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Preface 

The purpose of this book is to give a systematic account 

of relativistic kinematics of particle reactions. There are 

two needs which the text attempts to satisfy. It contains 

an introduction to the basic principles, practical applica-

tions and known methods of those aspects of elementary particle 

physics which are based purely on kinematics. Also, it lS 

hoped to be useful as a reference book for anyone actively 

working in experiment~l or theoretical high energy physics. 

In recent years the importance of kinematical considera-

tions has rapidly grown. The main reason is the shift of 

interest, both in theory and experiment, to particle reactions 

of increasingly high multiplicities. When the number of 

particles increases, the number of kinematical variables 

increases rapidly. A thorough understanding of the complex 

kinematics is required to be able to isolate properly the 

essential dynru~ical features of the reactions. Otherwise one 

may be lead, for example, to tedious calculations or incorrect-

ly interpreted experimental effects. Appreciation of the 

simple and attractive internal structure and consistency of 

relativistic kinematics allows one to attain essential 

conceptual and practical simplifications. 



The only existing book on this subject is "Relativistic 

Ki~cBatics" by R. Hagedorn. In addition, lectures on particle 

kineBatics have been given in several summer schools. Many 

important new developments have appeared in recent times 

which are not treated consistently anywhere in the li~erature. 

These include various ways of choosing variables and plotting 

da~a in many-particle reactions, kinematical reflections, 

effects of peripherality, longitudinal phase space, missing mass 

techniques, etc. Of decisive practical significance are various 

numerical methods. We hope that any success in filling this 

gap in literature will compensate for any possible short-

comings of the book. 

As prerequisites, familiarity with some ~asic notions 

of elementary particle physics and the conceptual aspects of 

special relativity are required. A detailed account of the 

technical aspects of special relativity is given in Chapter II. 

The book can be used as text for an advanced undergraduate or 

graduate course in particle kinematics. In order to facilitate 

this use a number of exercises are included at the end of the 

text. The concepts and methods are whenever possible illustrated 

and motivated by practical examples. An essential ingredient of 

the course is learning an effective use of the numerical methods 

explained in the last chapter. 
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I. Introduction 

Particle kinematics is here understood as the 

application of special relativity to elementary particle 

reactions. The theory of relativity is one of the most 

fundamental and best established constituents of modern 

physics. The reader is assumed to be acquainted with its 

basic principles and essential implications, such as the 

concept of inertial frame, constancy of light velocity, 

invariance of physical laws under Lorentz transformations, 

transformation properties of four-vectors, etc. Some relevant 

practical aspects of special relativity will be elucidated 

in detail in the next chapter. 

Fro~ the point of view of pure kinematics, particles 

are completely characterized by their energy and momentum, 

i.e. their four-momentum p. Observable particle reactions 

are either decays or collisions, and they are syrr~olically 

drawn as in Fig. 1.1. A basic property of four-momentum 

is conservation: the sum of all four-momenta in the 

initial state is equal to the sum in the final state. 

This simple law has a wealth of consequences in applicat-

ions of kinematics. 

Internal quantum numbers are irrelevant to elementary 

particle kinematics. Thus the properties parity, isospin, 

charge, baryon or lepton number, strangeness, etc. do 

not enter our discussion. A special case is ordinary spin. 
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Invariance under Lorentz transformations implies definite 

stateDents about spln. Formally, the spin is a property 

of a reDresentation of t~e inhomogeneous Lorentz group, 

which includes both Lorentz transforDations and trans-

lations. Thus particle states are characterized by 

~omentum and spin. The transformation properties of spin 

are well defined, but turn out to be rather complicated 

unless spin is zero [werle , Fonda 197~. Conforming 

to common practice, we shall in this book not consider 

spin: Thus all the particles are treated as they had 

spin zero. 

Another way to characterize kinematics is to 

constrast it with dynamics. Dynamics is concerned with 

what happens within the interaction circle in Fig. 1.1., 

while kinematics relates to the asymptotic description 

in terms of four-momenta. Dynamics is thus, at the 

moment, largely unknown while kinematics contains no 

difficulties in principle. However, kinematics and 

dynamics are inextricably mixed. Consider, for instance, 

the distribution in some energy variable, Fig. 1.2. 

Dynamics determines the exact shape of the curve, 

but a constraint imposed by kinematics always exists: 

the energy has to be larger than some minimum value 

(threshold) and smaller than some maximum value (due 

to energy conservation). This forces the distribution 

to zero at E . mln and E , and sometimes also the max 
behaviour near the limit is a kinematical property. 

There is a formal way of separating kinematics and 
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dynamics but, in practice, they have to be applied 

simultaneously. 

To roughly indicate the typcsof applications of 

kinematics, we list some examples of problems one 

encounters in particle physics. They range from ones 

in a simple forrr to cases of great technical and 

computational difficulty. 1) Experiments are carried 

out ln the laboratory frame, while theoretical analysis 

may be simple in the center-of-momentum frame. One has to 

find the transformation laws from one frame to the other. 

2) The problem of placing detectors in the laboratory, 

when one wants them to register certain type of phenomena. 

3) Identify by kinematical fitting a definite reaction 

channel among a large number of diff~rent possibilities. 

4) A theory should presumably be invariant under Lorentz~ 

transformations. Find the suitable Lorentz-invariant 

variables and their physical region. 5) Calculate an 

experimental prediction from a given theory. This will 

often involve a complicated many-dimensional integration 

over ~any final-state particles. 6) Determine the most 

suitable kinematical variables to isolate a given 

dynamical effect. This problem is particularly complicated 

when many particles and many variables are involved. 

7) Suppose a strong dynamical effect is seen in some 

variable. By energy and momentum conservation this 

effect is transmitted to other variables. Describe 

these kinematical reflections. 
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II. Lorentz transformations and invariance 

1. Lorentz transformations 

According to special relativity theory (see e.g. 

[Rindler so] ) , the laws of physics are the same in all 

inertial syste~s and the speed of light in free space 

has the same value c in all inertial systems. A 

transformation of coordinates from one inertial frame to 

another, which keeps the velocity of light constant, ~s 

called a Lorentz transformation. Physical laws must 

be formulated so that they are invariant under Lorentz 

transformations. 

A point in space-time is defined by its coordinates 

x,y,z,t in a given frame S . The relation between the 

coordinates x,y,z,t of the point in S and its 

coordinates x' ,y' ,z' ,t' in a second inertial frame S' 

must be linear due to the homogeneity of space-time. 

Assume S' moves with a constant relative velocity v 

~n S . To obtain a simple expression for the trans-

for~ation, choose the z-axis of S and the z'-axis 

of S' along the constant relative velocity v and 

the corresponding coordinate planes parallel (Fig. 1.1.). 

The constancy of light velocity then implies that 

the transforrration must be 
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x' = X 

y' = y 

z I z-vt = -------
Vl-v2/c2' 

t' t-zv/c2 = -·----
l/l-v2/c2' 

These eqs. assume that the origins of the coordinate 

systems coincide at t = t' = 0. The Lorentz transformation 

is then homogeneous. 

The quantity 

has a central significance in special relativity. In 

terms of y the Lorentz transform and its inverse are 

xl = X X = xl 

yl = y y = yl 

(1.1) 
z I = yz - yvt z = yzl + yvt 1 

tl yv + yt t yv + yt' = - -2·z = --zl 
c c2 

We note that the components X and y ' perpendicular 

to the velocity v ' remain unchanged. Also the inverse 

of a transform is obtained simply by changing the sign of 

v. Eqs. (1.1) are constantly used and it is convenient 

to memorize them. 

For small velocities v , the light velocity c 

disappears from the Eqs. (1.1) and they approach the 

nonrelativistic Galilean transformation. On the macroscopic 
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scale only some astronomical phenomena involve velocities 

so lar~e that (1.1) need be applied. The velocities ln 

particle physics are mostly so close to c that 

deviations from the Galilean transformation are large. 

In fact, particle physics offers numerous opportunities 

to verify the validity of· ( 1.1). 

Example 1. As an application of (1.1) we shall consider 

time dilatation and its verification in particle physics. 

Assume that S' is again moving with a velocity v in S 

and that in the origin of S' is a stationary clock 

showing the time t' in S'. Consider two events at 

times tl and t2 in S'. Use now (1.1) with z' = 0. 

A clock which is stationary in S will measure these 

events at the times 

The corresponding time intervals T = t'-t' 0 1 2 

(1.2) 

and 

(1.3) 

T
0 

lS the time measured by a clock in its rest system, 

T is the same time interval as seen in a system in which 

the clock is moving. Since T > T0 time goes faster in 

the rest system of the clock. Seen from S , the moving 

clock goes slow. This effect is called time dilatation. 

A quantitative verification of time dilatation is 

obtained as a byproduct of the CERN g-2 experiment, 

[Bailey 1970]. Leavi~g aside the purpose of this 
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experiment, it involves the storage of muons in a circular 

ring with radius 2.5 m. The velocity of the muons is such 

that y(v) = 12.7. One can follow the gradual decrease 

of the number of muons and determine their lifetime 

in the laboratory. The lifetime of the muons in their 

rest system is T
0 

= 2.2 ~s and the lifetime measured 

for the circulating muons agrees with y(v)•T
0 

= 27 ~s. 

Note that this result also gives an experimental 

proof of the fact that the surprising "twin paradox" 

involves a true effect. Of two twins, the one who has 

left the earth in a space vehicle will at his return 

appear younger to an observer on the earth. This result 

has been verified by muons, the decay of which forms an 

ideal clock. The circulating muon is subject to accelerations 

similar to those of a space vehicle making a round trip. 

Examole 2. An even more pragmatic example of the effects 

of time dilatation is given by the design of low energy 
+ 

K- beams. The lifetime T of the charged K is such 
0 

that cT
0 

= 3.7 m. This distance is too short to allow 

one to separate a pure K beam. Thus very low energy 

(and .velocity) K beams can not be produced. At higher 

energies the factor y(v) lengthens the time and distance 

available in laboratory to the separation of the K beam. 

Qualitatively similar remarks apply for construction of 

bea~s of any other unstable particles, e.g. pions or 

hyperons. 
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Let us generalize the previous situation by 

allowing the velocity v of S' in S to have an 

arbitrary direction (Fig. 1.2.) The appropriate trans-

formation equations between x = (x,y,z) and 

x' = (x' ,y' ,z') can now be derived by demanding 

that the component of X perpendicular to v , 
v . X 

.?S..l. = X - v ==---= 
v2 

should remain invariant and the component of x 

parallel to y , 

X : V -u 
v.x 

2 , 
v 

should transform as z in (1.1). We thus have 

x' = x -.L -.L 

Together these give 

x' = x' + x' -.L -II 

=~-~[~~I (1-y) + yt] • 

In these transformations the dimensionless quantity 

~ = y/c appears frequently. The quantity y = (1-8 2 )-112 

satisfies the identities 

82 + y-2 = 1 , 
(1.4) 

The transformation formula of x can then be written 

in the final form 

x' = X+ y8 (...:Ll s·x-ct). - y+ --
(1.5) 
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The time coordinate transforms according to (1.1) with z 

replaced by ~~Ill 

t' = y(t - ~-jx l) . 2 -11 c 
This is simply 

v•x 
t' = y(t - =--:-:) (1.6) 

c2 

The formulas (1.5) and (1.6) are very important, although 

in ~any cases one may choose the configuration so that 

the simpler formulas (1.1) apply. Eq. (1.5) is rather 

untransparent and one should keep in mind the derivation 

which indicates its real meaning. 
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2. Transformation of three-velocities 

A three-velocity in a frame S with t and x 

as time and space coordinates is evidently defined by 

dx w = -= 
dt (2.1) 

When going from S to another frame S' (Fig. 1.2), 

both x and t transform according to (1.5) and (1.6) 

so that w is transformed to 

w' = dx' ( 2. 2) 
dt' 

Since the differential operator is linear, the trans-

forrration equations of dx and dt are obtained from 

(1.5) and (1.6) by differentiation: 

dx' 

dt' 

= dx + ly v ( _:r__ v·dx - edt) c - y+l - -

= y(dt - l_ v·dx\ 2 - !Y c 

By dividing one obtains immediately 

w' = 
w + yv ( _y_ ~ • ~ - 1) - y+l c2 (2.3) 

Here v is the velocity of the frame S' as seen from 

the frame S , while w and w' are velocities in S 

and S' , respectively. The inverse relation giving w 

ln terms of w' is obtained from (2.3) by interchanging 

w and w' and changing the sign of v • In this ~n-

verted form, the resulting equations are often called 
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relativistic velocity addition formulas, since they can 

be regarded as giving t~e result w of adding the two 

velocities v and w' (Fig. 1.2). 

The general form (2.3~ is fairly untransparent. It 

lS clarified by looking at some of its properties. We 

know that the component of x perpendicular to v lS 

invariant under Lorentz transformations. To see how the 

parallel and perpendicu~ar components of w transform, 

assume that v is parallel to the z-axis (Fig. 2.1). 

Then (2.3) is equivalent to the three equations 

w' = X 

w' y = 

w' z = 

w 
X 

Wy 
2 y(l-vwz/c ) (2.4) 

wz -v 

l-vwz/c 2 

The perpendicular components wx and w of w thus y 
also get transformed and w does not behave like x . 

We shall soon construct a relativistic generalization 

of w which really behaves like x . 

The angle e between w and v is transformed to 

an angle e' between w' and v • The transforrration 

equation is obtained from (2.4) by assuming that wy = 0 

and writing wx = w sine , w z 

w' = w'cose'. The result is z 

tge' = w sine --'--' 
y(w cos e- v) 

= w cosa, w' = w'sine' 
X 

(2.5) 

This equation will later be analyzed in detail. 
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Assume finally that even wx vanishes, so that all 

velocities are parallel. The inverted form of the last 

of the equations (2.4) then gives 

( 2. 6) 

Hi th this equation it is simple to prove the following 

properties of addition of velocities: 1) the sum of 

velocities does not exceed 

are simply additive. 

c . 
' 2) for v << c , velocities 



- 13 -

3. Four-vectors 

The Lorentz-transformation equations can be written 

in a both technically and conceptually simpler form by 

corrbining t and x to a single entity, the (contra-

variant) four-vector X = (xll) 

xo = ct 
1 X = X 
2 

X = y 
3 

X = z 

(x 0 
,~) ( ct ,~) X = = 

and introduce the metric tensor 

, 

-1 

0 

ll = 0,1,2,3. Write 

(3.1) 

(3.2) 

A general Lorentz transformation transforms the four-

vector x to another four-vector x' so that the 

quadratic form 

x·x = 
( 3. 3) 

remains invariant. The Lorentz transformation can be 

represented by a 4x4 matrix A ' 
3 

xll .... xll' = ~ ,AllXV 
v=O v 

Then 2 
X remains invariant, if 

equation 

AT gA = g , 

( 3. 4) 

A satisfies the matrix 

(3.5) 
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where ~T is the transpose of the matrix A • This 

can be seen by inserting (3.4) to (3.3). Notice, in 

particular, that a three-dimensional rotation effecting 

only the space components is also a Lorentz trans-

formation·. 

In general, any object which transforms like x 

1s called a four-vector. If a is another four-vector, 

the scalar product 

a·x I a xll = IglJ" a"xll = a 0x 0 = - a•x lJ (3.6) 
).1 

is also invariant. Also, the square of the sum 

x+a = (xlJ+all) is invariant: 

(x+a) 2 2 + a2 + 2a·x = X . ( 3. 7) 

The equations transforming an arbitrary four-vector a 

from the frame S to a frame S' , moving in S with 

the velocity v , are obtained from (1.4) and (1.5) by 

replacing ct by a 0 and x by a 

The 

a' = a+ ys(~ -a0) - y+l 

0 I 0 
a = y(a -§ . ."~) 

four-vectors a can be 

- timelike (a2 > 0) 

lightlike (a2 = 0) 

spacelike (a 2 0) - < 

(3.8) 

divided in three classes: 

. 
The coordinate four-vector, x can be of any of these 

types. The type is related to the question whether or not 

the point x can be reached from the origin by a light 
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signal. Other four-vectors we shall use will be of 

definite type. By a suitable Lorentz transformation 

followed by a rotation a can be transformed in one of 

the forms: 

a timelike: (a ) = (ao ,_Q_) 
~ 

a lightlike: (a ) = (1,0,0,1) 
~ 

a spacelike: .(a ) = ( 0 ) 0 ) 0 ,b) 
~ 

The Lorentz transformations Av that appear in 
~ 

particle kinematics satisfy in addition to (3.5) the 

following conditions: 

detA = +1. This'means that no discontinuous 

reflections are included. 

A~ ~ 1. The sign of the a-component of a time-

like vector is invariant. 

In order to illustrate the matrix formulation we 

shall write the basic equations (1.1) in matrix form. 

Let us replace v by a parameter r defined by 

v = tanh r c c ( 3. 9) 

The parameter r is called rapidity. The relation (3.9) 

maps the limited range of variation of v (-c~v~c) 

to an infinite range of r (-m~r~~). Rapidity has more 

than a notational significance, since e.g. in collinear 

Lorentz transformations rapidities are additive while 

velocities transform according to the more complicated 

rule (2.6). Writing (2.6) in the form 

vl+v2 
v3 = ----2 

l+v1v 2/c 
( 3 .• 1 0) 
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and introducing vi = c tanh(ri/c) , the right hand side 

of (3.9) becomes tanh[Cr1+r2 )1c] , by the addition 

theorem of tanh. Thus, ~n fact, 

(3.11) 

The equation (3.11) also emphasizes the symmetry of the 

situation, which is not so apparent from (3.10). 

Eq. (3.9) implies 

y(v) 

v ( ) . hr cy v = s~n c 
(3.12) 

With.this notation Eq. (1.1) can immediately be written 

in the matrix form (3.4) with 

1 0 0 0 

0 1 0 0 
A = A(r) = (3.13) 

0 0 cosh!: . hr 
-s~n -c c 

0 0 . hr r 
-s~n - cosh·-c c 

If the more general Lorentz transformation (3.7) is 

expressed in matrix form, all matri~ elements are non-

vanishing. An arbitrary Lorentz transformation A can be 

decomposed into two rotations ACR1 ) and A(R 2 ) and a 

pure Lorentz transformation A(r): 
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4. Four-velocity 

The three-velocity w was defined previously by 

w = dx/dt . We saw that w does not transform like the 

space component of a four-vector. The reason was that t 

is not an invariant variable. To construct a velocity 

four-vector, one must take the derivative of x = (x~) 
with respect to some invariant variable related to time. 

A natural choice is the proper time T defined by 

2 1 dx2 1 2 2 2 2 2 dT = ~ = ~(c dt -dx -dy -dz ) (4.1) 
c c 

Here dx 2 = dx dx~ is evidently an invariant so that 
~ 

dT ~s invariant. We can further write 

so that 

2 2lr 1 dx 2+dy2+dz 2] dT : dt 1 - ~ ----~-----
C dt 2 

1 
c2 

.1. 

(
dx · 2]. :l. d;) = dt/ y(w) (4.2) 

In the rest frame defined by w = 0 , the times are equal 

which explains the term proper time. The factor y in 

(4.2) is, of course, the same y as that appearing ~n the 

time dilatation equation (1.2). 

The four-velocity u = (u~) will thus be defined by 

ull dxlJ dxt.l dt y(w) dxtJ (4.3) = = = dT dt dT dt 

It ~s then u = y(w)(c,~). The space component of uff 

differs from w by the y-factor: 

U : y(W)!i_ (4.4) 
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In the rest frame w = 0 u~ has only the 0-component: 

ull = (c,.Q_). 

Since u is a four-vector, u 2 must be an invariant. 

That this lS the case can be seen by an explicit calculation: 

The length of the four-velocity is thus c and it is a 

time like four-vector. 

The transformation equations ( 3 .8) of an arbitrary 

four-vector (a 0 
,~) can be written in compact a = a more 

form, if v is replaced by the associated four-velocity 

u = y(v) (c,v) • 

Replacing in ( 3 .8 ) y by 

becomes 

a' = a +~(~;§. 
c u +c 

0 I 1 0 0 
-.e:~) a = --(a u c 

Notice, in particular, that 

(4.5) 

0 u /c and by u/c , (3.8) 

ao) (4.6) 

1 = a•u (4.7) c 

Q I a has been written in a 

formally invariant form, although it is not an invariant. 

We have been able to do this since the velocity parameter 

has been introduced in the covariant from (4.5). Later on 

it is seen on many occasions that writing quantities in 

an invariant form often gives an economical way to carry 

out Lorentz transformations. Even here one may go further 

and write Ia! in terms of invariants. Since 2 02 2 a = a -a 

is an invariant, we have immediately 

~~· 12 Cao· )2- 2 1 (a•u) 2- 2 = a = -2 a 
c 
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Using 2 2 u :: c this is symmetrically 

( 4. 8) 

~men v = 0 or u~ = ( c ,Q) the transformation should be 

an identity and (4.7) and (4.8) reduce to a 0 and 

respectively. This is a convenient way of memorizing 

the signs and constants. 

As an illustration of the preceding formulae we 

reconsider the transformation of three-velocities. The 

velocities involved were the velocity v of S' in S , 

a velocity w in S and its transform w' in S' . 

Each of these is now associated with a four-velocity, 

u\.1 = y(v)(c,~) 

u~ = y(w)(c,~) 
).1 y(w' )(c,~') u2 = 

The velocity transformation 

from (4.6) by changing a 

~2 = y(w' )~' = y(w)~ + 

(4.9) 

is now immediately obtained 

to ~l and a' to ~2 

y(w)y(v)~[ y(v) ~-~ -
y(v)+l c 

(4.10) 

To apply this one first has to calculate !~'I or y(w'). 

These can be obtained by squaring (4.10), but much more 

simply directly form (4.8). This gives 

w'2 
= Leu ·u> 2 

2 1 c 
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After some simple algebraic manipulations one obtains 

or equivalently 

y(w') 2 = y(v)y(w)(l-Y-·~/c ) 

(4.11) 

(4.12) 

These formulae were derived already by Einstein. When 

(4.12) is inserted to (4.10) one arrives at the previously 

derived transformation formula (2.3) of three-velocities. 

Using Eq. (4.12) one can show that the geometry of 

the space of relativistic velocities is that of a sphere 

with imaginary constant curvature. Eqs. (3.12) and (4.12) 

imply 

cosh~~ = cosh~ cosh; . hs . hr s1n c s1n c cose • (4.13) 

The rapidities related to ~'wand w' are s, rand r', 

and e 1s the angle between v and w . Comparing w~th 

the cos1ne theorem of spherical trigonometry in Appendix B, 

one sees that (4.13) is identical with it for imaginary 

r,r' and s. 
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5. Four-~omentum 

The states of a single free particle in relativistic 

quantum mechanics are characterized by their four-

~omentum(in addition to spin, which we neglect). The 

basic four-vector in particle kinematics is thus four-

momentum p = (p~). In order to define, in a consistent 

manner, the four-momentum of a particle or of a system 

of particles, the concepts of mass and energy have to be 

subjected to a careful analysis. This can be found in 

text-books of special relativity [Rindler 6~ . The four-

momentum can be defined as rest mass m of the particle 

times its four-velocity: 

p = mu = my(v)(c,v) (5.1) 

Alternatively, p is expressed in terms of energy and 

three-momentum as follows: 

E 
P = (-c ' 

( 5 • 2 ) 

The equivalence of the definitions (5.1) and (5.2) is 

not a trivial matter since it involves, for instance, 

the equivalence of energy and matter. With proper inter~ 

pretation of m, ~' E and £ these equations apply 

also to a· system of particles. 

The simultaneous validity of (5.1) and (5.2) 

implies the equations 

2 E = my(v)c 

-p = my(v)v . 

(5.3) 

(5.4) 
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Thus, in the equation relating three-velocity and three-

momentum, the velocity-dependent quantity 

my (v) = ·- m ·· .,; 2 2' vl-v /c 

has replaced the rest mass. In special relativity, the 

rest mass m and the inertial mass my(v) are different 

for v ~ 0 . According to (5.3) the inertial mass is 

essentially equivalent to the total energy of the particle. 

For v = 0 the rest mass corresponds to a rest energy 

E = mc 2 which is the classic relation derived by 

Einstein. 

In particle physics, the energy and momentum are 

the basic quantities. The velocity v and y(v) are 

obtained in terms of E and £ by inverting (5.3) and 

(5.4): 

1i = '!./ c = CQIE 

y = y(v) = E/mc2 (50 5) 

~Y = Qlmc • 

The definition of p also implies that its invariant 

length is given by 

2 2 2 2 2 E 2 2 p = m u = m c = (-) - p 
c -

(5.6) 

so that p is a timelike four-vector. Equivalently, 

(50 7) 

This equation relates energy, momentum and rest mass 

and it is perhaps the most frequently used equation in 

particle kinematics. When m is given and E and Q 
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satisfy (5.7), p is said ·to be on the mass shell. For 

small 1£1 , energy contains mainly rest energy, 

p2 
E = mc 2 +-- + ... ( 5. 8) 

2m 

For large IQI the contribution from the mass is small, 

2 3 
E = c I Q I + El..9.__ + • • • • 

2IQI 
(5.9) 

Since p ~s a four-vector, the Lorentz trans-

formation equations (4.6) and (4.7) apply if a is replaced 

by p . In many cases the moving frame S' is the rest 

frame of a particle (or of a system of particles). Then, 

instead of u, it may be convenient to use the momentum 

p = mu of the moving particle as a parameter describing 

the motion of S' in S • Replacing in (4.6) and (4.7) 
0 by E/mc and by p/m one obtains u u - -

[ a•p _ a 0 1 a' = a + p 
m(;+:c2 ) - - me j (5.10) 

0 I 1 a = a·p (5.11) 
me 

Here a = (a0 ,a) - is expressed in the stationary frame 

S and a 1 = (a0 ' ,a') in the rest frame of the -
particle moving in S with momentum p . In practice, -
a may be the four-momentum of some other particle. 

Let us denote the Lorentz transformation contained 

in (5.10) and (5.11) by L(p) : 

a' = L(p)a (5.12) 

Then it is easy to see by expl~ calculation that 
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a = p = (E/c,Q) implies 

L(p)(E/c,Q) = (me,~) . (5.13) 

Conversely, the Lorentz transformation L-1 Cp) is 

obtained from (5.10-11) by interchanging a' and a 

and reversing the sign of E . It transforms the particle 

state (mc,Q) to motion: 

L-1 Cp)(mc,Q) = (E/c,Q) • 

L-l(p) . For this reason ~s often called a boost. 
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6. Units and conventions 

To facilitate the transition from special relativity 

to particle kinematics the light velocity c has been 

explicitely written in all formulae. From here on we shall 

everywhere set c = 1 , as is customary in particle 

physics. This is just a formal simplification and simply 

means choosing c as the unit of velocity. 

