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Preface

The purpose of this book is to give a systematic account

of relativistic kinematics of particle reactions. There are
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ds which the text attempts to satisfy. It contains
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e
an introduction to the basic principles, practical applica-
tions and known methods of those aspects of elementary particle
rhysics which are based purely on kinematics. Also, it is

hoped to be useful as a reference book for anyone actively
working in experimentai or theoretical high energy physics.

In recent years the importance of kinematical considera-
tions has rapidly grown. The main reason is the shift of
interest, both in theory and experiment, to particle reactions
of increasingly high multiplicities. When the number of
particles increases, the number of kinematical variables
increases rapidly. A thorough understanding of the complex
kinematics is required to be able to isolate properly the
essential dynamical features of the reactions. Otherwise one
may be lead, for example, to tedious calculations or incorrect-
ly interpreted experimental effects. Appreciation of the
simple and attractive internal structurevand consistency of

relativistic kinematics allows one to attain essential

conceptual and practical simplifications.



The only existing book on this subject is "Relativistic
Kinematics" by R. Hagedorn. In addition, lectures on particle
kinemetics have been given in several summer schools. Many
important new developments have appeared in recent times
which are not treated consistently anywhere in the literature.

These include various ways of choosing variables and plotting

data in many-particle reacticns, kinematical reflections,
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ects of peripherality, longitudinal phase space, missing mnass

t
®
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hniques, etc. Of decisive practical significance are various

numerical methods. We hope that any success in filling this
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gap in literature will compensate for any possible short-
comings of the book.

As prerequisites, familiarity with some basic nofions
cf elementary particle physics and the conceptual aspects of
special relativity are required. A detailed account of the
technical aspects of special relativity is given in Chapter II.
The book can be used as text for an advanced undergraduate or
graduate course in particle kinematics. In order to facilitate
this use a number of exercises are included at the end of the
text. The concepts and methods are whenever possible illustrated
and motivated by practical examples. An essential ingredient of

the course is learning an effective use of the numerical methods

explained in the last chapter.
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I. Introduction

C]

Particle kinematics is here understood as. the
application of special relativity to elementary particle
reactions. The theory of relativity is one of the most
fundamental and best established constituents of modern
physics. The reader is assumed to be acquainted with its
basic principles and essential implications, such as the
concept of inertial frame, constancy of light velocity,
invariance of physical laws under Lorentz transformations,
transformation properties of four-vectors, etc. Some relevant
practical aspects of special relativity will be elucidated
in detail in the next chapter.

From the point of view of pure kinematics, particles
are completely characterized by their energy and momentum,
i.e. their four-momentum p. Observable particle reactions
are either decays or collisions, and they are symbolically
drawn as in Fig. 1.1. A basic property of four-momentum
is conservation: the sum of all four-momenta in the
initial state is equal to the sum in the final state.

This simple law has a wealth of consequences in applicat-
ions of kinematics.

Internal quantum numbers are irrelevant to elementary
particle kinematics. Thus the properties parity, isospin,
charge, baryon or lepton number, strangeness, etc. do

not enter our discussion. A special case 1s ordinary spin.



Invariance under Lorentz transformations implies definite
statements about spin. Formally, the spin is a property
of a representation of the inhomogeneous Lorentz group,
which includes both Lorentz transformations and trans-
lations. Thus particle states are characterized by
momentum and spin. The transformation properties of spin
are well defined, but turn out to be rather complicated
unless spin is zero [Werle , Fonda 1970]. Conforming
to common practice, we shall in this book not consider
spin. Thus all the particles are treated as they had

spin zero.

Another way to characterize kinematics is to
constrast it with dynamics. Dynamics is concerned with
what happens within the interaction circle in Fig. 1.1.,
while kinematics relates to the asymptotic description
in terms of four-momenta. Dynamics is thus, at the
moment, largely unknown while kinematics contains no
difficulties in principle. However,ikinematics and
dynamics are inextricably mixed. Consider, for instance,
the distribution in some energy variable, Fig. 1.2.
Dynamics determines the exact shape of the curve,
but a constraint imposed by kinematics always exists:
the energy has to be larger than some minimum value
(threshold) and smaller than some maximum value (due
to energy conservation). This forces the distribution

to zero at Em. and E and sometimes also the

in max’

behaviour near the limit is a kinematical property.

There is a formal way of separating kinematics and



dynamics but, in practice, they have to be applied
simultaneously.

To roughly indicate the typesof applications of
kinematics, we list some examples of problems one
encounters in particle physiecs. They range from ones
in a simple formr to cases of great technical and
compufational difficulty. 1) Experiments are carried
out in the laboratory frame, while theoretical analysis
may be simple in the center-of-momentum frame. One has to
find the transformation laws from one frame to the other.
2) The problem of placing detectors in the laboratory,
when one wants them to register certain type of phenomena.
3) Identify by kinematical fitting a definite reaction
channel among a large number of different possibilities.
4) A theory should presumably be invariant under Lorentz-
transformations. Find the suitable Lorentz-invariant
variables and their physical region. §5) Calculate an
experimental prediction from a given theory. This will
often involve a complicated many-dimensional integration
over many final-state particles. 6) Determine the most
suitable kinematical variables to isolate a given
dynamical effect. This problem is particularly complicated
when many particles and many variables are involved.

7) Suppose a strong dynamical effect is seen in some
variable. By energy and momentum.conservation-this

effect is transmitted to other variables. Describe

these kinematical reflections.



II. Lerentz transformations and invariance

1. Lerentz transformations

According to special relativity theory (see e.g.
[Rindler 60] ), the laws of physics are the same in all
inertial systems and the speed of light in free space
has the same value ¢ in all inertial systems. A
transformation of coordinates from one inertial frame to
another, which keeps the velocity of light constant, is
called a Lorentz transformation. Physical laws must
be formulated so that they are inyariént under Lorentz
transformations.

A point in space-time 1is defined by its coordinates
X,¥,2,t 1in a given frame S . The relation between the
coordinates x,y,z,t of the point in S and its
coordinates x',y',z',t' 1in a second inertial frame S‘
must be linear due to the homogeneity of space-time.

Assume S' moves with a constant relative velocity

I<

in S . To obtain a simple expression for the trans-
formation, choose the z-axis of S and the z'-axis

of S' along the constant relative velocity Vv and

the corresponding coordinate planes parallel (Fig. 1.1.).
The constancy of light velo?ity then implies that

the transformation must be



x'" = x

y' =y

z!' = z-vt
1-v2/c2

t' = ._—t_—.z._\__’../_c_z_.
1-v2/¢2

These eqs. assume that the origins of the coordinate
systems coincide at t = t' = 0. The Lorentz transformation
is then homogeneous.

The quantity

y = y(v) = (1-v2/c?y-1/2

has a central significance in special relativity. In

terms of vy the Lorentz transform and its inverse are

x'" = x x = %'
y' =y y =y
z' = yz - yvt z = yz' + yvt' .(l'l)
t'=-l'\2"'z+vt . t=l‘2’lz'+yt'

c c

We note that the components x and y , perpendicular
to the velocity v , remain unchanged. Also the inverse
of a transform is obtained simply by changing the sign of
v. Egs. (1.1) are constantly used and it is convenient
to memorize them.

For small velocities v , the light velocity c
disappears from the Egs. (1.1) and they approach the

nonrelativistic Galilean transformation. On the macroscopic



scale only some astronomical phenomena involve velocities
so large that (1.1) need be applied. The velocities in
particle physics are mostly so close to ¢ that
deviations from the Galilean transformation are large.

In fact, particle physics offers numerous opportunities

to verify the validity of. (1.1).

Example 1. As an application of (1.1) we shall consider

time dilatation and its verification in particle physics.
Assume that S'is again moving with a velocity v in S
and that in the origin of S' 1is a stationary clock
showing the time +t' in S'. Consider two events.at
times ti and té in S'. Use now (1.1) with =z' = 0.

A clock which is stationary in S will measure these

events at the times

- 1
Tty
(1.2)
- t
Ty =YY
The corresponding time intervals T, = ti—té and
T = t,-t, then satisfy
T
T = yT_ = S I T (1.3)

o]

° Vl-—vz/c2
To is the time measured by a clock in its rest systen,
T 1is the same time interval as seen in a system in which
the clock is moving. Since T 2 Ty time goes faster in
the rest system of the clock. Seen from S , the moving
clock goes slow. This effect is called time dilatation.
A quantitative verification of time dilatation is

obtained as a byproduct of the CERN g-2 experiment

[Bailey 19701. Leaviﬁg aside the purpose of this



experiment, it involves the storage of muons in a circular

ring with radius 2.5 m. The velocity of the muons is such

that y(v) = 12.7. One can follow the gradual decrease

of the number of muons and determine their lifetime

in the laboratory. The iifetime of the muons in their

rest system is TO 2 2,2 us and the lifetime measured

for the circulating muons agrees with Y(V)‘To = 27 us.
Note that this result also gives an experimental

proof of the fact that the surprising '"twin paradox"

involves a true effect. 0f two twins, the one who has

left the earth in a space vehicle will at his return

appear younger to an observer on the earth. This result

has been verified by muons, the decay of which forms an

ideal clock. The circulating muon is subject to accelerations

similar to those of a space vehicle making a round trip.

Example 2. An even more pragmatic example of the effects
of time dilatation is given by the design of low energy

Ki beams. The lifetime TO of the charged K 1is such
that cT, * 3.7 m. This distance is too short to allow

one to separate a pure K beam. Thus very low energy

(and .velocity) K beams can not be produced. At higher
energies the factor +y(v) lengthens the time and distance
available in laboratory to the separation of the K beamn.
Qualitatively similar remarks apply for construction of
beams of any other unstable particles, e.g. pions or

hyperons.



Let us generalize the previous situation by

allowing the velocity v of §8' in S to have an

el arbitrary direction (Fig. 1.2.) The appropriate trans-
formation equations between x = (x%,y,z) and
x' = (x',y',2') can now be derived by demanding
that the component of x perpendicular to v ,
II.1.3. v. x
X =X-¥ =;;= ;

should remain invariant and the component of x

parallel to v ,

<

lix

=Y

N
-

X
‘ v

should transform as 2z 1in (l1.l1). We thus have

1

xy = r(vi(x, - vt) .

Together these give

1 1 + t
X=X TE

VX
X-Vv [:;g (1-y) + Yt} .
v

In these transformations the dimensionless quantity
8 = v/c appears frequently. The quantity y = (1—62)'1/2

satisfies the identities
(1.4)
vy°BT = (y=-1)(y+1l).

The transformation formula of x can then be written

in the final form

_}f.' = x + Yg(-—-——YIl _B_'_)S_—C't)- (1.5)



The time coordinate transforms according to (1.1) with =z

replaced by lgul ,

t' o= y(t - Yoix ).
c2 it
This is simply

o= y(t - =5 (1.6)
[

The formulas (1.5) and (1.6) are very important, although
in many cases one may choose the configuration so that
the simpler formulas (1.1) apply. Eq. (1.5) is rather
untransparent and one should keep in mind the derivation

which indicates its real meaning.
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2. Transformation of three-velocities

A three-velocity in a frame S with t and x
as time and space coordinates is evidently defined by

b= 2
= 4t (2.1)

When going from S to another frame S' (Fig. 1.2),
both x and t transform according to (1.5) and (1.6)

so that w is transformed to

w' = =, (2.2)

Since the differential operator is linear, the trans-
forration equations of dx and dt are obtained from

(1.5) and (1.6) by differentiation:

- Lyv(<dp veax - cat)
dx' = dx + ZYV Yﬂvdx cdt
dt' = y{dt - = v-dx)

c

By dividing one obtains immediately

. (2.3)

Here v 1is the velocity of the frame S' as seen from
the frame S , while w and w' are velocities in S
and S' , respectively. The inverse relation giving w
in terms of w' 1is obtained from (5.3) by interchanging
w and w' and changing the sign of v . In this in-

verted form, the resulting equations are often called



IT.2.1.
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relativistic velocity addition formulas, since they can
be regarded as giving the result w of adding the two
velocities v and w' (Fig. 1.2).

The general form (2.3) is fairly untransparent. It
is clarified by looking at some of its properties. We
know that the component of x perpendicular to Vv is
invariant under Lorentz transformations. To see how the
parallel and perpendicular components of w transform,
assume that v is parallel to the z-axis (Fig. 2.1).

Then (2.3) is equivalent to the three equations

w
w! = X
X y(l—vwz/cz)
w' = Wy :
y Y(l—vwz/cz) (2.4)
e W, -V
l—vwz/c2

The perpendicular components W and wy of w thus
also get transformed and w does not behave like x .
e shall soon construct a relativistic generalization
of w which really behaves like x .

The angle 6 between w and v is transformed to
an angle 6' between w' and v . The transformation
equation is obtained from (2.4) by assuming that W, = 0
and Writing W, =W sine , W, = W cosd , wi = w'sine' ,

wé = w'cose'. The result is

tge' = —4 SN0 | (2.5)

y(w cos6-Vv)

This equation will later be analyzed in detail.
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Assume finally that even W vanishes, so that all
velocities are parallel. The inverted form of the last

of the equations (2.4) then gives

1
wa= —HIV (2.8)

1+w'v/c2

With this equation it is simple to prove the following
properties of addition of wvelocities: 1) the sum of
velocities does not exceed ¢ 3 2) for v << ¢ , velocities

are simply additive.
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3. Four-vectors

The Lorentz-transformation equations can be written

in a both technically and conceptually simpler form by

combining t and x to a single entity, the (contra-

variant) four-vector x = (x*) , u = 0,1,2,3. Write
x0 = et
xl = X
x2 =y (3.1)
3 .
x" = z
- C -
x = (x7,x) = (ct,x)

and introduce the metric tensor

1

2= (g (@)= [T 0
0 -1

A general Lorentz transformation transforms the four-
vector x to another four-vector x' so that the

quadratic form

x2 = x'x = ] x x* = Zi g x*x¥ = (x92-x% = (et)?-
s W o Cuv

(3.3)
remains invariant. The Lorentz transformation can be

represented by a uixi4 matrix A,

3
x* - x¥' = ;ZAAtxv . (3.4)
v=0

2 . . . . . s .
Then x remains invariant, if A satisfies the matrix

equation

Algh = g (3.5)

2
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where AT is the transpose of the matrix A . This
can be seen by inserting (3.4) to (3.3). Notice, in
particular, that a three-dimensional rotation effecting
only the space components is also a Lorentz trans-
formation.

In general, any object which transforms like x
is célled a four-vector. If a 1is another four-vector,
the scalar product

u 0.0

. = u - v = - .
ax = ) a x Zguva X a’x asx (3.6)

u
is also invariant. Also, the square of the sum

x+a = (x"+a") is invariant:

(x+a)2 = x2 + a2 + 2a*x . (3.7)

The equations transforming an arbitrary four-vector a
from the frame S to a frame $S' , moving in S with
the velocity v , are obtained from (1.%) and (1.5) by

replacing c¢t Dby a0

.a

and X by a :

o]
L]

v+l
(3.8)

Y(ao-g‘g) .

U
u

The four-vectors a can be divided in three classes:

- timelike (a2 > 0)

0)

- lightlike (a2

- spacelike (a2 < 0) .

The coordinate four-vector, x can be of any of these
types. The type is related to the question whether or not

the point x c¢an be reached from the origin by a light
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signal. Other four-vectors we shall use will be of
definite type. By a suitable Lorentz transformation
followed by a rotation a can be transformed in one of

the forms:

- a timelike: (au) = (ag,0)
- a lightlike: (au) = (1,0,0,1)
- a spacelike: (au) = (0,0,0,b) .

The Lorentz transformations A: that appear in

particle kinematics satisfy in addition to (3.5) the
following conditions:
- detA = +1. This means that no discontinuous

reflections are included.
o >
0 -~
like vector is invariant.

- A 1. The sign of the O-component of a time-

In order to illustrate the matrix formulation we
shall write the basic equations (1.1) in matrix form.

Let us replace v by a parameter r defined by

Y = tanh g . (3.9)

c
The parameter r 1is called rapidity. The relation (3.9)
maps the limited range of variation of v (-cfvic)
to an infinite range of r (-«fr<e), Rapidity has more
than a notational significance, since e.g. in collinear
Lorentz transformations rapidities are additive while
velocities transform according to the more complicated
rule (2.6). Writing (2.6) in the form

Va+tv
1772 . (3..10)

2
l+vlv2/c

V3‘-'-
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and introducing v, = ¢ tanh(ri/c) , the right hand side
of (3.9) becomes tanh[(rl+r2)/€] , by the addition
theorem of tanh. Thus, in fact,

ry = ry + r, . (3.11)

The equation (3.11) also emphasizes the symmetry of the
situation, which 1is not so apparent from (3.10).

Eq. (3.9) implies

—_—

r
y(v) = cosh=
Vl—tanh2§ _ ¢

(3.12)

v B
i1nh—
S c

%Y(v)

With .this notation Eq. (1.1) can immediately be written
in the matrix form (3.4%) with
1l 0 0 0

0 + 0 0
(3.13)

A = A(Y)
0 0 cosh® -sinhZ
c [

.o r
0 0 —31nh3 coshc

If the more general Lorentz transformation (3.7) is
expressed in matrix form, all matrix elements are non-
vanishing. An arbitrary Lorentz transformation A can be
decomposed into two rotations A(Rl) and A(Rz) and a

pure Lorentz transformation A(r):

A= A(Rz) Alr) A(Rl) .



4. Four-velocity

The three-velocity w was defined previously by
w = dx/dt . We saw that w does not transform like the
space component of a four-vector. The reason was that t
is not an invariant variable. To construct a velocity
four-vector, one must take the derivative of x = (x%)
with respect to some invariant variable related to time.
A natural choice is the proper time <t defined by

2 2 2

2 2 L. agx? ~ax?-dy®-dz?) .1

— 1 2
dt” = 5 dx“ = —7(c dt
c c

Here dx2 = dxudx“ is evidently an invariant so that
dtr is invariant. We can further write

2

2{ 1 dx2+dy2+dzz]

dt® = 4t |1 -
02 dt2
so that 1
[ dx 2] %
dr = dt [1 L (~=) = at/yw) . (4.2)
2 lat

In the rest frame defined by w = 0 , the times are equal
which explains the term proper time. The factor y in
(4.2) is, of course, the same y as that appearing in the
time dilatation equation (1.2).

The four-velocity u = (u") will thus be defined by

H U u
we g o dxT DL S5 (4.3)

ut = =— =

drt dt dt
g

It is then u = y(w)(c,w). The space component of u

differs from w by the y-factor:

u = y(ww . (4.4)
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In the rest frame w = 0 u" has only the 0-component:

u = (c,0).
Since u 1is a four-vector, u2 must be an invariant.
That this is the case can be seen by an explicit calculation:

2

u® = yz(w)'(cz-wz) 2

= c .

The length of the four-velocity is thus ¢ and it is a
timelike four-vector.
The transformation equations (3.8) of an arbitrary
0

four-vector a = (a ,a) can be written in a more compact

form, if v 1is replaced by the associated four-velocity
u = y(v) (c,v) . (4.5)

Replacing in (3.8 ) y by uO/c and yg by u/c , (3.8)

becomes
ufu-
a' = a +-==~("‘0é - ao) (4.6)
Cc\u+c
o' - 1,00 ...y =1 .
a” = Z(a’u'-aru) = - a-u . (4.7)
1
Notice, in particular, that al has been written in a

formally invariant form, althbugh it is not an invariant.
We have been able to do this since the velocity parameter
has been introduced in the covariant from (4.5). Later on
it is seen on many occasions that writing quantities in

an invariant form often gives an economical way to carry

out Lorentz transformations. Even here one may go further
2 a02__a2

-

and write [a| in terms of invariants. Since a“ =

is an invariant, we have immediately

)2- a2 = lf (a'u)z— a2 .

c
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Using u2 = 02 this is symmetrically

a2 = & [(a'u)z—azuzl (4.8)
c
(s, - )
uv CZ
When v = 0 or u" = (c,0) the transformation should be
an identity and (4.7) and (4.8) reduce to a’ and [glz,

respectively. This is a convenient way of memorizing
the signs and constants.

As an illustration of the preceding formulae we
reconsider the transformation of three-velocities. The
velocities involved were the velocity v of S' in S ,
a velocity w in S and its transform w' in S' .

Each of these is now associated with a four-velocity,

u? = y(v)(e,v)
wd = oy e,w) (4.9)
uh = y(w')(e,uw')

The velocity transformation is now immediately obtained

from (4.6) by changing a to u; and a' to u,

Vew
u, = y(wHW' = e+ y(y(wy [ =5 1 1)L (4.10)
y(v)+l ¢
To apply this one first has to calculate |w'| or y(w').

These can be obtained by squaring (4.10), but much more

simply directly form (4.8). This gives

w'?
]gzlz — 5 © if(ul-u)z - 2
l1-w “/c c

2y 2y e (i-veuser? - o7 .
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After some simple algebraic manipulations one obtains

2 2,2
af? = ly-wl” - vxu["/c (4.11)
(1-v*w/c )2
or equivalently
Y = y(v)y(w) (L-vrw/c?) . (4.12)

These formulae were derived already by Einstein. When
(4.12) is inserted to (4.10) one arrives at the previously
derived transformation formula (2.3) of three-velocities.
Using Eq. (4.12) one can show that the geometry of
the space of relativistic velocities is that of a sphere
with imaginary constant curvature. Eqs. (3.12) and (4.12)

imply

' - coshS cosh® - sinhS sinhl
cosh - = coshz coshg sinhz smnhc cos® . (4.13)
The rapidities related to v, wand w' are s, r and r',
and € 1s the angle between v and w . Comparing with
the cosine theorem of spherical trigonometry in Appendix B,
one sees that (4.13) 1is identical with it for imaginary

r.,r' and s.



5. Four-momentum

‘The states of a single free particle in relativistic
quantum mechanics are characterized by their four-
momentum (in addition to spin, which we neglect). The
basic four-vector in particle kinematics is thus four-
momentum p = (p"). In order to define, in a consistent
manner, the four-momentum of{a particle or of a system
of particles, the concepts of mass and energy have to be
subjected to a careful analysis. This can be found in
text-books of special relativity [Rindler 6@ . The four-
momentum can be defined as rest mass m of the particle

times its four-velocity:
p = mu = my(v)(c,v) (5.1)

Alternatively, p 1s expressed in terms of energy and

three-momentum as follows:
E
P = (—C—, B) . . (5.2)

The equivalence of the definifions (5.1) and (5.2) is
not a trivial matter since it involves, for instance,
the equivalence of energy and matter. With proper inter-
pretation of m, v, E and p these equations apply
also to a system of particles.

The simultaneous validity of (5.1) and (5.2)
implies the equations

E

my (v)e? (5.3)

P

my(v)v . (5.4)
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Thus, in the equation relating three-velocity and three-

momentum, the velocity-dependent quantity

m

my (V) = —ememo—e
'Vl-vzlcz

has replaced the rest mass. In special relativity, the
rest mass m and the inertial mass my(v) are different
for v # 0 . According to (5.3) the inertial mass is
essentially equivalent to the total energy of the particle.
For v = 0 the rest mass corresponds to a rest energy
T = mc? , which is the classic relation derived by
Einstein.

In particle physiecs, the energy and momentum are
the basic quantities.'The velocity v and y(v) are

obtained in terms of E and p by inverting (5.3) and

(5.4):
8 = v/c = cp/E
y = y(v) = E/mc2 (5.5)
B8y = p/mec .

