact 

little sensitivity to J4-, [1501.) For comparison we also show the most recent data from EMC, 

BCDMS and SLAC [32, 147, 148}. Clearly the calculation provides a semi-quantitativedescrip­

tion of the data. Notice that one cannot use the local density approximation for deuterium. 

Instead a conventional convolution model which allowed for 8 MeV binding and recoil was used. 

The nucleon momentum distribution in the deuteron was givell hy the Paris potelltial. This 

particular calculation of the nuclear structure functions included no nucleon momenta higher 

than about 1.3 fm-I. Therefore a cut-off (Pc) at 1.3 fm- I was also imposed 011 tlte deuteron 

momentum wave function. In fact, this only afrects the EMC ratio at large x (150]. 
The Guichon model [164] predicts the ratio shown by the dotted curve in Fig.24 which is 

not quite as good. From the phenomenological point of view it is important to know whether • 

our earlier conclusion about the inaccuracy of the impulse approximation remains ~rue. The 

dashed curve in Fig.24 shows the effect of ignoring the interaction of the residual two-quark bag 

with the nucleus. Clearly it dramatically overestimates the EMC effect. On physical grounds 

this makes good sense. Deep-inelastic scattering measures the energy-momentum distribution 

of the struck quark, not the struck nucleon. 
Let us now briefly summarise our conclusions and comment on what remains to be done. 

It is very satisfying that a quark level description of nuclear matter, together with the local 

density approximation and a microscopic method of calculating twist-two structure functions 

does give a reasonable fit to the EMC data on Fe. Although it is disappointing in some ways 

that the impulse approximation fails, we have seen that there is a sound physical reason for 

this failure, namely that it effectively assigns the binding of an entire nucleon to a single struck 

quark. On the positive side we can be sure that nuclear deep-inelastic scattering does tell us 

about the binding of quarks in nuclei. 

Of course, having achieved this much one necessarily wants much more. One:; would like 

to go beyond the local density approximation which would require a quark model for the 

structure of finite nuclei. It is also unsatisfactory to be limited to a mean-field approximation 

for non-overlapping bags. Even though u- and w-exchange may be viewed at least partly as a 

macroscopic treatment of more complicated short distance processes (perhaps involving quark 

and gluon exchange) one would like to do beUer. 
The MIT bag model is also a fairly crude representation of nucleon structure. One should 

explore the consequences of using more sophisticated models - e.g. with a more reasonable 

surface, a better treatment of c.m. motion and perhaps a pion cloud. (The latter might 

eventually help us understand why there is no evidence for an enhancement in the pion field 

of the nucleus in recent Drell-Van data (166).) As we have explained elsewhere (167), we are 

limited to leading order QCD unless the model used has a well defined connection to QCD. 

In view of our findings in sectA.2 [43] it will be crucial to go beyond the convolution model 

in the treatment of nucleon Fermi motion. Finally, our analysis has not yet had anything new 

to say about the nuclear sea or shadowing at small x. Eventually one may hope to understand 

all the features of the data within a single unified theory. 

7 CONCLUSION 

In these lectures we have covered an enormous amount of ground, beginning with elementary 

kinematics, and finishing with some of the exciting problems that remain unsolved. Along 

the way we have seen how we can make a clear connection between familiar low-energy quark 

models and the parton distributions measured in high-energy deep-inelastic scattering. This is 

a very exciting and enouraging step along the way to meeting the ultimate challenge of nuclear 

physics - understanding the relationship between QCD and low-energy nuclear physics. 

,We have seen in detail that pions and possibly hc>..avier mesons are needed if we are to 

make sense of some of the recent deep-inelastic scattering data. Certainly it is quite likely 
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, that a meson cloud around the proton is at least partially responsible for the observed flavor 

asymmetry in the proton sea. In addition, a meson cloud may also play a role in the spin 

structure of the proton, since some of the sl>in (as well as flavor) quantum numbers may 

actually be carried by the cloud. 

While still not a completely understood subject, it is clear that a fully consistent description 

of the spin structure of the nucleon requires a thorough re-examination of the very foundations 

of the parton model. To shed some light on this fundamental question we eagerly anticipate new 

data on the polarised structure functions of protons and neutrons with which we can compare 

some of the model predictions. 

Finally, we have touched briefly on the important question of how the nuclear medium affects 

the properties of quarks inside nucleons. In particular, we now understand that microscopic 

structure is indeed crucial to any quantitative description of nuclear properties as seen by 

high~energy probes. Furthermore, improvements in calculating nuclear structure functions by 

incorporating relativistic effects also indicate the necessity of including both quark and nuclear 

degrees of freedom within a fully consistent treatment. 

If we have succeeded in passing on on some of the excitement we feel about this field, then 

the effort of preparing the lectures has been worthwhile. With an energy upgrade underway at 

SLAC, new experiments planned at CERN and Fermilab, CEllAl" about to come on line and 

ELFE (in Europe) a real possibility, this is a field that is just beginning to flower. 
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