According to the relation E 2 the rest = me = m , 
mass is equivalent to energy and thus mass is expressed 

in energy units. The basic energy unit is J = Nm = kgm2Js 2 , 

but in high energy physics the electron volt is more 

common: 

1 GeV = 10 3 MeV = 10 9 eV - 1.602·10-lO J 

The ~nverse relation is 

1 erg = 10-7 J = 624 GeV = 624•10 9 eV 

Accelerators with energies in the 100 GeV range give 

macroskopic energies (: erg) to microscopic particles. 

The conversion factor between kg and GeV is obtained by 

solving 1 GeV = mc 2 = m for m. The result is 

(6.1) 

1 GeV = 1.7827•10-27 kg . (6.2) 

For instance, the proton mass m p = 1.673•10-27 kg 

is 0.938 GeV in eV units; similarly for other particles. 

The energies of accelerated particle beams are 

always expressed in eV units. The choice of the energy 

variable is not unique and the following alternatives are 

in use: 
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1. Kinetic energy of the particle, T = E-m , is 

mostly used in the domain where the rest energy ~s 

larger than the kinetic energy. T is the normal 

variable nuclear physics. 

2. Total energy E of the particles is used in the 

high energy domain (E ~ 1 GeV). 

3. Momentum p of the particles (in units MeV/c 

or GeV/c) is normally used to express the energy 

of an experiment. The separators producing mono-

energetic particle beams separate most directly in 

momentum and not in energy. Note the convention of 

writing the unit in the form GeV/c to indicate a 

momentum. 

All these variables are, of course, equivalent. They 

become asymptotically equal when E >> m, i.e. for 

E ~ 1 GeV for hadrons, E >> 1 MeV for electrons and 
t'""Y 

always for photons. 

A convention analogous with c = 1 is to h = 1. 

This is not relevant to pure kinematics where only momentum 

vectors appear. It is convenient when one calculates 

lengths (cross sections) or lifetimes. As previously 
2 E =me = m permitted one to express mass in kg or GeV, 

the relations 

A. h 1 = = ( 6. 3) 
me m 

and 

A n 1 = --2 = c m me 
(6.4) 
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ca~ ~ow be used to express length (meter) and time (sec) 

l~ 1/GeV. To calculate the conversion factors, the value 

of m in kg corresponding to 1 GeV from (6.2) is 

inserted ~o (6.3) and (6.4), together with known values 

of ~ and c. The results are 

1/GeV = 0.19733 fm = O.l9733•lo-15m 

1/GeV = 6.5822·10-25 sec 

( 6 • 5 ) 

(6.6) 

In harmony with these relations one often tabulates he 

and ~ as follows 

nc = 197.33 MeV•fm 

fi = 6.5822·10-22 MeV sec • 

Length in particle physics is mostly needed in connection 

with areas or cross sections. The normal unit of cross 

sections is millibarn = mb = l0- 31 Cmeter) 2 = 0.1 fm 2 . 

From (6.5) one then obtains the very practical relation 

l 2 1 (GeV) = 0.38939 mb = 2 . 568 mb . 

\vith the known values of proton and pion masses 

m one has, equivalently 
~ 

= 0.44232 mb 

1 --2 = 19.987 mb • 
m 
~ 

(6.7) 

and 
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7. Reference frames for collision processes 

We have so far considered general properties of 

Lorentz transformations. In this section, a set of 

reference frames defined by the properties of the initial 

state of a collision process is introduced. Later on, 

several frames depending on the reaction products will 

also be considered. 

In a two-particle collision process) two particles 

a and b with four-momenta p = (E ,D ) and a a ~a 
collide. The values of and are 

normally, up to some small experimental errors, fixed by 

the experimental conditions. Different frames can be 

defined by requiring or to have some special 

values. The following are most frequently used: 

1. Laboratory system (LS) is defined as the system 1n 

which the experiment is carried out and all energies and 

momenta measured. It is fixed by the experimental outlay, 

which may involve either a beam of particles hitting a 

stationary target or colliding beams (see below). LS is, 

in a sense, the primary system. From this the momenta and 

energies are the~for different reasons, transformed to 

other systems. We shall denote LS quantities by an index 

L: EL, QL 

2. Center-of-momentum system (CMS) is defined as a 

system in which 

* * ~a + ~ = 0 • (7.1) 
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The CMS quantities will be denoted by an ast~risk. 

Target system (TS) is defined as a system in which 

p T = 0 
-b (7.2) 

lf:ost experiments are carried out on stationary targets 

and for all these TS coincides with LS. In fact, in standard 

terminology our TS is called the laboratory system. How-

ever, for colliding beam experiments TS and LS do not 

coincide and we have preferred to keep the terminology 

unambiguous. 

4. Beam system (BS) is defined by 

B p = 0 • _a (7.3) 

From a theoretical point of view BS and TS are equivalent. 

5. Colliding beam system (CBS) lS defined as a frame 

in which two particles of equal mass and momentum 

(nCB = nCB) collide so that their momenta form an angle 
~a ·-b 

~ - ~, as shown in Fig. 7.2. For colliding beam experiments 

CBS coincides with LS, for v = 0 it even coincides with 

CMS. 

In practice one constantly needs to transform from 

one system to another. For this purpose one has to find 

the relative velocities between the ·frames. We shall see 

that this transformation is most simply carried out by 

using invariants. 
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8. Relations between quantities ln center-of-momentum 

ar.d target svste~~ 

The convention c = 1 puts (5.5) in the form 

v = r_/E 

y = E/m (8.1) 

In writing a transformation between two frames, (8.1) glve 

the relevant factors most simply. 

The invariant mass (or energy) of a two particle 

system a, b is the total four-momentum squared 

( 8. 2) 
2 2 = m +mb +2(E Eb-p •pk) • a a ._a ;;:_u 

T .._. 1 ..... n pari..lCu ..... ar, in CMS (8.2) shows that~ lS equal to 

total CMS energy 

In CMS the system a, b , having rest mass YS , lS 

at rest. Its velocity in TS is the relative velocity of 

CMS and TS. By definition 
T 

.£a 
v = 

EaT+;~ 

CMS + TS 
T 

Ea +mb 
y = 

Vs 

T 
~ vanishes, and (8.1) give 

(8.4) 

( 8. 5) 

The simplest of these parameters is, ln this case, 
T 

yv = D 11/S. -- -a 



ig.II.7.3. 

- 31 -

An exJcrirnent 1s usually specified quoting the 

rno:::le:rrcum D T of the incident beam in l<;;.boratory. 
~a 

AccordinG to (8.2) the invariant mass 1s 

s = 2 2 ~ m + mb + 2m. E • • a D a ( 8. 6) 

In going from TS to C~S, the target particle gets the 

momentum -m. yv and energy D -

= 

T 
P~ • 

a. 

2. ~ T mb "~"m • .t. 
D a 

( 8 • 7) 

In C~S, of course, D 
~a * equals * -pb • Then ( 8 • 3) , ( 8 • 6) 

and (8.7) give 

2-~. E T m ·mb a a ( 8. 8) 

The transformation between the be~~ system BS and 

C~S results from (8.4), (8.5) simply by exchanging a 

and b . For TS ~ BS the parameter y is E T/m a a 

::Jext we consider then the transformation of the 

energy and momentum T 
P. of an arbitrary final state 

particle from the target system to the center-of-mass 

system. Choosing again T 
P. a oarallel to the z-axis, pT . -

may be expressed either in Cartesian or polar coordinates 

(Fig. 7 .3): 

T T T T 
2 = (px ' Py ' Pz ) ( 8. 9) 

T T T T T ~ T 2 = P (sine cos? , sine sin9·, cose ) (8.10) 
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The transformation of the Cartesian components to 

the CMS is 

* T 
D = Px -x 
~ 

'TO 
.l. 

Py = Py (8.11) 

* T 'T" 

Pz = y (pz -v E~) 

~* = (-v T+ ET) 
~ y Pz 

where v and y are given in (8.4-5). A~ong the polar 

coordinates T T/ T is defined by tg~ = Py Px so that 

* = <PT 9 J (8.12) 

In general, the azi~uthal angle about an axis is 

invariant under pure Lorentz transformations along this 
'T' 

axis. The transform e~ of e~ is obtaineG by requiring 

the transverse compone~t - 1c. T) 2+c-- T) 2' of T to be V Px Vy E 
invariant and the longitudinal component 

form according to (8.11): 

12.* cose* 

T . T = I?. sln8 

T T T = y C.£ cose -v E ) . 

to trans-

(8.13) 

(8.14) 

By dividing one obtains after some modifications 

tge* 
. T ~l 2 = s lne Vl-v"" -----t 

cose -v/vp 
(8.15) 

where v p 
T1.,...T = I?. r.. is the velocity of the particle in 

question in CMS. Eq. (8.15) shows how a polar angle 

with respect to an axis tran~forms under Lorentz trans-

for~ations along this axis. vle shall analyze this formula 

in more detail later. The transform of 

finally, obtained most simply from (8.11). 

T p is, 
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9. E~crgi0s and momenta in terms of invariants 

According to the relativity principle, physical 

la~;s are invariant under Lorentz transformations. ~o 

explicitely guarantee that this is obeyed, one writes 

physical quantities and relations between them in terms 

of invariants. A seconc significant use of invariants 

is to write combinations of no~-invariant quantities ln 

terms of invariants. Once a sufficient number of the non-

invariants are fixed by choosing a frame, the rest can 

be found. 

The scalar produc~ pp' of two four-vectors lS 

invariant. Out of n four-vectors one can write 

such quantities 

set is formed by the one-
2 

and two-particle invariant masses 

( p. +p. ) . 
l J 

2 2 
J:l. = p., s .. = 

l l l] 
These are clearly unique, but 

are in general not independent. The inverse problem of 

finding when there exist four-vectors p p 1' · · · ' n 

corresponding to given invariants, and of explicitely 

constructing them, is of considerable difficulty. It will 

be discussed later on ln length. '1-le here describe some 

sir..ple of the invariants 2 2 related to uses m a' mb' s 

the four-momenta of the initial state of the 

collision. 

The four-momenta pa,pb define three independent 

invariants, 2 2 2 
pb = mb and .(pa+pb) = s. 

One should thus be able to characterize all the kinematics 
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of the iniLial state in terms of s and the masses. 

We shall work out the connection between these invariant 

variables and noninvariant variables '!=' D 
~a'-a 

separately for TS and CMS. We adhere to the convention 

that Lhe length of a three-vector is denoted by the 

corresponding capital letter. 

ForTS we have, to begin with, 
T Eb = mb. From (8.6) we have also 

so that 

We write this result in the form 

. I 2 2 I V A. ( s , m a , mb ) 
= 

Eere appears the kinematical function 

>..(x,y,z) = (x-y-z) 2-4yz 
2 2 2 = x +y +z -2xy-2yz-2zx 

= [X- ("Vy+ IJZ') 2J [X- ( Vy- Vz') 2] 

= 0 and 

( 9 .1) 

( 9. 2) 

( 9 • 3) 

( 9. 4) 

(9.5) 

( 9 • 6) 

( 9 • 7) 
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Useful special cases of these are 

A(x,y,y) = x(x-4y) 

A(x,y,O) = (x-y) 2 

( 9 • 8) 

( 9 • 9) 

From (9.4) it is seen that A lS invariant under all 

permutations of its arguments. The basic motivation for 

the introduction of A will be clarified in section ll. 

Sometimes A lS called the triangle function since 

1,/ ( ,1 4 v -A x,y,z; is the area of a triangle with sides 

rx, G and vz. 

Thus 

According to (9.5) we have 

D ..._a 
T in (9.2) is real if 

' r;:;-s _> m +""' v:;:, 'a ,..b • (9.11) 

The threshold value ma+mb is the smallest value VS 

can attain. The pseudothreshold value m -m a b is 

important for some more advanced kinematical considerations. 

The threshold 

kinetic energy 

T = a 

In CMS 

ma+mb 
,., .... a 

T E -m a a 

o= 
= 

also appears if one writes the 

particle a in TS in terms of s: 
2 s-(ma+mb) 

2mb 

so that 

D }t : p }t : p'X" 
a b (9.12) 

and, according to (8.3), 

(9 .13) 
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The invariant energy is thus equal to the total energy 

in C~S. Inserting (9.12) to (9.13) one obtains 

Squaring once this glves 

Squaring a second time results ln 
~I 2 2 ' 

~ VA(s,ma ,mb ) 
E. = 

The remaining energy 
>=" ·}; ' ;---; ~ = vs - E ..... :0 a 

E ~ 
b 

E '}t 

b is then obtained from 

(9.14) 

(9.15) 

(9 .16) 

Note how in (9.14) and (9.16) x-E. has in the numerator 
l 

a plus-sign in front of the mass 2 m. 
l 

It is easy to verify that the expressions so 

obtained for TS and CMS quantities satisfy the relations 

(8.8) and (8.10) obtaine6 by explicit Lorentz trans-

formations. 

Exa~nle 1. It is useful to have an idea of the numerical 

~agnitudes of various kinematical quantities for normal 

experiments, which are characterized by the value 

of the incident momentum. \\"'hen the momenta involved are 

sufficiently large, for instance, EaT~ 5 GeV/c, one 

may neglect the rest masses and assume that E = P. 

Then (~) glves T s ~ 2mbp . If one takes into account -a 
lg.~) 
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that the target is - practically without exception - a 

nucleon ·cmb : 1 GeV) one may estimate 

s : 212. T a (in GeV units) (9.17) 

For P T = 19 GeV/c -a this glves s :; while 

the correct value is s = 37.45 GeV 2 • For the CMS 

quantities one has similarly 

E -x- - 1:' -x- - p 'X' - p 'X' - 1 Vro - {P T/ 2' a - ~b - a - b - 2 s - a (9.18) 

For a pp initial state with P T = 19 GeV/c the exact a 
values are Ea = Eb = 3.06 GeV, P-a = £b = 2.91 GeV/c 

Hhile the approximation (9.18) would give VP T/2
1 

=· 3.08 GeV. a 
For qualitative purposes the accuracy is adequate. 

Example 2. According to (9.17) the useful energy ~ 

of an accelerator behaves like ~ :: v;;-t . Increasing ·a 

the incident momentum of a particle hitting a stationary 

target by a factor four, for instance, will increase the 

useful energy {:3 only by a factor tHo. The rest Hill 

go to the useless energy of the motion of CMS in TS. 

This simple consideration lies behind the motivation 

for constructing colliding beams. If two beams Hith 

particles of momentum CB p collide, head-on in laboratory, 

the total energy VS will be within the approximation 

of Example 1 equal to 2P CB. According to ( 9 .17) this 
T corresponds to an effective momentum P eff of a beam 

hitting a stationary target which equals 

(9 .19) 



- 38 -

For pCB ~ 28 GeVIc, the effective momentum would be 

T 
Peff : 1570 GeVIc. The gain is impressive. 

Example 3. Starting from v = £IE, y = Elm we can write 

the velocity of CMS in TS in an invariant form 
'I 2 2 I V A(s ,rna ,mb ) 

v = 

CMS ~ TS 

Eb * 2 2 s-m +r;,, 
a ':) 

y = = 
mb 2mbVs 

Similarly, the velocity of particle 

given by 

T v = a 

T 
Ya = 

1 2 2, >.(s,ma ,mb ) 
2 2 s-m -m a b 

2 2 s-m -mb Pa·pb a = 
2m amb mamb 

a 

(9.20) 

(9 .21) 

in TS is 

(9.22) 

(9 .23) 

These are also the parameters for the transform BS ~ TS. 

Note how v and only differ in the sign of 

both are for large s very close to one. On the other 

hand, for large s y is proportional to {S and 

to s. 
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10. Colliding beam system 

The introduction of the colliding beam system (CBS) 

has become useful only now that one is able to carry out 

experiments with colliding beams. Our definition (Fig.II.7.1) 

of the CBS describes directly, for inst&nce, the experimental 

situation in the CERN Intersecting Storage Rings (ISR), 

if the two colliding proton beams have equal momenta. For 

unequal momenta slight and obvious modifications are 

necessary. In the ISR the maximum momenta are 28 GeV/c 

and the angle of intersection is ~= 14~77 ~ 0.2578 rad. 

One should again emphasize that for colliding beam 

experiments of the ISR type the CBS coincides with the 

laboratory system. From the CBS one may then Lorentz 

transform the measured momenta and energies to any frame, 

for instance to CMS or to the target system (which in 

pre-ISR times was mostly called the laboratory system). 

We shall in the following only consider the transformation 

to CMS. 

For the transformation to CMS one again needs the 

velocity of the CMS in the CBS C= LS). As the velocity 

of the CMS in any frame is (pa+pb)/(Ea+Eb) , the - -
velocity vCB of the CMS in CBS is according to Fig.(8.1) 

given by 
CB v (10.1) 

·1.-1here v ( = v ) a b is the velocity of particle a in the 

laboratory frame. Correspondingly, with 2 = 1-v a 
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(10.2) 
+ 2 2~ Ya cos -i 

The velocity is oriented along p +p. -a _o as shown 1n Fig. 8.1. 

and the Lorentz transformation is easy to carry out. 

For a colliding beam experiment the invariant s 

is given by 

(E +"[:' )2 I + 12 4 2+4(PCB)2 2-J"" s = a ~b - Pa pb = m cos 2 (10.3) - -
where is the laboratory momentum of 

the particles a and b . 

CB J = 2E ( 1--8-) 

To second order in 

(10.4) 

where ECB is the laboratory energy of the particles a 

and b and the approximation PCB~ ECB has been used. 

Since ~2 /8 ~ 0.0083 for the ISR, the correction to the 

total CMS energy VS arising from the fact that the two 

beam intersect at an angle ~ is numerically very small. 

Inverting (10.3) we have, finally 

= 
1 2 2{r' \. s-4m sin "2 

{}" 2cos--2 

(10.5) 
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Exercises to Chapter II 

1. The Stanford linear electron acceleraLor is 3 km long 

and accelerates the electrons to an energy of 

E = 20 GeV. The energy of the electron is linearly 

proportional to the distance it has covered, its mass 

1s me = 0.511 MeV. What is the total length of the 

accelerator seen by the electron? 

2. Derive the transformation formula (2.3) of the three-

velocity by using the Lorentz transformation properties 

of the four-velocity. 

3. a) What are the maxinum values of v and y if one 

wants to write 2 E = m+p /2m so that the error is less 

than 2 E·p /2m? b) What are the minimum va:ues of 

v and y , if one wants to write E = p so that 

the error is less than £•p ? Formulate in words the 

conditions for the validity of the non-relativistic 

and relativistic approximations if e = 1 %. 

4. An electron, a pion and a proton have each a momentum 

1 GeV/c. What are the times these particles need to 

cover a distance of 3 m ? 

5. The four-acceleration alJ is defined by the equation 

alJ dulJ = d-r 

a) Determine 0 and b) Prove that a·u = 0' a a ' -
c) Evaluate the invariant a·a if the particle to 

which alJ refers follows a straight path. 
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6. In a proton-proton experiment at 19 GeV/c (VS = 6.12 GeV, 

m = 0.938 GeV) one observes in the final state a p 
proton with a momentum 4 GeV/c at an angle 30° 

relative to the beam axis. What are the energy and 

momentum of the produced proton in the center-of-momentum 

system? 

7. Consider in a proton-proton experiment at a fixed 

incident momentum PT a momentum vector perpendicular a 
to the beam direction in the center-of-momentum 

system. If its length varies between zero and its 

maximum value (determine this maximum), how does the 

corresponding momentum vector vary in the target 

system? Draw a figure with the numerical values of 

Problem 6. 

8. Check the correctness of the calculations in Problems 

6 and 7 by computing.the magnitude of the transformed 

momentum vector both from P = (p~+p~+p~) 112 and 

from P = CE 2-m2 >112 . 

9. Suppose two particles have equal velocities (in 

magnitude and direction) in some Lorentz system. 

How are their velocities in any other Lorentz frame 

related? What if velocities are replaced by three-

momenta? 
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III. Phase Spac~ 

1. Definition of phase space 

So far we have essentially only considered properties 

of the initial state and Lorentz transformations of un-

constrained final state momentum vectors. Turning now our 

attention also to the final state of a particle reaction 

Pa+pb ~ p 1+ ..• +pn (Fig. I.l.l) we have to impose on the 

final state momentum vectors four-momentum conservation: 

The m. 
J.. 

with 

n 

E +.,..,.t.. - ~ E a b- L i 
i=l 

n 

E.a+E.b = L E.i 
i=l 

2 2 £.e. +m .e. ' 

(1.1) 

.e. = a,b,l, ••• ,n 

are fixed particle masses. Due to four-momentum 

conservation the n momentum vectors cannot vary 

arbitrarily for a fixed initial state, but have to 

satisfy the four conditions (1.1). We shall call the 3n-

dimensional space of the unconstrained final state 

momentum vectors £· the momentum space. The conditions 
J.. 

(1.1) define in this space a (3n-4)-dimensional surface 

which will be called the P0ase space. Sometimes the terms 

momentum space and phase space are used synonymously for 

the 3n-dimensional space and the (3n-4)-dimensional space 

is called a surface of constant energy and momentum. We 
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have adopted the definitions above in order to fix a 

concise and unique terminology. The structure of the 

momentum space is simple, while the structure of phase 

space is extremely complicated. Much of our subsequent 

effort will go to clarifying this structure. 

There lS a formal analogy between the phase space 

ln statistical physics and that in particle physics. 

This is due to the fact that both in relativistic quantum 

statistics and in the study of final states of particle 

collisions a state is determined by a set of four-momenta 

p1 , .•. ,pn. In order to discuss this connection we shall 

review here some concepts of statistical mechanics. These 

remarks are not indispensable for later developments in 

this book and they are included here only to give some 

wider perspective. 

a) Classical statistical mechanics. Consider n 

particles in a box of volume V . Each of the particles 

has a momentum coordinate £· and a position coordinate 
l 

~i' i = l, ... ,n. The phase space is then defined as the 

6n-dimensional space of the and £· . At a fixed 
l 

time the state of the particles in the box corresponds 

to a point in the phase space. In statistical mechanics, 

the state of the system is not followed in detail but 

instead one considers the probability density of the 

points in phase space. For an isolated system this density 

P = P(E) only depends on the total energy E = E(p. ,x.) 
~l _l 

of the system. Different densities define different 

ensembles: 
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microcanonical c~semble (constant energy): P(E) = o(E-E0 ), 

canonical ensemble (constant temperature): P(E) = e-E/T 

In the microcanonical ensemble the basic function from 

which all thermodynamical quantities can be derived is 

the volume of the accesible phase space: 

NCE) = 1fd x. d"'p. tHE-E) (1.2) J 3 ':) 
0 l l 0 

l 

For an ideal gas, E = ~ pf/2mi does not depend on 
l 

and 

NCE ) = vnjd 3p. o(E-E ) • 
0 l 0 

·(1.3) 

In the canonical ensemble the basic function is the 

partition function 

Z(T) = fr:d3
xi 

3 d 'D· ... 1 
-E/T e 

x. 
l 

For an ideal gas, Z(T) is the Laplace transform of N(E): 

Z(T) = ~dE e-E/TN(E) . 

0 

(1.4) 

b) Quantum statistics. In quantum mechanics the 

. . . 1 ( 3 3 h 3 ) d' 'd h uncerta1nty pr1nc1p e t:, x t:, p = 1v1 es t e 

previously considered phase space into cells of volume h 3 . 

Each cell contains one state, which can be defined e.g. 

by giving the momentum E • In problems of particle 

physics the states are so closely spaced that the discrete 

sum can be replaced by an integral over a continuous 

variable. This is seen as follows. Consider again free 

particles in a box of volume V = L3 . Their wave functions 
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are Vl/ 2 ( · ) B d d. . . h h exp lp·x . oun ary con ltlons requlre t.at t e 

components of Q satisfy + p = 21rn /L, n = 0,-l, ..• ,etc. 
X X X 

By simple counting one sees that the number of states in 

the volume element d 3p lS 

( 1. 5) 

This is a very large number if the box is macroscopic. 

For instance, if V is·the volume of a bubble chamber, 
3 V Q l m , and dpx' etc, is taken to be a typical 

measuring accuracy of 10 MeV, then using (II.6.5) one 

obtains d 3n = 5·1038 states. Thus the quantization of 

states is within this experimental accuracy totally un-

observuble. Sums over discrete states may be replaced 

by integrals over £: 

(1.6) 
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2. Integrations over phase space, cross section formulas 

According to our present knowledge on dynamics of 

particle reactions, the transition probability from an 

initial state pa+pb to a final state with definite 

momenta £· is obtained from the matrix element 
l 

(2.1) 

The purpose of experiments is to clarify the structure of 

A(D.) and the conclusions are theoretically described in 
~l 

the form of different dynamical models specifying 

Later on we shall present some general properties 

lS known to satisfy, but for the moment it is sufficient 

to consider it as some unknown function of the £;• 
~ 

In order to obtain measurable quantities (for n>2), 

jA(£i)j has to be integrated over a set of allowed 

values of the £··The total reaction cross section is 
l 

obtained, if the integration is carried over all possible 

values of the E·, i.e. over the entire (3n-4)-dimensional 
l 

phase space. The corresponding quantity for a decay is 

the lifetime. If the integration is restricted to a 

subset of the phase space, a differential cross section 

or, if the normalization is inessential, a distribution 

is obtained. How exactly jA(£i)j and the cross sections 

are related, depends on some normalization conventions. 

The derivations can be found in textbooks on high energy 

physics (Bjorken 64, Kallen 64). For our purposes it is 

sufficient just to state the results. Denoting the 

total reaction cross section by on;on(vs):on(vs;mi) 

we have 
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(2.2) 

where 

( 2 • 3) 

is a flux factor and 

64Cpa+pb-I pi>IA<£i>l2 (2.4) 
l. 

contains the integration over the phase space. The 

conservation of four-momentum has been accounted for by 

introducing in the integrand a four-dimensional 6-function, 

which is a product of four 6-functions corresponding to 

the four components The dependence on m. 
l. 

is 

suppressed in the notation. We shall presently clarify 

the reasons for writing the definition of In(JS) in 

the form above. It is important to emphasize that (2.2) 

as a matter of fact defines the normalization of A(£i)' 

i.e. what constants and vs-dependent factors are attached 

to A(Qi) by convention. In this sense the derivation 

of (2.2) is not essential; it can be understood without 

any derivation. We shall return to this question of 

normalization in more detail in connection with two-

body to two-body scattering. The formula for the life-

time Ta of an unstable particle with mass rna is 

very much similar to (2.2): 

' ( 2. 5) 

(2.6) 
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If x=x(n.) 
l::.~ 

is any variable depending on the Ei' 

the differential cross section dan/dx is obtained by 

transforming the integral in (2.4) so that x appears as 

a variable and then omitting the integration over x • 

In practice, this can be most simply carried out by 

inserting the constraint x = X(£i) in the integrand 

as a a-function so that 

I 3 
dan 1 d Pi 4 2 
-- = - lT --- o (p +p -Lp. )o(x-x(n.) jA(n.) l . 

d F 2E. a b ~ ~~ ~~ 
X i ~ i 

(2.7) 

This satisfies trivially fdx • (do jcix) = a • Eo. ( 2 . 7) n n • 

is very convenient and will be used frequently. Higher-

order differential cross sections 2 d a/dxdy, etc. are 

obtained similarly. 