The definition of p also implies that its invariant

length is given by
p? = nfu? = m2e? = (B2 - p? © (5.8)
so that p 1is a timelike four-vector. Equivalently,

g2 = 0222 + (me?)? . (5.7)

This equation relates energy, momentum and rest mass
and it is perhaps the most frequently used equation in

particle kinematics. When m is given and E and p
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satisfy (5.7), p 1is said to be on the mass shell. For

small |p| , energy contains mainly rest energy,

E2

2m

E = mc? + oL (5.8)

For large |p| the contribution from the mass is small,

_ m2c®
E = clp|] + ==+ ... . (5.9)

2|p]

Since p 1s a four-vector, the Lorentz trans-
formation eéuations (4.6) and (4.7) apply if a is replaced
by p . In many cases the moving frame S' 1is the rest
frame of a particle (or of a system of particles). Then,
instead of u, it may be convenient to use the momentum
p = mu of the moving particle as a parameter describing
the motion of S' in S . Replacing in (4.6) and (4.7)

uo by E/mc and u by p/m one obtains

a-p 0 |
a''=a+p —— - é—-l (5.10)
=~ = | m(E+mc?) ch
al' = Lo a-p (5.11)
me
Here a = (ao,g) is expressed in the stationary frame
S and a' = (ao',if) in the rest frame of the

particle moving in S with momentum p . In practice,
a may be the four-momentum of some other particle.
Let us denote the Lorentz transformation contained

in (5.10) and (5.11) by L(p) :
a' = L(pla (5.12)

Then it is easy to see by explict calculation that
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a = p = (E/c,p) implies
L(p)(E/c,p) = (mc,0) . (5.13)

Conversely, the Lorentz transformation L—l(p) is
obtained from (5.10-11) by interchanging a' and a
and reversing the sign of p . It transforms the particle

state (me¢,0) to motion:
-1
L “(p)(mec,0) = (E/c,p) .

For this reason L-l(p) is often called a boost.
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6. Units and conventions

To facilitate the transition from special relativity
to particle kinematics the light velocity ¢ has been
explicitely written in all formulae. From here on we shall
everywhere set ¢ = 1 , as is customary in particle
physics. This 1is just a formal simplification and simply
means choosing ¢ as the unit of velocity.

According to the relation E = mc2 =m , the rest
mass 1s equivalent to energy and thus mass is expressed
in energy units. The basic energy unit is J = Nm = kgmz/sz,

but in high energy physics the electron volt is more

common :
1 GeV = 10° Mev = 10% ev = 1.602.-107%0 4 (6.1)
The inverse relation is
- -7 - _ 9
1l erg = 10 J = 624 GeV = 624°10" eV .

Accelerators with energies in the 100 GeV range give
macroskopic energies (3 erg) to microscopic particles.
The conversion factor between kg and GeV is obtained by
solving 1 GeV = mc2 = m for m. The result is

27

1 GeV = 1.7827-107%7 kg . (6.2)

27 Kg

For instance, the proton mass mp = 1.673°10°
is 0.938 GeV in eV units; similarly for other particles.
The energies of accelerated particle beams are

always expressed in eV units. The choice of the energy

variable is not unique and the following alternatives are

in use:



1. Kinetic energy of the particle, T = E-m , is
mostly used in the domain where the rest energy is
larger than the kinetic energy. T 1is the normal

variable nuclear physics.

2. Total energy E of the particles is used in the

high energy domain (E : 1 GeV).

3. Momentum p of the particles (in units MeV/c

or GeV/c) is normally used to express the energy
of an experiment. The separators producing mono-
energetic particle beams separate most directly in
momentum and not in energy. Note the convention of
writing the unit in the form GeV/c to indicate a

momentum.

All these variables are, of course, equivalent. They
become asymptotically equal when E >> m, i.e. for
E >> 1 GeV for hadrons, E >> 1 MeV for electrons and

always for photons.

A convention analogous with ¢ =1 1is to h = 1.
This is not relevant to pure kinematics where only momentum
vectors appear. It is convenient when one calculates
lengths (cross sections) or lifetimes. As previously
E = mc2 = m permitted one to express mass in kg or GeV,

the relations

o= =1 (6.3)

and

(6.4)

0>
1]
!
Ny
1
i+
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can now be used to express length (meter) and time (sec)
in 1/GeV. To calculate the conversion factors, the value
of m 1in kg corresponding to 1 GeV from (6.2) is
inserted to (6.3) and (6.4), together with known values

cf B and c¢. The results are

15

1/GeV 0.19733 fm = 0.19733°10 ~“m (6.5)

1/GeV = 6.5822+1072° sec (6.6)

n harmony with these relations one often tabulates hc

and h as follows

petel 197.33 MeV+ fm

22

A 6.5822+10" MeV sec .

Length in particle physics is mostly needed in connection

with areas or cross sections. The normal qnit of cross

31 2

sections is millibarn = mb = 10~ (meter)2 = 0.1 fm“.

From (6.5) one then obtains the very practical relation

o{§~>2 = 0.38939 mb = —t—e mb . (6.7)

With the known values of proton and pion masses mP and

m_ one has, equivalently

0.44232 mb

|

5 19.987 mb .
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7. Reference frames for collision processes

We have so far considered general properties of
Lorentz transformations. In this section, a set of
reference frames defined by the properties of the initial
state of a collision process is introduced. Later on,
several frames depending on the reaction products will
also be considered.

In a two-particle collision process, two particles
a and b with four-momenta P, = (Ea’ga) and
Py = <Eb’2b) collide. The values of P and P, are
normally, up to some small experimental errors, fixed by
the experimental conditions. Different frames can be

defined by requiring P, ©°r Py to have some special

values. The following are most frequently used:

1. Laboratory system (LS) is defined as the system in
which the experiment is carried out and all energies and
momenta measured. It is fixed by the experimental outlay,
which may involve either a beam of particles hitting a
stationary target or colliding beams (see below). LS is,
in a sense, the primary system. From this the momenta and
energies are then, for different reasons, transformed to
other systems. We shall denote LS quantities by an index

L: EF, o& .

2. Center-of-momentum system (CMS) is defined as a

system in which

. | (7.1)



The CMS quantities will be denoted by an asterisk.

w
.

Target system (TS) 1s defined as a system in which

pr = 0 (7.2)

Most experiments are carried out on stationary targets

and for all these TS coincides with LS. In fact, in standard
terminology our TS is called the laboratory system. How-
ever, for colliding beam experiments TS and LS do not
coincide and we have preferred to keep the terminology

unambiguous.
4. Beam system (BS) is defined by

gaB =0 . (7.3)

From a theoretical point of view BS and TS are equivalent.

5. Colliding beam system (CBS) is defined as a frame

in which two particles of equal mass and momentum

CB _ DCB
a  *b

m - &, as shown in Fig. 7.2. For colliding beam experiments

) collide so that their momenta form an angle

CBS coincides with LS, for ¢ = 0 i1t even coincides with

In practice one constantly needs to transform from
one system to another. For this purpose one has to find
the relative velocities between the frames. We shall see
that this transformation is most simply carried out by

using invariants.



8. Relations between guantities in center-of-momentum

and target systems

The convention ¢ = 1 puts (5.5) in the form

v = p/E
vy = E/m (8.1)
YV = p/m

In writing a transformation between two frames, (8.1) give
the relevant factors most simply.

The invariant mass (or energy) of a two particle
system a, b 1is the total four-momentum squared

2 _ 2
(pa+pb) = (Ea+Eb) - (Ea+gb)

2

[112]
!

(8.2)

b—Ba'Eb) :

_ 2 2
= m "+my +2(EaE
In particular, in CMS (8.2) shows that Vs' is equal to

total CMS energy

EX*+ %= Vs . (8.3)

In CMS the system a,b , having rest mass Vs , is
at rest. Its velocity in TS is the relative velocity of

CMS and TS. By definition p T vanishes, and (8.1) give

P T =
A (8.4)
A - T+m
“a b
CMS + TS
T
E “+m
y = 2D (8.5)

The simplest of these parameters is, in this case,



An exyperiment 1s usually specified quoting the
e T o K L -
momentum  p_ of the incildent beam 1n laboratory.

According to (8.2) the invariant mass is
S = m *m "+ 2mE . (8.6)

In going from TS to CMS, the target particle gets the

momentum -m yv and energy m, Y, or

* _ Ty T
Pb - }: pa .
s (8.7)
2, T
B % . T ?mbbgﬁ
b .V'é‘\

In CMS, of course, pa% equals —pbx . Then (8.3), (8.6)

and (8.7) give

p*=-2 23 (8.8)

The transformation between the beam system BES and
CMS results from (8.%), (8.5) simply by exchanging a

T

and b . For TS » BS the parameter vy 1is Ea /ma .

Next we consider then the transformation of the
T T . -
energy E and momentum D of an arbitrary final state
particle from the target system to the center-of-mass
. . T . . T
system. Choosling agailn 2 parallel to the z-axis, D

may be expressed either in Cartesian or polar coordinates

(Fig. 7.3):

T _ T T T
2 % (py"s Py 5> Py ) (8.9)
ET = PT(sineTcos?T, sineTsinQL, cos6l) (8.10)



The transformation of the Cartesian components to

the CMS is
® T
- X pX
=y Yy (8.11)
P;f =y (p,"-v )
X =y (-v pzT+ET)

where v and y are given in (8.4-5). Among the polar

coordinates ©° 1is defined by tg?T = py‘/pxl so that
© =0 ) (8.12)

In general, the azimuthal angle about an axis is

invariant under pure Lorentz transformations along this

. E T . . . ..
x1s. The transform 6 of 6 is obtained by reqguiring

T)2 of pT to be

)

2
the transverse component W/(pXT) +(py

m
invariant and the longitudinal component pz‘ to trans-

form according to (8.11):

o™ sing™ = RT sine’ (8.13)
p* cose™ = y (RT cosé -v ET) . (€.14)

By dividing one obtains after some modifications

x® sineT Vl—v2

tgo T S (8,15)
cos8 —v/vp

where v, = RT/ET is the velocity of the particle in

guestion in CMS. Eq. (8.15) shows how a polar angle
with respect to an axis transforms under Lorentz trans-

formations along this axis. We shall analyze this formula

T

® .
of »p is,

in more detail later. The transform p

finally, obtained most simply from (8.11).



9. ZInergies and momenta in terms of invariants

According to the relativity principle, physical

laws are invariant under Lorentz transformations. To

explic

b

tely guarantee that this is obeyed, one writes
physical quantities and relations between them in terms
of invariants. A seconé significant use of invariants

1s to write combinations of non-invariant quantities in
terms of invariants. Once a sufficient number of the non-
invariants are fixed by choosing a frame, the rest can

be found.
The scalar product pp' of two four-vectors iIis

invariant. Out of n four-vectors one can write

S bl

] . 2
%n(n+l) such quantities p5, P-Pps PyPgoces - An equivalent

Py

set is formed by the one- and two-particle invariant masses

2 _ 2
m: = p., s

2 .
1 E = (pi+pj) . These are clearly unique, but

i]
are in general not independent. The inverse problem of
finding when there exist four-vectors P1s> -5 Pp
corresponding to given invariants, and of explicitely
constructing them, is of considerable difficulty. It will

be discussed later on in length. We here describe some

. - . . 2 2 ;
simple uses of the invariants m > My S related to

the four-momenta PyoPp of the initial state of the

collision.

The four-momenta P,>Pp define three independent

. . 2 2 2 2 2 _
invariants, p_ = m , P, = m and {pa+pb) = s.

One should thus be able to characterize all the kinematics



of the initial state in terms of s and the masses.

We shall work out the connection between these invariant
variables and noninvariant variables E_,p_ and E,,py
separately for TS and CMS. We adhere to the convention
that the length of a three-vector i1s denoted by the

corresponding capital letter.

For TS we have, to begin with, RbT = 0 and

Eb = omy. From (8.6) we have also
s-m 2—m 2
pT-__a ' (9.1)
@ 2m
b
so that
T\2 T.2 2
(Qa )¢ = (E,7)° - mg

We write this result in the form

2 24
T _'V&(s,ma > My )
P = (9.2)
a 2mb
Here appears the kinematical function
AMx,y,z) = (x—y—z)z—uyz (9.3)
= x2+y2+22—2xy—2yz—22x (9.4%)
= [e-gev Y (-5 2] (9.5)
= (Vr=Vy=-VZ) (VX W§HVZ) (VR-VY+V2) (Vx+Vy-Vz)
(8.6)

x2-2(y+z)x+(y-z)2 . (9.7)
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Useful special cases of these are

x(x-4y) (9.8)

AMx,y,y)
(x-y)?2 (9.9)

A(x,y,0)

From (9.4) it is seen that A 1is invariant under all
permutations of its arguments. The basic motivation for
the introduction of X will be clarified in section 11l.

Sometimes A 1s called the triangle function since

% -x(%x,y,2z) 1is the area of a triangle with sides

V¥, Vy and Vz.

According to (9.5) we have

2 2 2 2
As,m_“,m %) = [s-(m +m )] [s-(m -m )7]. (9.10)

b
Thus EaT in (8.2) is real if
> + ’ b1
VENE m tmy . . (9.11)
The threshold value m_+mg is the smallest value Vs

can attain. The pseudothreshold value m_-my is

aQ

important for some more advanced kinematical considerations.

The threshold ma+m also appears if one writes the

b
kinetic energy Ta of particle a in TS in terms of s:
2
s-(m_+m._)
T = BT_m - a b
a aa

In CMS p o+ pb* = 0 so that
P *¥-p *.p* (9.12)
a b
and, according to (8.3),
- x® ®
\/?-Ea +ET . (9.13)



The invariant energy is thus equal to the total energy

in CMS. Inserting (9.12) to (8.13) one obtains

[ s A : A
Vs - V(pk)2+ma2 = Vpr)z+mb2 .

Squaring once this gives

5 s+m 2—mb2
E*=: 2 2 | (9.14)
a — _
2Vs
Squaring a second time results in
2 2y
v&(s,m ,m, )
p* = s b~ (9.15)

2Vs

The remaining energy be is then obtained from

P x>
E, -\/?-Ba

g ¥ __b a (3.16)

2\s’
N

Note how in (9.14%) and (8.16) E.” has in the numerator
a plus-sign in front of the mass miz.

It is easy to verify that the expressions so
obtained for TS and CMS quantities satisfy the relations

(8.8) and (8.10) obtained by explicit Lorentz trans-

formations.

Example 1. It is useful to have an idea of the numerical

magnitudes of various kinematical quantities for normal

experiments, which are characterized by the value EaT

of the incident momentum. When the momenta involved are

e . . T
sufficiently large, for instance, D, > 5 GeV/c, one

may neglect the rest masses and assume that E = P.

Then (§x§3 gives s = 2m. D T 1r one takes into account



that the target is - practically without exception - a

nucleon '(mb 1 GeV) one may estimate
s 2 20 %  (in GeV units) (9.17)
For RaT = 19 GeV/c this gives s = 38 GeV2 while

the correct value is s = 37.95 GeVz. For the CMS

quantities one has similarly
£ S x . ®x . 1lm. T
E,5 3 E) TP Pur = 5Vs 2 \/ %_/2 (9.18)

For a pp i1nitial state with PaT = 19 GeV/c the exact
values are E_ = E = 3.06 GeV, p_ =p = 2.81 GeV/c
while the approximation (9.18) would give VPaT/Z = 3.08 GeV.

For qualitative purposes the accuracy is adequate.

EZxample 2. According to (8.17) the useful energy Vs
of an accelerator behaves like Vs = V2PaT . Increasing
the incident momentum of a particle hitting a stationary
target by a factor four, for instance, will increase the
useful energy Vs only by a factor two. The rest will

g0 to the useless energy of the motion of CMS in TS.
This simple consideration lies behind the motivation

for constructing colliding beams. If two beams with

pC3

particles of momentum collide, head-on in laboratory,

the total energy Vs will be within the approximation

CB. According to (9.17) this

. T
corresponds to an effective momentum Pcf; of a beam
<44

of Example 1 equal to 2P

hitting a stationary target which equals

T . CB,?2 ;
Pore s 20°0) (9.19)



For pCB = 28 GeV/c, the effective momentum would be

[as]

L . - 3 .
Pogg = 1570 GeV/c. The gain is impressive.

Example 3. Starting from v = p/E, vy = E/m we can write

the velocity of CMS in TS in an invariant form

2 2y
V;(s,ma >y )

v =
2 2 (9.20)
s-m +mb
CMS » TS
be s—ma2+m,2
y = — = —S =2 (9.21)
My Zmbvg
Similarly, the velocity vaT of particle a in TS is
given by
2 _ 2,
T A(s,ma STy )
v,ooF - 22 (9.22)
a b
s-m_2-m, 2 P.*D
'Yy rY b
YaT = a ‘b _Ta . (9.23)
Qmamb m_ My

These are also the parameters for the transform 35S -+ TS.

Note how v and vaT only differ in the sign of mb2 H

both are for large s very close to one. On the other

hand, for large s vy is proportional to s and

T
Y, to s.



10. Colliding beam system

The introduction of the colliding beam system (CBS)
has become useful only now that one is able to carry out
experiments with colliding beams. Our definition (Fig.II.7.1)
of the CBS describes directly, for instance, the experimental
situation in the CERN Intersecting Storage Rings (ISR),
if the two colliding proton beams have equal momenta. For
unequal momenta slight and obvious modifications are
necessary. In the ISR the maximum momenta are 28 GeV/c
and the angle of intersection is A= 14777 ~ 0.2578 rad.

One should again emphasize that for colliding beam
experiments of the ISR type the CBS coincides with the
laboratory system. From the CBS one may then Lorentz
transform the measured momenta and energies to any frame,
for instance to CMS or to the target system (which in
pre-ISR times was mostly called the laboratory system).

We shall in the following only consider the transformation
to CMS.

For the transformation to CMS one again needs the
velocity of the CMS in the CBS (= LS). As the velocity
of the CMS in any frame is (2a+2b)/(Ea+Bb) , the
velocity Veog of the CMS in CBS is according to Fig.(8.1)
‘given by
vCP = vasidQ. (10.1)

where v, (= vb) is the velocity of particle a in the

laboratory frame. Correspondingly, with {z = l-véz.
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(10.2)

The velocity is oriented along pa+pb as shown in Fig. 8.1.
and the Lorentz transformation is easy to carry out.
For a colliding beam experiment the invariant s

is given by

2 2 2 CB,2 24
= B - = A
s = (E_*E) lgﬁ+gp] bm”+4(P77) “cos (10.3)
where PcB = PZB = PgB is the laboratory momentum of
the particles a and b . To second order in
2
Vs = 2%%(1-1 | (10.14)
where ECB is the laboratory energy of the particles a
and Db and the approximation PCB¢e ECB has been used.

Since '@2/8‘% 0.0083 for the ISR, the correction to the
total CMS energy Vs arising from the fact that the two
beam intersect at an angle %" is numerically very small.

Inverting (10.3) we have, finally

cB _ Vs-um?

P T ——————
2c0332§-~r
(10.5)
2_. 2_{1"‘
.CB _ V/s-4m " sin 5
2cosﬁ~ ‘

2



Exercises to Chapter II

The Stanford linear electron accelerator is 3 km long
and accelerates the electrons to an energy of

E = 20 GeV. The energy of the electron is linearly
proportional to the distance it has covered, its mass
is m, = 0.511 MeV. What is the total length of the

accelerator seen by the electron?

Derive the transformation formula (2.3) of the three-
velocity by using the Lorentz transformation properties

of the four-velocity.

a) What are the maximum values of v and y 1if one
wants to write E = m+p2/2m so that the error is less
than s-p2/2m ? b) What are the minimum values of

v and vy , if one wants to write E = p so that

the error is less than e°+p ? Formulate in words the
conditions for the validity of the non-relativistic

[+

and relativistic approximations if e = 1 %.

An electron, a pion and a proton have each a momentum
1 GeV/c. What are the times these particles need to

cover a distance of 3 m ?

The four-acceleration a¥ 1is defined by the equation

uo_ dau”
dr
a) Determine a° and a > Db) Prove that a-u = 0,

c) Evaluate the invariant a-a if the particle to

which a" refers follows a straight path.
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In a proton-proton experiment at 19 GeV/c (Vs = 6.12 GeV,
m_ = 0.938 GeV) one observes in the final state a

proton with a momentum 4 GeV/c at an angle 30°

relative to the beam axis. What are the energy and
momentum of the produced proton in the center-of-momentum

system?

Consider in a proton-proton experiment at a fixed
incident momentum Pz a momentum vector perpendicular
to the beam direction in the center-of-momentum
system. If its length varies between zero and its
maximum value (determine this maximum), how does the
corresponding momentum vector vary in the target
system? Draw a figure with the numerical values of

Problem 6.

Check the correctness of the calculations in Problems

6 and 7 by computing.the magnitude of the transformed

2)1/2
z

momentum vector both from P = (pi+p§+p and

2,1/2

from P = (Ez-m ) .

Suppose two particles have equal velocities (in
magnitude and direction) in some Lorentz system.
How are their velocities in any other Lorentz frame
related? What if velocities are replaced by three-

momenta?
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ITI. Phase Space

1. Definition of phase space

So far we have essentially oniy considered propertieé
of the initial state and Lorentz transformations of un-
constrained final state momentum vectors. Turning now our
attention also to the final state of a particle reaction
PatPy > Pyt -tP (Fig. I.1.1l) we have to impose on the

final state momentum vectors four-momentum conservation:

n
a b ZE‘Ei
i=1

t1
+
tr
i

n
- (1.1)
Ra*Dy = ZZ—Ri
i=1

with EZ EE*mi s, £ = a,b,l,...,n

The ms ’are fixed particle masses. Due to four-momentum
conservation the n momentum vectors R; cannot vary
arbitrarily for a fixed initial state, but have to
satisfy the four conditions (1.1). We shall call the 3n-

dimensional space of the unconstrained final state

momentum vectors p. the momentum space. The conditions

(1.1) define in this space a (3n-4)-dimensional surface

which will be called the phase space. Sometimes the terms

momentum space and phase space are used synonymously for
the 3n-dimensional space and the (3n-4%)-dimensional space

is called a surface of constant energy and momentum. We



have adopted the definitions above in order to fix a
concise and unique terminology. The structure of the
momentum space is simple, while the structure of phase
space 1s extremely complicated. Much of our subsequent
effort will go to clarifying this structure.

There 1s a formal analogy between the phase space
in statistical physics and that in particle physics.
This is due to the fact that both in relativistic quantum
statistics and in the study of final states of particle
collisions a state is determined by a set of four-momenta
Py>++->P . In order to discuss this connection we shall
review here some concepts of statistical mechanics. These
remarks are not indispensable for later developments in
this book and they are included here only to give some

wider perspective,.

a) Classical statistical mechanics. Consider n
particles in a box of volume V . Each of the particles
has a momentum coordinate p; and a position coordinate

X i=1,...,n. The phase space is then defined as the

Xi»
én-dimensional space of the x. and p; - At a fixed

time the state of the particles in the box corresponds

to a point in the phase space. In statistical mechanics,
the state of the system is not followed in detail but
instead one considers the probability density of the
points in phase space. For an isolated system this density
P = P(E) only depends on the total energy E = E(Bi’fi)

of the system. Different densities define different

ensembles:
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"

microcanonical ensemble (constant energy): P(E) 6(E-Ed),

-E/T
e .

n

canonical ensemble (constant temperature): P(E)

In the microcanonical ensemble the basic functicn from
which all thermodynamical quantities can be derived is

the volume of the accesible phase space:

_ 3 3
N(Eo) = }ﬁﬂ‘d X d P; G(E—Eo) (1.2)
i
For an ideal gas, E = Z:p§/2mi does not depend on X5
i

and

N(E ) = VP [a’p, S(E-E) . - (1.3)

o) P o’ ° ’

In the canonical ensemble the basic function is the

partition function

7(T) = ]ﬂﬂ'd3x. dspi e E/T
i

1

For an ideal gas, Z(T) is the Laplace transform of N(E):

Z(T) = /dE e vy (1.4)
2

b) Quantum statistics. In quantum mechanics the
uncertainty principle (A3XA3p = h3) divides the
previously considered phase space into cells of volume h3.
Each cell contains one state, which can be defined e.g.
by giving the momentum .R . In problems of particle
physics the states are so closely spaced that the discrete
sum can be replaced by an integral over a continuous
variable. This is seen as follows. Consider again free

. . 3 . .
particles in a box of volume V = L~. Their wave functions
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v1/2

are exp(ip-*x). Boundary conditions require that the

. +
components of p satisfy P, = 2nnX/L, n, = 0,-1,...,etc.
By simple counting one sees that the number of states in

the volume element d3p is

a’n = Y d% . (1.5)
(2%) .