Consider now in more detail the integral In(vs). 

In its definition (2.4) we have separately included the 

factor TfC2Ei) in the integration over the £i· 
i 

This factor could, in principle, be included in A , but 

it is kept separate since the quantity d 3p/2E is 

invariant under Lorentz transformations. We shall prove 

this invariance in two different ways: 

1. By explicit computation one finds from the trans-

formation formulas of four-momentum that 

Q:) 
'"Y 

dpz 

= dp' 
X 

= dp' y 
= y(dp'+vdE') z 
= ydp~(l+vp~/E') = dp'E/E' ' z 

(2.8) 
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since dE'/dp' = p'/E' z z and E = y(E'+vp') • The volume z 

element d 3p = dp dp dp 
X y Z 

d~p' = ~ 
E' E 

thus satisfies 

so that the combination d 3p/E is invariant. 

(2.9) 

2. The invariance of d 3p/E can be made still more 

explicit by writing it in the manifestly invariant form 

J ·3 J 4 2 2 ~~ = d p o(p -m )e(p0 ) (2.10) 

where the second integral is extended over all values of 

the components pv , v = 1, ••. ,4. The function 9(p
0

) is 

zero for and 1 for > 0. It is also invariant 

under the orthochronous Lorentz transformations considered 

here. Writing 2 2 2 p = p -p 
0-

and and using 

the following property of the a-function integrations: 

o(f(x)) = (2.11) 

one can easily prove (2.10). Eq. (2.10) also explains 

the factor 2 added conventionally to the invariant 

d 3p/E. Formula (2.10) is often used to write the 

integrals (2.4), (2.6) and (2.7) in other equivalent 

forms, e.g. 

In n 
,_4 2 2 4 2 I (1/S) = j J d p. o(p.-m. )o Cp +pb-LP.;) IAI n ~ ~ ~ a 1 .... 
i=l 
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In (2.4), the 6-function is a singular function. 

For many purposes, for instance if one wants to calculate 

(2.4) numerically, it is important to eliminate the 

6-function. This can be done in many different ways. 

After the elimination one has 3n-4 variables which are 

only constrained by limits of integration and not by 

any singular constraints. Calling this set of variables 

~ we shall write (2.4) in the form 

I (Vs) =jd<P f (q,) , (2.12) n n 

where d¢ is a volume element 1n the (3n-4)-dimensional 

phase space and fn(<P) contains all the factors arising 

from transforming from the Qi in (2.4) to the variables 

q,. These include the integrand of (2.4), factors arising 

from integrations over the o-functions according to (2.11) 

and a Jacobian. The exact relation between (2.4) and 

(2.12) will be more transparent after we have given 

concrete examples. 
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3. The phase soace integral 

If the matrix element (2.1) is identically 1, the 

integral I (Vs) defined in (2.4) is often called the n 
phase space integral. Denoting In in this case by Rn, 

we have 
d3 

=f1T~ 2E. i ~ 

(3.1) 

where 2 s = p . There is no deeper theoretical reason for 

giving A - 1 a special treatment, it is just the simplest 

possible choice. In fact, from experimental evidence one 

knows that at high energies A may vary considerably in 

the phase space. On the other hand, many technical 

developments like transformations of variables are in-

dependent of A. They can be conveniently presented by 

using (3.1). For this the relativistic invariance of 

(3.1) is also crucial. 

Similarly, all distributions 2 da/dx, d a/dxdy, etc. 

derived from (2.7) with the assumption A= 1 are called 

phase space distributions. Again, the higher the energy, 

the more any experimentally measured distribution will 

deviate from the phase space distribution. In spite of 

this , the case A = 1 may be conveniently used to derive 

the boundaries of the physical region in the variable x, 

on the xy-plane, etc. The specification of the physical 

region only involves four-momentum conservation and the 

form of A does not enter. 
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Historically, the phase space distributions have 

played a significant role as resonance backgrounds in 

connection with a search for resonances. The assumption 

was made that A = 1 somehow gives the consequences of 

pure kinematics and any deviation from this denotes a 

dynamical effect, for instance, a resonance. This works 

at lower energies where the matrix element really is 

rather constant, but at higher energies the separation 

of kinematical and dynamical effects becomes involved. 

This question will be discussed later on in connection 

with kinematical reflections (Chapter VII). 

Other special choices of A may also be given a 

special treatment. One example ~s the non-covariant 

£hase space integra~ Rn(p~) , defined by 

RnCp" l = fr: d3pi o\p-fpil (3.2) 

or by choosing A= TTC2E.). For many purposes (3.2) . ~ 
~ 

would be as convenient as (3.1), but due to its non-

covariance it is far more difficult to handle. 
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4. The unitarity relation 

The ~nitarity relation is a very deep and involved 

nonlinear constraint on reaction amplitudes following 

from the unitarity of the S-matrix. It is purely dynamical 

in character, but contains phase space integrations 

which we are going to analyse in some detail. To this 

end we formulate here the unitarity relation using the 

same normalization conventions (Kallen 64) as those 

leading to the cross section formulas given previously. 

Hhen appli.ed to the scattering a"'lpli tude <pcpd IT I PaPb> 

of a 2~2 reaction pa+pb ~ pc+pd it reads: 

(4.1) 

o4<pa+pb-Lpi)<pcPdiTIPl··Pn> 
i 

' 
where Tt is the adjoint of T. This equation is best 

understood by looking at Fig. III.4.1; the imaginary part 

of a 2~2 amplitude is given in terms of all possible 2~n 

amplitudes. Since kinematics only depends on the multi-

plicity, sums over intermediate states with different 

internal quantum numbers but same n have been omitted 

~rom (4.1). Further relations are obtained by putting 

some other amplitudes on the left-hand side of (4.1). 

In this way unitarity connects everything with everything, 

which is the reason for its great complexity. 
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The integrand in (4.1) is much more complicated 

than that in the cross section formula (2.4), since it 

1) is a complex number, 2) depends on both the initial 

and final states of the reaction pa+pb ~ pc+pd. When 

the initial and final states coincide, the integrand in 

(4.1) simplifies to that of (2.4) and one obtains the 

£Qtical theorem 

This relates the total cross section 

=L 
n=2 

a (s) n 

(4.2) 

(4.3) 

to the imaginary part of the forward 2~2 amplitude. 
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Exercises to Chapter III 

1. a) What are the dimensions of the n-particle 

production amplitude A(pi) according to Eq. 

(III.2.2) if a is to have the dimensions of mb? 

b) What are the dimensions of the phase space 

integral Rn? 

2. Evaluate the non-relativistic phase space integral 

I(E) defined by 
2 n 3 P· 

I(E) = j IT d P· o(E-I 2.) 
~ i 2m 

i=l 

Hint: use the formulas ... 
6 ( x) = 1:.__ j dt e ixt 

211' 
00 

I dt 
0 

co 1 dt 
_.., 

-... 
2 b -at t e 

__ 1_ = 
(it)a 

211' 
r(a) 

where r ~s the gamma-function. 

3. The entropy S of an ideal gas in the microcanonical 

ensemble is defined by S = log [N<E, V ,n)/n~J , where 
n 2 

vn J 3 Pi N(E,V,n) = 3 lTd Pi e(E- 4 --2 ) 
( 2,.) n ~ m 

i=l 

is the number of states having the total energy 
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less than E. CalculateS by using e'(x) = o(x), 

the results of Exercise 2 and Stirling's formula 

logn! = n(logn-1). 

4. Calculate the partition function 
00 

Z(T,V,n) 

where I(E) 1s defined in Exercise 2. 

5. The entropy in the canonical ensemble is defined 

by S = ai [T logZ(T,V,n)/n!J. If E and Tare 
3 connected by E = 2nT, show that the entropies in 

the microcanonical and canonical ensembles coincide 

up to terms vanishing like logn/n for n~oo • 
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IV. Two-particle final states 

1. Decay of one particle to two particles 

In this section, we consider the two-particle final 

state without any reference to the initial state besides 

four-momentum conservation. The properties of the initial 

state may thus be compressed in its total four-momentum 

p = (E,Q), which may either be the four-momentum of a 

decaying particle Pa , the total four-momentum pa+pb 

of an initial collision state, etc. However, for 

convenience we shall use the terminology associated with 

decay. 

The two-particle phase space integral is needed in 

connection with cross section and life-time formulas and 

with developing a set of convenient variables for n-particle 

final states. According 
3 3 

J 
d pl d p2 

R (ED) : ----2 ,_ 
2E1 2E 2 

to the definition of 

3 cS<E-E -E ) JJ (p-p -p ) 1 2 - -1 -2 (1.1) 

As it stands, R2 ~s known by Lorentz invariance to be 

a function of 

(1.2) 

only·and one could for its evaluation go to the frame 

p = (VS,O). However, we wish to be more general for 

later use and evaluate (1.1) in an arbitrary frame. 
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Integrating first over by the second o-

function, one has 
2 dP1 P1 (1.3) 

where one has to set everywhere E2 = Q-Q1 • The angles 

n1 = (cose 1 ,f1 ) define the orientation of Ql with 

respect to (Fig. IV: 1.1) and we have denoted 

(1.4) 

The constraint f(P 1 ) = 0 defines the length of Ql 

as a function of cose 1 ' or the angle between Q and Ql· 
+ 

The solution pl = pl is two-valued and we give it later 

in Eqs. (1.11-12). Since the integral over P1 goes 

from 0 to ~, only the positive solutions contribute. 

Calculating f'(Q) from (1.4): 

1 CP1E - PE1 cose 1 > 
E1 CE-E1 ) 

(1.5) 

and using the standard o-function integration formulas 

one has, finally 

( 1. 6) 

where the solutions are given in (1.11-13). Eq. (1.6) is 

complicated and it is not simple to proceed further 

with the evaluation of (1.6) in the above form (apart 

form the trivial integration over~1 ). Since we have 

integrated only over the o-functions, (1.6) is valid 
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unchanged also if one introduces a matrix element 

A<Q1 ,£2 ), which due to the o-functions only depends on 

cose 1 • Eq. (1.6) gives essentially the differential 

cross sections dcr 2 /dn1 or dcr 2/dcose 1 in an arbitrary 

system, in practice mostly the target system • 

. In the rest frame p = (VS,Q) , Eq. (1.6) simplifies 

greatly and one has 

p * 
R2Cvs) = - 1- jdn* 

l.p/5 1 

The values of the "decay momentum" 

energies r* 
1 and r* 

2 in terms of 

(1.7) 

(1.8) 

p* 
1 and the corresponding 

the "decaying mass" Vs 
are obtained from the results of Section II.9 or directly 

from f(P1 ) = 0 for P = 0. One has v 2 2 • 
* p* 

_ >..(s,m1 ,m 2 ) 
(1.9) pl = 2 2 Vs 

The values of these decay momenta are tabulated in the 

Elementary Particle Tables for different observed 

resonances and their two-particle decay modes. Intro-

ducing (1.9) to (1.8) R2 can be written in the 

invariant form 
_/ 2 2. 

'~~'y>..(s,m1 ,m2 ) 

2s 

(1.10) 

Eq. (1.7) can be used even if one introduces an integrand 

depending on the orientation of £~ with respect to 

some separately defined axis - since p=O in this system 

E cannot be used as an axis. All the equations for R2 
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should actually contain the a-function e[{S-(ma+mb)] 

specifying that R2 vanishes below threshold. 

The solution of f(P 1 ) = 0 can after squaring 

twice be found to be 

pl 
~ + J ~2 *2 2 2 • 2 I vyl cose 1 - r 1 v 1 -y v s~n e 1 = 2 2 ml y(l-v cos e1 ) 

(1.11) 

or 

El 
~ + v. ~2 ~2 2 2 . 2 \ 

yl - vcose 1 r 1 v1 -y v s~n e1 = 
ml 2 2 y(l-v cos e 1 ) 

(1.12) 

where v = PIE , and 

are e 1-independent. Adding, one obtains 

(1.13) 

Equating Eqs. (1.6) and (1.7) in differential form 

one has 

dn 1 P~ (EP1 -PE1cose 1 > 
= 

dn~ VS Pi 
But also 

dn 1 dcose 1 sine 1 de 1 
~ 

Pl del 
(1.14) = = = 

dQ~ * . ~ de~ pl de~ 
1 dcose 1 s~ne 1 1 1 

where the equation P1sine 1 = P~sine~ has been used. 

Thus 

de 1 1 CEP1 -PE1cose 1 ) 
= (1.15) 

de~ Vs p 1 
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Inserting the e 1 -dependence of P1 and E1 from (1.11-13) 

one finds after some calculations 

2 2 = y(l-v cos e 1 > (1.16) 

The !-sign is due to the two-valuedness of the mapping 

(E.q. II.8.15) from * * e1 to e1 • If v < v 1 the mapping 

is single-valued and only the +-sign is used. We shall 

rederive (1.16) and simultaneously clarify the meaning 

of this equation later. 

Eq. (1.16) can also be interpreted as giving the 

distribution wCe 1 > normalized to unity in the angle e1 
between E and £1 (Fig. IV.l.l). We have namely 

wCe 1 > w(e~) (1.17) 

so that if the distribution is constant in the decay 

frame (all directions equivalent) or w(e~) = const 

one has 

= 1 

If there is a e 1-dependent matrix element ACe 1 >, the 

corresponding distribution is (apart from normalization) 

obtained from (1.18) by multiplying by ACe 1 ). As it 

stands, (1.18) is derived for A=l so that it corresponds 

to an isotropic decay in the CMS. 

(1.18) 



Fig. IV.l.2. 

- 63 -

In order to obtain the distribution w(el2) in 

the opening angle e 12 defined in Fig. IV.l.2 it l.S 

convenient to app-ly the general formula (III.2. ) for 

the differential cross section with x = cose 12 = £ 1 ·Q21P1P2 . 

We have again 

1 = R2 sinel2 
acose 12 

(1.19) 

where 

To evaluate this, integrate first over 

... 

where e1 is the angle between £ and £1 . The integration 

over ?1 is trivial and the integration over cose 1 
can be carried out by using the first 6-function • 

... 

= 2•P I dE1 6(cose 12 

ml 

(1.20) 
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where the dependence on the integration variable E1 
has been stated explicitly. In a concile form the 

argument of the a-function ~s 

cose 12 -
1 2 2 

ElE2-2(s-ml-m2) 

plp2 

The equation (1.20) is rather complicated to analyze 

for arbitrary masses and we shall specialize to 

m1 = m2 = 0. Examples of processes of this type are 

then 1To ..... YY or + -e e ..... yy, although for the latter the 

matrix element has a definite cose 1 -dependence determined 

by quantum electrodynamics. Now P1 = E1 and P2 = E2 
so that s • The solution of 

+ 
+ ~vE~-El 

1 2s = -·E 2 l-cose 12 (1.21) 

[1 6 ;2'] lE + 1 Vv2-cos 2 = 2 sine 12 

where v = PIE is the velocity of the decaying particle. 

Computing f'CE 1 ) and integrating over E1 in (1.20) one 

finds 

It is irrelevant which of the roots (1.21) is used for 

P1 • Combining with (1.19) the final result is 
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This distribution is plotted in Fig. IV.l.3 for some 

values of v. 
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2. Scatterin~ of two particles into two particles 

The most extensively studied reactions are the elastic 

and ~uasi-elastic reactions which involve the scattering 

of two particles, with possible changes of quantum numbers 

and mass of one or both particles. The reaction is thus 

in general form 

a + b ~ c + d • ( 2 0 1 ) 

The total energy squared in CM is 

s = ( 2. 2) 

The expressions for energies and three momenta in CM and 

lab in terms of s are given by (II.9.1-2) and (II.9. 

14~16 ). For the final state, are given 

by the same equations with a,b replaced by c,d. 

To describe the scattering completely, a second 

invariant variable t, the momentum transfer squared, is 

introduced 

( 2. 3) 

In CM t is related to the scattering angle (Fig. 2.1) by 
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2 2 2 2 2 2 2 2 2 s +s(2t-m -m -m -m )+(m -m )(m -m) 
= a b c d a b c d 

( 2. 4) 

The lab quantities of a and b were discussed 

above. To find E~ we write 

t .. 

and thus 

Energy conservation gives 

2 2 (s+t-m -m ) a d 

( 2. 5) 

( 2. 5) 

For symmetry reasons, it is convenient to introduce also 

the invariant momentum transfer 

( 2. 7) 
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In lab the last expression gives 

I 
E'-

c 
2 2 (m +m -u) b c ( 2. B) 

Variables s,t,u are not independent, comparison of (2.6) 

and (2.8) yields the important identity 

( 2 • 9 J 

Eq. (2.9) follows also from 

Exchange of c and d will permute t and u . The 

laboratory momenta in the final state are obtained from 

(2.5) and (2.8) in terms of the A-function, 

(2.10) 

The first expression can be regarded as the lab momentum 

for a beam of c colliding with b ; this process has 

the invariant mass u . Similar interpretation applies 

to 
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The scattering anr,le 

and p~ , is found from 

e L , t h e a n r: 1 e' 

2 t .. Cpa -pc) 

In terms of invariants this is 

L case = 

be two en 

as 

(2.11) 

For elastic scattering, a=c, b=d, the preceeding 

equations simplify slightly. For equal masses, 

the invariants are 

s = 

t = -2P~2 C1-cose*) 

u = -2P*2 C1+cose*) 

The Mandelstam variables (Fig. 2.2) 

(pa+pb) 2 2 s = = (pc+pd) 

t 2 2 = (pa-pc) = (pb-pd) 

(pa-pd) 2 2 u = = (pb-pc) 

describe symmetrically the reactions 

a+b +--+ c+d s-channel 

a+c +--+ b+d t-channel 
-a+d +--+ b+c u-channel 

m =m em =m =rn a b c d ' 

(2.12) 

(2.13) 
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In s-channcl, t and u are squares of momentum transfers. 

In ~oin~ to t-channel, the signs of pb and pc chanr,e, 

and thus t becomes energy squared and s,u the momentum 

transfers squared. In ~-channel, u is energy and s,t 

momentum transfers. The symmetrical description of the 

r eactions related by crossing is most useful due to the 

observed crossing symmetry of the scattering amplitude. 

One of the vectors Pa• pb, pc, pd is given by the 

·ather three by energy-momentum conservation. In section II.6. 

it was seen that kinematics with three independent vectors 

involves the Gram determinants ~ 1 , ~ 2 and ~ 3 • The poles 

of ~1 and are exhibited in the previous 

formulae. The scattering angles and the boundary of the 

physical region are given most naturally by ~ 3 . 

To obtain the usual invariants most 

easily, on calculates the angle -x -~ between -p and -p • d a 

From (Appendix A) it follows that 

. . 2 * ~1(pa+pb)~3(pa+pb,-pa,-pd) 
Sln 6 '"- (2.14) 

~2(pa+Pb, -pa)~2(pa+pb, -pd) 

Use of definitions of· .A and G results i-n 

2 2 2 2 
2 s·G(mb m t,s,m md) . ·~ 4 , c, a, 

Sln 6 = - • (2.15) 
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~-o(ol -pl) is directly given by 
t a, c 

2 L ~;(rb)~3(pb,pa,-pc) 
sin 6 = 

~2(pb,pa)~2(pb'-pc) 

(2.16) 

The functions A and G have the symmetry properties 

mentioned in Appendix A. These can be used to put the 

arguments into a standard order 

(2.17) 

(2.18) 
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3. The ~ical re~ion in terms of inva~iants 

Real values of the momenta pa,pb,pc,pd are obtained 

if an d only if s and t fulfill the condition 

( 3 • 1 ) 

Due to symmetry in the variables s~t,u, the same condition 

applies to all the three channels. It also applies to the decay 
of one particle into three particles. 

The boundary curve is G a 0. Expansion of (II.6.29) 

results in the equation 

1t1h e re 

with 

stu - ( as+ e t + yu ) 0 

Ky 

K = I 2 m. 
1 

= s + t + u • 

( 3 . 2 ) 

The asymptotes of the curve are s = 0, t = 0 and 

u = 0 und it intersects them on the line 
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as + Rt + yu 0. 

Kotanski has classified these cubic curves into 

fourteen types distinctive to different ratios of the 

masses. If two pairs of the masses are equal or two Masses 

= J , the curve dep;enerates to a line and a hyperbola. If all 

tho masses are equal, the curve degenerates to three lines. 

For exact figure we can solve t from 

2 2 t ± = m~ + m~ + ( 2 s) - 1 [(- s + m -1 + m -4 

It can be drawn in Cartesian st-plane but usually .we have the 

symmetrical representation, see Fig. 2. 

The points, where the boundary curve of the physical 

re~ion intersects the asymptotes, are: 

0 t = - L = SK s = u s-y s-y 

t 0 yK_ aK 
= s = - u = a-y a-y 

0 sK t aK u = s = - .. 
a-B a-)J 

For a rough draft we need, in addition, the tangents 

parallel to s ~ 0, t = 0 and u a 0. 



- 74 -

Th ese are 

( m 1 + 2 
(m3 '!: 2 s = - m2) s = m4) 

.j_ ( m1 :!:: 
. 2 

! 2 
l. m3) t = (m2 m4) 

( m1 '!: 2 '!: 2 u = m4) u .. (m2 m3) 

Now in channel S 

in channel T 

in channel U 

Between the tangents there can be a closed area with 

G < 0 

where the decay of one particle into three particles is 

possibJe, if the masses are suitable. 

In Figs. (3.2)-(3.7) we show different cases of mass 

combinations. 

The kinematic function G P,ives also the boundary of 

so-called Chew-Low plot, that is the mass of an outcoming 

particle Cor a group of particles) as a function of the 

momentum tran s fer t. The curve G = 0 gives actually on l y 

the upper limit for the invariant mass M2 • The maximum 

of the curve is at M = IS-m 1 • The lower limit must be > 0. 

If we have a group of particles. the lower limit is 



n 
I 
L.. 

i=1 
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2 m.) 
l 

As an example, in Fig. (3.8) the Chew-Low plot of the 
- + 0 -reaction K -p ~ (rr rr rr )A is given. 

The shape of the plot is the same for different s, main 

variation is in the size. 
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V. Three Particle Final State 

1. Decay of one particle into three particles 

We consider the decay 

In the absence of spin, there is no preferred orientation 

in space. Of the five indepent variables describing the final 

state, there are three angles on which the process cannot 

depend. A usual ·choice for the two essential variables is to 

take two of the two particle invariant masses 

s .. lJ 
2 = (p.+p.) 

l J 
i ..:. j 

Due to four-momentum conservation these are related, 

expansion of (p 1+p 2 +p 3 ) 2 gives 

The momentum of particle i in the rest frame of A 

( 1 • 1 ) 

(1.2.) 

is obtained from the two particle decay A i + (j+k) as 

p~ 
l 

2 m. • 
l 

( 1 • 3) 

and similarly for 2 and 3. The relations between energies and 

are linear, 
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( 1. 4) 

The physical region for the pair s12' s23 is given 

by the requirement A positive or 3 

G(s12' 
2 2 2 2 0 ( 1. 5) s13' mA, m2, m1, m3) < 

2. The Da1itz ~ 

A plot of experimental events with three particles in the 

final state in the sij' sjk plane is useful for two reasons. 

If the matrix element is constant, the distribution of events 

in the Dalitz plot is constant. Any structure in the reaction 

is thus clearly apparent. Also because the variables are two 

particle, masses, resonance structure appears simply as strips 

with higher density. 

The constant density can be derived starting from the 

three particle phase space integral 

We first integrate (2.1) over £ 3 with the result 

[;CVs-E 1 -E2 -E 3 ) 

2 E3 

( 2 • 1 ) 

( 2. 2) 
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and are arbitrary, the energy 6-function takes 

care of energy conservation. The next step is to integrate ov er 

the angles: first over the directions £2 relative to a fixed 

direction of £ 1 • then over the directions of £ 1 itself. 

Call e the angle between £ 1 and and put case 

Then the first angular integration consists in replacing 

by 

and the second angular integration (because after first 

integration no direction is distinguished any longer) in 

replacing by 

Hence we obtain 

where 

6 ( ~-E1-E2-E3) 81f2 

2 E3 

( 2 • 3) 
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~·J e now transform the integral to the 

I p2 c 2 = + m1 '-1 1 

I p2 E2 
2 + m2 2 

I p2 p2 2 
E3 = + + 2P 1P2 1: + m3 1 2 

by means of 

dP 1 dP 2 dt; 

The Jacobian is easily found to be 

afP 1 P 2 ~) 

a(E 1E2 E3 ) 

variables 

\ 

Inserting this into the integral (2.3) yields 

= ( 2. 4) 
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Thus the probability d~nsity in E1 , E2 plane is constant. 

Because Ei is linearly related to sjk' c~. 

the s .. , SJ'k lJ plot will have constant density. 

(1.4), also 

Before starting the calculation of the boundary of the 

Dalit z plot we shall find the values of the effective mass of 

one pair corresponding to the smallest and largest possible 

values of the other pair of particles, that is, the coordinates 

of points A and B in Fig. 5.2. 

The smallest value of the effective mass of a pair is 

equal to: 

min ( 2 • 5) 

This configuration arises when the velocities of both particles 

are equal and equal to the velocity of the whole system "jk" 

(because momenta and are also collinear): 

( 2. 6) 

Therefore also Lorentz-factors of particles j and of the 

system jk are equal: 

E. 
1 

----"'- = 
m. 

J 

E. 
J 

E.k IS-E. 
J 1 = 

mj+mk mj+mk 

m. 
(/5-Ei) l 

mj+mk 

( 2. 7) 
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The e nergy of the particle i is equal to: 

= 
2 ( ' 2 s+m.- m.+m J 
l J k ( 2. 9) 

2 Vs 

Therefore: 

(2.10) 

Substituting (2.10) in the equation 

( 2. f1 ) 

one finds the value of sik corresponding to the smallest 

value of 

= s + 
2 m. -
J 

m. 
J (2.12) 

are the coordinates of point A13 , 

of point A23 , respectively. 

One can use (1.2) which relates the mass of the pair "12" to the 

masses of two other pairs, in order to find the coordinates 

of the point A12 • 
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In a similar way we can calculate the coordinates of the 

points B on F~g. 2.1. The maximum possible value of 

1/2 s - m. 
l 

Particle i is now at rest in the CM system: 

p. = 0. 
l 

Therefore the momenta of particles j and k are equal: 

is: 

(2.13) 

Also the system jk is now at rest in the CM system, so that 

the energy of particle j in the rest system of jk is the 

same as in the CM system. The energy of particle j in the 

system jk is given by: 

E. = 
J 

2 2 2 (YS-m.) +m.-mk 
l J 

2 c-!S - m.) 
l 

since the mass of jk system is equal to 1/2 s -m .• 
l 

(2.14) 

The value of corresponding to the maximum value 

of is equal to: 

s + (2.15) 
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And finally, insertinfr (2.14) in (2.15) one finds: 

"' m. + rs m. - Vs J 1 

2 2 m. -mk 
J ' 

":fs-m. 
1 

Eqs. (2.13), (2.'16) and (1.2) give the coordinates of all 

points B. 

The equation for the boundary of the Dalitz plot is 

2 2 2 G(s.k,s'k's'mk,m.,m.) = 0. J 1 J 1 

Using (II.6.) the limits of sik for constant 

with 

max 
min 

sik 

P. 
1 

A 

8 

= s + 

= (s+s .k-m~)/2~ 
J 1 

I} 1\( s , s • k, m ~ ) I 2 iS 
J 1 

2 
m.' J 

are 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

These complicated expressions for limits of effective mass 

bocomo very simple when the CM energy is much greater than the 

masses of all particle€, i.e., when 
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i = 1,2,3 . 

In this case (2.18) is reduced to the form: 

0 (2.20) 

and contourcr Dalitz plot is reduced to the triangle (Fig. 2.3). 

It is also of interest to look at the behaviour of the 

Dalitz plot contour for fixed masses, but changing energy. 

The starting point is: 

Than the contour is reduced to the point with coordinates: 

With increasing energy, point a12 (Fig. 2.1) moves up and to 

the right from the starting point " lls'a" (Fig. 2 .4). This 

cun be seen from (2.16), where 

for ( max) -,/::' s 1 3 s 12 --> V s m3 . 



- 85 -

C' -. r"!' ., :-. )"**I :-\ u_, . , __ .._.., epplias for HerG is an apparent 

~ont~ad~ction: both coordinates of the point a12 aro increasing 

when increases; on the other hand 

~~s situ2tion ~t vory hich anergy resembles the case, when 

~~ 3 ~ass2a 0 7 all throe particles are zero, and tho contour 
• ,l I ' ' • ,J... w1.:.n t:ne penn ... B12 located at the 

u. 
J...' wi':G coordinate system. The answer is, that the 

. . . c :;-;;en~ 1 on 07 Oalitz plot increases with increasine energy 

t ~a~ the coordinates of the point 8 12 • In the 

n:2h snerrry li~it, when masses are small with re~pect to 

o~er~y, ~ne distance A~ 2 - s 12 is proportional to s. 
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~· Scatterin~ of two earticles into three particles 

The simplest collisions involving particle production 

are in the category 

a+b ""--7 1+2+3. 

Dynamically these are of large variety. There are e.g. quasi 

two body final states with subsequent decay of one con~~itusnt, 

diffraction dissociation of the type a+b--? a+ (2+3), and "pure" 

three body processes. However, the same invariant kinematical 

variables are usually most convenient for all the reactions. 

· Accounting for four-momentum conservation, there are 

3n-4~5 independent variables. In the absence of polarization, 

one of these, rotation around the beam axis, is trivial; the· 

process cannot depend on it. The four essential variables could 

be chosen so that the set would be symmetrical with respect 

to p 1 ,p2 ,p 3 . The quantum numbers of the final state particles, 

however, usually are such that one particle is related to _§_ 

and one particle to _g_. The two particle invariant masses 

connected with the ordering in Fig. 3.2. are then 

( ' 2 s = p + p. ) a o and the variables 

2 = (p -p -p ) a 1 2 

( 3 • 1 ) 
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There is a third pair of similar variables, s 13 and ta 2 , 

which are obtained from (3.1) by permuting indices: 

2 
5 13 = (p1+p3) 

2 c 3. ;n 
t a2 = (p -r:J~) a'.::. 

Expansion of in two particle masses gives 

( 3 • 3) 

Similar expansion of the last expression in (3.1) results in 

( 3. 4) 

A pair s1,t2 or s2,t1 corresponds to a quasi two 

particle process depicted in Fig. 3. 3 . The pair s1,t2 thus 

determines tne momentum p1 and angle e 1 in a given frame~ 

In CM for fixed s 2 , E 1 must lie on the sphere 

( 3 • 5) 

The values of E 1 in lab for fixed s 2 are on the ellip5oid, 

obtained from (3.5) by a transformation in the z-direction. 

The result is given by CIV.1.7), or 

pl 2 
1v 

2 a 
--7--

b"-
= 1 ( 3 • G) 



- 88 -

with 

a p-x 
2 2 1 s -m +m, 

b 'fP~ 
a o . -x = = P~ 

2mb \[S I 
( 3. 7) 

For a fixed t 1 , the surface formed by the corresponding £ 1 
is a sphere in the antilaboratory frame, 

(3.8) 

In CM this is an ellipsoid and in going further to lab it 

becomes usually a very slim ellipsoid. Examples of surfaces of 

constant and of constant t 1 in lab are drawn in Fig. 3.4. 

For fixed must lie on the sphere 

( 3. 9) 

in CM. For fixed t 1 , £ 3 is on a sphere in lab, 

(3.10) 

In designing experiments, it is useful to have some 

f-eling as to what kind of momentum configuration £~· Q~· £~ 
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to be given so that l... o, 
~, 

is fixed. We take the coordinate axis 

to be rotated around beam so that lies in the x,z plane. 

There are now two remaining degrees of freedom. Thus for 

example, L E3 must lie on a definite surface. The equation of 

this surface is given by the missing mass constraint, the 

particle 2 must be on its mass shell: 

(3.11) 

This is a surface o·F second degree in 

Instead of solving (3.11) through a tedious algebra, one 

can proceed via the frame in which (3.11) is a sphere. The 

decay of the system 2+3 is spherically symmetric in the frame 

.e2 +E3 = 0, i.e. Ea-E 1 = -.eb• This is related to lab by a 

Lorentz transformation along Ea-.e1 , which is thus parallel 

to L L Th t ~ t b t . d f Pa -p 1 . 'e ransrorm parame ers are o a1ne rom 

Denote now the direction cosines of 

The allowed values of 

r= 
L L 

(.ea-E1)z 

I E~-.e~ I 

then lie on the ellipsoid 

(3.12) 

(3.13) 
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L ' 'L.2 ('( r/ '-P3x -ll\p3z ~ 
2 + 2 + = 1 (3.14) 

a a 

with 

a "' 

An example of the mass constraint ellipsoid (3.14) is drawn in 

Fig. 3.5. Interchange 2 <-7 3 in a,b, ro will give the parameters 

for the surface of Q~ • 

The points on the ellipsoid (3.14) are in tw~ to one 

correspondence with points on the s 1,t2 plane. The surface 

is symmetric with respect to the x,z plane, and reflection will 

not effect the invariants. The boundary of the region in 

s 1.t2 is the image of the intersection of the ellipsoid and the 

x,z plane. In this case namely the vectors £ 1 • 22 • 2 3 are 

linearly related. 

The intersection is an ellipse. Amusingly, also the boundary 

of the s 1,t2 region is an ellipse. 

To construct £ 1 • £ 2 • E3 in a given frame, the shortest 

way is to find P1 , B 1 from s 2 ,t 1 and P3 , 9 3 from s 1 ,t2 • 
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Th e relative polar an~le is determined by (II.6.20). 

Explicitely, substitution of the invariants gives 

in which 

Grb a 1 ) 
'b a 3 

.63 ( b a 1 ) 

L13 ( b a 3) 

= 

C£aX·f:2.1) '(QaX£3) 

! PaXP1[1PaXP3\ 

G(ba1\ 
b a 3) 

1/ t.3 ( b a 1) 43 ( b a 3 ) 

2 
2mb 

1 2 2 = 8 s-m -m a b 
2 -s-t +s +m 1 2 a 

2 2m. 
0 

1 2 2 
:: 8 s-m -m a b 

2 -s-t +s +m 1 2 a 

2 2m. 
0 

1 2 2 
= 8 s-m -m a b 

2 2 - t2 +mb +m3 

(3.15) 

2 · 2 2 2 s-m -m -t2+mb +m3 a b 

2m 2 2 -s-t -s +m a 2 1 b 
2 2 2 -t1+ma+m1 s-s -s +m 1 2 2 

2 2 2 s-m -m -s-t +s +m a b 'i 2 a 

2m 2 2 2 -t +m +m a 1 a 1 
2 2 2 -t +m +m 2m 1 1 a 1 

(3.16) 

2 2 J 2 2 ! s-m -m -t2+mb+m3 i a b I 
2m 2 2' -s-t +s +m I a . 

2 
2 1 b I 

2 -s-t +s +m 2m3 I 2 1 b 
I 
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In using (3.16) it is preferable to first cancel the several 

large terms with opposite signs to avoid numerical errors. 

When the reaction is dominated by a two particle resonance 

in the final state, the decay of this is best studied by 

replacing two invariants by the aximuthal and polar scattering 

angles in the rest frame of the resonance. The angle 6, which 

for the choice 2+3 for resonating particles is given by 

cos e = 
s 2 +s 2 (2t 2 -t 1 -m~-m;-m~)+(t 1 -m;)(m~-m;) 

Vl\(s 2 ,t 1 ,m;)\ YA. (s 2 ,m~.m~) 
is called the Jackson angle. The angle 1 defined as 

cos tp = 
[C£2+..e3)x_g1] '[(.22+·g3)xp2] 

I (I?_2+_g3)x_g1ll (_g2+_E3)xp2! 

(3.17) 

(3.18) 

is the Treiman-Yang angle. Application of (II.6.20) yields ~ 

as a function of invariants. 

G(: 2+3 ;) 2+3 
cos~ = 

It:,, 3 ( b 2+3 1)ll.3(b 2+3 2) 
(3.19) 

where G (: 2+3 1) 
2+3 2 depends linearly on s 1 • 
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2 

(: 2+3 ;). 1 
2mb 

G t + 2 2+3 8 5 2- 1 mb 

t 2 s -s + -m 2 1 a 

Differentiation and use of 

· 2 ro s1n J 

yields 

2 s2-t1+mb 2 s2-t1+t2+m3 
2 2 2s 2 s2+m2-m3 (3.20) 

2 2 2 s-s -m 2 1 s1-m1-m2 

(3.21) 

(3.22) 

One value of corresponds to two values of CJ (Cf and 

For integrals this means 

(3.23) 
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4. The ohysical region in terms of invariants 

Sym~etry properties of the process 2 7 3 are exhibited 

more clearly by adopting the notation p4 = -pb, p5 = -pa. 

The variables 

i : 1 1 • • o 1 5 ( 4. 1 ) 

where p 6 = p 1 , are symmetrical in cyclic and anticyclic 

permutations. These are a basic set of invariants. Any other 

invariant can be written in terms of 2 m. 
1 

and si, i = 1, .•• ,5, 

To ·see this, it suffices to observe that for a non-neighbouring 

pair, e.g. 1~3, one can write 

' ) 2 Lp1+p3 

( 4 • 2 ) 

Kinematic variables obtained through a permutation which is 

not cyclic or anticyclic are line.ar functions of the old 

ones. In th.e reaction 2-" 2 the basic set is s,t and the 

co mp 1 e t e s e t s I t I u • For 2 -"'1 3 , t h e vas i c s e t is ( 4 • 1 ) and 

the complete set contains 10 variables Cp 1+pj) 2 • 

The physical region is 6 4 < 0. The Cayley determinant 

representation of 64 exhibits the cyclic symmetry, 
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0 1 ~ 1 1 1 I 

1 0 2 .1- 2 
mz sz "'1 m1 

1 2 0 2 tz mz m3 51 
t-4 = 2 2 16 1 sz m3 0 mb s ( 4. 3) 

1 t1 tz 
2 0 2 

mb m a 
1 2 2 0 m1 51 s m a 

2 + 2 2 2 2 2 2m 1 s 1 m1-m2 s-s 2 +m 1 -t +m +m 1 a 1 
+ 2 2 2s 1 

2 2 
s 1 m1-m2 s+s -m s1-t2+ma 

1 1 3 
"' -16 ( 4. 4) 2 2 2 2 s-s 2 +m 1 s+s -m 2s s+m -m 1 3 a b 

2 2 2 2 2 2m 2 -t +m +m s1-t2+ma s+m -m 1 a 1 a b a 

t. 4 is a homogenous polynomial of fourth degree, and it is of 

second degree with respect to each of its variables. 

The phase space integral R3 is taken over the physical 

region. There are various useful versious of R3 in terms 

of momenta and invariants. We write them for unity matrix 

element; general phase space integrals are then obtained simply 

by multiplying the expressions by the matrix element squared. 

Regarding the process as two successive scatterings, 

Fig. 3.3.a, the integral is 

R = 3 ( 4. 5) 
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whare any representation of R2 can be substituted. In terms 

of t 1,t2 and angles (4.5) becomes (c.f. (3.17)) 

( 4. 6) 

The step functions 0(-G(i)) limit the contribution to the 

integrals to the physical region G(i) ~ 0. The arguments of 

G(i) are those of the scattering processes, 

G ( 1J ( 4. 7) 

G(2) 

A change in the polar angle o/ 2 of the second process is 

related to that of the invariant s 1 by the equation (3.22). 

Substitution in (4.6) gives 

( 4. 8) 

The argument of ~ 4 appear explicitly in (4.3). 
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5. The Dalitz, Chew-Low and t 1~2 plots 

Structure in the matrix element is conveniently seen 

in bubble chamber data·by plotting the events on plane, i.e. 

as a plot in two variables. If s 1 and s 2 are chosen, the 

absense of momentum transfer variables implies thatthe 

situation is here identical with the process A~ 1+2+3. 

The plot is thus the Oalitz plot with constant probability 

density for constant matrix element and boundaries as discussed 

in Section V.2. Fig. 5.1 illustrates a typical experimental 
+ distribution, pp 4 p~ n at 5.5 GeV/c. 

A plot in a momentum transfer t. = 2 (p -p.) a 1 
and its 

conjugate mass 2 s' = (p +p -p.) a b 1 
is the Chew-Low plot. 

The physical region in the s' ,t• plane is given by 

G( t •• 2 2 2) ~ 0 (51) s , , s , m a , mb , m 1 . • 

The probability density of the Chew-Low plot is a function the 

variables. When the system with mass ~ consists of two 

particles and the matrix element of the total process is 

unity, the phase space integral (4.5) is from (III.4.6) 

I 2 2 \ 
iJ A.( s 2 , m2 , m3) 

( 5. 2) 
4s 2 
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Some of the structure in the s 2 direction is due to 

kinematics. 

Because the dependence on t 1 and s 2 in (5.2) is factorizable 

it is possible to even out kinematic dependence on s 2 • Let 

r(x) be defined as 

~; 2 2' 
1 A_( y 1m2 1m3 ) 

( 5. 3) 
y 

= 

( 5. 4) 

Eq. (5.2) is then 

( 5 • 5) 

and the . r~t 1 plot has constant event density. 
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Turning now the t 1 ,t2 plot we note that the boundary 

of the physical region, ~ 4 = 0, is a fourth order homo-

zenous polynomial which is of seco~d order in t 1 and t 2 . 

In Fig. 5.2 representative examples are given and in Fig. 5.3 

the effect of the incoming energy is seen. The probability 

density for constant matrix element is obtained from (4.6). 

The integrals over g1 and ~2 give (2~) 2 , and the integral 

over s 2 can be computed in closed form. The result is 

(5.6) 

+ 
Here s 2 are the maximum and minimum physical values of s 2 , 

and are determined from G(1) = 0, G(2) = 0 with G(i) iri 

(4.7). An example of the phase space distribution is shown 

in Fig. 5.4, where the events have been generated by computer 

using a Monte Carlo method. 
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VI. Multiparticle Production 

1. Choice of variables 

In the process 

a+b ~ 1+2+ ... +n (1.1) 

the particles are on the mass shell, and 

energy and momentum are conserved. Thus there remain 3n-4 

independent variables ~ which are needed to describe the 

process (see Chapter III). There are a large number of 

different descriptions that have been used. In fact, the 

choice of appropriate variables for the description of a 

multiparticle amplitude has posed a long-lasting problem 

to both theoreticians and experimentalists in particle 

physics. No clear choice has emerged, and it seems that 

there is no priviledged set of variables in general. 

When a process is analysed in terms of a mathematical 

model, a basic criterion of usefulness is simplicity. 

The variables should be chosen so that the function 

describing the process is simple and transparent. The 

essential functional dependences in the expression can 

then be interpreted as distinct physical effects. A 

particular example of simplicity is a factorizable 

function. The factors correspond to uncorrelated, in-

dependent physical phenomena. 
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In particle processes a common phenomenon is 

resonance formation. If the quantum members are suitable, 

the .distribution in a two-particle invariant mass shows 

peaks at definite masses with known widths, and the 

production mechanism affects only the strength of the 

peak. 

A universal feature is also peripherality. When the 

incident energy increases, the average transverse momentum 

of the emitted particles remains limited, even at cosmic 

ray energies, to about 0.4 GeV/c. At energies above a few 

GeV this means that the particles are strongly correlated 

along the beam axis. A second, but not equivalent, way 

to state peripherality is the multiperipheral model. 

According to this there always exists an ordering of the 

final state particles such that the momentum transfers 

ti in Fig. VI.l.l. are small. 

Relativity principle would seem to imply that 

invariant variables are best suited for the analysis of 

particle collisions. In practice this need not be true. 

One example is the convenient way of expressing peri-

pherality as a limiting distribution of transverse momenta. 

Secondly, if n is four or larger, use of purely invariant 

variables leads to cumbersome mathematics. E.g. the 

boundary of the physical region is given by a set of 

nonlinear equations. 

In practice, multiparticle processes are studied 

by measuring total cross sections and distributions in 

one or two variables. If data of a collision process 
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with n particles in the final state are plotted, this 

means that one has to neglect 3n-5, 3n-6 or 3n-7 

essential kinematic variables. In testing a dynamical 

model, it similarly means integration over the same number 

of variables. Calculation of phase space integrals is 

thus an important tool for the multiparticle physicist. 

However, one should also have more intuitive insight 

into the different types of phase space effects. In the 

case of several particles the purely kinematic effects 

are far from trivial. These must be properly separated 

from dynamic features which reflect the structure of the 

collision amplitude. A good presentation of data 

emphasizes the dynamical aspects of experimental findings. 

The problem of data presentation is central in the study 

of multiparticle processes. 

We list several common sets of variables for the 

process (1.1): 

a) Data are conveniently listed giving the momentum 

components of the particles in each event. Within 

experimental accuracy, these should be related by the 

four energy-momentum conservation equations. 

b) Let 1/2 
s 1' n- . . . 1/2 , s 2 to be the invariant masses 

of the intermediate states in the cascade decay in Fig. 1.2. 

These are supplemented by the decay angles e.,<P. in 
~ J ~ 

the rest frames of For this set the 

equations defining the physical region are the simplest 

possible. 
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c) A matrix element containing resonances, multi-

Regge behaviour or both (Veneziano), must include the 

relevant two particle invariant masses s .. 
~J 

among variables. 

2 = (p.+p.) 
~ J 

d) Group-theoretical analysis suggests simplicity 

~n multiperipheral models in terms of the Toller variables 

(Section VII.3). These are two-particle invariant masses, 

momentum transfers squared, and the so-called Toller 

angles wi . The main difficulty here is that the expression 

for the total energy is unusually unwieldy, except in the 

limit of infinite energy. 

e) Transverse momentum distributions are at high 

energy fairly independent of other properties of the 

reaction. This implies that pil are natural variables, 

which in some approximations can be put to zero. Van Hove 

has suggested (Van Hove 69) that the remaining interrelated 

pill be replaced by certain n-2 angles ~i • These 

longitudinal phase space piDts will be discussed in 

Chapter VIII. 

f) Combinations of invariant and angular variables 

and consequent projections of phase space into one or two 

dimensional plots to analyse data have been discussed in 

some detail by Nyborg (Nyborg 69, 70). 

Once the choice of variables is made, there are 

three main questions to settle to be able to use them in 

practice. 1) The range of variation (the physical region) 
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must be found for the set of variables. 2) The phase 

space fac~or in the phase space integral must be determined. 

If the matrix element were constant, this factor would 

be the density of events in these variables. 3) The 

relation of the variables to 

usual variables must be known. 

P· ~ and possibly to other 
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2. Recursion relations 

A multiparticle reaction is often on the basis of 

experimental evidence known to take place via resonance 

formation. In the intermediate state there are less than 

n unstable particles which then successively decay to 

each other through the emission of the final state 

particles. Now, regardless of the actual existence of 

such intermediate states, ann-particle final state can 

kinematically always be considered as the result of a 

sequence of simpler processes. This is formally seen by 

deriving recursion formulae for Rn • There are numerous 

ways to this. Some of these contain kinematic variables 

which provide simplest possible decription of the physical 

region of the n-particle process. 

The total cross section was in Eq. (III.2.2) 

defined as 

a = n J 3 1 d p. 
r- n --~ 

. l 2E. 
~= ~ 

(2.1) 

with the flux factor 

(2.2) 

To derive new representations of (2.1), it suffices to 

neglect F and IAI 2 and consider transformations of 

( 2. 3) 
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To get a one just "multiplies" (2.3) by the integrand 

F· IAJ 2 . A distribution in a variable xis then 

aa/ax (Eq. (III.2.7)). 

A covariant recursion relation based on the physical 

picture of sequential decay, Fig. 1.2, was first derived 

by Srivastava and Sudarshan (Srivastava 58). Grouping 

together the factors in (2.3) which refer to the system 

1, ..• , n-1 results in 

!/ 3 n-1 
= $1 Pn lT 

2En i=l 

3 d P· J. 

2E. 
J. 

;

d3 Pn = -- R l(q-p ) 
2E n- n 

n 

n-1 
4 -o CCq-p )-) p.) n L 1 

1 

( 2. 4) 

A still more perspicuous version can be written. If p 

is any time-like four-vector, the identities 

1 = /d 4qo
4

Cp-q) ( 2. 5) 

1 = J dM 2 oCp 2-M2 ) ( 2. 6) 

are valid. We introduce then the n-1 particle momentum 

q 1 = p1+ ... +p 1 and its length n- n- M2 = q 2 to (2.3) n-1 n-1 

The factor from the product sign onwards is R 1 . One n-
then has a two~body decay followed by a n-1 particle 

process, 
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Writing consistently q 2 = q 2 = M2 this is also 
"" n n 

Rn(Mnl =~ dM~-lR2(Mn;Mn-l'mn)Rn-l(Mn-l) • (2.9) 
0 

Instead of taking a group of n-1 particles, one 

can choose, say ! particles to form the intermediate 

state. A few steps analogous to the preceeding ones lead 

to a 11 splitting" relation as follows: 

(2.10) 

It is now obvious how to generalize these recurrence relations 

to an arbitrary tree graph d~picting a set of successive 

decays. Each "unstable" particle will give one mass inte-

gration. 

Let us now study these kinematical variables in 

detail. For definiteness we choose a fixed graph, that in 

Fig. 1.2. In the corresponding equation, (2.7), we can 

integrate over £n a~d Qn-l = 1~_ 1 1 using the four 

delta-functions. According to (IV.l:) the result is 

(2.11) 
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The angles 6n-l' 'f n-1 are the angles of emission of 

the system 1 ' •.. ' n-1 with momentum :!.n-1 in the 

rest system of 1, ... , n (q = 
~ 

0) • The decay can here be 

regarded as spherically symmetric and the orientation of 

the coordinate system can be chosen at will. 

The ranges of variation of a,~ are 0 ~ a ~ n , 

0 ~ ~ ~ 2n . Also M n-1 has simple limits. It must be 

at least larger than m1+ ••• +mn-l" The upper limit is 

obtained when the energy M n goes totally into the rest 

masses M n-1 and mn. We thus get 

~ < M < M - m n-1 n-1 n n · ' 
(2.12) 

Iteration of (2.11) leads to lower Rt and ends 

with R1 <Mi) = o(Mi-mi). Carrying out the Mi-integration 

leaves fold integral 

X 

r • • • X X 

X (2.13) 
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Because of the simplicity of conditions defining the 

physical region, eq. (2.13) has important applications. It 

is the basis of the Monte Carlo method of Chapter X. 

The transformation from (2.3) to (2.13) is general 

and exact. To use (2.13) for an arbitrary matrix element 

A, one should express A in terms of Mk' ek, ~k and 

put it inside the integral. Unfortunately, physical 

processes rarely resemble that in Fig. 1.2, and thus 

Mk, ek, ~k are not very natural for interpretation of 

data or for theoretical models. 

A recursion relation is an algebraic expression 

for the physical picture of a sequence of basic processes. 

In the preceeding the basic process was the decay 1+2 

(one particle goes into two). Any decay l+k or collision 

2+k would serve as a basic process. The cases 2+2 and 2+3 

have been discussed by us (Byckling 69a,b). In 2+2 the 

invariant momentum transfers ti can be included among 

variables. It is the basis of the peripheral Monte Carlo 

and we show here the idea behind it. 

The multipheral graph in Fig. 1.1 is cut at the k'th 

exchange and particles l, •.. k-1 are grouped together. 
2 The basic process is then the scattering of ma and tk 

2 2 to form Mk-l and mk • The scattering is described by 

scattering angles e,~ or equivalently by ~ and 

momentum transfer squared t • One uses (Chapter IV) to 

express the scattering process and includes Rk-l(Mk-l) 

as weight function ( 11matrix element") of the subsequent 
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decay of Mk_ 1 . The recursion relation is then 

2'11' 

~dM;-1~dtk-l~drk-1 
)Jk-1 ° 

The step function 0(-G(k-1)) is zero outside the 

(2.14) 

physical region of the scattering process. The process is 

physical inside the Chew-Low-plot: Mk-l~~k-l and 

G(k-1) (2.15) 

The aximuthal angle varies freely, 0 < o/ ~ 2'11'. The axis 

around which 'f is defined is the "beam axis" of the 

collision, i.e. the incident direction of tk 

Iteration of (2.14) leads to 

and 2 m a 

2 2 R (M ,mb) n n {' 
.12'11' = 1 /dM2 dt d e(-G(n-1)) > 

4 A(M2 2 2)1/2 n-1 n-1 rn-1 4 A(M2 t 2)1/2 
n ,mb ,rna n-1' n-1 ,rna 

~ 1 0 n-

• X o o o X /dM~ 
~2 

(2.16) 

When polarization is zero, rotation ~ around the beam 
J n-1 

axis is irrelevant, and could be integrated to give 2'11'. 