This is a very large number if the box is macroscopic.
For instance, if V 1is'the volume of a bubble chamber,
Ve 1 m3, and dp_, etc, is taken to be a typical
measuring accuracy of 10 MeV, then using (II.6.5) one
obtains d3n = 5-1038 states. Thus the quantization of
states is within this experimental accuracy totally un-
observable. Sums over discrete states may be replaced
by integrals over p:

> =Y [d% . (1.6)

3
values (27)

of p



2. Integrations over phase space, cross section formulas

According to our present knowledge on dynamics of
particle reactions, the transition probability from an
initial state P,*Py to a final state with definite

momenta p. 1is obtained from the matrix element

<gl,...,2n|TIBa,Eb> = A(py) (2.1)

The purpose of experiments is to clarify the structure of
A(p;) and the conclusions are theoretically described in
the form of different dynamical models specifying A(Ei)-
Later on we shall present some general properties A(Bi)
is known to satisfy, but for the moment it is sufficient
to consider it as some unknown function of the p..

In order to obtain measurable quantities (for n»>2),

IA(Qi)I has to be integrated over a set of allowed

values of the p.. The total reaction cross section is
obtained, if the integration is carried over all possible
values of the p., i.e. over the entire (3n-4)-dimensional
phase space. The corresponding quantity for a decay is

the lifetime. If the integration is restricted to a

subset of the phase space, a differential cross section

or, if the normalization is inessential, a distribution

is obtained. How exactly ]A(Ri)] and the cross sections
are related, depends on some normalization conventions.
The derivations can be found in textbooks on high energy
physics (Bjorken 64, K&llén 64). For our purposes it is
sufficient just to state the results. Denoting the

total reaction cross section by cnaon(vg)son(JE;mi)

we have
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_ % I_(Vs) |, (2.2)

where

F o= 2 A(s,mi,m§>~<2n>3“‘” (2.3)

is a flux factor and

L T ' 2
In(VE) =)/TT7—QEE 8 (pa+pb—z pi)]A(Ri)l (2.4)

i=1 i
contains the integration over the phase space. The
conservation of four-momentum has been accounted for by
introducing in the integrand a four-dimensional é§-function,
which is a product of four §-functions corresponding to
the four components p“. The dependence on ms is
suppressed in the notation. We shall presently clarify
the reasons for writing the definition of In(JE) in
the form above. It is important to emphasize that (2.2)
as a matter of fact defines the normalization of A(p;),
i.e. what constants and Vs-dependent factors are attached
to A(p;) by convention. In this sense the derivation
of (2.2) is not esséntial; it can be understood without
any derivation. We shall return to this question of
normalization in more detail in connection with two-
body to two-body scattering. The formula for the life-
time T, ©of an unstable particle with mass m is

a

very much similar to (2.2):

1 1 1 |
e = —_ I (m_) (2.5)
T, 2ma (2“)3n—4 n a ?

where I (m, ) is given by

I a(my) = § (pa—fpi)[<gl,..,pnITlRa>| . (2.6)
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If x = x(gi) is any variable depending on the D
the differential cross section don/dx is obtained by
transforming the integral in (2.4) so that x appears as
a variable and then omitting the integration over x .

In practice, this can be most simply carried out by

inserting the constraint x = X(Ri) in the integrand

as a §-function so that

3
R gi/irf5§§ 6u(pa*pb-§pi)6(x-x(gi)[A(Ri)lz. (2.7)
This satisfies trivially /EX°(dcn/dx) = o . Eq. (2.7)
is very convenient and will be used frequently. Higher-
order differential cross sections dza/dxdy, etc. are
obtained similarly.

Consider now in more detail the integral In(Vg).
In its definition (2.4) we have separately included the
factor 'tT(ZEi) in the integration over the p..
This fac%or could, in principle, be included in A , but
it is kept separate since the quantity dsp/ZE is
invariant under Lorentz transformations. We shall prove
this invariance in two different ways:
1. By explicit computation one finds from the trans-
formation formulas of four-momentum that

dp, = dp,

X X

1

y (2.8)
dp, = Y(dp%+vdE')

0.
i
H

dp

ydpé(l+vpé/£') = dpéE/E' s



- 50 -

since dE'/dpé = Pé/E' and E = Y(E'+vpé) . The volume

element d3p = dpxdp dp, thus satisfies

y
2 3
d’p. . dp (2.9)
E! E

so that the combination d3p/E is invariant.

2. The invariance of dsp/E can be made still more

explicit by writing it in the manifestly invariant form

.3
4 2 2
j/%iﬂ = j/d p §(p°-m )e(po) (2.10)

where the second integral is extended over all values of
the components p" , w = 1,...,4. The function e(po) is
zero for p_ £ 0 and 1 for P, 2 0. It is also invariant

under the orthochronous Lorentz transformations considered

here. Writing p2 = pg—p2 and E2 = p2+m2 and using

the following property of the é§-function integrations:

§(£(x))

| £1(x )|

G(X—xo) (2.11)

1]
o

f(xo)

one can easily prove (2.10). Eq. (2.10) also explains
the factor 2 added conventionally to the invariant
d3p/E. Formula (2.10) is often used to write the
integrals (2.4), (2.6) and (2.7) in other equivalent

forms, e.g.

n n
™ 4 2 2.4 2
i=1 1

In(\/'5>



In (2.4), the §-function is a singular function.
For many purposes, for instance if one wants to calculate
(2.4) numerically, it is important to eliminate the
§-function. This can be done in many different ways.
After the elimination one has 3n-4 variables which are
only constrained by limits of integration and not by
any singular constraints. Calling this set of variables

¢ we shall write (2.4) in the form

In(VE) =-[d¢ fn(¢) s (2.12)

where d¢ 1is a volume element in the (3n-4)-dimensional
phase space and fn(¢) contains all the factors arising
from transforming from the p. in (2.4) to the variables
¢. These include the integrand of (2.4), factors arising
from integrations over the §-functions according to (2.11)
and a Jacobian. The exact relation between (2.4) and
(2.12) will be more transparent after we have given

concrete examples.
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3. The phase space integral

If the matrix element (2.1) is identically 1, the
integral In(VE) defined in (2.4) is often called the

phase space integral. Denoting In in this case by Rn’

we have
3

~T94P;
R_(VS) = l.i IE, § (p-]p;) (3.1)
1

where s = p2. There is no deeper theoretical reason for
giving A = 1 a special treatment, it is just the simplest
possible choice. In fac%, from experimental evidence one
knows that at high energies A may vary cdnsiderably in
the phase space. On the other hand, many technical
developments like transformations of variables are in-
dependent of A. They can be conveniently presentea by
using (3.1). For this the relativistic invariance of
(3.1) is also crucial.

Similarly, all distributions do/dx, d2c/dxdy, etc.
derived from (2.7) with the assumption A = 1 are called

phase space distributions. Again, the higher the energy,

the more any experimentally measured distribution will
deviate from the phase space distribution. In spite of
this, the case A = 1 may be conveniently used to derive

the boundaries of the physical region in the variable x,

on the xy-plane, etc. The specification of the physical
region only involves four-momentum conservation and the

form of A does not enter.
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Historically, the phase space distributions have
played a significant role as resonance backgrounds in
connection with a search for resonances. The assumption
was made that A = 1 somehow gives the consequences of
pure kinematics and any deviation from this denotes a
dynamical effect, for instance, a resonance. This works
at lower energies where the matrix element really is
rather constant, but at higher energies the separation
of kinematical and dynamical effects becomes involved.
This question will be discussed later on in connection

with kinematical reflections (Chapter VII).

Other special choices of A may also be given a.

special treatment. One example is the non-covariant

phase space integral Rn(p“) , defined by

Uy o 3 4
R (") = /de p; & (p-Ip;) (3.2)
1

or by choosing A = 'TT(2Ei). For many purposes (3.2)
i
would be as convenient as (3.1), but due to its non-

covariance it is far more difficult to handle.
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4. The unitarity relation

The unitarity relation is a very deep and involved

nonlinear constraint on reaction amplitudes following

from the unitarity of the S-matrix. It is purely dyﬁamical
in character, but contains phase space integrations

which we are going to analyse in some detail. To this

end we formulate here the unitarity relation using the
same normalization conventions (K&11lén 64) as those
leading to the cross section formulas given previously.
When apﬁiféd to the scattering amplitude <pcdeTIpapb>

of a 2+2 reaction + - + it reads:
P, *Py > P .*Py4

Im<pcpd]T[papb> (4.1)

z 3

d'p.
ey 1 el
- ZZ 3n-4 Tj. 7E. ° (pa+Pb-Xpi)<pde|Tlpl--Pn>
_,2(27) 1 i i
n=2
1-
<py.-p I T Ip_Pp> >
where T' is the adjoint of T. This equation is best

understood by looking at Fig. III.4.1l; the imaginary part
of a 2+2 amplitude is given in terms of all possible 2-+n
amplitudes. Since kinematics only depends on the multi-
plicity, sums over intermediate states with different
internal quantum numbers but same n have been omitted
from (4.1). Further relations are obtained by putting
some other amplitudes on the left-hand side of (4.1).

In this way unitarity connects everything with everything,

which is the reason for its great complexity.
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Thg integrand in (4.1) is much more complicated
than that in the cross section formula (2.4), since it
1) is a complex number, 2) depends on both the initial
and final states of the reaction P,*Py * P.tPy- When
the initial and final states coincide, the integrand in
(4.1) simplifies to that of (2.4) and one obtains the

optical theorem

Im<P Py lTIP Pp> = Ms,mi,mg) O or(s) «  (4.2)

This relates the total cross section

0 pop(s) = Z o_(s) (4.3)

n=2

to the imaginary part of the forward 2+2 amplitude.
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Exercises to Chapter III

a) What are the dimensions of the n-particle
production amplitude A(pi) according to Eq.
(III.2.2) if o is to have the dimensions of mb?
b) What are the dimensions of the phase space

integral Rn?

~Evaluate the non-relativistic phase space integral

ICE) defined by

n 3 Ds
IE) = [ TT . §(B-] —=
(E) /.Hdpl( zi2m>
i=1

Hint: use the formulas

5(x) %‘-/dt eixt
b g

2
/dt tbe'at g r@b+1)/g)/2a(b+l)/2

o

(it rca)

where T 1s the gamma-function.

(1]

The entropy S of an ideal gas in the microcanonical

ensemble is defined by S = log[N(E,V,n)/ni], where

p?
1
8(E~ § 2m)

N(E,V,n) =
(2w )3“

is the number of states having the total energy
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less than E. Calculate S by using 6'(x) = 6(x),
the results of Exercise 2 and Stirling's formula

logn! = n(logn-1).

Calculate the partition function

n
2(T,V,n) = —— [ dE e E/T1(E)
n

(27)

o

where I(E) is defined in Exercise 2.

The entropy in the canonical ensemble is defined

by S = 3% [T 10gZ(T,V,n)/n!]. If E and T are
connected by E = %nT, show that the entropies in
the microcanonical and canonical ensembles coincide

up to terms vanishing like logn/n for n-+= .,



IV. Two-particle final states

1., Decay of one particle to two particles

In this section, we consider the two-particle final
state without any reference to the initial state besides
four-momentum conservation. The properties of the initial
state may thus be compressed in its total four-momentum
p = (E,p), which may either be the four-momentum of a
decaying particle P, » the total four-momentum P, *P;
of an initial collision state, etc. However, for
convenience we shall use the terminology associated with
decay.

The two-particle phase space integral is needed in
connection with cross section and life-time formulas and
with developing a set of convenient variables for n-particle

final states. According to the definition of R, s

3 3
d’py 9P 3
Ry(E,p) = [—2 —2 §(E-E,-E)) &(p-p;-p,) (1.1

2El 2E2

As it stands, R is known by Lorentz invariance to be

2
a function of

2

s = g2 - 22 (1.2)

only-and one could for its evaluation go to the frame
p = (Vs,0). However, we wish to be more general for

later use and evaluate (1l.1) in an arbitrary frame.
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Integrating first over d3p2 by the second 6-

function, one has

ap. p?
) 1P
R,(E,p) = [da,| —=L 6(£(P.)) (1.3)
2 1 T
4E.(E-E.)
) HELECEy

where one has to set everywhere P, ¥ p-R;- The angles
2, = (cosel,?l) define the orientation of Py with

respect to p (Fig. IV,1.1) and we have denoted
Fig.IV.1.1.

1/2

2-2?? cos 6 +m2 (l.4)

1-2PPjcose,*my)

£(P.) = E-E.-(P2+P

17 7 77T

The constraint f(Pl) = 0 defines the length of p,
as a function of cosel , or the angle between E'and Ry -

+

The solution Py= Pl_ is two-valued and we give it later

in Egs. (1.11-12). Since the integral over P, - goes
from 0 to =, only the positive solutions contribute.
Calculating f'(p) from (1l.4):

1 - l
f (Pl) =

(P.E - PE.,cos6,) (1.5)
E\(E-E)) 1 170

and using the standard é§-function integration formulas

one has, finally

2

1 P1
R,(E,p) = & |da; — (1.6)
|EP,-PE;cos &, |

where the solutions are given in (1.11-13). Eq. (1.6) is
complicated and it is not simple to proceed further

with the evaluation of (1.6) in the above form (apart
form the trivial integration over<?l). Since we have

integrated only over the é§-functions, (1.6) is valid
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unchanged also if one introduces a matrix element
A(RI’EZ)’ which due to the é-functions only depends on
cosé,. Eq. (1.6) gives essentially the differential
cross sections doz/dﬂ1 or doz/dcosel in an arbitrary
system, in practice mostly the target system.

.In the rest frame p = (Vs,0) , Eq. (1.6) simplifies

greatly and one has

P‘k‘
R, (VE) = —%:‘/dQT (1.7)
4Vs
x
. nP
. Vi (1.8)
S

The values of the "decay momentum" P? and the corresponding

energies E? and E? in terms of the "decaying mass" Vs

are obtained from the results of Section II.9 or directly

from f(Pl) = 0 for P = 0. One has
2 2.
Vh(s my ,mn) _
PY = p¥ = P12 (1.9)
2Vs

The values of these decay momenta are tabulated in the
Elementary Particle Tables for different observed
resonances and their two-particle decay modes. Intro-

ducing (1.9) to (1.8) R, can be written in the

WVA(s,mi,m§> (1.10)

R2(4§) = "
2s

invariant form

Eq. (1.7) can be used even if one introduces an integrand
depending on the orientation of RT with respect to
some.separately defined axis - since p=0 in this system

p cannot be used as an axis. All the equations for R,
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should actually contain the 8-function B[VE—(ma+mb)]

specifying that R2 vanishes below threshold.

The solution of f(Pl) = 0 can after squaring

twice be found to be

oy

P Vyx cose, I yxzvxz-yzv281n26
e 1 1.1 1 (1.11)
my y(l-vzcoszel)

or
E y* * vcoso VQ*ZV*2-72V2S1n2e
- 1L L (1.12)
mq Y(l—vzcoszel)

- R _ o, - ® _ %
where v = P/E , vy = Pl/Bl , Y = E/Ys and vy = Ej/my

are  0,-independent. Adding, one obtains

+

+ +
EPI - ElP cose1 & —m V‘V;§2v§ —72v251n291 . (1.13)

—

Equating Eqs. (1.6) and (1.7) in differential form

one has
x®
dQl - fi (BPl—PElcosel)
x 2
ae Vs Py
But also
; 3¢
dQl i dcosel : Slnﬂl del . E; del .
x® 3 R R S ) x® *
dﬂl dcose1 51n61 del 1 del

where the equation Plsinel = P?sinei has been used.

Thus

de (EPl—PE cosel)

" 1 : (1.15)
Vs P

[}

|

de

it
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Inserting the el—dependence of Pl and El from (1.11-13)

one finds after some calculations

-y

del 2 2 k v?zyiz-vzyzsinzel

qor - Y(l-vieostoy)) — RV o SR (1.186)
1 Vy,cosé-~ ViYy vy sin el

+ . s :
The --sign is due to the two-valuedness of the mapping

®
1 to 61.

is single-valued and only the +-sign is used. We shall

(E.q. II.8.15) from o If v < v? the mapping
rederive (1.16) and simultaneously clarify the meaning

of this equation later.

Eq. (1.16) can also be interpreted as giving the
distribution w(el) normalized to unity in the angle 6,

between p and p, (Fig. IV.1l.1). We have namely

dR dR. de= de®
w(oy) = %—- —2 . %—— —3};-——1- = wed) —t (1.17)
2 del 2 del del del

so that if the distribution is constant in the decay

frame (all directions equivalent) or w(&?) = const

one has
2 . 3¢
W(el) = del = 21 [ *zv;%coje% > wit 1 (1.18)
del y(l-v-cos e ) K~l Yy -vy sin eﬁ

If there is a 6,-dependent matrix element ACe4), the
corresponding distribution is (apart from normalization)
obtained from (1.18) by multiplying by A(Bl). As it
stands, (1.18) is derived for A=l so that it corresponds

to an isotropic decay in the CMS.
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In order to obtain the distribution w(elz)' in

the opening angle 69 defined in Fig. IV.1.2 it is
Fig. IV.1l.2.
convenient to apply the general formula (III.2. ) for
the differential cross section with x = cosby, = El'EZ/PlPZ'

We have again

oR

R S 2
w(alz) = R2 51n012 (1.19)
acose12
where
2 3
3R d’p. : D+°D

—2 [T 2 éu(p-p -p,)6(cose ., - 1 2)

v 2E. 1 ¥2 12
acose12 izl i P1P2

To evaluate this, integrate first over dupz:

aR

3
d'p Py (p-p;)
2 = = 6[(p—p )z-mz]é(cose 3 %
dcoso 2E A z L4 PP
12 1 1°2

= | dP Ei~ de.dcose, §(s+ 2—m2-2EE +2PP.cos6.) x
= 1 £} 1 Wy -y 1 1 1

o 2Eq

2
PPlcosel—Pl)

P,Py

X 6(cose12 -
where 6, is the angle between p and p,. The integration
over @, is trivial and the integration over cos6,
can be carried out by using the first §-function.

Writing PldPl = EldEl we have

o0

3R 2EE. -2E2-s+m2+m?
— s J% dE; 6(cosb,, - 12 % 2 22 oTY
acose12 A 2 V(El—ml)[(E-El) —mz] A
1

(1.20)
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where the dependence on the integration variable El
has been stated explicitly. In a concié% form the

argument of the é-function is

Ele-%(s-mi~m§)
f(E,) = cos®é - .
1 12 P.P
1°2

The equation (1.20) is rather complicated to analyze
for arbitrary masses and we shall specialize to

my = m, = 0. Examples of processes of this type are

1
+ =
then 7% + yy or e e =+ yy, although for the latter the
matrix element has a definite cos6,-dependence determined

by quantum electrodynamics. Now Pl = El and P2 = E2

so that f(E,) = cosé -1 + S . The solution of
1 12
2E1(E—El)
f(Bl) = 0 1is then simply
+
- 3
B =3l %\/B a—
1-cose,, (1.21)
e Al
= 2E [1 L S ——-—;2}
sine,,
where v = P/E 1is the velocity of the decaying particle.

Computing f'(Bl) and integrating over El in (1.20) one

finds
Ps *
3cose ., |E-2P1|

It is irrelevant which of the roots (1.21) is used for

P,. Combining with (1.18) the final result is
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6

12
1-v 2 cos~é

by o2 12 Wz_cosz_;_z_

N

This distribution is plotted in Fig. IV.1.3 for some

values of v.
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2. Scattering of two particles into two particles

The most extensively studied reactions are the elastic
and quasi-elastic reactions which involve the scattering
of two particles, with possible changes of quantum numbers
and mass of one or both particles. The reaction is thus

in general form
a+b = c+d. (2.1)

The total energy squared in CM is

2 * %2 _ 2, 2 L
= (Ea+Eb) = ma+mb+2Eam . (2.2)

s (pa+pr b

The expressions for energies and three momenta in CM and

lab in terms of s are given by (II.9.1-2) and (II.9.
> EX’ *® ad
¢’ “d* Pc’ Pd

by the same equations with a,b replaced by c¢,d.

14-16)  For the final state, E are given

To describe the sbattering completely, a second
invariant variable t, the momentum transfer squared, is
introduced

t = (pa-pclz = (pb-pd)z " (2.3)

In CM t 1is related to the scattering angle (Fig. 2.1) by
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x _ 1 2 2 K
cose = EPxP* (t m_ mc+2EaECJ
ac
(2.4)
2 2.2 2.2, .2 2.2 2
_ s +s(2¢t m_mg-m md)+(ma mb)(mc md)
2 2 2 2
/&(s.ma,mb /&(s.mc.md)

The lab quantities of a8 and b were discussed

above. To find Eg we write
2 2, 2. L
t = (p.D Py’ mp+mg=2m E g

and thus

_ d, &
B canse (mb my £] . {2.8)

-E; o s (s+t-m§-m§) . (2.8)

For symmetry reasons, it is convenient to introduce also

the invariant momentum transfer

u = (pa-pd)z = (pb“pc)z. (2.7)
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In lab the last expression gives

2
c

S (m§+m

1
ET =
c -Zmb

-u) . (2.8)

Variables s,t,u are not independent, comparison of (2.6)

and (2.8) yields the important identity

N

s+t+u = m +m§+m§+m§ . (2.9)

81}

Eq. (2.9) follows also fraom

2

2 2 42 32 2.2 2.
Py = (Py=Pg7Py) (py=pd ™+ tpy=pg) "+ (P *py) " -py-PPy -

Exchange of ¢ and d will permute t and u . The
laboratory momenta in the final state are obtained from

(2.5) and (2.8) in terms of the A-function,

L _ 1 2 2y
P = SrRee V/)\(U.mb.mc)

2m
b (2.10)
PL' = --—'L- /)\(t,mzrmz) »
d . b’"d
M

The first expression can be regarded as the lab momentum
for a beam of ¢ colliding with b ; this process has

the invariant mass u . Similar interpretation applies

L

to Pd'

2
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L

The scattering angle 6~ , the angle between
p; and pt , is found from t = (pa-pc)z as

1 2 2. L.L
cos®~ = ——r— (t m mC+2EaECJ
c

In terms of invariants this is

onN
onN

(s-mz-m )(m§+m -u)+2mg(t—m§-m§)
cosg- = 8 . (2.11)

2 2. 2 2
/k(s.ma.mb) /A(u.mb,mc)

For elastic scattering, a=c, b=d, the preceeding
equations simplify slightly. For equal masses, . m_=mg=m_=m,=m,

the invariants are

s = 4(P*%4n?)
E = -2P%2[1-cass™) (2.12)
u = -2P*2(1*Cose*3 .

The Mandelstam variables (Fig. 2.2)

s = (pa+pb12 = (pc+de2

t = (pa-pc)2 = (pb-pd)2 : (2.13)
2

u = (pa-pdl2 = (pb-pcl

describe symmetrically the reactions

a+b <«-» c+d s-channel
a+c +-» b+d t-channel

a+d <+ b+c u-channel
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In s-channel, t and u are squares of momentum transfers.
In going to t-channel, the signs of Py and Pe change,
and thus t becomes energy squared and s,u the momentum
transfers squared. In u-channel, u is energy and s,t
momentum transfers. The symmetrical description of the
reactions related by crossing is most useful due to the

observed crossing symmetry of the scattering amplitude.