That would leave 3n-5 variables. Because the t. 's 
1 

appear 

in (2.16), peripherality can be imposed in the sense of 

the multiperipheral model. Thus (2.16) is suited to models 
n-1 a.t. 

. IAI2 = 1Te 11. w1th e.g. 
1 
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The multi-Regge description is of the type 

n-1 a.+a!t. 
lT l. l. l. s . 
1 l. 

The two particle invariant masses s. = 
l. 

(2.17) 

be included among variables. A formula analogous to (2.13) 

and (2.16) can be written in terms of 2 M., s., t. 
l. l. l. 

(Byckling 69). The basic process is 2~3 and the inte-

gration limits will be determined by the somewhat 

unwieldy conditions a4 < 0. 
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3. Physical region in terms of invariants 

When invariant variables are used to discuss multi-

particle reactions, there are two main kinematic problems. 

The range of variation (physical region) must be 

determined, and the number of distinct momentum con-

figurations related to one point in this region computed. 

Secondly, the kinematic factor appearing inside the 

phase space integral must be calculated by computing 

the Jacobian of the transformation to the invariant 

variables (Section 4). 

The physical region is best discussed by starting 

from the reaction 

0 -+ 1+2+ +n • ( 3.1) 

The physical region of any process obtained from (3.1) 

by crossing, e.g. O+n-+ 1+ ••• +(n-1) will be shown to 

be limited by the same set of universal boundaries. 

A natural set of invariants is formed by the 

scalar products 

(3.2) 

in addition to the fixed masses p~ = m~ . The set (3.2) 
~ ~ 

contains ~n(n-1) quantities (ij). They are linearly 

related to two-particle invariant masses 

( ) 2 2 2 2('') s .. = p.+p. = m.+m.+ ~J • 
~J ~ J ~ J 

(3.3) 

The invariant masses of three of more particles, 

s. 'k l.] ••• 
= (p.+p.+pk+ .•. ) 2 , are linear combinations of 

~ J 
(ij). 
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The process 0 ~ 1+2+3 involves 2 invariant 

variables (Chapter V), and each additional particle 

brings three more. The total is then 3n-7. A second way 

to derive this is first to note that the reaction (3.1) 

involves 4(n+l) four-momenta. Four-momentum conservation 

gives four equations. The over-all Lorentz-transformation 

(4 parameters) and space rotations of the whole system 

(3 parameters) leave the process invariant. Finally, 

the particles 1, ..• ,n must be on the mass shell 

(n parameters). The result is again 3n-7. 

We see that there are ~<n2 -7n+l4) relations 

betw~en the quantities (ij). One of these is the invariant 

equation due to four-momentum conservation 

n n 

=<I p.>2 
~ 

~ 

= Im~+2 I Cij> 
~ . . 

1 ~<] 

( 3. 4) 

Further, because in a four-dimensional space five or 

more vectors are always linearly dependent, the Gram 

determinants with n>4 vanish identically, as shown in 

Appendix A. We then set up the equations (with notation 

i- p.) 
l. 

l\5(12345) 

t~ 5 Cl2346) 

t~ 5 Cl2347) 

= 
= 

= 

0 

G(l2345) 
12346 

G(l2345) 
12347 

= 0 ' (3.5) 

= G(l2346) 
12347 = 0 

and so on. Now each equation contains a new relation 

between (ij). Their number is 1 2(n-3)(n-4), and we have 

thus found all the necessary equations. 
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Let us now compare the present situation with 

n = 3,4. For n=3 the set (12),(13),(23) corresponds to 

Mandelstam variables s,t,u. The relation (3.4) is 

s+t+u = Imf . For n=4 there are the variables (12),(23), 

(34),(13),(24),(14), which are connected by (3.4). 
2 2 One can use (p

0
-p4 ) = Cp1 +p 2 +p 3 ) to get (13) in 

terms of (12),(23) and (40), and similarly for (24). 

Finally (3.4) gives (14) linearly in the (i i+l). Thus 

one finds that any set of invariant variables (of the 

type discussed here) is linearly related to (01),(12), 

(23),(34),(40) or s,t 1 ,s1 ,s 2 ,t 2 in Fig. (V.3.2), and 

all choices are essentially equivalent. 

Beginning with n=5 the choice of independent 

invariant variables ceases to be arbitrary. The reason 

is the four-dimensionality of space-time reflected in 

the non-linear equations (3.5). The complicated problem 

of finding the equations for the physical region 

in terms of invariants was first discussed in detail 

by Asribekov (62,a,b,c). A complete solution was given 

by Byers and Yang (Byers 64). In a different form the 

solution is given by Poon (70). A third formulation, 

explicit generalization of Asribekov's equations to 

arbitrary n , is also possible (Morrow 70). Conditions 

in definite sets of variables have been considered 

by Morrow (66) and Kumar (69,70), and the case n=5 

by Nyborg (65), and McNeil and Morrow (McNeil 69). 

We state here one set of conditions defining 

the physical region R and indicate its justification. 
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Let Rls be a space with 1 time and s space dimensions. 

The physical space is R13 . If £1 , 

a plane, on a line, or vanish, p 1 , 

R12 , R11 , R10 , respectively. Thus if 

all lie in 

,pn belong to 

are 

in R13 , they are inside the physical region R • The 

boundary is given by R12 , R11 and R10 • 

The physical region is specified by the following 

statement. The time-like four-vectors p 1 , ..• ,pn with 

positive energy c9mponents are in R13 if and only if there 

is such a permutation of that 

~1(1) > o, ~2(12) < 0, ~3(123) > o, ~4(1234) < 0 (3.6) 

~ 5 Cl234k) = o 
G(l234k) = 0 1234£ 

k = S, ••• ,n 

S~k<t~n • 

(3.7) 

(3.8) 

Let us try to understand the content of (3.6)-(3.8). 

Because is time-like, we can take the frame £1 =0. 

According to (A.3), (A.8), (A.ll), (A.l4), we have 

( 3. 9) 

Thus (3.6) is exactly equivalent to the existence of 

Cat least one) ~~~~~E!Y-~~9~E~~9~~! momentum configuration 

p 1 ,p2 ,p 3 ,p4 . Further, according linear algebra (Gant-

macher 53), (3.7) and (3.8) are equivalent to the linear 

dependence of each of p 5 , ••. ,pn on p1 , ••• ,p4 • Thus 
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(3.6)-(3.8) imply that p1 , .•. ,pn are in R13 and 

conversely. 

Next we look at what happens when (3.6)-(3.8) 

fail. First, if (3.7),(3.8) are not valid, p 1 , .•. ,pn 

cannot be a configuration in real space-time but a 

higher dimensional space is needed. Secondly, if (3.7), 

(3.8) are valid but there is no set of four p.'s such 
J.. 

that (3.6) applies, there are two alternatives. Among 

~ 2 ,~ 3 ,~ 4 there is always at least either one incorrect 

sign or, if not, then one ~k=O. In the latter case, it 

is seen from (3.9) that ~k(l ... k)=O implies 

~k+l(l ... kl)=O. We thus obtain the boundaries of R: 

Rl2: ~ 4 Cijkl)=O for all i, ... ,t 

Rll: ~3(ijk) =0 for all i 'j ,k 

RlO: ~ 2 Cij)=O for all i,j 

with lower ~k's in (3.6) intact. As to the wrong signs, 

at least one of the physical quantities in (3.9) would 

then be imaginary. 

A completely symmetric characterization of R is 

possible (Byers 64). Define the sums 

(3.11) 

Thus e.g. 
n 

~1 = I m2 
1 , 

1 

~n = (-l)n-1~ n 



- 118 -

Then the necessary and sufficient condition for p 1 , ... ,pn 

to be in Rls is 

b:l > 0 ' t,2 > 0 ' · · • ' t,s+l > 0 ' (3.12) 

(3.13) 

It is easy to see that (3.12), (3.13) are necessary. 

If p1 , ... ,pn are in a s+l dimensional space, according 

to Appendix A t,s+ 2 , t,s+ 3 , ... vanish. Then (3.13) 

follows. Further, (3.9) imply directly (3.12). The 

sufficiency of (3.12), (3.13) are shown 1n (Byers 64). 
2 The invariant mass Cp1+ ... +pn) is not fixed by 

the conditions (3.6)-(3.8). Usually the reaction (3.1) 

is studied at fixed energy, and one must supplement 

(3.6)-(3.8) by (3.4). As shown earlier, the number of 

independent invariants is now the same as the number of 

essential geometric variables. Thus each combination of 

invariants corresponds ~o a discrete set of different 

momentum configurations. Two momentum configurations 

related by a proper ortbchronous Lorentz-transformation 

are, of course, considered identical. The number of 

distinct kinematic configurations is computed next. 

The relation (3.4) is linear, and each (3.8) 

is linear in the new quantity (kl). However, each (3.7) 

which relates (lk), ... ,(4k) is quadratic in these 

variables. In solving these equations there are in 

all 2n- 4 possible choices of signs. A space reflection 

does not change invariants, but otherwise the 
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correspondence between p 1 , ... ,pn and the whole set of 

invariants (ij) is one-to-one. Thus a set of independent 

( ;J·) d 2n- 3 d' · ~ correspon s to ~st~nct p 1 , .•. ,pn. 

The scattering process 

O+n ~ l+ .•. +Cn-1) (3.10) 

has a physical region limited by the same equations 

(3.4),(3.6)-(3.8). The main difference is that E-n 

negative. The sign of an energy component E. 
~ 

is 

reflected in (ij). In the frame n.=O 
~~ 

one has 

(ij) = m.E. > 0. If now either i or j is incoming, 
~ J 

the sign of P· ~ or p. 
J 

is changed, ~.e. (ij) < o. 
To each channel corresponds a region in the (ij) space 

disconnected from all others. These are all defined by 

(3.4), (3.6)-(3.8). There are 2n-l such regions, because 

there is one operation which does not affect the (ij)'s: 

changing signs of all pi's. 

In the process (3.1) at fixed there are 

3n-7 essential variables, when the energy m of the 
0 

decaying system is fixed. In the collision process m
0 

and m- as well as other masses are fixed. In addition, n 

in real experiments the incoming energy 2 (p +p-) o n 
= m 2 +m~+2(0n) is fixed. There remain 3n-8 = 3(n-l)-5 o n 
independent invariant variables. 

We have now, in principle, determined the physical 

region of any decay or collision process in terms of 

invariant variables. The equations are linear or 

quadratic in (ij) and thus also in 2 s. k = (p;+ •• +pk) • 
~ . . . ~ 
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4. The nhase space factor 

The phas~ space integral (2.3) 1s now transformed 

into the variables (ij) discussed in the previous section. 

Then (3.3) gives trivially the transform to invariant 

masses and momentum transfers. There is a large range 

of possible combinations of integration variables. E.g. 

one can choose only independent quantities, or take all 
1 2n(n-l) quantities (ij) and insert delta-functions to 

account for the relations (3.7), (3.8). Also the 

variables themselves allow considerable latitude. 

In transforming R n the problem lies in computation 

of the phase space factor, i.e. the Jacobian of the 

transformation. We do it step by step. To write P· 1 

explicitly a Lorentz frame must be defined. As the first 

step we take the rest frame of particle 0. From (A.4) 

follows a(Ol)jaP 1 = m
0

P11E1 and (A.S) gives 

(4.1) 

Next we take the direction of £ 1 as the reference 

direction. The Jacobian is ja((02),(12))/a<P2 ,cose 12 >1 
2 = m

0
P1P21E2 , and (A.S) gives 

wfd(02)d(l2) 1 
V-6 2 col>' 

(4.2) 
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The quantity 3 2 d p./2E. = dP.P.dcose.dm./2E. 
~ 1 1 1 1 T1 1 

can be written in terms of (Oi),(li),(2i). The angle 

between p 1 ,p 2 and p 1 ,pi planes is called cpi, then 

(Oi) = mE. 
0 1 

(li) = ElEi plpi cose 1 i (4.3) 

(2i) = E2Ei P2Pi(cose 12 cose 1 i-sine 12sine 1 icosri> 

The Jacobian 1s easily obtained as 

I a ( < o i) , < li) , C 2 i U I 
a c P. , cos e . ,;p • ) 1 1 1 

Thus one has 

According to (A.l4) this is simply 

3 

} ~:: 2E. 
1 /

d(Oi)d(li)d(2i) 
2y-tJ. 4 <123i)' 

Let us first study the decay 

0 ...- 1+2+ ... +n 

(4.5) 

(4.6) 

Fixed incoming energy means the constraint (3.4). We 

denote 
1 2 K = -m 2 0 

Rn is then written in the form 

(4.7) 

(4.4) 
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n 

R = ;n-
2fd ( 12 ) d ( 13 ) d ( 2 3 ) TT d ( 1 i ) d ( 2 i ) d ( 3 i ) F 6 ( L ( i j ) - K ) n o . ,, n .. 

~=~ ~<] 

(4.8) 

The decays to two and three particles have been discussed 

in detail earlier. Let us in any case first rederive r 3 
~n (4.8). 

We integrate over 1?.3 in R 3 , 

(4.9) 

Next we insert invariants from (4.1) and (4.2), 

R 3 = 2 'JTjd, o 1) v-!::. 2 ~ o 1 ) •• 'JTfd, a 2) d, 12) 1 \ 6 , 2 , o 1) + 2 , o 2) -2 , 12) 
mo V-t::.2(01) 

To get final state (ij)Sone uses the four-momentum 

conservation to write 

(01) 
(4.10) 

Then R 3 becomes 

Thus 

R3 = :~ /d(12)d(13)d(23) 0((12)+(13)+(23)-K). (4.11) 
0 

2 r 3 = 'IT reproduces the constant density of the 

Dalitz plot. 
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Once three vectors are given, they define a 

coordinate frame completely. Thus the transformation 

for vectors p., i = 3,4, •.. , can be carried out using 
l. 

(~.3). Let us look at the decay into four particles. 

Analogously to the preceeding case, we integrate over 

Q4 and use (4.1), (4.2) and (4.5) to get 

2 
R4 = ~-~d(Ol)d(02)d(l2)d(03)d(l3)d(23) o(X) 

m; · 2V-t~ 4 (0123)' 

where the delta function is 

3 
o(X) = oC2LCOi) 

1 
2 I_ cij) 
l~i<j~3 

(4.12) 

(4.13) 

Momentum conservation can now be used to find expressions 

purely in final state invariants. One writes 

(01) 

and similarly for other (Oi). It J.s straightforward to 

check that (4.13) is one fourth of the delta-function in 

(4.8) and that the Jacobian from (4.12) to the final 

state ( ij) IS is two. Thus we get 

2 
F4 

if (4.14) = 
4 v::;:: 
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In this case of decay to four particles a fairly 

symmetric choice of five independent variables is 

s 12 ,s 23 ,s 34 ,s 123 ,s 234 . Integrating over (14) and making 

the simple linear transformation of variables gives 

= ~--jdsl2ds23ds34dsl23ds234 
27m2 ·~ 

0 v - ... 4 
(4.15) 

At the boundary, A4 = 0, the weight function diverges. 

As discussed in Section 3, when the total number 

of (incoming and outgoing) particles exceeds five, the 

choice of variables is no longer arbitrary. The process 

l~n with n>4 can be described in terms of the (ij) 

in several ways. We indicate two possibilities. 

The particles 4,5, ... can be referred to the 

system p
0

,p1 ,p2 just as particle 3 in the case n=4. 

Using (4.5) repeatedly gives 

n=l 
R = .!..~ jd ( 01) d ( 12 ) d ( 12 ) Tf d ( O i) d ( l i) d ( 2 ~) 0( X) 

n m~ i=3 2 V-A 4 ( Ol2i) 

with (4.16) 

n-1 
X = .2 L ( Oi) 

1 

2 z_ ( ij) 
l~i<j~n-1 

2 + m n 

If final state invariants are required, one uses 

momentum conservation to get 

X = 2 ( n- 2 ) [.l. ( i j ) - K ] 
1.'-] 

(4.17) 
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A straightforward computation of the Jacobian from 

(4.16) to (4.8) gives two. Thus we find that (4.8) 

applies with 

F = n 

2 n-1 
n TI~(-t. 4 (12i(l+ ... +n))) -l/ 2 . 

n-2 
(4.18) 

i=3 

It is also possible to write R n symmetrically 

in all Cij) (Byers 64). Recalling the definition (3.11) 

one gets after considerable work 

a = 
n-4 

22n-51T2rrrcv/2) 
2 v/2 m v=2 2n 
0 

(4.19) 

Each t.k contains all the Cij)'s. No application has so 

far appeared for (4.19). 

The collisi9n a+b ~ l+ ... +n involves 3n-5 invariant 

variables plus rotation r around beam axis, if the in-

coming energy s = p~ = (pa+pb) 2 is fixed. We take the 

beam system £a=O, put £b in z-direction, and use El 
• 

to define the x~z plane. We replace then 0,1,2 by a,b,l 

in (4.2) and (4.5). The expressions of R2 and R3 derived 

earlier come out easily: 
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The momentum transfer t is linearly related to Cal) 

and thus dt = -2d(al). Calculation of R3 reproduces 

easiest the earlier expression, if we put the vectors 

D - D +p p p in (4.2) and 
~o- ~a b' a' 1 

(4.5). Integration over £ 2 then gives 

in 

2 6(2 13 + ••• R. 3 
= ~ j d(Ol)d(al)d(03)d(b3)d(l3) ( ) ) 

V- ~ 2 ( 0 a ) l/-~ 4 ( 0 b 13 )
1 

= 2!.. J d ( 0 1) d ( al ) d ( 0 3 ) d ( b 3 ) 
4 Y- ~ 2 ( ab ) ' Y -~ 4 \ 

The identities 2 2 2 = (pl+p2) = (po-p3) = s+m3-2(03), 

allow one to recover the expression (V.4.8). 

etc. , 

Collisions 2~n , n>3 , allow many sets of invariant 

variables, which are not linearly related. The choice 

must then be based on the dynamical model being studied. 

The general formula is 

(4.20) 

The vectors j.,k.,l.,i and j.+k.+l.+i define a 
1 1 1 1 1 1 

basic process 2~3 or 1~4. They can be any suitable 

linear combinations of p ,pb,p1 , ... ,p a n . One choice, 

which gives the multi-Regge variables t., s .. +l' s 1 . , 1 1· 1 •• 1 

was referred to in the end of Section 2. 
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5. Distributions in masses and angle~ 

Resonances o~ a group of two or more particles 

are best seen plotting the number of events against the 

invariant mass of the group. The background is roughly 

described by the phase space distribution. A more 

realistic estimate of background requires a dynamic 

model . 

. The prediction from pure phase can be simply 

understood, if we take the k resonating particles 'ig.VI.5.1. 
to form one cluster. Formally this is effected by intro-

ducing the four-momentum qk and invariant mass Mk of 

the k particles, 

Then the integrand in R factorizes, . n 

k d3 
= f dM2 j1f pi 

k 2E. 
1 l 

The distribution in 

dR n 
dMi 

k 

= 

lS then 

(5.1) 

( 5 • 2) 

( 5. 3) 
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To obtain da/dM~ one multiplies (5.3) with the flux 
~-1 2 2 -1/2 factor t - >.( s ,rna ,mb) · 

The phase space distribution is seen to be product of 

two factors. The first, Rk , gives the probability that 

k particles have the total energy Mk in their CMS. 

The second is probability that Mk' mk+l'""" ,mn have the 

total energy Is' in overall CMS. When Mk approaches 
1 

Lk = m1 + ... + mk' Rk(M) gges to zero as (Mk-fk)2( 3k-S) 

When Mk approaches 1/S'- L mi , the factor Rn-k+l 
k+l 3 5 3 

goes to zero with the power 2(n-k+l)-2 =-2(n-k)-l. 

The general shape of 

on the behaviour at Mk . 
,m~n 

has a vertical tangent at 

dRn/dMk will largely depend 

and Mk . The distribution ,max 
Mk . for k=2 and at 

,m~n 

M. for k=n-1; otherwise the slope vanishes at K,max 

Mk,min and Mk,max· 

Dynamical effects change the shape of dRn/dMk. 

If there is a resonance of v particles, which are all 

included among l, ... ,k, it effectively reduces Rk ~n 

(5.3) to Rk-v+l" This is strictly true for an infinitely 

narrow resonance. Similarly v resonating particles 

within k+l, ... ,n reduce multiplicity by v-1. If 

some of the particles which participate in a resonance 

are included in the system l, ... ,k and some are not, 

then dRn/dMk is modified in a more complicated manner 

(Skjeggestad 65). The analytically soluble case dR 3/dM23 
with resonance in M12 is left as an exercise to the 

reader. 



- 129 -

If the matrix element is constant, within a fixed n-

particle channel the distribution of one particle 1s 

spherically symmetric. Distribution in the angle between 

two particles is not uniform due to correlations caused 

by four-momentum conservation. Let e be the angle 

between !:1 and in CMS. Grouping particles 3, .•. ,n 

together with momentum q 3 and mass M3 , 

volves effectively three lfparticles", 

dR n 

dcose 

dR /dcose in-n 

(5.4) 

Angular integrations over e 1 , ~l and ~2 give 2 81T • 

I ntegrations over g 3 and the integration variable e 12 are 

simple due to the delta-functions, and we are left with 

dR n 

dcose 

where the energy E 3 in CMS is 

( 5. 5) 

( 5. 6) 

To integrate with respect to P 2 one needs ~he derivative 

of the argument of the delta-function, 

a<E 2+E 3) p2 
+ 

P2+P1cose 
(5.7) = 

E2 aP 2 E3 
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The value of D 
~ 2 is the solution of 

E = (P2+ 2)1/2+(P2+ 2)1/2+(P2+P2+ 2P p e+M2)1/2 1 rnl 2 m2 1 2 1 2cos n3 

Putting these results into (5.5) gives 

dR n 

dcose 

where and now are functions, 

2b 

(5.8) 

( 5. 9) 

(5.10) 

The double integral (5.9) must be done numerically. If 

n is three, the delta-function R1 CM 3 ) = o(M~-m~) gives 

. dR 
3 

dcose 

In (5.10) M3 must then be replaced by m3 . 

(5.11) 

In Fig. 5.4. the opening angle distribution ln CMS 

of K~3n according to phase space is shown. 
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6. Plots for multiparticle production 

A survey of publications on experimental data of 

multiparticle processes reveals that plots in one variable 

tend to fall almost exclusively into four categories. 

g~~-E~~~~~~~-9~~~~ie~~~~~~· 

specific final state particle, say 

Here one chooses a 
+ 

n , and plots the 

number of events as a function of some momentum variable 

for this particle. Common plots are da/ dp 11 and do /p 1 • ....... 

If statistics is sufficient, as is especially the case 

ln counter experiments, one may show dependence on p 11 
for a limited interval p.L ' p~ +~p~ in transverse momentum. 

2 d cr/dp11 dp..L. Similarly one In this manner the data gives 

obtains d 2cr/dpdn, usually as a function of p at 

fixed e • Measurements are performed in laboratory frame 

CTS, CBS) and can be transformed to CMS for interpretation. 

One particle spectra have several significant practical 

and theoretical aspects. The whole of Chapter IX is 

devoted to this topic. 

Distributions in invariants. A plot in the invariant 

mass of a combination of final state particles reveals 

the existence of resonances in this subset. A second 

type of useful invariant is the invariant momentum transfer 

t. = (p -p1- ... -p.) 2 . Also there are angles which are 
l a l 

linearly related to invariants s.. k l] •.• 
and are 

generalizations of Treiman-Yang and Jackson angles to 

groups of emitted particles. In all these, as in other 
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plots, one can make cuts in other variables to choose 

events in order to enhance the studied effect. If one 

plots in x and makes the cuts in y , y <y<y +~y , more 
0 0 0 

and more narrow, one approaches continuously a description 

of the double differential cross section 2 d o/dxdy. 

This allows detection of correlations between x and y . 

~~~8~!~9~~~~-E~~~~-~E~~~-E~~!~· Description in terms 

of Van Hove's w-variables is the subject of Chapter VIII. 

in 

~~~~~~~!~~~~· Interdependence of x and y 

d 2o/dxdy. Instead one can plot some average of 

is seen 

y 

as a function of x . A typical case is the average 

transverse momentum as a function p11 • At this 

writing the study of correlations and their theoretical 

understanding is at a rudimentary stage. One correlation 

of purely kinematic origin, that in the directions of two 

emitted particles (do/dcose 12 ), was touched upon in the 

previous section. Correlation of pJ.' p 11 is analysed in 

Chapter IX. Strong correlations, kinematic reflections, 

which are due to peripherality and transmitted by 

kinematics, are studied in Chapter VII. 

The only aspect of distributions in one variable 

that is treated here is the t-distribution. Take the 

process a+b ~ l+ ... +n and put t = (pa-p 1 ) 2 • Grouping 

2, ... ,n together into a system of mass y;t gives 

(6.1) 
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The ph ys ical region in t h e S I) t plane i s the inside 

o f t he Chew-Low plot. Thus phase space gives the t-

d is t ribution 

dR ( s) 
n 

d t 
= ---~ 12 _ -- ( ds 1 R.,., ., ( s 1 ) El ( -G ( s, t, s 1 

'( 2 - .,_) J. /2 1 ... -.L " m ,m- , ._ ) a J. 
lln-l 

The nr(t)-me t h o d " cons is t s o f plot t i ng 

( 6. 2 ) 

o f e vents)/pan/dt) against t. Because goes to 

; ...._ i _,_ "'......, .: _, :"'::) - ~ -· . ....., ·"""' .- .-. .; ... .. . '"' .- ..... , -~ ., "'. i ~,.. i -:"""": ~ .,..., , i.,..;.~J..~ c .i~ J .a. ... \..... c\.:) .... r.c; .::~.i u. Ci....t. .Jo. 
.ho&..6. . 4 

~ - - "" ...... ~ . -, , ..... _ ' . -·~ 

J..J~·.;._) ,_,..._ -..:;;. ch a~be~ data of a cha~~el i~cl~d es so~e 

1 00 -lCCO eve~t s . The ? ey~oy p lo~ 

, ~- plane. I t s po i~~ s a re - __._ 

cir c c ~ ly ~ela~ed tc . . -- _...., - ....... ..,_'" ........ , 
j_..J V..;..,A,~. '- "-":t -'--"'" 

ca. 

., 

..... ,-.. •,'-
.A.) ...... v .... 

-- . - -::-c ·:..: ::.--- =) L_:: ... -:.:: :._ .:: .-4- c -= _ . . _ .. _ -, ·; 
..:... ......... c... ..... .: -·--..... ,. __ ~ ...,_ .... . .. 

. . 
i .. - ~ .. ... :. 0 0 \..: :-~ G~:..~:... c G 

~ ' 

'") ' ') ··-; .--~ ' ) 
' , ...... .., •. •. -~ • • oL. .:... •'.- • . ~ --, 

~ ~ - ~ , {"· ~ >-: : .. :::\..-. \. s ; :< ~--- ,., , :-·: .... . ; .r \.,. ~ l ... • -: .-, ~J7~-- _. ~-~-~-; ) :.\.. . -~ \, "'"' .. ~ ::·~ --: , ~ ·.: : 1 
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-.., 
l \ 0\ 

i. 

( G . 3) 
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2 3 a R4 1T = -----
OM aM 2sM12M34 

12 34 

( 6. 4) 

When any one of the three decays reaches its threshold, 

the boundary of the plot is reached. The plot is thus a 

triangle, 

( 6 • 5) 
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X. Numerical methods of phase space integration 

1. Introduction 

A central numerical problem in particle physics 1s 

the computation of the integral 

j ··/Tid3Pi o4(p +pb-pl- ... -p )M. (1.1) 
2E · a n n v 1 1 

The matrix element squared Mn is a function of 3n-4 

inde~endent kinematic variables. The region of integration 

V is either the whole physical region or part of this. 

The total cross section is In multiplied by the flux 

factor, if V is the entire phase space. Differential 

cross sections are obtained integrating over parts of the 

entire phase space. 

As earlier, it is often convenient to eliminate the 

o-function in the integral (1.1) and write it in the form 

(1.2) 

Here p means a point in the 3n-4 dimensional phase 

space, expressed in terms of any set of kinematical 

variables. Several' examples have appeared in previous 

chapters. The domain of integration V is the domain of 

integration in (1.1) expressed in the phase space variables 

~ . The integrand fn(~) is a product of the matrix 
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M , certain factors arising from the n 

transformation of variables (the Jacobian), and factors 

due to integration over the delta function. 

The main reason for the complexity of (1.1) is, 

of course, the large number of dimensions one has to 

integrate over. Due to the four-dimensional o-function, 

which as such is very simple, the limits integration are 

also normally enormously complicated and interdepend~nt. 

For n = 2 the problem is trivial, but already for n = 3 

there are four non-trivial variables. Also the domain V 

may be such that there exists no set of the variables 

p ~n terms of which V is simply expressible. 

The techniques commonly used to evaluate (1.2) fall 

into the following classes: 

~~-~~~~~!-~~~~~~~~~-~~!~g~~!~~~· This is the most straight-

forward idea and consists essentially of applying to each 

dimension successively the ordinary techniques of one-

dimensional numerical integration (Simpson's rule, Gaussian 

integration formulas, etc.). Since all these one-dimensional 

methods are based on evaluating the integrand in a fixed 

set of points, the multi-dimensional integral (1.2) is 

also carried out by evaluating f ( ~) n in a predetermined 

set of points. If the integration interval in each 

variable is divided into k-1 subintervals, the lattice 

thus formed in the 3n-4 dimensional space contains 

k 3n- 4 points. Since k is a fairly large number (~10), 

k 3n- 4 grows very fast with n. The time required to compute 
. . 3n-4 . . . the values of the ~ntegrand ~n the k po~nts l~m~ts 
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the use of direct integration to n = 2,3, apart from 

some special cases. A factorizable matrix element is 

sometimes effectively integrated directly using recursion 

relations. 

It is also conceivable to sample a function in 

a multidimensional space in a set of points not forming a 

regular lattice. The optimum choice of these points, which 

must depend on the type of the function, has not been 

solved. 

The method of direct numerical integration was the 

first one to be applied to the evaluation of (1.2) (Block 56, 

Almgren 68, Proriol 69), in the special case Mn: 1. 

2. The Monte Carlo methods. Since it is unknown how the 

points at which fnC1>) is evaluated should be chosen to 

optimize the efficiency, it appears to be convenient to 

go to the other extreme and choose the points at r a ndom. 

This is the Monte Carlo method of integration, which at 

present is the most efficient, versatile and practical 

method of evaluating (1.2). For this reason the treatment 

of the Monte Carlo method will be fairly detailed. 

The Monte Carlo method is a widely used tool in 

different branches of applied science, but it involves 

also many deep problems of purely mathematical nature. 

For a general description of the method, see the book by 

Hammersley and . Handscomb (Hammersley 67) and the review 

by Halton ( Halton 70). In particle physics the method was 

first used in connection with the non-covariait phase 

space integral by Cerulus and Hagedorn (Cerulus 58). 
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Kopylov (Kopylov 58, 60, 61) was the first one to exploit 

the covariance properties of (1.1). The method in use 

to-day is essentially the same as Kopylov's. 

The Monte Carlo method requires for reasonable 

accuracy very many random points (at least of the order 

of 10 3 ). It rose into full prominence only with the 

development of fast computers and standard programs simple 

for the general user. The most extensively used standard 

Monte Carlo program is FOWL (James 68, 70) written by 

James on the basis of work done by Lynch (Lynch 60) and 

Raubold. The Monte Carlo methods in particle physics have 

been constantly improved to optimize their efficiency for 

the problems occuring most frequently in practice 

(Byckling 69, Friedman 69, 70, Pene 69, Van Hove 70). 

3. Statistical methods. When in (1.1) M factorizes, 

(1.3) 

some special and very efficient techniques can be used 

to evaluate (1.1). Due to their analogy with certain 

methods applicable in statistical physics we shall rather 

loosely call these techniques statistical methods. The 

name saddle point methods would also be appropriate. The 

value of (1.1) is, by these methods, given as an expansion 

1n l/n and the accuracy thus improves with increasing n , 

1n contrast to all other methods. 

The factorizability condition includes also the 

case M = 1 to which these statistical methods have first 

been applied (Fialho 57, Kolkunov 62, Lurcat 64, Campbell 67). 
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Lurcat and Mazur (Lurcat 64) give a particularly elegant 

interpretation of the method in terms of the central limit 

theorem of probability theory (Khinchin 49). They als o 

calculate the first correction term and show that the 

resulting values are numerically re~arkably accurate. The 

case in which each ' g. in (1.3) only depends on the length . l 

r. of the transverse momentum of particle l has been 
l 

treated by Krzywicki (Krzywicki 64, 65). 
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2. Direct numerical integration 

There are certain cases of phase space integration 

in which the usual direct methods of numerical integration 

are best. We shall consider a) three-particle final states, 

b) factorizable matrix elements in connection with re-

cursion relations. Three particle final states involve 

four essential kinematical variables (in the absense of spin). 

Calculation of distributions in one or two variables, which 

need only three- or two-dimensional integrations, and 

occasionally also calculation of the total cross section, 

are most occurately and economically carried out using 

multiple Newton-Cotes or Gaussian formulae. There are also 

special methods for definite integrals in two and three 

variables (Hammer 59). A drawback in this approach is that 

a separate computer program must be written for each problem. 

The Monte Carlo method is more versatile; when the sub-

program for calculation of the matrix element is written 

and histogramming of events is specified, the whole set of 

required distributions are automatically and simultaneously 

produced by the computer. 

When the matrix element squared is factorizable in 

some variables in terms of which the phase space integral 

can be expressed recursively (Chapter VI), the numerical 

integration can be carried out so that the number of points 

goes essentially as n·k (n = number of dimensions, 

k = number of subdivisions in one dimension) and not like 

kn . This implies an essential improvement in efficiency. 
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As examples we shall briefly treat the cases 

l A i 2 = Ti f ( M . , M . l ) and 
. l l-
l 

!Al 2 = TT f(t.), where the variables 
. l 
l 

have been defined in Chapter VI. Note that the factorization 

conditions here may be different from those of Eq. (1.3), 

which allowed one to apply methods based on analogy with 

statistical physics (Section X.6). 

Several choices of kinematical variables for the 

process a+b ~ 1+2+3 are exhibited in the integral formulae 

ln Appendix C. Choice between such expressions is dictated 

by the properties of IAI 2 and by the quantities to be 

calculated. In connection with Appendix C the following 

facts should be taken into account. 1) The variables 

appearing in IA! 2 should be chosen as integration variables 

whenever possible. If jA! 2 is factorizable in ~hese, 

computer time to find IAI 2 at each point is essentially 

decreased. In general, a proper attention to minimizing 

operations inside the inner loops of the computer program 

will pay off. 2) In the expression of Appendix C involving 

the factor diverges at boundaries 

and the last integration limits are given by the cumbersome 

condition ~ 4 = 0. Even if IA1 2 vanishes sufficiently 

fast at boundaries, the latter property makes preferable 

for~ulae involving at least one angle and no ~ 4 . 

3) When distributions in one or two variables are computed, 

this or these should appear as last integrations. E.g. the 

integrand in case E gives directly the distribution in s 1 . 
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Distributions in variables not appearing as integration 

variables can be obtained as in the Monte Carlo method, 

but their accuracy is not predictable due to correlation 

of sampling points. 

b) Recursion relations 

Assuming the matrix element to be unity, Eq. (VI.2.8) 

gives Rn(Mn) recursively as follows: 

M -m n n 

= E I 
n-1 

dM 1 K (M .M 1 )R ,CM l) n- n n• n- n-~ n- (10.1) 

where all variables have been previously defined. To 

evaluate R (M ) n n numerically, one selects a discrete set 

of k points for each Mn variable. Then Rn is reached 

from R2 by n-2 multiplications by k x k matrix , wh ich 

will involve about 2 (n-2)•k multiplications and additions. 

The matrix elements are products of K n and coefficients of 

a suitable integration formula (e.g. Simpson's). This method 

is applicable in the more general case that the matrix is 

of the form 

practice. 

IT . f.(M.,M. 1 ) , but this rarely occurs in 
~- ~ ~ ~-

When n is large, the statistical methods of Section 6 

yield R (M ) n n faster. On the other hand, recursion relations 

have the property that the distribution in s is obtained 

with almost the same effort as one value Rn(Mn). In fact, 

if one starts from R2 CM 2 ) defined in the interval 

r 2 ~M 2 ~Mn-In-l , then n-2 matrix multiplications give 

R (M ) in the whole interval I ,M . n n n n 
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As a second case, i f I A 1 2 = I \ f. (t.) t~e inter;ral 
. l l. 

..,. 

.l. n obtained by integrating 
l. 

IA! 2 over all phase space 

can according to Eq. (VI.2.11) be written recursively as 

follows: 

I ( s , t ) = J;f ds 1d t 1 K ( s , t ; t l) I l ( s 1 , t l) n n n n- n- n n n n- n- n-~ n-

(10.2) 

where all variables have been previously defined. The 

evaluation of (10.2) proceeds as that of (10.1). 

A computer program of some complexity carrying out this has 

be en written (Byckling 1971). To improve efficiency the 

transformations M = VS and Bt v = e are substituted, 

with B depending on the asymptotic behaviour of f.(t.). 
l. l. 

An advantage in this method is that a distribution in s 

or also in the whole s,t Chew-Low plot is efficiently 

generated: Computer time is comparable with Monte Carlo, 

so that at around 1 % accuracy one point obtained with 

peripheral FOWL requires similar processing time as one 

distribution R (s) by the recursion method. n 
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3. Principles of Monte Carlo integration 

By far the nost common way to carry out phase sr>ace integra-

tions is the Monte Carlo method. This is due to the following main 

properties of Monte Carlo methods: 

(a) ~Vi thin ·che domain of application the rate of convergence 

is faster than that of other methods. The error decreases 

proportionally 1/ ,(Nor even better, if N is the number of 

points at which the integrand is evaluated. 

(b) The method is very general in the sense that it can be 

made reasonably efficient for all matrix elements occuring 

in practice. 

(c) The method gives m~ny distributions essentially at the 

same expense as a single distribution; the same events 

need only be histogrammed in different ways. Also 

complicated distributions like those in Treiman-Yang 

angles are easily obtained. 

(d) Monte Carlo computer programs can be made very si:r.tple for 

the general user. 

(e) The Monte Carlo method treats events exactly as they are 

treated, for example, in bubble chamber physics. The method 

·is thus intimately connected with experimental particle 

physics. 

When applying Monte Carlo methods to particle physics onedoes 

not evaluate the integrand f (9) in a predetermined set of points n 

but rather chooses these points at random. This happens by generat-

ing at random events with a known density g(¢) in phase space and 

evaluating f (¢) at these events. 
[1 

An event here is a set of n 
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mo~entum vectors p 1 , .•. ,p in any given frame satisfying four-
- -n 

2 conservation and the mass shell conditions P· 
~ 

= m. 
~ 

2 

i = l, •.• ,n. The density g(¢) is defined as a usual probability 

density so that the probability that a random event appears in an 

infinitesimal neighbourhood of a point ~ of the phase space lS 

( ) ,n -g 9 0. <) is the volume element in the phase space. 

Different sets of 3n-4 variables can be used to express the 

coordinates of the point t. We shall use invariants and angles, 

but one can also use momentum components. 

How many events have to be generated to give a reliable 

result depends sensitively on the statistica l error or the 

efficiency of the Monte Carlo method being used. Qualitatively the 

efficiency is the better the better g(¢) approximates the matrix 

element squared to be integrated over. In the best cases with 

present Monte Carlo programs a few tho~sand events are often suffi-

cient. 

Notice that there are from the point of view of generation 

of events three different kinds of densities: 

(1) The ideal Monte Carlo generator of even~s is, of course, 

a particle reaction. The purpose of most experiments is 

just to chart with what density in the phase space the 

particles are produced. 

(2) Any model for a reaction involves the specification of a 

matrix element or a density of events in the phase space. 

These matrix elements are often very complicated functions 

(like those appearing in dual models) and it is not possible 

to use computers to generate events with these densities. 

(3) Monte Carlo programs generate events with certain densities 
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g(¢) which mostly are some simple functions of ¢. There 

is much freedom ~n the choice of g(o) but one must remember 

that a g(Q) may be good for one problem but inefficient 

for another. Thus for Monte Carlo programs in general use 

one has to optimize g(9) so that it is good for as many 

problems as possible. 

Our ma~n goal in the following ~s to explain how the random 

generation of events can be carried out and what types of densities 

g(9) occur ~n practice. To do this, consider first the simple one-

dimensional integral (Fig.3.l) 

1 
m = f dx f(x) 

0 
(3.1) 

In practice one would never apply Monte Carlo integration to one-

dimensional integrals, since normal numerical me~hods are much faster 

and converge more rapidly. We denote the value of the integral 

by m, since it is clearly the mean value of the function f(x)·over 

the interval (0 9 1). Similarly one defines the variance cr 2 .of the 

function f(x) : 

1 
cr 2 = J dx [ f ( x) - m] 2 

0 
( 3. 2) 

The variance measures the fluctuations of f(x) in the interval 

(0,1). The larger cr 2 is, the more f(x) fluctuates around its mean 

value. 
random numbers 

Suppose now that we are able to generat~rk~ 0 < rk < 1, 

k = 1,2, •.• , so that each value between 0 and 1 is equally probable, 

i.e. the rk are uniformly distributed within ~he interval (0,1). 

In the following rk will always denote a random variable of this 

type. The rk are basic for any Monte Carlo technique and the 

problem how exactly they should be ge~erated in a computer which 

certainly is not a random device, is a very· important one. For 
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~n~s question we refer to the spcialized literature m~~tioned 

earlier. Let us now generate N numbers r 1 , ••• , r,. and sample the 
. ~ 

integrand in (3.1) at these points. Then m is a~proxirr.ated by 

the arithmetic mean m of theN numbers f(rk), 

l 
m = N ( 3. 3) 

Th is is· a Monte Carlo estimate of the integral ( 3 .1). Ay.IJ lying 

the terminology of ~article physics to the Monte Carlo techni~ue, 

the generated value rk is called an "event 11 and f(rk) the 11 weight 

assigned to the event 11
• 

-Since the rk are random variables, m 1s also a random 

-variable, i.e. if another set of r . is generated a new value of m 
K 

is obtained. For fixed N, the values of mare so distributed that 

the expectation value of m is just the required value m of the 

integral (1). The deviation of m from its most probable value is 

measured by the quantity 

-2 l N - 2 
a = N-l I [f(rk)-m] (3.4) 

k:;:l 
which approximates (3.2) in the same sense as m approxiwatcs m. 

The factor N-1 is included instead of N in ord~r to make the 
_') 

expectation value of a~ equal to a. In (3.4) one measures the 

devia·~ion of f(rkf from the estimated value m and not from the 

true; V3 lue m. This has the effect of increasing the variance 

by N / Ci- l ) . 

The formal justification of the above statements follows 

from the central limit theorem of probability theory. Assume tha t 

the random variables x., i=l, ... ,N, are distri~uted so that their 
1 

me a n values are mi and variances ~i 2 • Under fairly general condi-

tions the distribution of the sum x = Cx1 + ... +xN)/N for large 

N then approaches the normal distribution 
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N(x; m,cr) :: 1 
cr . ,r------.2 \! lT 

2 -(x-m) /2cr e 

N 
L m. 

l. 
and variance cr 2 1 N 2 

:: N·l} )cr. 
i::l • .... . .... l. 

1.::1 

( 3. 5) 

In the present case the random num~ers are the ~umber~ fk::f(rk) 

which are distributed so that their average value is m and 

variance 6 2 • Thus, for large N, m converges tom and the variance 

of the the distribution in; 1.s ~ cr 2 • The value-of cr 2 is no~ 

known, -2 of course, but cr 1.n Eq. (3.4) in an estimate for it. 

The result of the Monte Carlo integration can thus be expressed 

as 

m :: m ± cr ( 3 • 6 ) 

It follows from (3.5) that for repeated Monte Carlo integrations 

the probability that the result deviates from the correct value 

of m, for example, by one or two standarq _deviations cr/ .[N , is 

32 % or 4,5 %, respectively. Note that (3.6) tells nothing about the 

error in a single Monte Carlo integration. 

Examole: We shall in this example exhibit a simple case for 

which the probability density F(rn) of a can be evaluated 

explicitly. Assume that f(x) :: x so that from Eqs. (3.1) and (3.2) 
1 2 1 m :: 2 and cr :: 12 -. The Monte Carlo estimate for m is now accord-

ing to (3.3) 

m :: 1 
N 

i.e. N-l times the sum of N random numbers evenly distributed 

between 0 and l. The probabil~ty density F(m) of m can in this 

case be calculated by standard methods of probability theory. 

In fact, F(m) is the integral 

1 
:: N {dr1 .• dr:,r gCr1 ) ... gCrx)oCr1+ ••• rx-Nm) 

( 3. 7) 
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where g~r) is one for 0 ~ r ~ 1 and zero elsewhere. Evaluation 

of the integral by Laplace transforms gives 

N N-1 
rein) N 

;: (N-1)! I (-l)k(~) [ (Nx-k)+f 
K .J 

( 3 • 8) 
k=o 

where (x)+ = (x+lxj)/2~ xa(x). The curve representing f(m) is 

drawn for different values of N in fig. 32. It consists of 

segments of N different polynomials of order N-1 in the intervals 
l 1 2 (0, N), (N' N), etc. One can clearly see how f(m) approaches a 

l 
gaussian (3.5) peaked at 2 C= the exact value m of the integral) 

and how the peak becomes narrower when N increases. This gives an 

idea of how the accuracy of Monte Carlo integration increases 

when N increases. 

The generalization of . Eq •. ( 3. 3) to more dimensions 

is intuitively obvious: 

( 3. 9) 

1... t " d . ( ( k) ( k)) . f ~ d - . b w .. ere ne ran om po~nts r 1 , •.• , rK are un~ or~~y ~str~ ut-

ed in a K-dimensi~nal hypercube. Previousrwe sampled the integrand 

within an interval, now we sarltple it within a hypercube. If the 

limits ' of integration are separ~tely dependent on some of the 

x., they can separately be transformed to 0 or 1 and (3.9) applied. 
~ 

The error is given by a formula analogous to (3.6). In particular, 
1.:1 it is proportional to 1/ ~N independent of the dimension K. 
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4. Reduction of the statistical error 

The statistical error of Monte Carlo integration depends 
. 2 

o~ two factors, the v&riance a of the function to be integrated 

and the ~umber of random points at which the function is sa~plcd. 

The simplest way to decrease the error is to increase N. The 

error is proportional to 1/ JN' so that to decrease the error 

by 10 one has to increase N by 100. The accuracy that can be 

obtained through increase of N is limited by the computer time 

available. 

However, it is also possible to improve the rate of convergence 

so that the statistical error may even be proportional to 1/N. 

The proof of the statement that the error behaves, in general, 

like 1/ J1r rests on the fact that the random numbers used c..re, 

in principle, truly random or, in computers, numbers which 

"look random" {pseudo-random numbers). With pseudo-randor:t numbers 

one has- no idea of at what points for finite N the integrand 

f (~) is sampled. However, one may also use random numbers which n 

on the whole are evenly distributed but which are strongly 

correla~cd so that ri+l depends on ri (quasi-random nunbers). 
, 1 3 1 3 5 7 l 

For instance, the ·sequence I; 4 , 4 ; 8 , S' S' 8 ; 16 , , formed 

according to an evident rule, would be a sequence of quasi-

random numbers. With quasi-random numbers one has some guarantee 

of that the integrand is sampled evenly even for finite N. In 

this case one can prove that the error behaves like 1/N. Thus one 

is improving the result by taking a step backwards from genuine 

randomness towards the methods of direct numerical integration, 

in which the distribution of points is entirely deterministic. 

The distinction between pseudo- and quasi-random numbers is 

very important in practice and the latter are to be preferred 

strongly (for instance, FOWL uses them). For more details on 
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this important and not entirely understood question we refer to 

the specialized literature (Hammersley 67, Halton 70, James 63). 

Another way to improve the Monte Carlo method is to reduce 

the variance 6 2 • According to (2.2) this lS evidently possible 

by transforming the integral so that the function to be integrat-

ed by the Honte Carlo method is as constant as possible. To a,?ply 

this technique of reducing the variance some information on the 

behaviour of the integrand lS required. Therefore, the methods 

used in particle physics have been developed specifically to 

apply to the problems encountered in this field. Their necessity 

is illustrated by the following example. 

Example Consider the integral 

1 +ax m =J dxae 
0 

a = e - 1 (4.1) 

where a is a constant. Integrals of this type arise in high-

energy physics when integrating over an invariant momentum 

transfer t, since the matrix element is experimentally known to 

be of the form at A simple calculation gives e 

2 a r, 1-~) e2a 4 a 2 
ll (4.2) (j = 2 + -e -- + , I a a a .__ ...: 

which increases with a. Thus the relative error o/m[Nl of the 

Monte Carlo integration increases as {a/2N 1 for large a. The 

reason is the increasing asymmetry of the integrand aeax. This 

function is sampled evenly in the interval (0,1). At large a, 

the points near 0 have a small weight compared to those near 1. 

In evaluating the integral the former points are nearly useless. 

To improve the situation one should somehow generate more points 

in the region where the integrand is large or sample the integrand 

only in regions which are of most importance. In the example this 
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results in 
ea 

m = f dy , 
1 
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+ax = e as a new variable. This 

which is computed by generating points uniformly in y within the 

interval (l,ea). Since the integrand is now a constant, the 

variance has, in fact, been reduced to zero. Note that a similar 

transformation is needed also if the range of integration 

in (4.1) extends from 0 to ~. 

It obvious from the example that if f(x) varies considerab-

ly, the Monte Carlo method becomes more efficient when the 

random points are generated so that their density is closer to 

/f(x)!. This method is called importance sampling. To apply 

it, we need a way to generate random numbers distributed accord-

ing to a given density g(x). The density g(x) is defined so that 

the probability that a value between x and x+dx is obtained is 
1 given by G g(x)dx where G = G(+~) and 

X 
G(x) = f dt g(t) 

-~ 

Consider then ·the ·integral 

x+ 
I = f dx f(x) , 

x-

( 4 • 3 ) 

(4.4) 

where arbitrary limits of integration have been introduced for 

later use. Take as a new variable 

r = G(x)-G(x-) 
G(x+)-G(x-) 

It varies between 0 and 1 and its differential is 

(4.5) 

( 4 . 6 ) 
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Eq. (4.4) can now be written in the form 

I ::: 
x+ 
f dxf(x) ::: 
x-

when Eq. (3.3) applied to (4.7) we obtain for I 

I ::: 
x+ 

J dxf(x) ~I 
X 

N f(xk) 
I g"tx, ) -k=l K 

N 

l I w 
N k=l k 

( 4. 7) 

(4.8) 

( 4. 9) 

where xk is defined irt terms of rk by Eq. (4.8) and wk ~s the 

weight assigned to the kth event. According to (4.6) the random 

variables xk are now distributed according to the density 

g(x)/ [G<x+)-G(x-~ which is normalized to unity over the 

range of integration. 

In the integral over r in (4.7) only the ratio f/g appears 

and thus the variance of f/g is reduced if g approximates f 

better than a constant. Using Eqs. (3.3), (3.4) and (3.6~ the 

result of the Monte Carlo integration (4.9) can be written in 

the form 
- -I = I ± cSI ( 4 .10) 

with 
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N 
1 r ... 2 

= N( N-1) L' L w k k::l 

[
. _ ., f (xk) 

:: G ( x + ) - G ( x )j g ( xk) · 

(4.11) 

Notice that the transformation of variables carried out 

above gives formally a method of generating random numbers with 

a density g(x), but need not always be feasible in practice. We 

list below the conditions under which the method of transform-

ing variables can be used in practice and also describe one 

different method: 

(1) The method of transforming variables ~s practicable if 

Eq. (4.8) is such that there is a simple and fast way of getting 

from the primary r~1dom numbers rk to the random numbers xk. 

Else the increase ' in labour compensates the advantage obtained 

with the decrease in variance. In practic~ this requires that 

all the functions -1 g(x), y:: G(x) and x;G (y) must be elementary 

functions. In particle physics the two common c a.scs of . va..ria.tfons of 

the integrand resembling the exponential or Breit-Wigner functio~s 

can be taken care of by this method. The required transformations 

are listed in Table 1, and can be applied by simply substituting 

to Eq. . ( 4 . 9 ) . 
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g(x) 

ax ae 

b2 7r 

2 2 -b+b 2 (x-a) +b 

G(x) 

ax 1 log e y a 
y-~b x-a a+b 2 arc tg-,- t-:-r 

.D 0 ·b 
! . 