One of the vectors Py’ Py Pgr Py is given by the
‘other three by energy-momentum conservation. In section II.S.
it was seen that kinematics with three independent vectors
involves the Gram determinants A1, Ao and Ag. The poles
of A, and Ay = - %A are exhibited in the previous
formulae. The scattering angles and the boundary of the

physical region are given most naturally by Ag-

The CM scattering angle 1is 8™ = G(Ra.gc) in the

frame p_*p, = 0. To obtain the usual invariants most
easily, on calculates the angle -8 between -pg and -pz .
From (Appendix A) it follows that

\ A, (p_*p Ao (p_+*p. -pP_, -P.)
sinzex - 1""a Fh""3'"a b, "a, ~d . (2.14)

AZ(pa+pb,—pa)AZ(pa+pb,—pd)

Use of definitions of X and G results in

> S-G(mg m t,s.mg mi)

sin“¢” = -4- 2 4 4 i (2.15)
2 2

)A(mc.s.md)

aonN

N

2
k(mb,s.ma



= Tl -

In lab 6- = ﬂ-O(p;

-pt) is directly given by

A lp da(psp_,-p.)
sinzeL 1""hT" 3" "b'"a c

A,(p,.p YAy (p . -p_)

(2.16)
m2 G(s,u m2 m2 m2 m2)
= -4 5 T d b’ at e
2 2 2 2
A(s,mb,ma)x(u,mb.mcl

The functions A and 6 have the symmetry properties
mentioned 1in Appendix A. These can be wused to put the

arguments into a standard order

> s s G(s,t,mé,mi,mé.mz)
5ince” = -4 = (2.17)
As m2 mz)k(s m2 m2)
F al b 2 C' d
5 1 mg G(s.u,mi.mi,mg.ng
sinfe" = -4 - . (2.18)

)

Als,m 2
a

Z2 2
,mb)k(u,mb.mc)
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3. The physical region in terms cf invariants

Real values of the momenta Py’Py:PyrPy are obtained

if and only if s and t fulfill the condition
2 2 2 2y <
GFs,t,m4,m1,m2,m3J 0. (3.1)

Jue to symmetry in the variables s,t,u, the same conditian

applies to all the three channels. It also applies to the decay
of one particle into three particles.

The boundary curve is G = 0. Expansion of (II.6.29)

results in the equation

stu - (as+B8t+yu) = 0 C(3.2)
where
.22 22,2 2 2 2
Ka = (m1 5 m3m4)(m1+m2 my m4)
.22 22 .2 2 2 2
Kg = (m1m3 m2m4l(m1+m3 m5 m4)
.22 22,2 2 2 2
Ky = (mimj=momy ) m,+my=m3-mg)
with
K=Em?=s+t+u.
4

The asymptotes of the curve are s = 0, t =0 and

u = 0 and it intersects them on the line
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Kotanski has classified these cubic curves into
fourteen types distinctive to different ratios of the

masses. If two pairs of the masses are equal or two masses

= 7, the curve depenerates to a line and a hyperbola. If all

the masses are equal, the curve degenerates to three lines.

For exact figure we can soclve t from

2 2.2 2
G(s,t,m4,m1,m2,m3)

]
o

+
N

tT o= my o+ mg v (28)7] [(-s + m? = mg)(s * mi - m%)

t+

2 2 2 2a
/&(s,mq,mZJ (s.m4,m3)]

It cen be drawn in Cartesian st-plane but usually we have the

symmetrical representation, see Fig. 2.

The points, where the boundary curve of the physical

reegion intersects the asymptotes, are:

_ . oK . BK
# = 0 £ B-Y YT BTy
& 8 0 g & - i, g o= 2K
a=-y a=-y
u =0 s = - L t = ok .
a-B8 o~

For & rough draft we need, in addition, the tangents

parallel to s =0, t =0 and u = 0.



- 74 -

These are

g = (m1 z m2)2 , s = (m3 = m4)2
= * Y = + 2
t = (m,1 ma) P t (m2 m4)
u = (m, = m4)2 , u = (m, * m3)2 .
Now in channel S
s 2 max [(m1 + m2)2, (m3 + m4)2]

in channel T
t 2 max [(m, + m 3%, (m, + m )2 ]
- 1 3"’ 2 4 .
in channel U
> 2 2
u 2 max [(m1 * mg)e, (m, + m3) 1.
Between the tangents there can be a closed area with
G <0

where the decay of one particle into three particles is

possible, if the masses are suitable.

In Figs. (3.2)-(3.7) we show different cases of mass

combinations.

The kinematic function G gives also the boundary of
so-called Chew-Low plot, that is the mass of an outcoming
particle (or a group of particles) as a function of the
momentum transfer t. The curve G = 0 gives actually only
the upper limit for the invariant mass M2. The maximum
of the curve is at M = /§-m,. The lower limit must be 2 O.

If we have a group of particles, the lower limit is
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As an example, in Fig. (3.8) the Chew-Low plot of the
reaction K =p » (7 #% )A is given.
The shape of the plot is the same for different s, main

variation is in the size.
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V. Three Particle Final State

1. Decay of one particle into three particles

We consider the decay

A1+ 2+ 3.

In the absence of spin, there is no preferred orientation

in space. Of the five indepent variables describing the final

state, there are three angles on which the process cannot

depend. A usual 'choice for the two essential variables

take two of the two particle invariant masses

_ 2 3 .
Sij (pi+pj) . - i <
Due to four-momentum conservation these are related,
expansion of (p1+p2+p3)2 gives

= m2 + mf + m% + m3

S12 T Sq3 * S23 A

The momentum of particle 1 in the rest frame of -

is obtained from the two particle decay A i+ (§+k)

./ 2 2 ' :
PY = Almy, me, Sjk)/zmA i

is

A

to

(1.1)

(1.2.)

(1.3)

and similarly for 2 and 3. The relations between energies and

Sjk are linear,
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5
+omy sjk)/ZmA : (1.4)

The physical region for the pair S42+ So3 is given

by the requirement A3 positive or

~

2
u(s12. Sqg3s Mys M5, My, m3) <0 . (1.5)

2. The Dalitz plot

A plot of experimental events with three particles in the
final state in the Sij‘ Sjk plane is useful for two reasons.
If the matrix element is constant, the distribution of events
in the Dalitz plot is constant. Any structure in the reaction
is thus clearly apparent. Alsc because the variables are two

particle, masses, resonance structure appears simply as strips

with higher density.

The constant density can be derived starting from the

three particle phase space integral

a’p, da’p, d¥p;
Ry = S (p-p1-p2-p3). (2.9)

8E1E2E

We first integrate (2.1) over p; with the result

SV e-€.-E,-E) ¢35, d°
. 2 1 "2 53 Bq P2 (2.2)

2 E3 2 E1 2 E2
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\

2 2
Eq = //(E1 + EZJ *my .
Now p, and p, are arbitrary, the energy ©&-function takes

care of energy conservation. The next step is to integrate over
the angles: first over the directions By relative to a fixed
direction of p,, then over the directions of p, itself.

Call 6 the angle between Bq and B> and put cos® = § .

Then the Ffirst angular integration consists in replacing d3E2

by

2T1P dP, dg
and the second angular integration (because after first

integration no direction is distinguished any longer) in

replacing dBE1 by

Hence we obtain

a(/3-51-52-53) 5 Pf Pg
Ry = 87° ———= dP, dP, d& (2.3)
2 Eq - 2E, 2E,
where
1\
_ 2, 52 2
E, = /P1 PS *+ 2P,PoE  + mg .
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We now transform the integral to the variables

m

u

o
N

+

3
- N

I
u
-
+
3
N

by means of

The Jacobian is easily found to be

- -1

. 4
2 (P PyE) | BlE4E5ES) _ EqEpEy
' 2.2 "
3(E,E,E,) a(PPP,) paPs

Inserting this into the integral (2.3) yields

§(/s-E,~E~E.) E E.E
d%R = o2 172 737 1 23 p2p2 4e ge dE
c e C 2.7 TPz 9849520t
1E2E3 1P2
iZﬂl*z

. ‘j/é(/s-E1-E2-E3JqudEZdEB

. .
™ de,1de2 (2.4
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Thus the probability density in E E2 plane is constant.

1'
Because E, is linearly related to S5k cf. (1.4), also

the s.., S5k plot will have constant density.

Before starting the calculation of the boundary of the
Dalitz plot we shall find the values of the effective mass of
one pair corresponding to the smallest and largest possible
values.of the other pair of particles, that is, the coordinates

of points A and B in Fig. 5.2.
The smallest value of the effective mass of a pair is

equal to:

= min - ,
Y sjk mj + omy (2.5)

This configuration arises when the velocities of both particles
are equal and equal to the velocity of the whole system "jk”

(because momenta By and p, are also collinear}:
By = By = By - (2.86)

Therefore also Lorentz-factors of particles j and of the

system Jjk are equal:

E. E Ye-E.,
= Jk_ . 1 (2.7)
mJ. m.+mk mj+mk
m.
E, = (/5-E;) e,
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The energy of the particle 1 1is equal to:

S+m§'(m.+mk3
= - . (2.3)

2 Vs

m

i

Therefore:

s-m§+(mj+mk)2 m.
E. = J ) (2.10)

2 Vs s ¥

Substituting (2.10) in the equation

ni 2 :
sik(s?;n) = s+ - zﬁgj (2.11)

one finds the value of Sik corresponding to the smallest

value of s.,:
jk

min 2 M 2 2
sik(sjk ) s + ms s mi+(mj+mk).} . (2.12)
m.+*m ¢
J 'k
[ 323(3T§n). S?;nJ are the coordinates of point A,g,
[513(52;n). s?%nd of point A5, respectively.

One can use (1.2) which relates the mass of the pair "12" to the
masses of two other pairs, in order to find the coordinates

of the point A12.
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i

n a similar way we can calculate the coordinates of the

points B on Fig. 2.1. The maximum possible value of s}éz is:

CEFM L s172 . m | (2.13)

Particle 1 1is now at rest in the CM system:

Therefore the momenta of particles j and k are equal:

Also the system Jjk 1is now at rest in the CM system, so that
the energy of particle Jj 1in the rest system of Jjk 1s the
same as in the CM system. The energy of particle j 1in the
system Jjk 1s given by:
_ 2, .2 7
(Ve-m,) *ms=mi

E. = (2.14)
J 2(/s - mi)

1/2

since the mass of jk system is equal to s -my .

The value of Sk corresponding to the maximum value

of sjk is equal to:

Sik(s?ix) = g + m? - 27 Ej . (2.15)
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And finally, inserting (2.14) in (2.15) one finds:

2

comaxy _ _ j_ 3 s
s;kls ik ) ms *'Vg‘mi Vs : (2.18)

i o -
[E ms

Egs. (2.13), (2.16) and (1.2) give the coordinates of all

points B.
The equation for the boundary of the DBalitz plot is
2 2 2
G(Sjk'sik's'mk’mj’mi) 0. (2.17)

Using (II.6.) the limits of s, for constant sy are

ma X

min 2 E,ATP,B '
S;jk T s *ms - e —d ot (2.18)
Sjk

with

_ 2
Ejk = (S+5jk mi)/ZVE

O
1

VNs.s ,om3) /218

(2.19)
_ 2_2
A = Sjk+mj mk

2 2.0
V&isjk' mj, mk) .

m
it

These complicated expressions for limits of effective mass
become very simple when the CM energy is much greater than the

masses of all particles, i.e., when



In this case (2.18) is reduced to the form:

min ~
Sik (sjk) = 0 (2.20)

max - _
ik (Sjk) s Sjk

S

and contour of Dalitz plot is reduced to the triangle (Fig. 2.3).

It is also of interest to look at the behaviour of the
Balitz plot contour for fixed masses, but changing energy.

The starting point is:

Then the contour is reduced to the point with coordinates:

2
S,3 = (m1+m3)

2

553 (m2+m3)
With increasing energy, point 812 (Fig. 2.1) moves up and to
the right from the starting point " /50" (Fig. 2.4). This
can be seen from (2.16), where

W

5 ) ma x .
for Vs —> oo 513(512 )= f;‘m3.



8%

an apparent

.

are. 1ncrea

B’12
on the other hand

e
19

the poin

Io) £
¥

coordinates

ingcreases,;

i1

i

15

very

'h energy resembles the case, when

rt
&y

the contour

and

ce perticles are zero,

thr

812 located at the

the

that

[

Ine answer 11s,

e system.

+=
|93

ina

0}
= 6
D)

(91

increases

energy

g

increasi

th

.

WlA

40

o)

—

39
-

Q
(6N

6]
43

n—l

812. In the

es of the point

(6]

respect to

masses are small with

en

roportional to

S.

is p

- By 2

A12

ance



(1)

~
B

w
(@]
(&l
ot
o+
]
Y3
-t
3
Q
O

two particles into three particles

The simplest collisions involving particle production

are in the category

a+b - 1+2+3,

Dynamicaliy these are of large variety. There are e.g. quasi
two body final states with subsequent decay of ocne consiuituent,
diffraction dissociation of the type a+b — a+(2+3), and "pure”
three body processes. However, the same invariant kinematical

variables are usually most convenient for all the reactions.

Accounting for four-momentum conservation, there are
3n-4=5 independent variables. In the absence of polerization,
one of these, rotetion around the beam axis, is trivial; the
process cannot depend on it. The four essential variables could
be chosen so that the set would be symmetrical with respect
to PasPpsPge The gquantum numbers of the final state particles,
however, usually are such that one particle is related to _a_
and one particle to _b_. The two particle invariant masses

connected with the ordering in Fig; 3.2. are then

s (pa+ph)é and the variables
o r 2
s, *© Lp1+p2)
s, = {po*+pa)?
2 - 'P27P3
= -5.1% (3.1)
4 (pa Pyl :
_ 2 _ o 2
ty = pymp)” = (pymPy7Ry)



There is & third pair of similar variables, 5.3 and ta2 .

which are obteined from (3.1) by permuting indices:

2

(3.
. 2
t_\2 - (pa—pz} .

5,5 = (p,*py])

[N
~—

txpansion of (pq*p2+p332 in two particle masses gives
) 2.2 2
§,*S,%S,5 = S*m,+m,tmg. (3.3)
Similar expansion of the last expression in (3.1) results in
e B -
taz == S,] t1+t2 ma+m1+m2-' (3.4)

A pair 84,t2 or 52,t1 corresponds to a quasi two

particle process depicted in Fig. 3.3. The pair 51,t2 thus

determines the momentum P1 and angle 61 in @ given frame.
In CM Tor fixed Sy By must lie on the sphere

- l v

o« VA(s,m?,s,) /2750 (2.5)

The values of j=p in lab for fixed s, are on the ellipsoid,

obtained from (3.5) by a transformation in the z-direction.

The result is given by (IV.1.7), or
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with

%
a = Py 2.2
S ma+mb s _
b = §Fy = = =t Py (3.7)
Zmb'vg
= WA ER
§a~ Yqu

For a fixed tq, the surface formed by the corresponding By

is a sphere in the antilaboratory frame,

PﬁL - \/?\(mg,mf,tq)/Zma (3.8)

In CM this is an ellipsoid and in going further to lab it
becomes usually a very slim ellipsoid. Examples of surfaces of
constant s, and of constant t1 in lab are drawn in Fig. 3.4.

For fixed s,, py must lie on the sphere
) -
PY = VAls.m3.s,) /275 (3.9)

in CM. For fixed tq, B3 is on a sphere in 1lab,

I
L .
Py = T/Almb.m3,t2) /2mb. (3.10)

In designing experiments, it is useful to have some

- . . . . L L L
f-eling as to what kind of momentum configuration Bq» Bys B3



will correspond to a given set 54,52,t4,t2. Suppose 52,t4
i H i

93

to be given so that p is fixed. We teke the coordinate axis

i
to be rotated around beam so that p, 1lies in the x,z plane.

here are now two remaining degrees of freedom. Thus for
example, p3 must lle on e definite surface. The equation of
this surface is given by the missirng mass constraint, the
particle 2 must be on its mass shell:

2 _ o 2
m, = (pa+pb pPympR3l" . (3.11)

Thi§ is a surface of second degree in pgx, p;y, péz .
Instead of solving (3.11) through a tedious algebra, one
can proceed via the frame in which {3.11) is a sphere. The
decay ot the system 2+3 1s spherically symmetric in the frame
Po*By = 0, 1.e. p_-py = ~p,. This is related to lab by a
Lorentz transformation along p_-p, ., which is thus parallel

i
to pL‘-pL . The transform parameters are cobtained from
a ™1

Y= Eg/my = (s, eml) /2m Vs, (3.12)

Denote now the direction cosines of E;'E% by

S L__L
(Ea~9ﬁ)x (Ea-E1)z
K = T Y= — (2131
]Ba-E? ‘ Ea—E'] l

The allowed values of Eé then lie on the ellipsoid
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L L L2 L L 2
(Ypz -Kp P &ps *yr3,-5.)

3x 3z , "3y, 3% TP3z §b = 1 (3.14)

2 2 2 :
(=] a b
with
2 2,
= s =

a 'Jﬁ«sz.mz.m3) /2 Jsz
Cow - 2 Z Z }
b = (sy-t,+mi)V Als,,m5,m5) /4m s,

2
*
2

2 2,1
(sz-m m3YJX(52,t1.mb) /4mbs2

>

An example of the mass constraint ellipsoid (3.14) is drawn in
Fig. 3.5. Interchange 2<«> 3 in a,b,fa will give the parameters

for the surface of oL
- .‘_2 L]

The points on the ellipsoid (3.14) are in two to one

correspcndence with points on the s t2 plane. The surface

47
is symmetric with respect to the x,z plane, and reflection will
not effect the invariants. The boundary of the region in

51,t2 is the image of the intersection of the ellipsoid and the
x,z plane. In this case namely the vectors Bqs By» Ry are
linearly related.

The intersecticn is an ellipse. Amusingly, also the boundary

ot the 51,t2 region is an ellipse.

To construct p,, p,,» B3 1in a given frame, the shortest

way 1is to find 91, 61 from s,,t, and P3, 63 from 51,t2.
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he relative polar angle is determined by (II.6.20).

Explicitely, substitution of the invariants gives

(Eaxg1)'(gax93)

cos (g, -¢5) = - 3
Ipa p1\(pa p3\
(3.15)
b a 1)
- G <b a 3/
\
Vagtbandybas)
in which
2 <2
2mb s ma mb t2+m +m3
(ba 1y, _ 1 2.2 2 e 2
ng & 3) = 5 s-m_-m_ 2ma s t2 5 4*my
-s-t1+52+m2 -t1+m§+m§' s—s1~52+m§
2 2 2
Zmb s-m_-mg s t1+52*m
1 _ 2 2 2 _
AAaib a 1) = 3 s-m_=m, Zma t1+m +my
o 2 - 2.2 2
s t1+52+ma t1+ma+m1 2m1
(3.16)
2 2 2 wl
2mb s-m_ mb to+m +m3
1 _2_2 2 o 2
<A3[b a 3) = 3 s-m_-mg 2ma 45 t2+s1+mb
-t +m2+m2 ~s-t,+s +m2 2m2
2 b '3 2 °1 b 3
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In using (3.16) it is preferable to first cancel the several

large terms with opposite signs to avoid numerical errors.

When the reaction is dominated by a two particle resonance
in the final state, the decay of this is best studied by
replacing two invariants by the aximuthal and polar scattering
angles in the rest frame of the resonance. The angle 6 , which

for the choice 2+3 for resonating particles is given by

, 2 2 2 2 2 2
s.+s5.,(2t~-t,-m -mT-m3)+(t,-m ) (m5-m3)
cos® - 2222 1 b Ta T T 1 : 273 (3.173
2 2 2
-besz,t1.mb) \/h(sz.mz.mB)

is called the Jackson angle. The angle % defined as

[(po*p-dxps] [(pso+pa)xp,]
cos? = 2z By te 22783 2: (3.18)

| (ey+ps)xpy | (po*tpg)xp,|

is the Treiman-Yang angle. Application of (II.6.20) yields ¥

as a function of invariants.

(b 2+3 1>
Clp 2+3 2

cosff = o (3.18)
/a5(b 2+3 1)84(b 2+3 2)

B 2#3 1
where G b 2+3 2 depends linearly on Sy
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| 2 2
b 2+3 1 “aly SpTtyrmy syt rEprmy
G - 2 2 2
.b 2+3 2 8 52—t1+mb 252 S 5*m5-my (3.20)
s-s5.+t -m2 S-S —m2 s -mz-mz
27t Tm, 2°My 17My My
=V + da_ (b 2+3)s
. g
Differentiation and use of
sinzq = 8,(b 2+3 1 2)8,(b 2+3)/8,(b 2+3 N&y(b 2+3 2)
(3.21)
yields
dp = 5 ds, /a,(b 2+3)/a,(b 2+3 1 2" . (3.22)

1 r =
One value of s, corresponds to two values of ?(g‘and 27 ?).

For integrals this means

ma X
27 54

do = 2| do = ds, YbA_yb . (3.23)
¥ j’ 1 2774 .

0 0 STln



4, The physical repion in terms of invariants

Symmetry properties of the process 2 - 3 are exhibited

more clearly by adopting the notation Pg = “Pgr Pg = "P_-

The variables

s 2 3 =
Si = (pi+pi+1] ) 1 1,-.-,5 (4-1]

where Ps = P, » are symmetrical in cyclic and anticyclic

permutations. These are a basic set of invariants. Any other

. . oy . 2 .
invariant can be written in terms of mi and Sy i =1,..0,5.

To see this, it suffices to observe that for a non-neighbouring

pair, e.g. 1,3, one can write

. 2 2 2 2
(py*p3)" = (pg*pg)™ = (pyvpy)™ = (py*pg)
+ m% + mg + mg " (4.2)

Kinematic variables obtained through a permutation which is
not cyclic or anticyclic are linear functions of the old
cnes. In the reaction 2 -2 the basic set is s,t and the
complete set s,t,u. For 2 -3, the vasic set is (4.1) and

the complete set contains 10 variables (p1+pj)2.

The physical region is b, < 0. The Cayley determinant

representation of By exhibits the cyclic symmetry,



- 95 -

0 1 1 1 1 1
2 2
1 0 mo s, t1 m'y
2 2 .
1 1 m- 0 mg ts s,
A, = - - 2 2
4 1 6 1 S5 m3 0 m, 5 (4.3)
2 2
1 t1 t2 my 0 m_
2 2
1 m, 51 S ma 0
Zm% 51+m -mg 5-52+m§ —t1+m +m
- _ 2 _ 2
1 S *my m 251 s+s1 mg Sy t2+m _
= TTE (4.4)
§s~52+m S*+s,-mg 2s s+m~-m
~t,*+m_+m s,~to*m s+m_-m 2m2
1 2 a

A is a homogenous polynomial of fourth degree, and it is of

4

second degree with respect to each of its variables.

The phase space integral R3 is taken over the physical
region. There are various useful versious of R3 in terms
of momenta and invariants. We write them for unity matrix
element; general phase space integrals are then obtained simply

by multiplying the expressions by the matrix element squared.

Regarding the process as two successive scatterings,

Fig. 3.3.a, the integral is
(V33m1)2
2 2 2
R, = d52 Rz(s;m1,52) Rz(sz;mz,m31, (4.5)

2
(m2+m3)
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where any representation of R, can be substituted. In terms

of t,,t, and angles (4.5) becomes (c.f. (3.17))

/ dt,0(~6(1)) 0(-6(2) ~
R -fds dg f. f . (4.8)
3 ZJ 1 4/F(s m » T ) ?2 4/rks Z\

2' 1lm

The step functions ©(-G(1i)) limit the contribution to the
integrals to the physical region G(i) ¢ 0. The arguments of

G(i) are those of the scattering processes,

2 2 2
1 =
6(11 G(S:t1n52:malmb:m1] » (4.7)
) 2 2 2
G(Z) = G(Szpt2:m31t1ambpm2)

A change in the polar angle P of the second process is
related to that of the invariant s, by the equation (3.22).

Substitution in (4.6) gives

de, a5, d6. dt, dE
R, | 41 521 P2 TR Cr2 ol-8,) . (4.8)

3
4/x(s,m2,m2]'8/ -A
a’'b 4

The argument of 4, appear explicitly in (4.3).



5. The Dalitz, Chew-Low eand t1;§2 plots

Structure in the matrix element 1s conveniently seen
in bubble chamber data-by plotting the events on plane, i.e.
as a plot in two variables. If s, and s, are chosgn, the
absense of momentum transfer variables implies that the
situation is here identical with the process A — 1+2+3.
The plot is thus the Dalitz plot with constant probability
density for constant matrix element and boundaries as discussed
in Section V.2. Fig. 5.1 illustrates a typical experimental

distribution, pp = pT n at 5.5 GeV/c.