--------------~--------------~----------------~------------~----

Table 1 Densities, integrated densities and inverses 

to be used in connection with Eq. (4.9) for 

importance sampling. 

(2) In addition to the method of variable transformations 

there are other ways of generating random numbers distributed 

with a prescribed density g(x). In these cases g(x) must be 

one of certain special functions but it need not be integrable 

in closed form. Consider for instance, the case in which g(x) . 2 
is a. Gaussian g(x) = e-x 120 and the integration goes from- ~ 

to + ~. This will .occur in practice if the peripherality of the 

matrix element is _expressed in terms of transverse momenta. The 

weight function g(x) is not integrable in closed form, but it 

is easy to generate random numbers which are normally distributed. 

For instance, one may apply the central limit theorem to the 

sum of n rectangularly distributed random numbers. As shown 

previously, this approaches a gaussian rapidly and already the 

density function (3.8) of 

12 
' 

s = a( r r. - 6) 
~ 

(4 .12) 
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is sufficiently close to the limit (3.5) with mean zero and 

variance o. Thus, Eq. (4.9) gives directly 

where s. are normally distributed random numbers between -~ 
l. 

and +~ • 

(4.13) 
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5. Application of the Monte Ca~lo method to pa~ticle physics 

\·Jhen conside~ing the application of the Monte Ca~lo 

method to pa~ticle physics one should distinguish between two 

sides of the p~oblem: a) the ~andom gene~ation of the pa~ticle 

events, b) the t~eatment of these events. F~om the p~actical 

poini: of view, "the latte~ data-handling aspect is as impo~"tant 

as the fi~st one and we shall comment on it late~. He~e we 

shall fi~st give a ~easonably detailed desc~iption of event 

gene~ation. 

The task is thus to apply the gene~al p~inciples p~esented 

above to the gene~ation of pa~ticle events and to the evaluation 

of the integ~al ove~ ppase space (cf. (1.1) and (1.2)) 

I : f 
n V 

3 n d P· 
I --uf. 

i=l .1. 
d9 f (~) 

n 
( 5 .1) 

whe~e Mn(f) = Mn(p 1 , ... ,pn) with p 1 , ••• ,pn satisfying fou~­

momentum conse~vation. Ea~lie~, in connection with the one-

dimensional examples, the gene~ation of "events" p~esented no 

difficulties, while· now ou~ main p~oblem will be jus.t to see how 

pa~ticle events can be gene~ated and what densities g(~) can be 

used. 

In o~de~ to consi:~uct g(+) and the co~~esponding events we 

shall ca~~y out a t~ansformation· of· variables in (5.1) so that 

the domain of integration, which in the 3n-4 variables 9 may be 

very complicated, becomes a (3n-4)-dimensional unit hype~cube. 

We choose V = entire physical region in order to get events 

everywhere in the physical ~egion. The Monte-Carlo estimate of 
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~his integral over the unit hypercube is obtained by generat-

ing random points within the hypercube (which we know how to 

do~) and by using (3.9). Let us write the result in the form 

I ;;:; r ± or 2 ( 5 • 2) n n n 
N 

Mn(<Pk) N 

I 1 I 1 I ;;:; N gn( 9k) 
;;:; N wk n k:::l k:::l 

where oi is n given in (4.11) and where 1/g n contains all 

factors arizing from various transformations. Then, in analogy 

with (4.11), the function g (¢) is just the density of events n 
associated with this choice of variables. Different densities 

g(¢) are obtained depending on what variables ¢ one starts from 

and on how the transformation to the hypercube is performed. The 

correspondence between a point in the (3n-4)-dimensional unit 

hypercube and the event ok is one-to-one, and the random event 

¢k can always be contructed from a random point in the hypercube. 

If V is a subspace of the entire phase space, the correspond-

ing I is obtained by simply restricting the sum in (5.2) to n 
those ok which lie 1n V. Thus, if the distribution in some 

variable v or the derivative di lov is requested, the range of v . n 
is divided 1n bins of width ~v (not necessarily of equal length). 

The derivative is then estimated by 

~I n 
~v 

Here ~I is given by (5.2) under the restriction that only n 
events:with v inside the given bin are included. 

( 5 • 3) 
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In order to present the method in more detail we shall 

choose a particularly sim~le set of 3n-4 variables ~. As 

shown ?reviously, the integral (5.1) can be written in the 

form 

where 

and 

fs'-m n 
1 

2 {S, 

Lk = 

IP I= _k 

J 
I 
n-1 

ml + •.• + 

J<M~, 

( 5. 4) 

mk 

2 2 I 

Mk-1' m k) 
( 5 . 5) 

2Mk 

Here the 3n-4 va~iables ~ consist of , 

n~2 inva~iant masses Mk, M~=P~ = Cp1 + •.• +pk) 2 

k = 2, .• ,n-1 defined as -the masses of the intermediate 

decaying particles in Fig~ 5.1. 

2(n-l) angles~= (cusek,fk)' k=2, ••. ,n, defining 

(Fig. 5.2) the direction of the vector pk in the frame 

Pk = p1 + ·•· + Pk = (Mk,Q), i.e., the rest frame of 

the intermediate decaying pa~ticle. 

With these variables the relation between M (~) and f (~) is n n 

f (4l) n 
n !P. I = ·· 1 n ..l.;::::l...J. • M C ~ ) 

2 [S i=2 2 n 

The region of integration in (5.4) can be simply transformed 

to a unit hypercube. We shall consider the angles and masses 
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and the construction of the event separately. 

(a) Qe~e£a!i~n_o£ ~n~l~s~ The angles ~k and 9k can be generated 

in the corresponding rest frame ,P k = (Mk ,_Q_) by writing 

where r~l) 

<:J) = 21f (1) 
1 k rk 

cos 

and 

2(r( 2 ) - 1) 
k 

are random numbers between 0 and 1. 

( 5 • 6) 

The transformation (5.6) transforms the integral over nk to 

an integral over a unit square with the Jacobian 41f. The events 

produced by (5.6) are uniformly distributed in~k and cos ek 

and the choice of the polar axis is arbitrary. One may, for 

instance, use the direction of Pk+l or of Pa· However, when 

the integrand M (~) is the.production amplitude for n particles n 
the events will be collimated along the direction of Pa and it 

will be necessary to importance sample in some variable 

describing this coliimation. We shall return to this question 

soon. 

(b) Qe~e£a!i2n_of in~a£i~n! ~a~s~s~ 

The invariant masses Mk vary between the limits 

k=2, ... , n-1 ( 5 0 7) 

When (5.7) is satisfied, each two-body decay 1n Fig. 5.1 is 

physical. In the (n-2)-dimensional space soanned by M2 , .. ·. ,M . - • n-~ 

the inequalities (5.7) define a simplex, which is an interval 

for n=3, a triangle for n=4 (Fig. 5.3), a pyramid for n=5, etc. 

In the following two examples of how to generate the Mk within 

this simplex are given. 
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(1). The most straightforward method is to transform the 

simplex to an (n-2)-dimensional unit hypercube by the linear 

relation 

k=2, •. ,n-1 

Each Mk-integration is transformed to an integral over r~ 3 ) 

from 0 to 1. Including the Jacobians arising from (5.6) and 

(5.8) 

(5.8) the Monte Carlo estimate of the integral (5.4) can then 

be written in the form (5.2) with 

1/ g ( 4>) 
n 

(5.9) 

The density .g (t) of events generated in the ohase space with .n -
this choice of ~ is not constant and the statistical error of 

the estimate (5.2) is the larger the more f(t) deviates from 

g(t). In particular; also a constant matrix element involves 

a definite statistical error. Notice the factors Mk - Lk 
in (5.9); the density of points is infinite when this factor 

vanishes. Why this happens can be clearly seen from Fig. 5.3. 

There M3 is generated uniformly between I 3 and rs - m4 while 

M2 is the generated uniformly on the line between L~ and 

M3 - m3·. The length of this line decreases linearly when M3 
decreases to I 2 and thus the density of points increases 

proportionally to l/(M 2-I 2>. The situation is analogous for 

larger n. 

The same method of transforming the limits to constants 

can also be used, if one wants to generate events which have 

Breit-Wigner distributions in some of the Mk. The equations 
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(4.5) and (4.6) and Table 1 are immediately applicable and it 

is easy to write down/~~~ulting density g(~). Note that this 

density will not contain pure Breit-Wigner terms but products 

of these with factors similar to those in (5.9). Near the 

resonance masses, however, the Breit-Wigner density will dominat~· 

Also not all invariant mass combinations can be given a Breit-

Wigner distribution but only those appearing as intermediate 

states in the cascade-type decay of Fig. 5.1. 

The method can be generalized to include more general 

decay than that of Fig. 5.1, e.g. both reaction products of a 

decay can decay further. The intermediate states again allow 

Breit-Vligner sampling. A program of this type has been describ-

ed by Friedman (Friedman 69) • 

(2). Another way of generating the Mk uses the fact that 

the simplex is that part of the (n-2)-dimensional hypercube 

I k ~ Mk < fS' - L n + I k k=2, .. ,n-1 ( 5 • 10 ) 

in which the coordinates are ordered: 

k=2, ... , n-1 ( 5 • 11) 

One may then first generate uniformly in the hypercube (5.10): 

( 5 .12) 

and then order the Mk so that (5.11) is satisfied. This ordering 

is simply carried out by ordering the n-2 random numbers: 

~ ( 3) ......... - r 1 n-

since then 
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Referring to Fig. 5.3 in the case n:4 one first generates 

uniformly within the square but if the point generated lies 

above the diagonal it is by ordering or reflection around the 

diagonal transformed so that it lies within the allowed tri-

angle. Since the density is uniform within the hypercube it 

is also uniform in the simplex, in contrast to the previous 

case of transforming the simplex to a hypercube. The density 

of events ~n the phase space ~s now given by 

(5 .13) 

where the factor 1/(n-2)! gives the ratio between the volumes 

of the simplex and the hypercube. 

Notice also that in this latter m~thod the (n-2)~dimensional 

unit hypercube of the random numbers r~ 3 ) is not uniformly 

populated. The ordering carried -out above has as a consequence 

h t ( 3 ) h f th 11 1 h. 1 ( 3 ) h 1 t a r 2 as or e most sma va ues w ~ e rn-l as arge 

values, etc. In fact, the density of the kth random number is 

given by qk = (1-r)n-k~ where r is uniformly distributed 

between 0 and 1. Thus the second method of generating the Mk 

is equivalent to 4he first one with the additional assumption 

that the random numbers r~ 3 ) in (5.8) are distributed with the 

density (1-r)n-k-l. 

(c) Con!!t_Euction £f_the_eye_!!t.:. 

When the n-2 masses and 2(n-l) angles have been generated, 

the construction of the random event, i.e. the momentum 

configuration p 1 , ... ,p in any given frame, is possible. First, 
- -n 

in the frame p 1 +p 2 = (M 2 , Q) the length of ~ 2 is given by 

Eq. (5.5) and its orientation by the generated values of e2 ,f2 · 
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Thus ~ 2 and ~l =-!2 2 d.re complet~ly known. Similarly, in the 

fram~ pl+p2+p3 = (M3,~) 
generated values of o3 , 

p 3 is obtained from Eq. · (5.5) and the 
- The vectors Pl and D2 73 ./in this frame are, then obtained by 

Lorentz transforming them from the frame p 1 +p 2 = CM 2 ,£) so that 

? l + .~ 2 = - _1?. 3 . Continuing in this way one obtains finally the 

required momentum configuration in the CM frame. 

The densities of events given by Eqs. (5.9) and (5.13) 

above are relatively constant. The method is thus effective 

only if the integrand Mn(~) also is relatively constant. This 

is not the case if the total energy is large and M (~) is the n 
production amplitude for not too many particles. Then M (¢) n 
is large only if the particle momenta are nearly correlated 

along the beam axis. At high energy the Monte Carlo method must 

be modified so that event density is small for large transverse 

momenta. There are two essentially different methods in use. 

One can either apply importance sampling in the generation of 

·the angles cosek. in (5.4) (Byck.ling 69, Friedman 69) or one 

can start from a completely different set of 3n-4 variables ~ 

and apply it to .transverse momenta (Pene 69, Van Hove 70) 

Since the first alternative is technically slightly simpler 

we shall describe it in some detail. 

(a') Generation of the angles for per~pheral events. 

In order to carry out importance sampling in some variable 

describing peripherality, assume that the masses Mk. ba~e been 

generated and choose in the frame Pk.+ 1 = p1 + • • · + Pk.+ 1 = CMk.+ 1 ,,Q_) 
the direction of Ea as the z-axis. Then cosek.+l is the angle 

betwe~n £k.+l and £a in this frame (Fig. 5.2). Now it would 

be very simple to importance sample in cosek. and gene~ate mainly 
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events for small values of ek. However, it is more useful to 
. 2 

r·epla.ce cosek+l by the invariant momentum trc:..nsfer tk = (p a -Pk) • 

The result of replacing cosek+l by tk in (5.4) is according 

to our previous results 

{5"-m 21T 
t(+) 

1 1 n n-1 , r ..L. rn c ~s) dM J dcO J dt = --. - . 
( ·---- ) 4' (n-l)l 2 f.S' 4! p '~~ l l: n-1 0 In (-) n-1 

._a. n-1 t I Ea. 
(+) n-1 t(+) M3-m3 21T t2 21T 2 r dM 2 J df3 J dt2 1 J d 1'2 J dt2 M (4>) ) 

4/,r~2 )/ 0 }';2 

where 

(k) 
1:a I = 

0 (-) 
t2 

j) (M~+l' tk+l ,m~) 
2Mk+l 

(-) 
tl 

and all other notations have been declared previously. 

n 

(5.14) 

( 5 • 15) 

As shown previously (Eqs. (4.5) and (4.6) and Table 1), 

one can now importance sample in each of the tk by generatin~ 
'-ktk ~kt ·( +) aktJ-) events with the normalized density akea /(e K - e ~ ). 

Leaving the generation of the ?k and the Mk unchanged and 

collecting all factors the value of the integral (5.14) can be 

wirtten in the fo.rm ( 5. 2) with 

l/g(4>) = (n-2)! 

Here, for definiteness, the masses Mk have been taken to be 

gene~ated by the ordering method presented above. 

One can see that, apart from some more slowly varying 

( 5 • 16) 
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mass-dependent factors, the density g(~) ~f the generated random 
n-1 

events in this case behaves as g(~) ; expl E aktkl. It is thus 
k;l 

rather efficient in multi-Regge calculations, in which the 

integrand is roughly of this form. 

The construction of the event ~s carried out as previously; 

now one only has to solve cosek+l from the generated value of 

tk. The dominance of small tk implies evidently the dominance of 

small ek+l" 

We have now at our disposal a method to generate random 

events with a number of different phase space densities g(9). 

For any practical applications the computer routine carrying out 

the generation must be completed by a set of routines designed 

to initiate the generation and to treat the generated events. 

In more detail, these additional routines have to 

- read in the specification of the reaction and the matrix 

element M (~) n 

- read in a specification of the density g(¢) to be used 

- read in how many eyen~s are to be generated and how the 

generated events should be histogrammed 

- histogram as requested the generated events 

- prin~ out the calculated information 

Standard programs like FOWL have been developed to carry out 

these tasks. They are very flexible and convenient for the 

general user, who after having learned some conventions can use 

them for many different problems. For a more detailed description 
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of all practical matters we refer the reader to the long 

write-up of FOWL (James 70) . 
In order to exhibit the connection between the theory 

we have given above and a practical example, we show in 

Fig. 5.4 a histogram from FOWL. This histogram contains the 

following information: 

a) The histogram gives the distribution in the invariant 
r 2 mass M123 = y Cp 1+p 2+p 3 ) of the reaction ~p ~ TITITIP 

(or Pa+pb-"> p 1+p 2 +p 3+p 4 ) when the laboratory momentum of 

the incoming TI is 4 GeV/c and the matrix element. is 
I 

M (¢) = exo(5t ) with t = invariant momentum transfer 
· n • PP PP 
between the nucleons. Apart from the normalization, the 

quantity calculated is thus ai 4/aM123 , where I 4 is defined 

by (5.1) 

b) The columns denoted by the word INTERVAL give the upper 

and lower limits of the bins to which the whole range of 

M123 has been divided by the user 

c) The column denoted by the word EVENTS gives the derivative 

ai 4/aM123 as estimated by (5.3). This distribution is 

normalized to one. In other words, the number assigned to 

d) 

each bin is 

(normalization) x I wk (5.17) 

>.Jhere wk = M4 (¢)/g(¢) and the sum goes over those events 

for which the value of M123 lies in the bin in question. 

In the present case, the density g(¢) of Eq. (5.17) was 

used 

The normalization 1s given by SUM OF WEIGHTS 

Thus 

3 = 0 • 2 0 45 • 10 • 



- 168 -

I w, = 204.5 
K 

all events 

and since N=2000 the value of the integral I 4 is according 

to (5.2) 204.5/2000 = 0.10. The correct numerical value . 
of ai 4 /aM123 is similarly obtained from (5.3), although 

percentage distributions are normally sufficient. for 

comparison with experiment. 

e) The column denoted by the word ERROR give the statistical 

error as estimated by (4.11). Actually the approximation 

l ..... 

has been used, so that the contents of each bin in the 

ERROR column are 

(normalization) x ~' 
where the normalization is the same as in (5.18) 

f) The number N' given by-EQUIVALENT UNWEIGHTED EVENTS = 
1157 is evaluated from the equation 

1 
rhlt"'N' 
~ 

: ' 

where the sums now go over all the events. It gives thus 

the statistical error in SUM OF WEIGHTS or the value of I 4 . 

In the present case the estimate of this statistical error 

is 1/ Jll57 = 3 %. The number N' is thus very convenient 

when one tries to assess the statistical sj~nificance of 

a histogram. If N' is less than 100 the usefulness of a 
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histogram is rather·questicnable. 

g) the contents of the ERROR column are also printed out 

in a form of a visual display. 
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6. Statistical methods 

In statistical mechanics, the analogue of Eq. (1.1) is 

the volume of accessible phase space in the microcanonical 

ensemble. The four-dimensional c-function in (1.1) is there 

only replaced by a single a-function requiring the total 

energy to be within aE at E. Due to this a-function constraint, 

calculations are very complicated. The normal way out of the 

difficulties is to replace the microcanonical · ensemble by 

the canonical ensemble, in which the energy may fluctuate 

but the temperature is constant. Within a certain approxima-

tion, valid in statistical mechanics, the two ensembles give 

identical results. Basically the same method will now be used 

to evaluate (1.1). 

Another distinctive feature of the methods applied in 

this section is that they treat all particles on an equal 

footing. All other methods must fix an ordering of the 

particles and start numerical integration or event generation 

in some end of the chain. Here the method decouples the 

correlation between the particles due to four-momentum 

conservation and only those in M remain. However, the n 
method is useful only if even M does not cause correlations n 

between the particles, i.e. M factorizes. n 
Assume now that M is factorizable in the coordinates n 

of the particles as shown in (1.3). We shall presently see 

why this condition is necessary. Then the only constraint in 
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(1.1) conn~cting the different particle is the 6-function. 

But this constraint may be decoupled by taking the Laplace 

transform of I (P~). The Laplace transform~ (a) is defined n n ~ 

by 

(6 .1) 

and, for arbitrary Mn' it is a function of the four-vector 

a • Inserting here I (P~) 
~ n with a factorizable M = n g.(p.) n i l.. l.. 

we find 

= 

= 

f n 
i 

TI 
i 

3 d p. 
IT - l.. 
~ 

l.. l.. 

3 d P· __ ._1 
2E. 

l.. 

-a p~ g.(p.) e ~ l.. 
l.. l.. . 

<:p • (a ) 
I l.. ~ 

where cp.(a) is the Laplace transform of g.(p.) defined in 
\ l.. ~ l.. l.. 

(6 • 2) 

analogy with (6.1). Thus, if Mn factorizes, the Laplace transform 

of I (p~) is the product of the Laplace transforms of the n 
g. (p.) and we have made a-function . disappear in a symmetrical 

l.. l.. 

manner. If we then invert (6.1), an integral representation for 

In(p~) is obtained: 

a p~ 
e ~ [rrc:>.(a )] 

. I l. ~ 
l.. 

Here 13 · is some real four-vector with all components positive. 
~ 
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This equation is exact and what is called the statistical 

n:~-rl:vd for evaluating In (ph amounts to developing an 

approximation for computing the integral (6 .3). 

Before proceeding further we shall specialize to the 

case M =1, i.e. to the evaluation of the total phase space 

volume (Fialho 57, Kolkunov 62, Lurcat 64, Satz 65, Campbell 

67, Kajantie 71). Later on we shall briefly also comment 

on the case in which g.(p.) only depends on the tranverse 
~ ~ 

momentum r. (Krzywicki 64, 65). This is a very important case 
~ 

in practice, since the g. can then be used to describe the 
~ 

experimentally observed limitation of the transverse momenta. 

When M = 1 or g. = 
~ 

1 the integral In(f~) = R (p) n 
only depends on the length P = p pll= p2 - p2 of the four-

~ 0 ...J 

vector Pf.i. Then in (6 .1) one can integrate over the three 

dimensions in the four-dimensional space of the components 

pll . One could -use Lorentz-invariance and argue that 

¢n(all) now only depends on the length a = a~ -a 2 of ·all 

and carry out the integration in the frame all = (a 0 , Q). 
However, in order to present a more convincing calculation 

we shall in this integration keep all the components nonzero. 

One has, writing d4P in full, 

P 2 • Integration over the directions of P is 

trivial and gives essentially the factor 2~11~1 !PI. 
If we then introduce as new variables P and >. defined by 

P0 = P ch~ 

I~ I = P oh>-
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2 

I a I 
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0> ... 

fdP P2R (P) f d>. n 0 - ... 

One knows that (Magnus 66) 

... 
and that 

K0Cz) = -K1 <z) 

h ' -aoPch +la/Psh>. s " e 

( 6. 4) 

( t. 5) 

where K
0 

and K1 are modified Bessel functions (Abramowitz 65, 

p. 374). Thus the integral over>. can be expressed in terms (_2 ____ 2'' 
of K1 (P~a 0 -a ) = K1 (aP) and we have finally 

~ (a ) = ~ (a) n iJ n 
411"' 

110 
2 = -- f dPP K1(aP) R (P) a 0 n (6.6) 

This integral converges, since for large z Kv(z) decreases 

exponentially: 

2 
-z ( 1 4v -1 + 

e + 8z ... ) ' 

while R (z) only increases as a power of z. n 

(6.7) 

of ( 6.6) 
On the left hand side-~ is given by ( 6. 2), where (f). (a ) n 11. iJ 

now also only depends on a. In order to evaluate cr'i (a) we go 

to the frame a = (ao,Q). 
'IJ 

Then 

rn
1
. (a) = <.";), (a

0
) 

-,.- i l. 
l ' 

( 6. 8) 
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But according to for.mula 9. 6. 23 of (Abramowitz 6 s), 
00 

= z J dt 
1 

so that one finds 
21rm. 

-zt e 

t::{J.(a) = ~ K1 (m.a) l 1 a 1 

Eq. (6.6) in connection with (6.9) gives ¢ (a) as a very n 

(6 • 9) 

(6.10) 

simple Bessel transform (Erdelyi 52) of R (P). This transforma-n 
tion can also be inverted to give R (P) explicitly (Lurcat 64) n 
as a one-dimensional integral. The Laplace transform ti(a) 

is clearly always positive: ri (a)> o. Its derivative will 

according to (6.8) be negative. Putting these together we 

find 
c:;>!(a) 
I 1 ,. : 

-CD.(a) 
' 1 

a logr? . (a) 
1 > 0 

The second logarithmic is similarly always positive: 

2 a log <ZJ • (a) 
I 1 :; 1 J fi (a) 

2 
-aE· e 1 > 0 

( 6 • 11) 

(6 • 12) 

The equations (6.11) and (6.12) hold evidently also for ¢n(a). 

Eq. (6 .6) forms also the starting point of probably the 
NR simplest method of finding the nonrelativistic form Rn (P) of 

R (P), i.e. the limit of R (P) when P ~ r m .• n n . 1 
1 

Eq. ( 6 • 6) is 

valid for all a> 0. Consider, in particular, the limit «4a0 

Since K1 (aP) decreases exponentially for large P, only values 

of P near threshold rm. contribute significantly to the integral. 
1 . 

Replacing ~.(a) and K1 (aP) by their limits for a~ • or af ~ oo 
!1 
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we have 

( 2 .... 3)n/2 -:o a-3n/2 e-4mia .. IIJm. = . ' ~ ~ 

But from the formula 

0 
one finds that 

( 2.,.3)(n-l)/2 
= 2rj3(n-1)721 

(Tim.) 1/2 . ~ 
~ (P-rm.)(3n-5)/2 . ~ 

~ 

This result is complicated to obtain if the particlesare 

treated in an unsymmetric way. 

(6 .• 13) 

By considering similarly the limit a ~ 0 one can derive 

t 1 1 . • . . . EP(P) W . the ex reme y re at~v~st~c l~m~t R • e have already obta~ned n 

this result by still simpler means. 

After these exact formulas we shall now proceed to 

approximate (6.3). The idea is to replace the integrand by 

its form where it is largest. To do this, write the integrand 

of ( 6. 3) in the form exp F(~ where 

(6.14) 

Choose then some constant real four vector S with positive 
~ 

components and expand F(a) around this point: 

F(a ) 
~ 

~ 1 ~~ = F(S )+(a-S ) F (S )+-2 ,Ca -S)( a-S ) F (S )+ .•. 
~ ~ ~ ~ • ~ ~ v v ~ 

( 6 .15) 
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where 

aF(ex ) a log <Pn(ex) 
FIJ(ex ) = IJ piJ + < 5.16) = IJ a ex a ex IJ IJ 

a2F(ex ) 2 (ex) a log ~ 
FIJV(ex ) IJ = n (6.17) = IJ a ex Clex a ex a ex IJ v IJ v 

Since <P only depends on ex, n 
2 IJ v ex =g ex ex it is convenient to IJV , 

change the derivatives with respect to a in (5.16) and (6.17) IJ 
to derivatives with respect to a. Using the formulas 

a ex exiJ 
aa '1: ex IJ 
2 exiJex v a ex .!cg~.~v ) Clex = - --r Clex J.... IJ v ex 

one obtains 

Cllog <Pn (ex) exiJ FIJ (ex ) = piJ + . -IJ a ex a (6.18) 

2 <Pn(a) log~ a log IJ v 1 exiJex v 
FIJV(ex ) ex c: + n (giJV = - - -) IJ 2 ---r ex 2 

' a ex ex a ex ex 
( 6.19) 

Inserting the terms shown explicitly in (6.15) to (6.3) 

and carrying out the integration over ex in closed form will IJ 
constitute the leading term of the approximation. When more 

terms with higher-order derivatives of F(ex ) are included, 
IJ 

the integrand and also Rn(p) will be approximated better. If 

-i(ex -e ) 
IJ IJ as a variable of 
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integration so that each t is now real and varies between 
~ 

- ~ and +~ we can write the leading term in the form 

R (P) = R(O) (P) 
n n 

(6 . • 2 0) 

Here we see explicitly, how the absolute value of the integrand 

indeed has a maximum for real a (t =0)~ 
~ ~ 

We could now perfectly well integrate (6 . • 20) in closed 

form and obtain a .result which is valid for any e. In order to 

minimize the error it is convenient to choose 6 so that the 
~ 

integrand in (6.20) contains only the quadratic terms in the 

exponent. This point is a saddle point (Morse 56) of the 

integrand exp[FCa)]: when one moves along the real a~. axes 

the integrand has a minimum at a = a while along lines 
~ ~ 

(real t axes) going through a = a perpendicularly to the 
~ ~ ~ 

real a axes the integrand has a maximum. 
~ 

The linear terms in '(6.17) vanish evidently to a~ is 

determined from F~(S ) = 0. The solution of this is 
lJ 

a = a•P /P 
' ~ ~ 

if a ·satisfies 

alog cjln(a) 
p + = 0 a a 

(6.21) 

(6.22) 

Due to the positivity properties (6.11) and (6.12) this equation 

has one and only one solution. 