A plot in a momentum transfer t' = (pa~pi)2 and its
conjugate mass s' = (pa+pb~pi)2 is the Chew-Low plot.

The physical region in the s',t' plane is given by

Z,mf) <qQ . (5.1)

Ve e
G(S;t - ,maumb

The probability density of the Chew-Low plot is a function the
variables. When the system with mass VET consists of two
particles and the matrix element of the total process is

unity, the phase space integral (4.5) is from (III.4.6)

(VE-m,)?

-
dt1 J:&sz.mg,mg)

PA 2
4V%(s,ma,mb 4s .,

(5.2)

2
(m2+m3)
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Some of the structure in the S5 direction is due to

kinematics.

Because the dependence on t1 and s, in (5.2) is factorizable
it is possible to even out kinematic dependence on S Let

r{x) be defined as

X \
J( ?/A(y,mg,mg)

dy (5.3)

rix) =
Yy
(myem)?
= 'Mi[y.mg,mg)
2 2.2 ,2 2. 2 2./ 2 2.
) 1[m2—m2)lo (m2 m3) (m2+m3)y+[m2 m3) l(y,mz,m3)
Z' My ™My 108 5575 223

2. 2 2_ 2
(mz-ma) -(m2+m3)y-(mz-mSTV&(y,mz.ma

T—
2 2 2.2
'Vk(y.mz,m3)*y-[m2+m3)

- [m§+m§]10g (5.4)
2m2m3
Eq. (5.2) 1is then
R, = e dr dt, . (5.5)

3
2 2
VA(s,ma,mb)

and the ‘r,t1 plot has constant event density.
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Turning now the t t, plot we note that the boundary

17
of thé physical region, by = 0, is a fourth order haomo-
genous polynomial which is of second order in t1 and ts.

In Fig. 5.2 representative examples are given and in Fig. 5.3
the effect of the incoming energy is seen. The probability
density for constant matrix element is obtained from (4.6).

The integrals over ¢, and @, give (2?)2, and the integral

over s, can be computed in closed form. The result is

+ + 2‘
i W2/4 P t2 m +V&(s1,t2,ma)

R, = dt,dt., log .
3 2 2\ 1 2 - 2 A\/ - 2\
A(s,ma,mb) sz-tz-ma+ A(s1,t2,ma)

+
Here 52 are the maximum and minimum physical values of Sos

and are determined from G(1) = 0, G(2) = 0 with G(i) in
(4.7). An example of the phase space distribution is shown
in Fig. 5.4, where the events have been generated by computer

using a Monte Carlo method.
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VI. Multiparticle Production

1. Choice of variables

In the process

a+b -+ 1+2+ ,.. +n (1.1)

the particles are on the mass shell, pi = mg , and

energy and momentum are conserved. Thus there remain 3n-4
independent variables ¢ which are needed to describe the
process (see Chapter III). There are a large number of
different descriptions that have been used. In fact, the
choice of appropriate variables for the description of a
multiparticle amplitude has posed a long-lasting problem
to both theoreticians and experimentalists in particle
physics. No clear choice has emerged, and it seems that
there is no priviledged set of variables in general.

When a process 1s analysed in terms of a mathematical
model, a basic criterion of usefulness is simplicity.
The variables should be chosen so that the function
describing the process is simple and transparent. The
essential functional dependences in the expression can
then be interpreted as distinct physical effects. A
particular example of simplicity is a factorizable
function. The factors correspond to uncorrelated, in-

dependent physical phenomena.



- 102 -

In particle processes a common phenomenon 1is
resonancé formation. If the quantum members are suitable,
the distribution in a two-particle invariant mass shows
peaks at definite masses with known widths, and the
production mechanism affects only the strength of the
peak.

A universal feature is also peripherality. When the
incident energy increases, the average transverse momentum
of the emitted particles remains limited, even at cosmic
ray energies, to about 0.4 GeV/c. At energies above a few
GeV this means that the particles are strongly correlated
along the beam axis. A second, but not equivalent, way
“to state peripherality is the multiperipheral model.
According to this there always exists an ordering of the
final state particles such that the momentum transfers
ts in Fig. VI.l1l.1l. are small.

Relativity principle would seem to imply that
invariant variables are best suited for the analysis of
particle collisions. In practice this need not be true.
One example is the convenient way of expressing peri-
pherality as a limiting distribution of traﬁsverse momenta.
Secondly, if n 1is four or larger, use of purely invariant
variables leads to cumbersome mathematics. E.g. the
boundary of the physical region is given by a set of
nonlinear equations.

In practice, multiparticle processes are studied -
by measuring total cross sections and distributions in

one or two variables. If data of a collision process



- 103 -

with n particles in the final state are plotted, this
means that one has to neglect 3n-5, 3n-6 or 3n-7
essential kinematic variables. In testing a dynamical
model, it similarly means integration over the same number
of variables. Calculation of phase space integrals is
thus an important tool for the multiparticle physicist.
However, one should also have more intuitive insight
into thé different types of phase space effects. In the
case of several particles the purely kinematic effects
are far from trivial. These must be properly separated
from dynamic features which reflect the structure of the
collision amplitude. A good presentation of data
emphasizes the dynamical aspects of experimental findings.
The problem of data presentation is central in the study
of multiparticle processes.

We list several common sets of variables for the

process (1.1):

a) Data are conveniently listed giving the momentum
components of the particles in each event. Within
experimental accuracy, these should be related by the
four energy-momentum conservation equations.

1/2 S1/2
n-1> *°° * S2

of the intermediate states in the cascade decay in Fig. 1.2.

b) Let s to be the invariant masses
These are supplemented by the decay angles ei’?i in

the rest frames of S, Sp_1» c+c» Sp- For this set the
equations defining the physical region are the simplest

possible.



w L% =

c) A matrix element containing resonances, multi-
Regge behaviour or both (Veneziano), must include the
relevant two particle invariant masses Sij = (pi+pj)2
among variables.

d) Group-theoretical analysis suggests simplicity
in multiperipheral models in terms of the Toller variables
(Section VII.3). These are two-particle invariant masses,
momentum transfers squared, and the so-called Toller
angles w: . The main difficulty here is that the expression

for the total energy is unusually unwieldy, except in the

limit of infinite energy.

e) Transverse momentum distributions are at high
energy fairly independent of other properties of the
reaction. This implies that ;il are natural variables,
which in some approximations can be put to zero. Van Hove
has suggested (Van Hove 69) that the remaining interrelated
Pin be replaced by certain n-2 angles qa . These
longitudinal phase space plots will be discussed in

. Chapter VIII.

f) Combinations of invariant and angular variables
and consequent projections of phase space into one or two
dimensional plots to analyse data have been discussed in

some detail by Nyborg (Nyborg 69, 70).

Once the choice of variables 1s made, there are
three main questions to settle to be able to use them in

practice. 1) The range of variation (the physical region)
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must be féund for the set of variables. 2) The phase

space factor in the phase space integral must be determined.
If the matrix element were constant, this factor would

be the density of events in these variables. 3) The
relation of the variables to P; and possibly to other

usual variables must be known.



- 106 -

2. Recursion relations

A multiparticle reaction is often on the basis of
experimental evidence known to take place via resonance
formation. In the intermediate state there are less than
n unstable particles which then successively decay to
each other through the emission of the final state
particles. Now, regardless of the actual existence of
such intermediate states, an n-particle final state can
kinematically always be considered as the result of a
sequence of simpler processes. This is formally seen by
deriving recursion formulae for Rn . There are numerous
ways to this. Some of these contain kinematic variables
which provide simplest possible decription of the physical
region of the n-particle process.

The total cross section was in Eq. (III.2.2)

defined as

n d3p n
. P4 2
o = FTITT — ¢ (py*pp-) Py)lAl (2.1)
i=1 i 1
with the flux factor
F = 2x<s,m§,m§>l/2(2n>3n‘“ ) (2.2)

To derive new representations of (2.1), it suffices to

neglect F and IAI2 and consider transformations of

n d3p n n
_ I7 i .4 _ 4 2 2. .4
Ry = 11 |z 6 (a-) p;) = || [a*ps6p2-n2rs(a-py-,s,mpp)
; i=1 1 i=1

(2.3)
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To get o one just "multiplies" (2.3) by the integrand
F-[A]z. A distribution in a variable x is then
dcg/3x (Eq. (III.2.7)).

A covariant recursion relation based on the physical
picture of sequential decay, Fig. 1.2, was first derived
by Srivastava and Sudarshan (Srivastava 58). Grouping
together the factors in (2.3) which refer to the system

l,..., n=1 results in

d P n-1
R_(q) // W~ia<<qp> p;)
2En i=1 i 1

3
¢ P ( ) (2.4)
= R g-p R R
2F n-1 n

n

A still more perspicuous version can be written. If p

is any time-like four-vector, the identities

‘/éuqau(p—q) (2.5)

/szs(pz-Mz) (2.6)

1

o)
1]

are valid. We introduce then the n-1 particle momentum

) . 2 _ 2 |
- Qu_y = Pyt...*p,_, and its length M__, = q  , to (2.3)

by these identities,
- 2 4 2 2 4 2 2
Rn(q) = /@Mn_¥/; pna(pn-mn;/; qn-ls(qn—l-Mn-l) X
(2.7)

X 6 (q -P,~9,_1) }(f’ P 6(p -m3 2yt (q,_y=Py=+++=Py_1?-

The factor from the product sign onwards is R__,. One
then has a two-body decay followed by a n-1 particle

process,
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d'p.dq,_
R_(q) =J/€M2 1// Lo L Gu(q P.-q l)R 1€(a l). (2.8)
=1) 2E_2E(q_ .) n-lon=i°n
n n-1
b 3 2 _ 2 _ ,2 . s
Writing consistently q = Gy = Mn this 1s also
- 2 :
Rn(Mn) -]/'dMn_le(Mn,Mn_l,mn)Rn_l(Mn_l) . (2.9)
o)

Instead of taking a group of n-1 particles, one
can choose, say { particles to form the intermediate
1 leZula
state. A few steps analogous to the preceeding ones lead

to a "splitting" relation as follows:

_ 2 4 4 4 2 il 2 2 2 2
&

n
4 M " 2 4, - ‘
X 6 (qn-qz-ZZ;pi) d'py...d Pz5‘Pi'm1>'°-5‘P§'m§’5 (qejzzpi.
i+1 1

= 2 . .
-q/;Man_£+l(Mn,M£,m£+l,...,mn)Rz(Mz,ml,...,mz)
(2.10)

It is now obvious how to generalize these recurrence relations

to an arbitrary tree graph depicting a set of successive
Fig.VI.2.2.
decays. Each "unstable" particle will give one mass inte-

gration.

Let us now study these kinematical variables in
detail. For definiteness we choose a fixed graph, that in
Fig. 1.2. In the corresponding equation, (2.7), we can

integrate over p  and Q _, = ! using the four

-1l
delta-functions. According to (IV.1l.) the result is
2 2)1/2
n-1’"n

R (q
8 Mi n-l'"“n-1

A(Me M
n ) (2.11)

_ 2
Rn(qn) -./;Mn_ldcosen_ldqh_l
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The angles en—l"fn-l are the angles of emission of
the system 1,..., n-1 with momentum Q.1 in the

rest system of 1,...,n = 0). The decay can here be

(9n
regarded as spherically symmetric and the orientation of
the coordinate system can be chosen at will,

The ranges of variation of 6,¢ are 0 X 6 < r ,

0 ¢ < 2n . Also M has simple limits. It must be

n-1
at least larger than ml+"‘+mn-l’ The upper limit is
obtained when the energy Mn goes totally into the rest

masses Mn-l and m, . We thus get

1A
=<
A
=
|
=]

(2.12)

Iteration of (2.11) leads to lower R£ and ends
with Rl(Mi) = G(Mi-mi). Carrying out the Mi-integration

leaves Rn as a 3n-4 fold integral

(Mn'mnyl 1 20

) ) w2 m2y 12
Rn(Mn) = dMn-l dcosen_l d?h-l - M2 X
"n-1 0
(Mz-mgy)t 1 2m y 2
: 2o i n2HH/2
e x dMm, dcos&a d?3 : M2 dc0562 d?z X
uz 0 0
A(Mg,mi,mg)llz
X 5 . (2.13)
8 M

2



Fig.VI.2.3.
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Because of the simplicity of conditions defining the
physical region, eq. (2.13) has important applications. It
is the basis of the Monte Carlo method of Chapter X.

The transformation from (2.3) to (2.13) is general
and exact. To use (2.13) for an arbitrary matrix element
A, one should express A in terms of Mk, 81> Fx and
put it inside the integral. Unfortunately, physical
processés rarely resemble that in Fig. 1.2, and thus

M are not very natural for interpretation of

x* %% Px
data or for theoretical models.

A recursion relation is an algebraic expression
for the physical picture of a sequence of basic processes.
In the preceeding the basic process was the decay 1-+2
(one particle goes into two). Any decay l+k or collision
2+k would serve as a basic process. The cases 2+2 and 2+3
have been discussed by us (Byckling 6%a,b). In 2+2 the
invariant momentum transfers t; can be included among
variables. It is the basis of the peripheral Monte Carlo
and we show here the idea behind it.

The multipheral graph in Fig. 1.1 is cut at the k'th
exchange and particles 1,...k-1 are grouped together;
The basic process is then the scattering of mi and Ty
to form Mi_l and mﬁ . The scattering is described by
scattering angles 6,y or equivalently by ¢ and
momentum transfer squared t . One uses (Chapter IV) to
express the scattering process and includes Ry (M, 4)

as weight function ('matrix element") of the subsequent
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decay of Me_q- The recursion relation is then

27
_ 2 0(-G(k-1))
Re(Mpoty ) = [dMy g (dty o [ dg 7 7 175%%-1 M1 tko1?
Ya(M_,t, ,m7)
0 k?> "k’ a
k-1
(2.14%)
The step function ©(-G(k-1)) 1is zero outside the

physical region of the scattering process. The process is

physical inside the Chew-Low-plot: Mk—l:”k-l and

2 2 2 )

oMo Mg sty sMe_ 1) € 0 (2.15)

G(k-1) = G(Mi,t

The aximuthal angle varies freely, 0 £ ¢ £ 2n. The axis
around which ¢ 1is defined is the "beam axis" of the
collision, i.e. the incident direction of Ty and mi .

Iteration of (2.14) leads to

. 27 )
2 2. _ 1 2 0(-G(n-1))
Rp(Mp>my) = ol o 2172 //;Mn-l Otz d?n—lux(MZ - 7,177
n>MpMy 4 0 n-1°’‘n-1'"a
n-1

2w 2w
2 _ 0(-G(2))
B aus x.//dM2 dt2 d?z 5 7173 dtl d?le(—G(l))
4Ua(M;,t,,mo)
Mo 0 2?72"a
0

(2.16)

When polarization is zero, rotation Pr-1 around the beam
axis is irrelevant, and could be integrated to give 2w.

That would leave 3n-5 variables. Because the ti's appear

in (2.16), peripherality can be imposed in the sense of

the multiperipheral Todel. Thus (2.16) is suited to models
n-4 a.t.
with e.g. ]AI2 = TTe**.
1
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The multi-Regge description is of the type

n-1 a.talt. (2.17)
IA[2~ TTsg.r 12 .
i
1
. : 3 . _ 2
The two particle invariant masses s; = (pi+pi+l) must

be included among variables. A formula analogous to (2.13)

2
p S. .
1? Y1 "1

and (2.16) can be written in terms of M
(Byckling 69). The basic process is 2-+3 and the inte-
gration limits will be determined by the somewhat

unwieldy conditions a, < 0.
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3. Physical region in terms of invariants

When invariant variables are used to discuss multi-
particle reactions, there are two main kinematic problems.
The range of variation (physical region) must be
determined, and the number of distinct momentum con-
figurations related to one point in this region computed.
Secondly, the kinematic factor appearing inside the
phase space integral must be calculated by computing
the Jacobian of the transformation to the invariant
variables (Section &).

The physical region is best discussed by starting

from the reaction
0 » 1+2+ ... +n , (3.1)

The physical region of any process obtained from (3.1)
by crossing, e.g. O+n + 1+ ... +(n-1) will be shown to
be limited by the same ;et of universal boundaries.

A natural set of invariants is formed by the

scalar products

(1j) = pipj s 1<i<jsn , (3.2)
in addition to the fixed masses pi = mi . The set (3.2)
contains %n(n-l) quantities (ij). They are linearly

related to two-particle invariant masses
2 2, 2 i3
- = .+ . - .+ .+ . .
S35 (pl p]) m3+m; 2(1i3) (3.3)

The invariant masses of three of more particles,

2 . . ;
S3iik... (pi+pj+pk+...) , are linear combinations of

(359,



- Lk

The process 0 -+ 1+2+3 involves 2 invariant
variables (Chapter V), and each additional particle
brings three more. The total is then 3n-7. A second way
to derive this is first to note that the reaction (3.1)
involves U4(n+l) four-momenta. Four-momentum conservation
gives four equations. The over-all Lorentz-transformation
(4 parameters) and space rotations of the whole system
(3 parameters) leave the process invariant. Finally,
the particles 1, ... ,n must be on the mass shell
(n parameters). The result is again 3n-7.

We see that there are %(n2—7n+lu) relations
between the quantities (ij). One of these is the invariant

equation due to four-momentum conservation

n n :
2 2 2 2 o
mg = (1 p;)" = Imi+2 ) (i3) . (3.4)
i 1 %]

Further, because in a four-dimensional space five or
more vectors are always linearly dependent, the Gram
determinants with n>4 vanish identically, as shown in

_ Appendix A. We then set up the equations (with notation

iapi)
A5(123U5) = 0
- 12345
- 12345, _ 12346, _

and so on. Now each equation contains a new relation
between (ij). Their number is %(n—B)(n—u), and we have

thus found all the necessary equations.
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Let us now compare the present situation with
n = 3,4, For n=3 the set (12),(13),(23) corresponds to
Mandelstam variables s,t,u. The relation (3.4) is
stt+u = Zmi . For n=4 there are the variables (12),(23),
(34),(135,(2%),(1%), which are connected by (3.4).
One can use (po-—pu)2 = (pl+p2+p3)2 to get (13) in
terms of (12),(23) and (40), and similarly for (24).
Finally (3.4) gives (1l4) linearly in the (i i+l). Thus
one finds that any set of invariant variables (of the
type discussed here) is linearly related to (01),(12),

(23),(34),(40) or S,t1557,8,,t in Fig. (V.3.2), and

2
all choices are essentially equivalent.

Beginning with n=5 the choice of independent
invariant variables ceases to be arbitrary. The reaéon
is the four-dimensionality of space-time reflected in
the non-linear equations (3.5). The complicated problem
of finding the equations for the physical region
in terms of invariants was first discussed in detail
by Asribekov (62,a,b,c). A complete solution was given
" by Byers and Yang (Byers 64). In a different form the
solution is given by Poon (70). A third formulation,
explicit generalization of Asribekov's equations to
arbitrary n , is also possible (Morrow 70). Conditions
in definite sets of variables have been considered
by Morrow (66) and Kumar (69,70), and the case n=5
by Nyborg (65), and McNeil and Morrow (McNeil 69).

We state here one set of conditions defining

the physical region R and indicate its justification.
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Let R be a space with 1 time and s space dimensions.

1s
The physical space is Ri3- LE Bys e+ 5P, all lie in
a plane, on a line, or vanish, P> «+- >P, belong to
Rips Rll’ RlO’ respectively. Thus if Pys> -+« »p, are
in R;3, they are inside the physical region R . The
boundary is given by R12’ Rll and R10 .

The physical region is specified by the following
statement. The time-like four-vectors Pys ++- P, with

positive energy components are in R13 if and only if there

is such a permutation of Py s +++sP; that
1 n

Al(l) > 0, A2(12) < 0, A3(123) > 0, Au(123u) < 0 (3.6)

8(123uk) = 0 K =5, «oo yn (3.7)
1234k, _
G(153ug) = O 5<k<Z<n . (3.8)

Let us try to understand the content of (3.6)-(3.8).
Because P is time-like, we can take the frame pl=0'

According to (A.3), (A.8), (A.11l), (A.l4), we have

Al(l) = mi

8,(12) = -mP3

24(123) = m?p2Pisin%e,, ,

8,(1234) = —mi ngPﬁsinzezssinzezusinz?.

Thus (3.6) is exactly equivalent to the existence of
P>Pp5P35Py, - Further, according linear algebra (Gant-
macher 53), (3.7) and (3.8) are equivalent to the linear

dependence of each of Pgs +++sPp ON Pys «eesPye Thus

n

(3.9)
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(3.6)-(3.8) imply that Pys +..,p, are in R, 5 and
conversely.

Next we look at‘what happens when (3.6)-(3.8)
fail. First, if (3.7),(3.8) are not valid, DysesesPy
cannot be a configuration in real space-time but a
higher dimensional space is needed. Secondly, if (3.7),
(3.8) are valid but there is no set of four pi's such
that (3.6) applies, there are two alternatives. Among
A,sAs54,  there is always at least either one incorrect
sign or, if not, then one Ak=0. In the latter case, it
is seen from (3.9) that Ak(l...k)=0 implies

A (1...k2)=0. We thus obtain the boundaries of R:

k+1
Rypt Aq(ijk£)=0‘ for 41l A;ewxs b
Rll: As(ijk) =0 for all i,j,k
Rig: Az(ij)=0 for all 1i,j

with lower A, 's in (3.6) intact. As to the wrong signs,

k
at least one of the physical quantities in (3.9) would
then be imaginary.

A completely symmetric characterization of R is

possible (Byers 64). Define the sums

o= D™ (410,001 ), 1i <. <i <n (3.11)
Thus e.g.
n
- 2
B, = Ial
1
o= (-1 .
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Then the necessary and sufficient condition for Pys++-sPy

to be 1in Rls is

&, > 0, A, >0, ... , &

1 >0, (3.12)

Bogp = +vv = b =0 . (3.13)

It is easy to see that (3.12), (3.13) are necessary.
I Pys--+>p, are in a s+l dimensional space, according
vanish. Then (3.13)

to Appendix A A A

st2? “s+3? °°°
follows. Further, (3.9) imply directly (3.12). The
sufficiency of (3.12), (3.13) are shown in (Byeré 64).

The invariant mass (pl+...+pn)2 is not fixed by
the conditions (3.6)-(3.8). Usually the reaction (3.1)
is studied at fixed energy, and one must supplement
(3.6)-(3.8) by (3.4). As shown earlier, the number of
indepéndent invariants is now the same as the number of
essential geometric variables. Thus each combination of
invariants corresponds to a discrete set of different
momentum configurations. Two momentum configurations
related by a proper ortochronous Lorentz-transformation
are, of course, consicdered identical. The number of
distinct kinematic configurations is computed next.

The relation (3.4) is linear, and each (3.8)
is linear in the new quantity (kl). However, each (3.7)
which relates (lk),...,(4k) is quadratic in these
variables. In solving these equations there are in
all 2n-u possible choices of signs. A space reflection

does not change invariants, but otherwise the
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correspondence between Pys«+ 5Py and the whole set of
invariants (ij) is one-to-one. Thus a set of independent

n-3

(1ij) corresponds to 2 distinct Pyse«+sPy-

The scattering process
0+n » 1+...+(n-1) : (3.10)

has a physical region limited by the same equations
(3.4),(3.6)-(3.8). The main difference is that Eﬂ is
neéative. The sign of an energy component Ei is
reflected in (ij). In the frame p.=0 one has
(i3) = miEj > 0, If now either 1 or 3j is incoming,
the sign of P; ©OT DPj is changed, i.e. (ij) < 0.
To each channel corresponds a region in the (ij) space
disconnected from all others. These are all defined by
(3.4), (3.6)-(3.8). There are 2771 suen regions, because
there is one operation which does not affect the (ij)'s:
changing signs of all pi's.

In the process (3.1) at fixed mg there are
3n-7 essential variables, when the energy m of the
decaying system is fixed. In the collision process mg
and m- as well as other masses are fixed. In addition,
in real experiments the incoming energy (po+pﬁ)2
= m§+m§+2(0ﬁ) is fixed. There remain 43n—8 = 3(n-1)-5
independent invariant variables.

We have now, in principle, determined the physical
region of any decay or collision process in terms of
invariant variables. The equations are linear or

. s . . _ 3
quadratic in (ij) and thus also in s; , = (pi+..+pk)
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4. The phase space factor

The phase space integral (2.3) is now transformed
into the variables (ij) discussed in the previous section.
Then (3.3) gives trivially the transform to invariant
masses and momentum transfers. There is a large range
of possible combinations of integration variables. E.g.
one can choose only independent quantities, or take all
%n(n—l) quantities (ij) and insert delta-functions to
account for the relations (3.7), (3.8). Also the
variables themselves allow considerable latitude.

In transforming Rn the problem lies in computation
of the phase space factor, i.e. the Jacobian of the
transformation. We do it step by step. To write P;
explicitly a Lorentz frame must be defined. As the first
step we take the rest frame of particle 0. From (A.4)

follows 3(01»@?1 = mOPl/E1 and (A.8) gives

2 .
ad P dP.P \/-8,(01)
/———.—1- = 1+'rr/ 11 21r/d(01) " A S (4.1)

] 2 ¥
221 mo

Next we take the direction of p, as the reference
direction. The Jacobian is la((02),(12)»@(P2,coselz)l

2 .
= moPIPz/E2, and (A.8) gives

3 2
d'p dP,P, dcosé
—2 21rj 2 2 12 w/d(02)d(12) —_— . (4.2)

) ’ \/-A2(0'1) '
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. 3 _ 2 .
The quantity d pi/ZEi = dPiPidcoseidgwi/TEi
can be written in terms of (0i),(1i),(2i). The angle

between P1:P, and PysP; planes is called P o then

(0i) = mOEi
(21) = Ein - Pzpi(cose12°°Se1i'Sln61281neliC°STi)

The Jacobian is easily obtained as

3
: : ; P.
3((01)’(11)’(21)) = moPlP2 f% sinelzsinelisincpi (4.4)
3(P;,c0868.,p;) i
Thus one has
d3Pi e X farps o . . .
_7EZ = 5 [d( 1)d(ll)d(21)/moPlePi31nelzslneli31nq&»

According to (A.l4) this is simply

3
/d Py _ /d(Di)d(li)d(Zi) b 53
g 21, (1231)

Let us first study the decay
0 - 1+2+...+n (4.6)

Fixed incoming energy means the constraint (3.4). We

denote A
S Ll2 1.2
K=35m) -3 %mi ‘ (4.7)

Rn is then written in the form
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n

R = m fd(l2)d(13)d(23)Td(ll)d(?l)d(31)? §C L (i3)-K)
1=y 1<j

(4.8)

The decays to two and three particles have been discussed
in detail earlier. Let us in any case first rederive Fq
in (4.8).

We integrate over b3 in Ry s

3
2 P3 g 2
//~§f§ ) (po—pl—p2-p3) = 6(p3—(po-pl—p2f) . (4.9)

Next we insert invariants from (4.1) and (4.2),

M-A (01)
= 2i/é<01> ew[d(02)d(12)—————— §(2(01)+2(02)-2(12)

V-A (01)

2 2 2,2
-mo-ml—m2+m3)

To get final state (ij)&one uses the four-momentum

conservation to write

(01) = ~(23)+~(m mi mg mg)
(4.10)
- o2 2. .3 2
(02) = —(13?+2(mo-ml+m2 m3) i
Then R, becomes
72
R3 = =5 d(12)d(13)d(23) &§((12)+(13)+(23)-K). (4.11)
Ty
Thus FB = n2 reproduces the constant density of the

Dalitz plot.
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Once three vectors are given, they define a
coordinate frame completely. Thus the transformation
for vectors P> i=3,4,..., can be carried out using
(4.3). Let us look at the decay into four particles.
Analogously to the preceeding case, we integrate over

p, and use (%.1), (4.2) and (4.5) to get

Y

2
R, = 17J/d(01)d(02)d(lz)d(°3)d(l3)d<23) 5(X)  (4.12)
m 2\/—A (0123)
o L
where the delta function is
3 1
§(X) = 6(22(01) - QLE; (i3) - 2 mi + m2) (4.13)
1

1 1<i<j<3

Momentum conservation can now be used to find expressions

purely in final state invariants. One writes

} 1,2, 2 2 2 2
(01) = —(23)—(24)—(34)+2(mo+ml—m2—m3—mu)

and similarly for other (0i). It is straightforward to
check that (4.13) is one fourth of the delta-function in
(4.8) and that the Jacobian from (4.12) to the final

state (ij)'s is two. Thus we get

F o= seeles (4.14)

where A, = A4(0123) = A4(1231+> .
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In this case of decay to four particles a fairly
symmetric choice of five independent variables is
$193593553,957939S,3, ¢ Integrating over (14) and making

the simple linear transformation of variables gives

2 d812d323d834d8123

i
4 7.2
2 mO \/—Al+

ds
234 (4.15)

At the boundary, 4, = 0, the weight function diverges.

4

As discussed in Section 3, when the total number
of (incoming and outgoing) particles exceeds five, the
choice of variables is no longer arbitrary. The process
l+n with n>4 can be described in terms of the (ij)
in several ways. We indicate two possibilities.

The particles 4,5,... can be referred to the
system p_,Py,P, just as particlé 3 in the case n=k,

Using (4.5) repeatedly gives

2 n=1
R_ = 2-/ci(01)c1(12>c1(12> 74020 dl13)dl2L) 5,
m i=3 2\/-4,(0121)
o "
with (4.16)

n-1 n-1
g ZZL (0i) - 2 ;Z. (ij) - ;Zlmg + mi
0

1%i<j<n-1

If final state invariants are required, one uses

momentum conservation to get

X = 2(n-2) [;Z.(ij)-K] . | (4.17)
1 &
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A straightforward computation of the Jacobian from
(4.16) to (4.8) gives two. Thus we find that (4.8)

applies with

n-1
2
_ T i . -1/2
F o= ’FFi -8, (121 (1+. . .+n)) . (4.18)
n-2 .._
i=3
It is also possible to write Rn symmetrically
in all (ij) (Byers 64). Recalling the definition (3.11)

one gets after considerable work

1
=(n-=5)
R = af 1T d(i3)E 2 §CA.)6CB,.)..6(a >a<ZZ (i3)-K)
n .. 4 5 6 n =
1<] l<]
(4,19)
T 2n—u
o = 2 T r{v/2)
mg v=2 2772

Each Zk contains all the (ij)'s. No application has so

far appeared for (%.19).
The collision a+b + 1+,..+n involves 3n-5 invariant

variables plus rotation 9 around beam axis, if the in-

coming energy s = pg = (p

a+pb) is fixed. We take the
beam system 2a=0, put p, in z-direction, and use P
to define the x,z plane. We replace then 0,1,2 by a,b,l
in (4.2) and (4.5). The expressions of R, and R, derived

earlier come out easily:

1

V-Az(ab)

sl
H

ﬁ/é(al)d(bl) s(m2-s-n¥+2(al)+2(b1))

%// d(al)
2
V-Az(ab)
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The momentum transfer t 1is linearly related to (al)
and thus dt = -2d(al). Calculation of R, reproduces

easiest the earlier expression, if we put the vectors

po = pa+pb,pa,pl in (4-2) and po,Pb>Pl and p_3 in

(4.5). Integration over p, ‘then gives

r [ d(01)d(al)d(03)d(53)d(13) 4ep(13y+...)

%] V-s,(0a) Y-5,(0b13)

'z
[

n /d(01)d(al)d(03)d(b3)

4 V-8,0ab) g/ -, Y

The identities si = (pl+p2)2 = (po-p3)2 = s+m§-2(03), etc.,
allow one to recover the expression (V.4.8).

Collisions 2»n , n>3 , allow many sets of invariant
variables, which are not linearly related. The choice
must then be based on the dynamical model being studied.

The general formula is

n . .
_ v (d(oL)d(al) d(]il)d(kik)d(lil)

Y A A E R 5 R VAW EIT IS UERR

. (4.20)

R

The vectors Jj.,k.,l.,i and Jj.+k.+1l.+i define a

i1 71 i 7171
basic process 2+3 or 1l-+4%. They can be any suitable
linear combinations of P_sPpoPys-c+sP, - One choice,
which gives the multi-Regge variables ti, Si i41° S1..1

was referred to in the end of Section 2.
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5. Distributions in masses and angles

Resonances of a group of two or more particles
are best seen plotting the number of events against the
invariant mass of the group. The background is roughly
described by the phase space distribution. A more
realistic estimate of background requires a dynamic
model.r

.The prediction from pure phase can be simply
understood, if we take the k resonating particles
to form one cluster. Formally this is effected by intro-
ducing the four-momentum q, and invariant mass Mk of

the k particles,

k n
n
in
§(q-p;) = fdM 6<qk-Mk>fd Q8 qu Zp )8 (q- Q- 1 py)
1 : k+1
(5.1)
Then the integrand in Rn factorizes,
k .3 k adq n 3 n
d ' p. ~—~dp,
R, = fdMi/Tr 8 (qk Zp {/ ! = Gu(q—qk—ZZIH)
i 2Ei 2E(q,) k+1 2E; el
(5.2)
The distribution in Mi is then
an
— = Rk(Mk;ml..mk)Rn_k+l(\/'“'Mk K+l My ) . (5.3)

2
de
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To obtain dc/dMi one multiplies (5.3) with the flux

factor F 1 - A(s,mz,mz)—l/z.
a’>’b

The phase space distribution is seen to be product of
two factors. The first, Ry » gives the probability that

k particles have the total energy M in their CMS.

k
The second is probability that Mk’ Myppoe e M have the

total energy [s' in overall CMS. When My approaihes

5(3k-5)
L =mp + oo +omy, RO goes to zero as (Mk—zk)2
When M, approaches V*“—gglmi » the factor R__,.,

goes to zero with the power g(n—k+l)—% ='%(n—k)—l.
The general shape of an/de will largely depend

on the behaviour at M and M The distribution

k,max’
for k=2 and at

k,min

has a vertical tangent at Mk min
H]

R for Kk=n-1; otherwilise the slope vanishes at

M

and M

k,min k,max’

Dynamical effects change the shape of an/de.
If there is a resonance of v particles, which are all
included among l,...,k, it effectively reduces Rk in

(5.8} ¢ R This is strictly true for an infinitely

k-v+1l®
narrow resonance. Similarly v resonating particles
within k+1,...,n reduce multiplicity by wv-1. If
some‘of the particles which participate in a resonance
are included in the system 1l,...,k and some are not,

then an/dM is modified in a more complicated manner

k
(Skjeggestad 65). The analytically soluble case dR3/dM23
with resonance in M12 is left as an exercise to the

reader.
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If the matrix element is constant, within a fixed n-
particle channel the distribution of one particle is
spherically symmetric. Distribution in the angie between
two particles is not uniform due to correlations caused
by four-momentum conservation. Let 6 be the angle
between Py and B, in CMS. Grouping particles 3,...,n
together with momentum Qg and mass Mg, an/dcose in-

volves effectively three 'particles",

dRpy 2 [4°pya°p,d%
= [ dM 8 (q~pl—p2—q3)Rn_2(M3)6(cose-coselz)

3
dcos® 8E1E2E3

(5.4)
Angular integrations over 015 Py and %, give 8n2.
Integrations over g, and the integration variable 6,, are

simple due to the delta-functions, and we are left with

2

J/ ap,p2ap,p?
dN’J/ §(E-E,-E,~E_)R_ ,(M.)  (5.5)
EErE, 1"Eo=EgIR o (M,

dcose

- where the energy E; in CMS is

2 uapdq 112
E, = [(Rl+p2) +M3]
(5.6)
. Fedgnl 241/2
= [P{+P,+2P P,cos0+M] .

To integrate with respect to P, one needs “he derivative

of the argument of the delta-function,

3<E2+E3) P2 P2+Plcose

- + AR (5.7)

3P 3

2
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The value of P is the solution of

t2
- 2, 2.1/2 2,.2.1/2 2,52 2,1/2
E = (Pl+ml) +(P2+m2) +(P1+P2+2P1P20056+M3) . (5.8)
Putting these results into (5.5) gives
g2 252
dR dM.dP. PP
B, = nZ/ LS R__,(M,), (5.9)
dcos® E, [P,E4*+P,E,+P,E,cos6]
2 _ ;2.2 ;
where E2 = P2+m2 and P2 now are functions,
—a?lcose+(E—El)(a2—4m§b)l/2
P =
¢ 2b
_ 2 .2, 2 _2
a = (E—El) —M3+m2--P1 (5.10)

b = (E—El)—Picos2e .

The double integral (5.9) must be done numerically. If

n 1is three, the delta-function Rl(M3) = d(Mg—mg) gives

. 2.2

dR dP.P.P
—3 - 1r2/ Lol o (5.11)
dcos 6 EI[P2E3+P2E2+P1E20056]

In (5.10) M, must then be replaced by ms .

In Fig. 5.4%. the opening angle distribution in CMS
"1g.VI.5. 4, .
of K+3m according to phase space is shown.
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8. Plots for multiparticle production

A survey of publications on experimental data of
multiparticle processes reveals that plots in one variable
tend to fall almost exélusively into four categories.

One_particle distributions. Here one chooses a
specific final state particle, say n+, and plots the
number of events as a function of some momentum variable
for this particle. Common plots are dc/dp“ and do/QL.
If statistics is sufficient, as is especially the case
in counter experiments, one may show depenaence on p,
for a limited interval P > P, *4Dp, in transverse momentum.
In this manner the data gives dzo/dedRL. Similarly one
obtains dzo/dde, usually as a function of p at
fixed 6 . Measurements are performed in laboratory frame
(TS, CBS) and can be transformed to CMS for interpretation.
One particle spectra have several significant practical
and theoretical aspects. The whole of Chapter IX is
devoted to this topic.

Distributions in invariants. A plot in the invariant
mass of a combination of final state particles reveals
the éxistence of resonances in this subset. A second
type of useful invariant is the invariant momentum transfer

2

ti = (pa—pl~...~pi) . Also there are angles which are

linearly related to invariants Sij K and are
generalizations of Treiman-Yang and Jackson angles to

groups of emitted particles. In all these, as in other
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plots, one can make cuts in other variables to choose

events in order to enhance the studied effect. If one

plots in x and makes the cuts in y , yo<y<yo+Ayo, more

and more narrow, one approaches continuously a description

of the double differential cross section dza/dxdy.

This allows detection of correlations between x and vy
Longitudinal phase space plots. Description in terms

of Van Hove's w-variables is the subject of Chapter VIIZs

Correlations. Interdependence of x and y 1is seen

ot o o o

in dza/dxdy. Instead one can plot some average of y

as a function of x . A typical case is the average
transverse momentum <pp> as a function Dy, - At this
writing the study of correlations and their theoretical
understanding is at a rudimentary stage. One correlation
of purely kinematic origin, that in the directions of two
emitted particles (do/dcoselz), was touched upon in the
previous section. Correlation of Py > Py is analysed in
Chapter IX. Strong correlations, kinematic reflections,
which are due to peripherality and transmitted by
"~ kinematics, are studied in Chapter VII.

The only aspect of distributions in one variable
that is treated here is the t-distribution. Take the
process a+b - l+...+n and put t = (pa—pl)z. Grouping

2,...,n together into a system of mass Vs' gives

- v b e 1 2
Rn(s) —j/ds'Rz(s,s ,ml)Rn_l(s ,mz...mn)
_m ds'dt
= ?2“/ 5 5 172 Rn_l(s‘) . (6.1)
A(ma,ml,t)
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The physical region in the s',t plane is the inside
of the Chew-Low plot. Thus phase space gives the t-

distribution

R (s) /

I - .___.;._.. /2 1 1 = ! v~2 M2
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2
R 3 ]
3 " n (s 2 12 a2, m2 m2yacl, m2 m2y] 12
N el 1 122734 12°M1°™M) 3u°MgeMy
akl 1234
12
(6.4)

When any'one of the three decays reaches its threshold,

the boundary of the plot is reached. The plot is thus a

triangle,

>
Mg 2my +my
Mgy 2 mg +omy (6.5)
My,tMgy, 2 Vs
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X. Numerical methods of phase space integration

1. Introduction

A central numerical problem in particle physics is

the computation of the integral

n .3
I, = In(\/'g) = //’}szgl s“(pa+pb—pl-...-pnmn. (1.1)
v o1 *

The matrix element squared M is a function of 3n-4
independent kinematic variables. The region of integration
V is either the whole physical region or part of this.
The total cross section is In multiplied by the flux
factor, if V is fhe entire phase space. Differential
cross sections are obtained integrating over parts of the
entire phase space.

As earlier, it is often convenient to eliminate the

§-function in the integral (l1.l) and write it in the form
I = / ap £_($) (1.2)
\

Here ¢ means a point in the 3n-4% dimensional phase
space, expressed in terms of any set of kinematical
variables. Several’ examples have appeared in previous
chapters. The domain of integration V is the domain of
integration in (1.l) expressed in the phase space variables

§ . The integrand fn(é) is a product of the matrix
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element squared Mn , certain factors arising from the
transformation of variables (the Jacobian), and factors
due to integration over the delta function.

The main reason for the complexity of (1.1) is,
of course, the large number of dimensions one has to
integrate over. Due to the four-dimensional é§-function,
which as such is very simple, the limits integration are

also normally enormously complicated and interdependent.

]
w

For n = 2 the problem is trivial, but already for n
there are four non-trivial variables. Also the domain V
may be such that there exists no set of the variables
¢ in terms of which V is simply expressible.

The techniqﬁes commonly used to evaluate (1.2) fall

into the following classes:

1. Direct numerical integration. This is the most straight-

forward idea and consists essentially of applying to each
dimension successively the ordinary techniques of one-
dimensional numerical integration (Simpson's rule, Gaussilan
integration formulas, etc.). Since all these one-dimensional
methods are based on evaluating the integrand in a fixed

set of points,_the multi-dimensional integral (1.2) is

also carried out by evaluating fn(§) in a predetermined
set of points. If the integration interval in each

variable is divided into k-1 subintervals, the lattice
thus formed in the 3n-4 dimensional space contains

o nt points. Since k 1is a fairly large number (210),

3n-4

k grows very fast with n. The time required tc compute

3n-4

the values of the integrand in the k points limits
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the use of direct integration to n = 2,3, apart from
some special cases. A factorizable matrix element is
sometimes effectively integrated directly using recursion
relations.

It is also conceivable to sample a function in
a multidimensional space in a set of points not forming a
regular lattice. The optimum choice of these points, which
must depend on the type of the function, has not been
solved.

The method of direct numerical integration was the
first one to be applied to the evaluation of (1.2) (Block 56,

Almgren 68, Proriol 69), in the special case Moo= 1.

2. _The Monte Carlo methods. Since it is unknown how the
points at which f_(§) 1is evaluated should be chosen to
optimize the efficiency, it appears to be convenient to
go to the other extreme and choose the points at random.
This is the Monte Carlo method of integration, which at
present is the most efficient, versatile and practical
method of evaluating (1.2). For this reason the treatment
of the Monte Carlo method will be fairly detailed.

The Monte‘Carlo method is a widely used tool in
different branches of applied science, but it involves
also many deep problems of purely mathematical nature.
For a general description of the method, see the book by
Hammersley and Handscomb (Hammersley 67) and the review
by Halton (Halton 70). In particle physics the method was
first used in connection with the non-covariant phase

space integral by Cerulus and Hagedorn (Cerulus 58).
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Kopylov (XKopylov 58, 60, 61) was the first one to exploit
the covariance properties of (1.1). The method in use
to-day is essentially the same as Kopylov's.

The Monte Carlo method requires for reasonable
accuracy very many random points (at least of the order
of 103). It rose into full prominence only with the
development of fast computers and standard programs simple
for the general user. The most extensively used standard
Monte Carlo program is FOWL (James 68, 70) written by
James on the basis of work done by Lynch (Lynch 60) and
Raubold. The Monte Carlo methods in particle physics have
been constantly improved to optimize their efficiency for
the problems occuring most frequently in practice

(Byckling 69, Friedman 69, 70, Pene 69, Van Hove 70).

3. Statistical methods. When in (1.1) M factorizes,

M= gy(py) ... gn(pn), (1.3)

some special and very efficient techniques can be used
to evaluate (1l.1). Due to their analogy with certain
methods applicable in statistical physics we shall rather
loosely call theée techniques statistical methods. The
name saddle point methods would also be appropriate. The
value of (1.1) is, by these methods, given as an expansion
in 1/n and the accuracy thus improves with increasing n ,
in contrast to all other methods.

The factorizability condition includes also the

case M = 1 to which these statistical methods have first

been applied (Fialho 57, Kolkunov 62, Lurcat 64, Campbell 67).
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Lurcat and Mazur (Lurcat 6%) give a particularly elegant
interpretation of the method in terms of the central limit
theorem of probability theory (Khinchin #9). They also
calculate the first correction term and show that the
resulting values are numerically remarkably accurate. The
case in which each 'g. in (1.3) only depends on the length
r. of the transverse momentum of particle 1 has been

i
treated by Krzywicki (Krzywicki 64, 65).
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2. Direct numerical integration

There are certain cases of phase space integration
in which the usual direct methods of numerical integration
are best. We shall consider a) three-particle final states,
b) factorizable matrix elements in connection with re-
curéion relations. Three particle final states involve
four essential kinematical variables (in the absense of spin).
Calculation of distributions in one or two variables, which
need only three- or two-dimensional integrations, and
occasionally also calculation of the total cross section,
are most occurately and economically carried out using
multiple Newton-Cotes or Gaussian formulae. There are also
special methods for definite integrals in two and three
variables (Hammer 59 ). A drawback in this approach is that
a separate computer program must be written for each problem.
The Monte Carlo method is more versatile; when the sub-
program for calculation of the matrix element 1s written
and histogramming.of events is specified, the whole set of
required distributions are automatically and simultaneously
produced by the.computer.

When the matrix element squared is factorizable in
some variables in terms of which the phase space integral
can be expressed recursively (Chapter VI), the numerical
integration can be carried out so that the number of points
goes essentially as n°*k (n = number of dimensions,

k = number of subdivisions in one dimension) and not like

B s demd F : : L
X" . This implies an essential improvement in efficiency.
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As examples we shall bfiefly treat the cases

[Aiz :TT‘fCMi’Mi-l) and lAl2 =Tj‘f(ti), where the variables
have begn defined in Chapter VI.lNote that the factorization
conditions here may be different from those of Eq. (1.3),

which allowed one to apply methods based on analogy with

statistical physics (Section X.6).

Several choices of kinematical variables for the
process atb -+ 1+2+3 are exhibited in the integral formulae
in Appendix C. Choice between such expressions is dictated
by the properties of lAl2 and by the quantities to be
calculated. In connection with Appendix C the following
facts should be taken into account. 1) The variablés
appearing in ]Al2 should be chosen as integration variables
whenever possible. If iAl2 is factorizable in these,
computer time to find ]A]2 at each point is essentially
decreased. In general, a proper attention to minimizing
operations inside the inner loops of the computer program
~will pay off. 2) In the expression of Appendix C involving

=1/2 diverges at boundaries

Sl’SZ’tl’tz , the factor (-Ag)
and the last integration limits are given by the cumbersome
condition 4, = 0. Even if lA]2 vanishes sufficiently
fast at boundaries, the latter property makes preferable
formulae involving at least one angle and no 4.