Using the equation 

(6 .23) 
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and the explicit form (6.10) of we find that 

alog cp.(a) 
;J. 

a a 
2 = - - -a 

The equation determining 8 = S(P) is then 

gives 

2n K (m.a) 
P = -- + ' m. o J. a l J. · .K1 (mia1 

With F~(S ) = 0 the integration over d4t in (&.20) · 
~ 

R(O)(P) = 
n 

1 

The derivation of the relevant integration formula over a 

(6. 24) 

(6 • 25) 

multidimensional Gaussian is a simple generalization of the 

well-known one-dimensional formula and can be found, for 
1 instance, in Cramer 46, p.ll8. 

Before obtaining the final result we still have to 

evaluate the determinant of F • This can be done most simply 
~\I 

in the frame a = (a,O). Then the only nonvanishing element 
~ -

of a~a\l/a 2 in (6.19) is a 1 in the 00-position, while 
~\1 ~ \1 2 g - a a /a has -1 in the 11-, 22- and 33-positions and 

zero elsewhere. Thus 

det F = 
~\I 

a log<j> (a) 3 c.! n ) a aa 

But this is needed at a= S and we can use (6.22) to replace 

alog <j>n(a)/aa by -P. If we still introduce the notation 
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a(S) 
a=B 

' 
= 4n-8P+t32 l mi2- l 

i 
we can write the final result in the form 

5/2 
<P c s ) ..::::::s===:::.. 

n ~PaCsf1 

Remember that B here is as a solution of (6.23) a function 

of P (and also of nand the masses m.). 
~ 

(5.26) 

(6 • 2 7) 

As it stands, Eq. (6.27) is not very transparent and the 

actual dependence_on Pis hard to see. In order to obtain some 

more insight we shall consider the behaviour of s~sCf) and the ~R dnc 

ER limits. 

Due to the positivity properties ( 6.11) and ( 6.12) we know 

that the right hand side (fu~S) of ( 6.24) is always positive and 

decreases monotonically when a ~ncreases. When a ~ ~ the 

behaviour of the RHS can be calculated by replacing K and K~ 
0 .1 

by their asymptotic expansions according to (n.7). One finds 

P \ 3n = L mi + 2"(; 
i 

(a ~ oo) (6 • 28) 

Conversely, when P ~ I 
. i solution of (6.24) ~s 

m. or one approaches the NR limit, the 
~ 

m. 
~ 

(6 • 2 9) 
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When a~ oo, the RHS od (6.24) lS simply 2n/a. This then 

corresponds to the ER limit: 

( G.:; J) 

The two equations (6.29) and (6.30) express l/6 essentially 

as energy per particle. This is in agreement with the 

iJcn~ifica~ion of 1/S as temperature T. According to (6.29) 

in e-,e NR limit 

3 P - I m. :; -2nT , 
. l 

l 

which is just the well-known result that (kinetic) energy per 

quadratic (in the Hamiltonian)degree of freedom is% T. 

For arbitrary P Eq. (6.24) must be solved numerically. The 

result .of a calculation is shown in Fig. 6.1. The parameters 

used are listed in the figure caption. 

A very interesting estimate for the accuracy of this 

method is now obtained by inserting SNR(P) and SER(P) to 

(6.27) and comparing the resulting approximate forms 

RNR ( 0 ) ; 0 \ ~ .c R· E R ( 0 ) ( 0 ) . '. ) a...... . . n n 
CEq. (6 .13)) and RER(P) 

n 

with the known exact forms of RNR(?) 
"' .. 

(Lurcat 64). This calculation gives 

plenty of new insight to the method, but we leave the details 

to an exercise. The result is hewn in graphical form in fig. 

6.2. where the error (:;(approximate-exact)/exact) is plotted 

versus n. As a function of n for fixed energy P the error 

follows very closely a lin-dependence. As a function of energy 

P for fixed n the error varies only slightly being largest 

threshold and smallest for P ~ oo and varying monotonically 

between these limits. 
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..L -~ lS obvious frorr: 6.2 ~ha~ the leading ~crrn 
,.,(J) ("~' 
l\ \lJ) 

n. lS numerically not sufficiently accura~e. However, _. -4-
J..L. 

is a s~raightforward task to calculate higher order corrections 

~0 One just includes more Terms . . .. . ln tne expanslon 

(6 .15), and proceeds else as before. The higher-order derivatives 

of F(a~) which enter make the calculations lengt~;and we do not 

go into details here. Including the first-order correction 

(Lurcat 54) gives already a numerical accuracy which is 

sufficient for most purposes. The error associated with 

R(l)(P) lS also plotted in Fig. 6 .2. 
n 
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Armendix A 

Gram determinants 

A kinematic configuration is defined, ln general, 

by a mixture of invariants and geometrical variables. 

The latter are angles, boosts, lengths of three momenta, 

etc. in a specified frame. The relation between the two 

types of variables is most elegantly expressed in terms 

of Gram determinants. It is shown in Section VI.3. that 

also the equations for the boundaries of the physical 
(' 

region in terms of invariants are obtained requiring a 

certain set of Gram determinants to vanish. 

The Gram determinant of four-vectors p 1 , ... ,pn; 

ql' · · · 'qn is 

Det (n.c.) 
.... ""i .... -, 
~ .J 

;;; 

A sy~~etric Gram determinant, 

is called t:. n 

(A .1) 

P· = q. Ci=l, ..• ,n), 
l l 
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!J. (u1 ... D ) r. ~ ~ n 

(A. 2) 

2 
D, 
• ..i.. 

= 

In upplications the D. • l. are particle four-~o~enta or 

linear combinations of these. G and !J.n are evidently 

invariants. 

When n is small, G and t:. have a direct n 

connection to geometric quantities. The 

is simply the invariant 

2 2 t:.,Cu 1 ) = p, = m. 
J.. ... + .L 

(A. 3) 

The scalar product (
p, \ 

G ~ \ = D~ p2 D J . , ~ 
~ 2 ... 

is simple 1n the rest 

frame of one of the particles: 

for = 0. (A. 4) 

If v is the relative velocity of the two rest frames 

and r the corresponding rapidity, then 

(A. 5) 

Eq. (A.S) gives now 

2 2 m. m2 y ( v) v 
J_ - -

(A. 6) 
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or 

(A.7) 

In the rest frame of 1 this is simply 

(A. 8) 

When there are three particles, we can take the 
' 

rest system of one of them, say 1. In addition to 

m1 ,~ 2 ,m 3 there are three parameters: P 2 , P 3 and the 

angle 6 between and 

obtained from (A.3), (A.8). The angle 

p1 ,p2 ,p3 simultaneously and thus e.g. 

In the frame El = 0, it is 

l 2 
i ml = I 1 m1E .... I .:> 

m. 
~ 

and P. 
~ 

are 

(A. 9) 

There ~s a way to write in terms of rapidities, 

which deepens its interpretation. From (A.S) 

I m1m2coshr12 j 

m2m3coshr23 j 

The law of addition of velocities (II.4.13) implies 

cosh r 23 = cosh r 12 cosh r 13 - sinh r 12 sinh r 13 cose , 

and thus 

(A.lO) 
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The symmetric ~ 3 
information as (A.9). 

contains essentially the same 

easily reduced to 

1 

~3(plp2p3) = 0 

0 

In the frame 

E2 E3 

-p2 _2 -p2·p3 

-p ·p _2 _3 -p~ 

n - 0 J;:.l - it is 

(A.ll) 

(A.9) and (A.ll) are different in that cose gives e 

unambiguously, but . 2 
~ 3 - s~n e does not distinguish 

between e and ~-e. The expression of ~ 3 in rapidities 

is 

m,m?m"sinh r, 2 sinh r, 3 sine. 
~ ~ ~ ~ ~ 

(A.l2) 

When 4 four-vectors are given,the various ~ 1 ,~ 2 ,~ 3 
fix mi,P;, and the angles e .. 

~] 
between and 1?. •• 

J 
There is one new geometric quantity which involves all 

four D. simultaneously. It can be defined in the frame . ~ 
:2_1 = 0 as the angle cp between the planes :2_2 ,J2.3 a::.1d 

:2_2 ,:2_4 . A reduction similar to (A.ll) g~ves 

for 

Its geometric signicance is seen writing the matrix 

A = 

E 4 

y. 
D-... J. 

(A.l3) 
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and denoting the metric tensor as G = (gv) . Then 
lJ 

ll 4 = De t ( A GAT ) = - ( De t A ) 2 

Thus -t. 4 is the volume squared of the four-dimensional 

Darallellopiped with edrres • ~ ~ 0 Setting 

A gives (A.l3). According to elementary geometry the 

triple vector product in (A.l3) gives 

Expressing P. 's in terms of rapidities gives 
~ 

(A.l4) 

CA.l5) 

The angle <p also co:::.es out of unsy::1metric 3x3 Gram 

determinants. A straightforward evaluation yields 

(A.l6) 

The preceeding discussion shows what are the values 

of mo~enta and angles in a fixed frame £ 1 = 0. We list 

them here using ' the notation p,q,r,s,Q = 1~1 

lll(p)Q = -ll2(pq) 

t. 2 Cpq)t. 2 Cpr)sin 2 e = t. 1 Cp)t. 3 Cpqr) 

li 3 Cpqr)t. 3 Cpqs)sin 2f = t. 2 Cpq)t. 4 Cpqrs) 

[ " 1/2 pq ll')(pq)t. 2 Cpr)j cosG = G( · -) 
<- pr 

(A.l7) 
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With n > 4 in ~ or n 

changes completely. More than 

n 1 ••• D 
G(~ -n) 

ql · · · qn 
four vectors 

the .situation 

in four-

dimensional space are always linearly dependent. 

There are thus coefficients 

n 

a. that 
~ 

/ a ·D · :: '0 , . 1 ~4 ~ 
not all a. = 0 . 

~ 
(A.l9) 

~= 

Taking the scalar product of (A.l9) with q 1 , then with 

q 2 , etc. to qn results inn homogeneous linear equations 

for the invariants n.a .. According to (A.l9) this 4 .~ 4] 

system has a non-trivial solution 
P- ••• p 

the coefficient matrix GC ~ n) 
ql. · · qn 

Adding a vector D ·n to the set 

and thus 

must vanish. 

p 1 ... p , gives n- ... 
four new parameters but n new scalar products p. p .. 

~ J 
Thus n-4 equations (A.l8) are to be found going from 

n-1 ton four-vectors. We just saw that SxS determinants 

vanish, and thus, denoting p. by i, 
~ 

t.5(12345) = 0 ' 
t.,.(l2346) ,12345 0 = G\.'2 ""6 ) = ' ;:) ~ ..J'+ 

t. 5 Cl2347) . 
1 2 ':) .. 5 G(l2346) = G(l23~7) = 12347 

· T~e number of equations in CA.20) is 

(A.20) 

= 0 ' etc. 

~Cn-3)(n-4). It 
L 

is evident that if pl' ... 'p n are four-vectors, also 

the following is true: 

t.5(12345) = 0 ' 

t. 5 Cl2346) :: t.6(123456) :: 0' CA.21) 

t.5(12347) :: !;6(123457) = t.7(1234567) = 0 ' etc. 
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It is clear that Gram determinants of order five 

or more do not give values of geometric quantities, but 

express necessary relations between invariant quantities. 

Eqs. (A.20) raise the converse problem: If the invariants 

pipj are g,iven, do the conditions (A.20) suffice to 

guarantee that there exist one or more sets p 1 , ... ,pn 

with the given invariants. This complicated problem is 

discussed in Chapter VI. 

The elements. of the Gram determinants ~~ are the .. 
invariants D.p .. In practice, more useful are m-particle 

- l ·J 
invariant masses 

2 
S .• k : ( p . +p . +Dk+ • • • ) • lJ . . . l J . (A. 22) 

Outward directed momenta are taken positive, ingoing 

particles have a reversed sign in (A.22). A Gram 

determinant in P·P· 
l J can be shown to be identical 

to a Cayley determinant of dimension n+2 ln s .. k • l] ... 

The expression of 

0 

1 

(-l)n+l 1 
~ (pl .• p ) = n n 2n 1 

1 

~ as Cayley determinant is n 

1 

1..., u 

2 p, 
.!. 

2 
p2 

2 p n 

1 

2 
pl 

0 

(pl-p2) 

1 
2 

p2 

(pl-p2) 
2 

2 0 

(A. 2 3) 

To prove (A.23), one simply subtracts the second row 

1 

from all the following rows and the second column from all 

the following columns. 
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Equation CA.23) is not yet in terms of 

To get this one writes the identity 

which results fro~_adding rows and columns in 

s .. k • lJ ... 

CA.24) 

t:, • On the n 

right hand side of (A.24) the difference squared of two 

arguments is of the form s. 1 .• l+ , .•• ,] 

Explicitly t:,n is then 

0 1 1 1 1 

1 0 sl 5 12 s 12 .. n 
1 sl 0 52 s 2 3 .. n 

/:, (pl .. p ) 
(-l)n+l 1 5 12 52 0 5 34 .. n = n · n 2n 

1 5 123 5 23 53 s 4 5 •• n 

0 s s s 12 .. n 23 .. n 34 •• n 0 

(A. 2 5) 
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Appendix B 

SDherical TrigonometrY-

Formulas of spherical trigonometry are ofte~ needed 

to discuss differential cross sect~ons and spectro~eter 

apertures. These formulas are easily found from various 

handbooks, but we shall here derive the basic for~ulas 

in a way which e~9hasizes their symmetry properties. 

Consider the spherical triangle with sides a, b, c 

and angles A, B, C as shown in Fig. B.l. Choosing the 

axes as ln Fig. B.l, the unit vectors to the corners of 

the triangle are 

el = (0,0,1) 

e2 = (sinc,O,cosc) (B.l) 

e3 :: (sinb cosA, sinb sinA, cosb) . 
The law os sines lS obtained by evaluating the volume of 

the parallellipiped spanned by the e~ : 
.J... 

el . e2 X e3 = sinb sine sinA (3.2) 

But by cyclic symmetry this evidently equals sine sina sinB 

or sina sinb sine ' which leads to the law of Slnes 

sina sinb sine = = (B.3) 
sinA sinB sine 

The law of cosines for sides is obtained by computing the 

scalar products between the e.: 
l 

e 2 · e 3 = cosa :: cosb cosc + sinb Slnc cosA (B.4) 

etc. cyclically. 
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In order to obtain further formulas ~n a syw~etric 

fashion one has to consider the spherical triangle generated 

by the basis vectors e. dual to the e.: 
l l 

/\ c 1 
c 2 x e 3 = ----· -·--~- etc. cyclically 

By explicit computation from (B.l) and (B.5) 

/"> 

C-sinB el = cosc, -cosB, sinB sine) 
A. (sinA, -cosA, 0) e2 = 
/'. 

( 0 ' l, 0) e3 = 

(I3.5) 

(B.6) 

In evaluating (3.6) the y-component of is obtained 

most simply from 

/\ .r. e 1 ·e3 = -cosB, etc. cyclically (B.7) 

The volume of the parallelipiped generated by the A e. 
l 

gives again the law of si~es, but the scalar products 

e.·e. give the law of cosines for angl~s: 
l J 

-e ·e = cosC = cosA cosB - sinA sinB cosc l 2 

etc. cyclically. 

(B.8) 

If one of the angles of the triangle is 90°, the 

simplified formulas may be summarized ln Na?ier's rule. 

Choosing C = 90° this rule says that, in the diagram of 

Fig. 3.2, the cosine of any quantity equals 

a) the product of cotangents of adjacent quantities, 

b) the product of sines of non-adjacent quantities. 
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Appendix C -------

Three particle integration 

(C.l) 

can be written in terms of five independent variables. In 

the absence of polarization, !AI 2 does not depend on 

the rotation around the beam axls. Integration over it 

CC.2) 

Several choices of x. 
l 

are listed in Table C.l and the 

corresponding weight functions are in Table C.2 (Pirila 1971). 

The function ~ 4 is written explicitely in Chapter V. 

The limits for invariant combinations <t1 ,t2 ), 

<s 1 ,t1 ) and Cs 2 ,t 2 ) can not be stated in a compact form 

and the reader is referred to Chapter V. Permuting the 

invariants in the cases I and J also gives such complicated 

limits and these are not written in the tables. Otherwise 

Table C.l contains all the essentially different choices 

of variables in which the angles can vary freely. 



A 

B 

c 

D 

E 

F 

G 

H 

I 

J 

K 

), 
3 

<fa 

1>a 

Cfa 

cosea1 
(12) 'X: coso 23 coseb3 

cosea1 

( 12) cose 23 
X coseb 3 
(a1) coso 12 

'X: coseb 3 

6 (23) 
cos 12 

0. 2n 

0 2n 

0 2n 

0 2n 

0 2n 

0 2n 

0 2n 

0 2n 

-1 1 

same as A 

-1 1 

same as C 

-1 1 

-1 1 

-1 1 

-1 1 

h < 0 4 -

Table C.l. 

-- ---- - ------ ------ -----

-1 1 

{ 
G ( s , t 2 , m ~ , m ~ , rn; , s 

1 
) ::_ o 

s > (m +m ) 2 
1- 1 2 

see Chapter V 

II 

II 



A 

B 

c 

D 

E 

F 

G 

H 

I 

J 

K 

- 194 -

2 2 2 112 
{A<s,s 1 ,m3 )A(s 1 ,m1 ,m2 )} 

. 64ss 1 

same as A 

same as C 

1 

32s 

1 

1 

1 

3 f 2 2) (-"4)}li2 2 l A ( s , m a , mb L.l 

Table C.2. 

1/2 

1 
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Answers to the Exercises 

Length of the accelerator seen from by the 

electron ~ (3km) x log(~-) x m /(E-m ) ~ 81 
me e e em. 

II.3. a) y ~ (l+E)/(1-E), v ~ 21; 

b ) v ~ 1 I ( 1 + E ) ' y ~ 1 I 12; 

To an accuracy of 1 % the approximation 

E = m+p 2 /2m can be used if p ~ 0.2 m, E = p if 

p ~ 7 m. 

II.4. 10.0 ns, 10.1 ns, 13.7 ns. 

II.5. a) a= y(cy', y'~+yy'), where 3 2 y I : y VV 1 /C 

and the prime denotes a derivative with respect 

to time, . b) That a·u = 0 is obtained by 

differentiating u·u = c 2 , c) a·a = y 6 (v') 2 • 

CM II.6. v = 0.952, CM y = 3.26, ~ 

P = -1.46 GeV/c, z 
* E = 2.65 GeV. 

II.7. In the target system the momentum vector lies on 

the hyperboloid 2 ( CM CM) 2 ( 2+ 2) ( CM CM)2 Pz - y v Px Py = ~ v . 

The maximum value in the CMS is p* ~ ~ Vs-4m2 • 
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Answers to the Exercises (continued) 

III.l. a) GeV 2-n b) GeV 2n- 4 

III.2. ICE) = (2r.m) 3n/ 2 E3n/ 2- 1!r(3n/2) 

III.3. 5 V/n 2 S = -n + n log(--) , where >.. = 37Tn/mE 
2 )..3 

(Sackur-Tetrode's formula) 

III.4. Z(T,V,n) 
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Figure captions 

Fig. I.l.l. Particle decay and particle collision. 

Fig. I.l.2. Example of a distribution in an energy 

variable. 

Fig. II.l.l. Frames defining a Lorentz transformation. 

Fig. II.l.2. Transformation with arbitrary direction ~f 

the velocity. 

Fig . II.l.3. Longitudinal and parallel components of x. 

Fig. II.2.1. Transformation of velocities. 

Fig. II.7.l. Definitions of various Lorentz systems. 

Fig. II.S.l. Definition of the Cartesian and polar 

coordinates of :2. • 

Fig.III.4.1. The unitarity relation. 

Fig. IV.l.l. The scattering angle 61 . 

Fig. IV.l.2. The opening angle 612 . 

Fig. IV.l.3. Distributions in the opening angle e12 
of a yy-final state for some values of 

the velocity v of the decaying system. 

Fif,. IV.2.1. The'CM momenta and scattering angle. 

Fig. IV.2.2. Mandelstam variables. 

Fig. IV.2.3. Momenta ins-, t-, and u-channels. 



Fi r: . IV.3.1. 

£1£· IV.3.2. 

Fi~. IV.3.3. 

Fir~. IV.3.4. 

Fi p: . IV.3.5. 

Fi9' . . IV.3.6. 

Fir~ . IV.3.7. 

Fif;. IV.3.8. 

Fir.. IJ.2.~. 

Fi £ . IJ.2.2. 

Fig. V.2.3. 

Fir:. V.2.4. 
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The Mandelstam plane. 

Physicul rer,ions for the process 
w0 (135)+w(784) + w+(140)+w-(140), and the 
cross od channels. The masses are related as 

m2 > m3 = m4 > m1; m2 > m1 + m3 
m1m2 > m3m4 . Decay is possible. 

+ m . 4' 

The process K(494) + N(938) + p(760) + y*(1660), 

> m'/ > m~ > ? ,") 
> m·- + m2 

2 3' 

m1; m1m4 > n:2m3; 
No decay. 

The process y + N(938) + 1T(140) + N~(1236) 

with m1 = 0, m4 > m2 > m3 ; m4 > m2 + m3 • 

Decay is possible. 

The process y + N(938) + p(760) + N-x(1236) 
with m1 = 0; m4 > m2 > m3 ; 
No decay. 
The process Y + N(938) + Y + N-x(123G) 
with 
Decay 

m4 ~ m2 ; m1 = m3 = D. 
is possible. 

The process N + N + N + N 
with m1 = m2 = m3 = m4 • No decay. 

Chaw-Low plots for the system + - 0 r. 'IT w in the 
- + - 0 reaction K p + r. r. r. ~ • 

Extremal points of the Dalitz plot. 

Limits of s 13 for given s 23 • 

Dalitz plot at large energy. 

Chan~e in the plot with energy increasing. 

+ m":~ • 
..J 



\ ' "::~ ... 
i •-....~ • I • 

Fio:. V.3.2. 

Fi·~. V.3.3. 

Fi?:. V.3.4. 

Fi7. V.3.5. 

FiP:. V.5.1. 

Fi"· V.5.2. 

Fi9:. \f.5.3. 

Fiq:. V.5.4. 
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The process 2 -+ 3. 

Invariants for the process. 

Guasi two particle scattering processes. 

Intersections of the surfaces s 2 = const. 
and t = 

~ 
const. with the p

1
x. 

p = 30. All units Ge'J. a 

p 12 plane at 

Intersection of the mass constraint ellipsoid 
0 with p3x• p32 plane for the case pp -+ pn p, 

52 = 10, t1 = -0.4. 

Oalitz plot of the reaction + 
pp -+ p~ n at 5.5 GeV. 

Boundaries of t 1 t 2 plots for values of s and the 
masses denoted in the figures. 

The curves s 12 :ct 1t 2 ) = s 11 ±Ct 2 J with all branches 
included for a reaction with the masses. in 
arbi~rary units, m1=m2 =3, m3 =m4 =m 5=1, and for 
(a) s = 50, (b) s = 37. and (c) s = 35 
= threshold energy squared. 

2016 events of the reaction with m1=m2 =3. 
m3 =m3 =m 5=1, and s=50 distributed according to 
phase space. 



Fig. VI.1.1. 

VI.l.2. 

Fig. VI. 2 . l . 

Fig. VI . 2 . 2 . 

Fig. VI.2.3. 

Fig. VI.S.l. 

Fig. VI.5.2. 

Fig. VI.5.3. 

Fig. VI.5.4. 
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Multiperipheral process 

A cascade decay 

: :--l 1 tiparticle process via one 

compound system 

Tree graph for multiple decay 

Invariants of the basic process 2~2 

Diagram for calculation of the effective 

mass distribution 

Two-particle mass distribution of the 

=~-system of the reactions K-N ~ K=Cn·~) 

at 3.4 GeV/c computed from phase space 

Three-particle mass distribution of the 

=ww-system of K-N ~ K=Cn·w) at 3.4 GeV/c 

Distribution in the opening angle between 

two pions in K~3w computed from (5.11) 
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Fig. X.3.1. Monte Carlo integration of a function f(x) 

over the interval (0,1): rk is a random 

point, m is the exact value of the in~egral. 

Fig. X.3.2. Illustrating the convergence of Monte Carlo 

integration. The function to be integrated 

is f(x) = x; the curves show how the 

normalized probability densities of the Monte 

Carlo estimates are peaked closer and closer 

to the correct value 0.5 as N increases. 

Fig. X.S.l. Cascade-type choice of variables for the 

process p +pb ~ p,+ ... +p . a ~ n 

Fig. X.5.2. Choice of variables at one of the vertices 

in Fig. X.S.l. 

Fig. X.5.3. Domain of integration over the two masses 

M3 and M2 for N = 4. 

Fig. X.5.4. Example of an output of a Monte Carlo 

program. Details are explained in text. 

Fig. X.6.l Behaviour of the root S(E) for the masses 

noted in the figure. The NR and ER limits 

are also shown. 

Fig. X.6.2 Behaviour of the error of the zeroth and 

first-order approximations as a function of 

multiplicity in the ER and NR limits. 
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Fig. TV 2.1. 
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