3) When distributions in one or two variables are cqmputed,

this or these should appear as last integrations. E.g. the

integrand in case E gives directly the distribution in Sy
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Distributions in variables not appearing as integration
variables can be obtained as in the Monte Carlo method,
but their accuracy is not predictable due to correlation

of sampling points.

b) Recursion relations

Assuming the matrix element to be unity, Eq. (VI.2.8)
gives .Rn(Mn) recursively as follows:
Mn—m

R (M) = ) (10.1)

where all variables have been previously defined. To
evaluate Rn(Mn) numerically, one selects a discrete set
of k points for each M. variable. Then R is reached

from R, Dby n-2 multiplications by k x k matrix, which

will involve about (n-2)'k2 multiplications and additions.
The matrix elements are products of X~ and coefficients of
a suitable integration formula (e.g. Simpson's). This method
is applicable in the more general case that the matrix is

or L form TT f.(M.,M. ,) , but this rarely occurs in
i-71717771-1
practice.

When n 1is large, the statistical methods of Section 6
yvield Rn(Mn) faster. On the other hand, recursion relations
have the property that the distribution in s is obtained
with almost the same effort as one value Rn(Mn). In fact,
if one starts from R2(M2) defined in the interval
ByEMa S -8, ¢ 3

R_(M_) in the whole interval I_,M_ .
n'‘n n’>'n

then n-2 matrix multiplications give
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~

As a second case, if {A]2 = Il £,(t;) the integral
; 1 :
In obtained by integrating IAI2 over all phase space

can according to Eq. (VI.2.11) be written recursively as

foliows:

In(sn,tn) = }9 dsn_ldtn_lKn(sn,tn;tn_l)ln_l(sn_l,tn_l
_ T 2,-1/2
Kn = 3 A(sn,tn,ma) fn-lctn—l) (10.2)
_ T 2.-1/2
12(52’t2> = 3 A(sz,tz,ma) fl(tl)dtl 3

where all variables have been previously defined. The
evaluation of (10.2) proceeds as that of (10.1).

A computer program of some complexity carrying out this has
been written (Byckling 1971). To improve efficiency the
transformations M = Vs and v = eBt are substituted,
with B depending on the asymptotic behaviour of fi(ti).

An advantage in this method is that a distribution in s

or also in the whole s,t Chew-Low plot 1s efficiently

generatecd. Computer time 1is comparable with Monte Carlo,

o

so thHat at around 1 % accuracy one point obtained with
peripneral rOWL requires similar processing time as one

distribution Rr(S) by the recursion method.
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3. Principles of Monte Carlo integration

py far the most common way to carry out phase space integra-
tions is the Monte Carlo method. This is due to the Z¢llowing main
properties of Monte Carlo methods:

(a) Within the domain of application the rate of convergence

my

is faster than that of other methods. The error decreases

. FEEY e " -
proportionally 1/ yN or even better, if N is the number ci

\

points at which the intcgrand is evaluated.

(b) The method iIs very general in the sense that it can be
made reasonably efficient for all matrix elements occuring

in practice.

(c) The method gives many distributions essentially at the
same expense as a single distribution; the same events
need only be histogrammed in different ways. Also
complicated distributions like those in Treiman-Yang

angles are easily obtained.

(d) Monte Carlo computer programs can be made very simple for

the general user.

(e) The Monte Carlo method treats events exactly as they are
treated, for example, in bubble chamber physics. The method
‘1s thus intimately connected with experimental particle
physics.
When applying Moﬁte Carlo methods to particle physics onedoes
not evaluate the integrand fn(é) in a predetermined set of points
but rather chooses these points at randomf This happens by generat-

ing at random events with a known density g(¢) in phase space and

evaluating f_(¢) at these events. An event here is a set of n



- 145 -

momentum vectors Pysee-sPy in any given frame satisfying four-
. s . . e 2 2
momentum conservation and the mass shell conditilons p; = my o,

i=1,...,n. The density g(¢) is defined as a usual probabilit
density so that the probability that a random event appears in an
infinitesimal neighbourhood of a point 2 of the phase space is
gl ¢)c™o where d"¢ is the volume element in the phase space.
Different sets of 3n-4 variables can be used to express the
coordinates of the point ¢. We shall use invariants and angles,
but one can also use momentum components.

How many events have to be generated to give a reliable

result depends sensitively on the statistical error or the

efficiency of the Monte Carlo method being used. Qualitatively the

efficiency is the better the better g(¢) approximates the matrix
element squared to be integrated over. In the best cases with
present Monte Carlo programs a few thousand events are often suiffi-
cient.

Notice that there are from the point of view of generation

of events three different kinds of densities:

(1) The ideal Monte Carlo generator of events 1s, of course,
a particle reaction. The purpose of most experiments 1is
just to chart with what density in the phase space the

particles are produced.

(2) Any model for a reaction involves the specification of a
‘matrix element or a density of events in the phase space.
These matrix elements are often very complicated Iunctions
(like those appearing in dual models) and it is not possible

to use computers to generate events with these densities.

(3) Monte Carlo programs generate events with certain densities
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g(¢) which mostly are some simple functions of ¢. There
is much Ireedom in the choice of g(¢) but one must remember

-~

that a g(¢) may be good for one problem but inefficient

Fh

or another. Thus for Monte Carlo programs in gencral use
one has to optimize g(¢®) so that it is good for as many

problems as possible.

Cur main goal in the following i1s to explain how the random
generation of events can be carried out and what types of densitics
g{®) occur in practice. To do this, consider first the simple one-

dimensional integral (Fig.3.31)

1
m = [ dx £(x) (3.1)
0

In practice one would never apply Monte Carlo integration to one-
dimensional ihtegrals, since normal numerical methods are much faster
and converge more rapidly. We denote the value of the integral

by m, since it iIs cleearly the mean value of the function f(x) over

the interval (0,1). Similarly one defines the variance czxo* the

function f(x) :

2 . 2
of = [ dx [£(x) - m] (3.2)
0

The variance measures the fluctuations of £(x) in the interval
(0,1). The larger 02 is, the more f(x) fluctuates around its mean

-

value.
random numbers
Suppose now that we are able to generata’rk% 0 < T, < 1,
k =1,2,..., so that each value between 0 and 1 is equally probable,
i.e. the v, are uniformly distributed within the interval (0,1).
In the following T will always denote a random variable of this
type. The r are basic for any Monte Carlo technique and the

problem how exactly they should he gerevated in a computer which

certainly is not a random device, is a very- important one. For
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this question we refer to the spcialized literature mcntioned

earlier. Let us now generate N numbers Tysee sy and sample the
. ; N

integrand in (3.1) at these points. Then m is approximated by

the arithmetic mean m of the N numbers f(rk),

1}

Zil
12

f(rk). (3.3)
1

m
I3

1]

This is a Monte Carlo estimate of the integral (3.1). Applying
the terminology of particle physics to the Monte Carlo technique,.
the generated value T is called an "event" and f(tk) the "weight
assigned to the event'".

Since the T are random variables, m is also a random
variable, i.e, if another set of T is generated a new value of m
is obtained. For fixed N, the values of m are so distributed that
the expectation value of m is just the required value m of the
integral (1). The deviation of m from its most p:obable value is
measured by the guantity

N _
5% = A ) [Er-m 17 (3.4)

k=1
which approximates (3.2) in the same sense as m approximates m.

The factor N-1 is included instead of N in order to make the
expectation value of 52 equal to o. In (3.4) one measures the
deviazion of f(rkf from the estimated value m and not from the
truer value m. This has the effect of increasing the variance
by N/Gi=1).

The formal justification of the above statements follows
from the central limit theorem of probability theory. Assume that
the random variables Xss i=zl,...,N, are distributed so that their
mean values are m; and varianceS'ciz. Under fairly general condi-
tions the distribution of the sum x = (xl+ . ® +xN)/N for large

N then approaches the normal distribution
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2
b - -
N(x; m,g) = —— ¢ (x-m)"/20 (3.5)

e
yam

, N N

with mean m = = Z m. and variance 02 = %h Yc.z .
N = 1 . h~i:ll

In the present case the random numbers are the numbers fk=f(rk)

which are distributed so that their average value is m and

; 2 = - .
variance 6 . Thus, for large N, m converges toc m and the variance

2 2

of the the distribution in m is 6. The value .of ¢“ is no=

bz T

kxnown, of course, but 5% in Eq. (3.4%) in an estimate for 1it.
The result of the Monte Carlo integration can thus be expressed

as

mo=om ot — (3.6)
N

It follows from (3.5) that for repeated Monte Carlc integrations
the probability that the result deviates from the correct value
of m, for example, by one or two standard deviations c/JEq, is
32 % or 4,5 %, respectively. Note that (3.6) tells nothing about the
error i1n a single Monte Carloc integration.
Example: We shall in this example exhibit a simple case for
which the probability density F(m) of m can be evaluated
explicitly. Assume that f(x) = x so that from Eqs. (3.1) and (3.2)
m‘= & and 02 2
2 12~
ing to (3.3)

"

The Monte Carloc estimate for m is now accord-

. N . "
i.e. N times the sum of N randem numbers evenly distributed

between 0 and 1. The probability density F(m) of m can in this
case be calculated by standard methods of probability theory.

In fact, F(m) is the integral

~

- 1 -
F(m) = N [dr,..dr_ glry)...glr)8{r +. . .v ~Nm)
0 - & o . L R
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09

where g(r) is one for U< r £ 1 and zero elsewhere. Evaluation

of the integral by Laplace transforms gives

N N-1
= N k N \
F@® = qypyr 1 G0N [ oo, ] (3.8)
k=0
where (x)_ = (x+|x])/2=z x8(x). The curve representing Pim) is

drawn for different values of N in Fig. 32. It consists of

segments of N different polynomials of order N-1 in the intervals

(0, ﬁ), (%, %), etc. One can clearly see how F(m) approaches &
. - 1 .
gaussian (3.5) peaked at % (= the exact value m of the integral)

2
and how the peak becomes narrower when N increases. This gives an

idea of how the accuracy of Monte Carlo integration increases
when N increases.
The generalization of = ’'Eq..{3.3) . to more dimensions

is intuitively obvious:

1 1 N \
1 (k) - (k)
Fosol @8 0sefity, FUR guvssXpd®= & § BB 5 00usby” )
3 0 1 K 1 K N7 1 X
(3.93
. —_— (k) (k) . 5 ‘e
where the random points (rl s eee> Ty ) are uniformly distribut-

ed in a K-dimensiqnal hypercube. Ppevious&we sampied the integ?and
within an interval, now we sample it within a hypercube. If the
limits of integration are separately dependent on some of the

Xs they can separately be transformed to 0 or 1 and (3.8) applicd.
The error is given by a formula analogous to (3.6J. In particular,

it is proportional to 1/ J&j independent of the dimension X.



4. Reduction of the statistical error

The statistical erpror of Monte Carlo integration depends

‘ . 2 . . .
on two factors, the variance ¢° of the function to be integrated

poe

and the number of random points at which the function is sampled.

The simplest way to decrease the error is to increase M. The
error is proportional to 1/ fﬁ‘ so that to decrease the error
by 10 one has to increase N by 100. The accuracy that can be
obtained through increase of N is limited by the computer time
available.

However, it is also possible to improve the rate of cconvergence
so that the statistical error may even be proportional to 1/N.
The proof of the statement that the error behaves, in general,
like 1/ (N rests on the fact that the random numbers used are,
in principle, truly random or, in computers, numbers which
"look random" (pseudo-random numbers). With pseudo-random numbers
one has no idea of at what points for finite N the integrand
f.(¢) is sampled. However, one may also use random numbers which

on the whole are evenly distributed but which are strongly

correlated so that r.

;41 depends on r. (quasi-random numbers) .

1 3.1 3 5 7.1 N :
s'[‘r': e '8'3 ‘8‘3 ‘g’ 'g': T‘B" «ee 9 IOrmed -

» would be a sequence of quasi-

For instance, the ‘sequence

o -

according to an evident rul
random numbers. With quasi-random numbers one has some guarantee
of that the intecgrand is sampled evenly even for finite N. In
this case one can prove that the error behaves like 1/N. Thus one
is improving the result by taking a step backwards from genuine
randomness towards the methods of direct numerical integration,
in which the distribution of points is entirely deterministic.
The distinction between pseudo- and quasi=-random numbers 1s.

very important in practice and the latter are to be preferred

strongly (for instance, FOWL uses them). For more details on
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this important and not entirely understood question we refer to
the specialized literature (Hammersley 67, Halton 70, James 68).
Another way to improve the Monte Carlo method is to reduce
the variance 62. According to (2.2) this is evidently possible
by transforming the integrel so that the function to be integrat-
ed by the Monte Carlo method is as constant as possible. To apply
this technique of reducing the variance some information on the
behaviour of the integrand is required. Therefore, the methods
used in particle physics have been developed specifically to
apply to the problems encountered in this field. Their necessity

is illustrated by the following example.

Example Consider the integral

b
m = dxae’® = % - 1 (4.1)
0

where a is a constant. Integrals of this type arise in high-
energy physics when integrating over an invariant mcmentum
transfer t, since the matrix element is experimentally known to

be of the form eat. A simple calculation gives

2 _ 2 {(1.2y.2a , ka2, 41
0" = 5 L(l S)e * Ze = + lj 5 (4.2)

which increases with a. Thus the relative error €/m4f§7 of th
Monte Carlo integration increases as JE7§§1 for large a. The
reason is the increasing asymmetry of the integrand ae®*. This
function is sampled evenly in the interval (0,1). At iarge a,

the points near 0 have a small weight compared to those near Lo

In evaluating the integral the former points are nearly useless.
To improve the situation one should somehow generate'more points
in the region where the integrand is large or sample the integrand

only in regions which are of most importance. In the example this
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is easy to do by taking y = e as a new variable. This

results in
a

e
m = f dy
1

which is computed by generating points uniformly in y within the
intervel (1,e?). Since the integrand is now a constant, the
variance has, in fact, been reduced to zero. Note that a similar
transformation is needed also if the range of integration
in (4.1) extends from 0 to =.

t obvious from the example that if f(x) varies considepab-

ly, the Monte Carlo method becomes more efficient when the

random points are generated so that their density i1s closer to

| £(x)

. This method is called importance sampling. To apply

it, we need a way to generate random numbers distributed accord-
ing to a given density.g(x). The density g(x) is defined so that
the probability that a value between x and x+dx 1s obtained is

given by é g(x)dx where G = G(+<2) and

- OO

X
G(x) = f dt g(t) (4.3)

Consider ‘then 'the ‘integral
. Xt
I = [ dx £(x) , (4.4)
-
where arbitrary limits of integration have been introduced for

later use. Take as a new variable

G(x)=G(x™) ' '
G(x+)=~-G(x™) (4.5)

r =

It varies between 0 and 1 and its differential is

dr = g(x)dx/ [6(x)-exD] . (4.6)
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Eq. (4.4) can now be written in the form

X+

xt 1
- - f(x) A, + - £{x)
= £ = , z -
Ts ] e {{_dxg(x) oy =[6(x")-6(x )]é ar SiEs
(4.7)
where
x =6 {exD) + v [6xh) - alx) ]} | (4.8)
when Eq. (3.3) applied to (4.7) we obtain for I
N N
%+ + - fix, )
= G(x )=-G(x ) k 1
I = [ adxf(x)=I = ’ =z oW (4.9)
X" a ko1 B0 TN LTk

where X is defined in terms of v by Eq. (4.8) and Wy is the
weight assigned to the kth event. According to (4.6) the random
variables X, are now distributed according to the density
g(x)/ [G(x+)-G(x‘{§ which i1s normalized to unity over the
range of integration.

Iﬁ the integral over r in (4.7) only the ratio f/g appears
and thus the variance of f/g is reduced if g approximates f
better than a constant. Using Egs. (3.3), (3.4) and (3.6), the
result of the Monte Carlo integration (4.9) can be written in
the form |

I =1z 6 (4.10)

with



N
= 1
I = N Z W
N, L5 Yk
N
N -
=5 _ 1 [¢.2 _ 1 27
i = m L é W k N(quk) f (4.11)
k"l k:.; =

. Fix,)
G(x*) - G(x7) ==K,
[ | g(xk)

Notice that the transformation of variables carried oﬁt
above gives formally a method of generating.random numbers with
a density g(x), but need not always be feasible in practice. We
list below the conditions under which the method of transiorm-
ing variables can be used in practice and also describe one

different method:

(1) The method of transforming variables is practicable if

Eq. (4.8) is such that there is a simple and fast way of getting
from the primary random numbers T to the random numbers Xy e

Else the increase-in labour compensates the acdvantage obtained

with the decrease in variance; In practice this requires that

all the functions g(x), y = G(x) and x=G—1(y) must be elementary
functions. In particle physics the two common gases of variations of
the integrand resembling the exponential or Breit-Wigner functigns
can be taken care of by this method. The required transformations
are listed in Table 1, and can be applied by simply substituting

to Eq. (4.9).
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W ' : 1
| Type of ] § |-l
fvariation ; g(x) | G(x) | G “(y) )
Exponential f P : g ] log y
: : i 2 ki ,
; o 2 ! - y~=b !
; . . : b pom X—-a 2 ;
Breit-Wigner ! =b+b arc tg— a+b tg
: ! 2 2 |2 Jol D :
, | (x=a)“+b 3

g :=

Table 1 Densities, integrated densities and inverses

to be used in connection with Eq. (4.9) for

importance sampling.

(2) In addition to the method of variable transformations
there are other ways of generating random numbers distributed
with a prescribed density g(x). In these cases g(x) must be

one of certain special functions but it need not be integrable
in closed form. Consider for instance, the case in which g(x)
is a Gaussian g(x) = e-xz/20 and the integration goes from = =«
to + », This will .eccur in practice if the peripherality of the.
matrix element is expressed in terms Of transverse momenta. The
weight function g(x) is not integrable in closed form, but it
is easy to generate random numbers which are normally distributed.
For instance, one may apply the central limit theorem to the
sum of n rectangularly distributed random numbers. As shown

previously, this approaches a gaussian rapidly and already the

density function (3.8) of

12
s = of g r. = 6) (4.12)
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is sufficiently close to the limit (3.5) with mean zero and
variance o¢. Thus, Eq. (4.8) gives directly

L e rea Y 2
I = dx f(x)x 2-§172Lf(si)e+si/2° C(%.13)

-

t=1

where si are normally distributed random numbers between =«

and +e«
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5. Application of the Monte Carlo methed to particle physics

When considering the application of the Monte Carlo
method to particle physics one should distinguish between two
sides of the problem: a) the random generation of the particle
events, b) the treatment of these events. From the practical
point of view, the latter data-handling aspect is as important
as the first one and we shall comment on it later., Here we
shall first give a reasonably detailed description of event
generation.

The task is thus to apply the general principles presented
above to the generation of particle events and to the evaluation

of the integral over phase space (cf. (1.1) and (1.2))

3
n dip.
- 1 L -
I, =/ Z —r= 8 (pmpy=..=p MM (@) = [ de £ (o) (5.1)
vV oi=l i v

where Mn(¢) z Mn(pl""’Pn) with PyseesPy satisfying four-
momentum conservation. Earlier, in connection with the one-
dimensional examples, the generation of "events" presented no
difficulties, while now our main problem will be just to see how
particle events can be génerated and what densities g(¢) can be
used.

In order to construct g(¢) and the corresponding events we
. shall carry out a transformation of variables in (5.1) so that
the domain of integration, which in the 3n-4 variables ¢ may be
very complicated, becomes a (3n-4)-dimensional unit hypercube.
We choose V = entire physical region in order to get events

everywhere in the physical region. The Monte-Carlo estimate of
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this integral over the unit hypercube is obtained by generat-
ing random points within the hypercube (which we know how to

do!) and by using (3.8). Let us write the result in the form

. 52 ;

I, =TI = 6I° (5.2)
N N

f 1 'Z Mn(¢k) 1 Z .

n N2 gnZ¢k5 N - k

where éin is given in (4.11) and where l/gn.contains all
factors arizing from various transformations. Then, in analogy
with (4.11), the function gn(¢) is just the density of events
associated with this choice of variables. Different densities
g(e) are obtained depending on what variables ¢ one starts from
and on how the transformation to the hypercube is performed. The
correspondence between a point in the (3n-4)-dimensional unit |
hypercube and the event Qk is one-to-one, and the random event
¢ can always be contructed from a random point in the hypercube.
If V is a subspace of the entire phase space, the correspond-
ing In is obtained by simply restricting the sum in (5.2) to
those ¢k which lie in V. Thus, if the distribution in some
variable v or the‘dgrivative QIn/av is requested, the range of v
is divided in bins of width aAv (not necessarily of egual length).

The derivative is then estimated by

I I
%%:-A-A-% . | (5.3)

Here AIn is given by (5.2) under the restriction that only

events. with v inside the given bin are included.
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In order to present the method in more detail we shall
choose a particularly simple set of 3n-4 variables ¢. As

shown previously, the integral (5.1) can be written in the

form
.1 i
I(ys') = —2 e a 20!
n VS - 2 \/'éj f dMn_l Qn 2 “ o0
§ M,da, ——/ 2, =7 M_ (@)
.2
where
Zk = ml+c'.+ mk
and i
Aa2, w2, n)
oo | = k® k-1 X (5.5)
Px M, g

Here the 3n-4 variables ¢ consist of |

e e et 2% 2
n=2 invariant masses Mk’ Mk-Pk = (pl+...+pk) ¥
k = 2,..,n-1 defined as the masses of the intermediate

decaying particles in Figw 5.1.

- 2(n-1) angles.ﬂk = (cos8,, @), k=2,...,n, defining
(Fig. 5.2) the direction of the vector Py in the frame
P =Pyt .o *p = (Mk,g), i.e., the rest frame of
the intermediate decaying particle.

With these variables the relation between Mn(¢) and fn(°) is

n | p.
£f_(¢) = ol n-l—‘é:LJ-’-Mw)
B 2 s i=2 H

The region of integration in (5.4) can be eimply transformed

to a unit hypercube. We shall consider the angles and masses
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and the construction of the event separately.

S . . e

(a) Generation of angles. The angles ¢, and Qk can be generated

in the corresponding rest frame Pk = (M ,0) by writing

(1)

@ =

Pk 2% Ty

(5.6)
- (2) _
cos 8, = 2(r, 1)
(1) . (2)
where and are random numbers between 0 and 1.

The transformation (5.6) transforms the integral over Qk ‘to
an integral over a unit square with the Jacobian 4n. The events
produced by (5.6) are uniformly distributed inCFk and cos 6k
and the choice of the polar axis is arbitrary. One may, for
instance, use the direction of PK+1

the integrand Mn(é) is  the.production amplitude for n particles

or of P, - However, when

the events will be collimated along the direction of p_ and it
will be necessary to importance sample in some variable
describing this collimation. We .shall return to this question
soon. |

(b) Generation of invariant masses.

The invariant masses Mk vary between the limits

Zk <M< M};”_ - M,y k=2,..., n-1 (5.7)

When (5§.7) is satisfied, each two-body decay in Fig. 5.1 is
physical. In the (n-2)-dimensional space spanned by Moo wesMy
the inequalities (5.7) define a simplex, which is an interval

for n=3, & triangle for n=4 (Fig. 5.3), a pyramid for nz=5, etc.

In the following two examples of how to generate the Mk within

this simplex are given.
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(1). The most straightforward method is to transform the
sinplex to an (n-2)-dimensional unit hypercube by the linear
relation

(3)

K (M

M, = Xk+p k=2,..,n~1 (5.8)

Kk k+1 "zk+1)

Each Mk—integration is transformed to an integral over ré3)
from 0 to 1. Including the Jacobians arising from (5.6) and

(5.8) the Monte Carlo estimate of the integral (5.4) can then

be written in the form (5.2) with

l/gn(¢) = 5—q31k§ 2nl£kl » M, - Zk) (5.9)
The density ,gn(¢) of events generated in the phase space with
this choice of ¢ is not constant and the statistical error of
the estimate (5.2) is the larger the more £(¢) deviates from
g(¢). In particular; also a constant matrix element involves

a definite statistical error. Notice the factors M = [

in (5.9); the density of points is infinite when this factor
vanishes. Why this happens can be clearly seen from Fig. 5.3.
There M, is generated uniformly between 23 and s - m, while

M, is the generated uniformly on the line between 22 and

2

M, - m,. The length of this line decreases linearly when M3

3 3
decreases to 22 and thus the density of points increases
proportionally to l/(Mz-Zz). The situation is analogous for
larger n.

The same method of transforming the limits to cénstants

can also be used, if one wants to generate events which have

Breit-Wigner distributions in some of the Mk' The equations



- 162 -

(4.5) and (4.6) and Table 1 are immediately applicable and it
is easy to write down/%@gulting density g(¢). Note tﬁat this
density will not contain pure Breit-Wigner terms but products
of these with factors similar to those in (5.8). Near the
resonance masses, however, the Breit-Wigner density will dominate.
Also not all invariqnt mass combinations can be given a Breit-'
Wigner distribution but ohly those appearing as intermediate
states in the cascade-type decay of Fig. 5.1.

The method can be generalized to include more general
decay than that of Fig. 5.1, e.g. both reaction products of a
decay can decay further. The intermediate states again allow
Breit-Wigner sampling. A program of this type has been describ-
ed by Friedman (Fpiedman 69) .

(2). Another way of generating the Mk uses the fact thaﬁ

the simplex is that part of the (n-2)-dimensional hypercube
'-_-' el
Zk < Mo« {s -Zn + Zk k=2,..,n-1 (5.10)
in which the coordinates are ordered:

M k=2, ... , O=1 (5.11)

M m

k S Ykl T Pkl

One may then first generate uniformly in the hypercube (5.10):

Moo= Lot (s = ]) {5.12)

and then order the M, so that (5.11) is satisfied. This ordering
is simply carried out by ordering the n-2 random numbers:

(3)

(3)
2 r

(3)
4 4 <
- Pa -— ¢ s 0 0 00 0 0 0 w "‘l

T ’

since then

(3) 05

M - M = (rk+l-rk

k+1 ~ M (Js' =2 d4my > Wy g
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Referring to Fig. 5.3 in the case n=4 one first generates
uniformly within the square but if the point generated lies
above the diagonal it is by ordering or reflection around the
diagonal transformed so that it lies within the allowed tri-
angle. Since the density is uniform within the hypercube it
is also uniform in the simplex, in contrast to the previous
case of transforming the simplex to a hypercube. The density

of events in the phase space is now given by

e | n -
207 ° & B lenipd] - gy B - [ (5.13)

where the factor 1/(n-2)! gives the ratio between the volumes

of the simplex and the hypercube.

Notice also that in this latter method the (n-2)-dimensional

unit hypercube of the random numbers rés) is not uniformly

populated. The ordering carried out above has as a consequence

;3) has for the most small values while régi has large

values, etc. In faect, the density of the kth random number is
n-kl1

that r
given by lgk = (1l-r) where r is uniformly distributed
betweeﬁ 0 and 1. Thus the second method of generating the Mk
is equivalent to the first one with the additional assumption
that the random numbers rﬁs) in (5.8) are distributed with the
density (1-p)P"k"1,

(e) Construction of the_event.

When the n~2 masses and 2(n-1l) angles have been generated,
the construction of the random event, i.e. the momentum
configuration Dyses+sD in any given frame, is possibie. First,

in the frame P1*P, = M ,g) the length of Py is given by

Eq. (5.5) and its orientation by the generated values of 62,{2



- 164 -

Thus Py and p, =7p, are completely known. Similerly, in the

frame p,+p,+p, = (M,,0) p, is obtained from Eq. (5.5) &and the
1 52°+3 3= 3
The vectors pj and p?
generated values of 03,‘?3,/in this frame are then obtained by

-

Lorentz transforming them from the frame p *p, = (Mz,g) so that

1
Py ¢ P, = ~P3. Continuing in this way one obtains finally the
required momentum configuration in the CM frame.

The densities of events given by Eqs. (5.9) and (5.13)
cbove are relatively constant. The method is thus effective
only if the integrand Mn(¢) also is relatively constant. This
1s not the case if the total energy is large and Mn(¢) is the
production amplitude for not too many particles. Then Mn(¢)
1s large only if the particle momenta are nearly correlated
along the beam axis. At high energy the Monte Carlo method must
be modified so that event density is small for large transverse
momenta. There'are two essentilally different methods in use.
One can either apply importance sampling in the generation of

‘the dngles cose, in (5.4%) (Byckling 63, Friedman 69) or one

k
can start from a completely different set of 3n-% variables ¢
and apply it to transverse momenta (Pene 63, Van Hove 70) .
Since the first alternative is technically slightly simpler

we shall describe~it in some detail.

(a') Generation of the Englisﬂfgr_Piréphezal events.

In order to carry out importance sampling in some variable
describing peripherality, assume that the masses Mk have been
generated and choose in the frame Pk+1 = pyte.ot Ppyqc (Mk+l’2)
the direction of p_ as the z-axis. Then cosek+l is the angle

- Q

between D

Pisl and P. in this frame (Fig. §5.2). Now it would

be very simple to importance sample in cosoy and generate mainly



events for small values of 6 However, it is more useful *o

o
. . ‘ 52
v o~ , y " y - £ - -
Ieplace cosek+l by the invariant momentum transfer tk (pa Pk) .
The result of replacing cosd, ., by tk in (5.4%) is according

to our previous results

ol (+)
1 1 i f" t?_l 1
I_(ys) = . < j  aM do dt — ..
n A 2;'51 u!p(nz £ n"'l O i (_) '\"‘l u| (n 13x
\ , n-1 ¥ Ifa
? g 27 t) 1 27 2
. é sz }O' d?;s }'(-C)i'tz mé dcfz f(il';:z M ()
2 t Pa T
2 1
(5.14)
where !
2 2
A(ME L, t L ,mE)
psk) 2 \/ K+l ktl” & (5.15)

a |
- 2Mk+1

and all other notations have been declared previously.
As shown previously (Eqs. (4.5) and (4.6) and Table 1),

one can now importance sample in each of the tk by generating
k=)

a SV LD N
events with the normalized density akeaktk/(eaktx - eaktk ).
Leaving the generation of thet?k and the Mk unchanged and
collecting «ll factors the value of the integral (5.14) can be

wirtten in the form (5.2) with

1/g(e) ! n;l'r' T eakt§+) - eakt(“>1 (5" - Xn)n-é
& } T (k+1) apt ’ (n-2)!
s - K ! :
Jys k=l t 2[pa | ay e k i
(5.16)

Here, for definiteness, the masses Mk'have been taken to be

generated by the ordering method presented above.

One can see that, apart from some more slowly varying
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mass-dependent factors, the density g(¢) of the generated random
events in this case behaves as g(¢) = expl}r:}::L aktkl. It is thus
rather efficient in multi-Regge calculation;} in which the
integrand is roughly of this form.

The construction of the event is carried out as previously;

now cone only has to solve cosé from the generated value of

K+1

Ty - The dominance of small Ty implies evidently the dominance of

small 6k+1'

We have now at our disposal a method to generate random
events with a number of different phase space densities g(¢).
For any practical applications the cOmputeb routine carrying out
the generation must be completed by a set of routines desigrned
to initiate the generation and to treat the generated events.

In more detail, these additional routines have to
- pvead in the specification of the reaction and the matrix

element M_(¢)
- read in a specification of the density g(¢) to be used

- read in how many events are to be generated and how the

generated events should be histogrammed
- histogram as requested the generated events
- print out the calculated information
- Standard programs like FOWL have been developed to carry out
these tasks. They are very flexible and convenient for the

general user, who after having learned some conventions can use

them for many different problems. For a more detailed description
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of all practicel matters we refer the reader to the long
write-up of FOWL (James 70) .

In order to exhibit the connection between the theory
we have given above and a practical example, we show in
Fig. 5.4 a histogram from FOWL. This histogram contains the
following information:

al The histogram gives the distribution in the invariant

[ 2
& H £ 43 -~ q
mass M123 \ (pl+p2+p3) of the reaction #p - wawp

4 ax + + 25 25 v 1 Y
(or PatPp = P1+P,*P3 pq) when the laboratory momentum of
the incoming I is 4 GeV/c and the matrix element.. is

7
M. (#) = exp(5t__) with t = invariant momentum transfer
R - bp PP

-

between the nucleons. Apart from the normalization, the

quantity calculated is thus axq/aM 3> where I, is defined

12 4

by (5.1)
b) The columns denoted by the word INTERVAL give the upper

and lower limits of the bins to which the whole range of

M123 has been divided by the user

&) The column denoted by the word EVENTS gives the derivative

an/aM és estimated by (5.3). This distribution is

123

normalized to one. In other words, the number assigned to
each bin is

(normalization) x ) w (5.17)

k
where w, = Mq(¢)/g(¢) and the sum goes over those events

for which the value of M lies in the bin in question.

123
In the present case, the density g(¢) of Eq. (5.17) wes

used
3

d) The normalization is given by SUM OF WEIGHT = 0.2045-10

Thus



e)

£)
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L ow, = 204.5

all events

and since N=2000 the value of the integral I, is eccording

I
to (5.2) ZOU:S/ZOOO = 0.10. The correct numerical veluc

of an/aM is similarly obtained from (5.3), although

123
percentage distributions are normally sufficient for
comparison with experiment.

The column denoted by the word ERROR give the statisticel

error as estimated by (4.11). Actually the approximation

1 2 1 2 1 2
WS LEWe T RCEw ) e N2

has been used, so that the contents of each bin in the

ERROR column are

(normalization) x Jz wi 5

where the normalizetion is the same as in (5.18)
The number N' given by EQUIVALENT UNWEIGHTED EVENTS =
157 is evaluated from the equation
. | vf:?T
1 VIV
P

o

vi

where the sums now go over all the events. It gives thus
the statistical error in SUM OF WEIGHTS or the value of Iu.
In the present case the estimate of this statistical error

is 1/ JllS? = 3 %, The number N' is thus very convenient

when one tries to assess the statistical significance of

a histogram. If N' is less than 100 the usefulness of a
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histogram is rather-questicnable.
g) the contents of the ERROR column are also printed out

in a form of a visual displeay.
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6. Statistical methods

In statistical mechanics, the analogue of Eq. (1.1) is
the volume of accessible phase space in the microcanonical
ensemble. The four-dimensional é§-function in (1.1) is there
only replaced by a single &§-function requiring the total
energy to be within 8E at E. Due to this é§-function constraint,
calculations are very complicated. The normal way out of the
difficulties is to replace the microcanonical ensemble by
the canonical ensemble, in which the energy may fluctuate
but the temperature is constant. Within a certain approxima-
tion, valid in statistical mechanics, the two ensembles give
identical results. Basically the same method will now be used
to evalueate (1.1).

Another distinctive feature of the methods applied in
this section is that they treat all'partic;es on an equal
footing. All other methods must fix an ordering of the
particles and start numerical integration or event generation
in some end of the chain. Here the method decouples the
correlation between the particles due to four-momentum
conservation and only those in Mn remain. However, the
method is useful only if even Mn does not cause correlations
between the particles, i.e. Mn factorizes.

‘Assume now that Mn is factorizable in the coordinates
of the particles as shown in (1.3). We shall presently see

why this condition is necessary. Then the only constraint in
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(1.1) connacting the different particle is the ¢&-function.

ey}

ut this constraint mey be decoupled by taking the Laplace
" transform of In(P“). The Laplace transform én(au) is defined
by
L ~a, P¥ u
= 6 .
¢ (a ) [ d’P e v I (PY) (6.1)
and, for arbitrary Mn, it is a function of the four-vector

o . Inserting here In(Pu) with a factorizable Mr= i gi(pi)

A
we find
3
d p. - U
0nla) = | A" 1 mpt g (py) 8" (P-py-...=p de %P
X 1
(6.2)
3
d p. u
_ o 2 -a,p"
= )0 gp=gy(py) e Wi
8 1
= T <o.(a ) "
i b2

wherecfi(au) is the Laplace transform of gi(pi) defined in
analogy with (6.1). Thus, if Mn factorizes, the Laplace transform
of In(pu) is the product of the Laplace transforms of the

gi(pi) and we have made é-function  disappear in a symmetrical
manner. If we then invert (6.1), an integral representation for

In(p“) is obtained:

B +ie )
. ] i a, P
I P = ——F [ dlae™ [1o.(a) (6.3)
n (2xi)* B ~ie R

Here Bu'iSsome real four~vector with all components positive.



- 172 -

This cquation is exact and what is called the statistical
method for evaluating In(p/3 amounts to developing an
approximation for computing the integral (6.3).

Before proceeding further we shall specialize to the
case M =1, i.e, to the evaluation of the total phase space
volume (Fialho 57, Kolkunov 62, Lurcat 64, Satz 65, Campbell
67, Kéjantie 71). Later on we shall briefly also comment
on the case in which gi(pi) only depends on the tranverse
momentum r. (Krzywicki 64, 65). This is a very important case
in practice, since the g; can then be used to describe the
experimentally observed limitation of the transverse momenta.

When M = 1 or g; = 1 the integral I_(P") = R_(P)
only depends on the length P = Pupuz P% ~‘B2 of the four-
vector Pn. Then in (¢ .1) one can integrate over the three
dimensions in the four-dimensional space of the components
P¥ . One could use Lorentz~-invariance and argue that
¢n(au) now only depends on the length a = “g fgz of'uu
and carry out the integration in the frame a, = (ag> 0.
However, in order fo Present a more convincing calculation

we shall in this integration keep all the components nonzero.

One has, writing duP in full,

- 2 ~agPg+g-P
¢ (a ) = [ da|p||p|® aP an, e R, (P)

0

where P2 = Pg - B

trivial and gives essentially the factor 2n/|a|]|P|.

2. Integration over the directions of P is

If we then introduce as new variables P and A defined by

P P cha

0

|P| = P sha
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we can write

onla ) = fap P2R_(P) [ da sha e 90Fch +|a|Pshx
L E 0 n |

o] -

One knows that (Magnus 66)

- - - - iy vy
[ dre™% chA-gsha zxoﬁf;z_gz) (6.1)

and that

3 TR '/’
Ko(z) = Kl(z) | (&.5)
where Ko and Kl are modified Bessel functions (Abramowitz 65,

p. 374). Thus the integral over A can be expressed in terms

e e A
P -

; ¥
of Kl(PJué -32) = Kl(uP) and we have finally
o (o) = o (a) = %% [ apP2K_(aP) R_(P) (6.6)
n oy n a 1 n

0

This integral converges, since for large z KV(z) decreases

exponentially:
2
o [ -z v =1
Kylad 28z & "Mhmge—= % scd 5 (6.7

while R_(z) only increases as a power of z.

of (6.6)
On the left hand Sidé‘&n is given by (6.2), where CPi(au)

now also only dependson a. In order to evaluate ?i(a) we go

to the frame @ = (ap>0).
Then
a’p: -agEj
€ = 2. = L 1 &
Lfl(a) gl(ao) / 2E; e (6.8)
) “ 2 . 2" -agE
= 2n é dE; JrEi mg
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But accorcing to fonmula 9,6,23 of(Abramowitz SQ,

(-]

K,(z) = 2 [ at N > (6 .9)
1
so that one finds
21rmi
?Di(a) = Kl(mia) (6.10)

Eq. (6.6) in connection with (6.9) gives on(a) as a very
simple Bessel transform (Erdelyi 52) of Rn(P). This transforma-
tion can also be inverted to give Rn(P) explicitly (Lurcat 6u4)
as a one-dimensional integral. The Laplace transform ?Eﬁa)

is clearly always positive:(Fi(a)> 0. Its derivative will

according to (6.8) be negative. Putting these together we

find
‘@i(“a) SIOg?i(a)
"(}—)i—z-&-)' = - 3 > 0 (6.11)

The second logarithmic is similarly always positive:

2

2 o :
3°logw . (a) ’ '(a
1 _ 1 -aEj
7 * ?mf 7E; [E * i‘ml L Haltd

Ja

The equations (6.11) and (6.12) hold evidently also for ¢n(a).
Eq. (6.6) forms also the starting point of probably the
simplest method of finding the nonrelativistic form R (P) of
Rn(P), i1.e. the limit of Rn(P) when P » 2 m. . Eq. (g.6) 1is
valid for all a » 0. Consider, in particular, the limit o o <@
Since Kl(aP) decreases exponentially for large P, only values
of P near threshold Im. contribute significantly to the integral.

Replacing wi(a) and Kl(aP) by their limits for a + = or of » «
t
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we have

o n

(2ﬂ3)n/2 1A “-3n/2 e—Zmia - (25)3/2 fdP P3/2e"°PRNR(P)
1 0

But from the formula

rwa™ e7Fo% = [ ap ™ (p-P )¥7 a(p-P )
o
one finds that
1/2
(Im.)
3,(n-1)/2 s A
NR, . _ (21°) i o 1(3n=5)/2
Ry P) = 5rTsta=Dy7a . 37z (Frimg) (6:.132
(L, ) i
§y

This result is complicated to obtain if the particlesare

treated in an unsymmetric way .

By considering similarly the limit o - 0 ©one canvderive
the extremely relativistic limit RﬁP(P). We have already obtained
this result by still simpler means.

After these exact formulas we shall now proceed to
approximate (6.3). The idea is to replace the integrand by
its form where it is largest. To do this, write the integrand

of (6.3) in the form exp FG?J where

- u
F(au)- auP + log ¢n(a) (6.14)

Choose then some constant real four vector Bu with positive

components and expand F(a) around this point:

- - U A - - uy
F(“u) = F(Bu)+(“u Bu) F (Bu)+2:(“u sa( CH Bv) F (su)+ i e

(6.15)
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where
AF(a ) . dlog ¢_(a)
u - y o n' "
F (Gu) = T&——_— = P + o . (6.16)
u u
. azF(au) azlog ¢n(a)
F (Gu) = Sa 50 = o 3o (6.17)
9] v u v

. 2 _ .
Since L only depends on ay a =guva“a“, it 1s convenient to

change the derivatives with respect to a in ($.16) and (6.17)

to derivatives with respect to a. Using the formulas

2a_ _ ol
a  a
u
2
3 a i( v _ ataV
da_da o & 2 )
TRRatY) a
one obtains
3log ¢_(a) u
Fu(au) = P¥ + aa“ ’ E; : (6.18)
y 3210g ¢n(a) TRRY log¢h 1 y RTINS
F*Y(a ) = 5 -+ = (g"’ - 25 (6.19)
“ aa a Ja o

Inserting the terms shown explicitly in (B.15) to (6.3)
and carrying out the integration over o in closed form will
constitute the leading term of the approximation. When more
terms with higher-order derivatives of F(au) are included,
the integrand and also R_(P) will be approximated better. If

n
we take instead of a tu= -i(au-Bu) as a variable of

7
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integration so that each tu is now real and varies between

- » and +» we can write the leading term in the form

F(B ) = s M 1 1AV
n n (2n)u —

(6..20)

Here we see explicitly, how the absolute value of the integrand
indeed has a maximum for reai au(tu=0).

We could now perfectly well integrate (6.20) in closed
form and obtain a result which is valid for any 8. In order to
minimize the error it is convenient to choose B, so that the
integrand in (6.20) contains only the quadratic terms in the
exponent. This point is a saddle point (Morse 56) of the
integrand exp[f(a)l: when oné moves along the real a . axes

the integrand has a minimum at a = 8u while along lines

(real tu axes) going through a« 8u perpendicularly to the
real a, axes the integrand has a maximum.
The linear terms in (6.17) vanish evidently to 8, is

determined from F”(Bu) = 0. The solution of this is

- ® 6.
?u 8 Pu/P (6.21)
if B 'satisfies
dlog ¢_(a)
P+ — gl = 0 (6.22)

Due to the positivity properties (6.11) and (6.12) this equation
has one and only one solution.

Using the equation

Ki(z) = -K_(z) - -%—Kl(z) , (6.23)
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and the explicit form (6.10) of Cr, we find that

§

- 3log @, (a) 2 K (moa)
da =T e T ™ Rl(mia)

The equation determining 8 = B(P) is then

2 K (m.a)
P sAR ¢ ¥ om, o5 2
a é laKIZmia5

With F¥(s )
gives

eF(Bu) 1

(0) -
Rn (P) =

(2m)%  fdet(F. '
{ v

The derivation of the relevant integration formula over a

0 the integration over dut in (6.20)

(6.24)

(6.25)

multidimensional Gaussian is a simple generalization of the

well-known one-dimensional formula and can be found, for

'instance, in Cramer 46, p.118.

Before obtaining the final result we still have to

evaluate the determinant of Fuv. This can be done most simply

in the frame a = (a,0). Then the only nenvanishing element

of «*a’/a? in (6.19) is a 1 in the 00-position, while

2
g“v- "o/« has -1 in the 11-, 22- and 33-positions and

zero elsewhere. Thus

32log ¢n(dJ ' alog¢n(a)

- - 1
aa

da

But this is needed at o = 8 and we can use (6.22) to replace

3log ¢n(a)/aa by -P. If we still introduce the notation
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2_3210g o (a) i
14 n ;
a{l3) = a 5 !
a=B (6.26)

s O 9 . P Ko(m{s) 4
“n-gP+s” [ omy " - | '.miB’K‘lTnﬁs“ﬂ >0
. . 1
1 1

we can write the final result in the form

) 5/2
RO (py =t PP 4 (8 £ 6.27)

(2m) 2 n [Bacgy

Remember that 8 here is as a solution of (6.23) a function

of P (and also of n and the masses mi).
As i1t stands, Eq. (6.27) is not very transparent and the
actual dependence on P is hard to see. In order to obtain some
more insight we shall consider the behaviour of B=§(f) and the NR anc

R limits.

b1

Due to the positivity properties (6.11) and ( 6.12) we know
that the right hand side (RHS) of (6.24) is always positive and
decreases monotonicdlly when a increases. When a + = the
behaviour of the RHS can be calculated by replacing K and Ky

by their asymptotic expansions according to (6.7). One finds

- 3n -
Po=]om o+ (a » =) (6 .28)

Conversely, when P - Z m. or one approaches the NR limit, the

i
solution of (6.24) is

P
BNR(R) T p- (5 .29)



When o + <, the RHS od (6,24%) is simply 2n/a. This then
corresponds to the ER limit:

D
(P) = == - (8,20

LJ

ihe two equations (6.29) and (6.30) express 1l/f essentielly
as energy per particle., This is in agreement with *the
identification of 1/8 as temperature T. According to (56.23)

in the NR limit

which 1s Just the well-known result that (kinetic) energy per
. . ) . N
guadratic (in the Hamiltonian)degree of freedom 1is 5 T

For arbitrary P Eq. (6.24) must be solved numerically. The

[

result of a calculation is shown in Fig. 6.1. The parameters

used are listed in the figure caption.

A very interesting estimate for the accuracy of this
-method is now obtained by inserting BNR(P) and B {(P) to
(6.27) and comparing the resulting approximate forms
Rg ;P) ana RiR(O)(P) with the known exact forms of RgR

h=)
(Eg. (6.13)) and R:R(P) (Lurcat 64). This calculation gives

ght to the method,; but we leave the details

e

plenty of new ins
to an exercise. The result 1s hown in graphical form in Fig.
6.2. where the error (=(approximate-exact)/exact) is plotted

versus n. As a function of n for fixed energy 2 the error

follows very closely a i/n-dependence., As a function of encrgy

'
th

or fixed n the error varies only slightly being largest at

eshold and smallest for P + » and varying monotonically

4T
“de

3

between these limits.



i
H
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!

It is obvious from

R_77(P) is numerically not sufficiently accurate.
sl
is a straightiorwar

(P). One Jjust includes more terms in t

(6 .15), and proceeds elsc as before. The higher-

1

cf Flep) which enter make the calculations leng

o

d task to calculate higher order corrections

rder derivatlives

nvand we do not

go into details here, Including the first-order correction

(Lurcat 84%) gives already a numerical accuracy wi

1ffieient for most purposes. The error assoc
T

e
o

‘ch is

with
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Appendix A

A kinematic configuration is defined, in general,
by a mixture of invariants and geometrical variables.
The latter are angles, boosts, lengths of three momenta,
etc. in a specified frame. The relation between the two
types of variables is most elegantly expressed in terms
of Gram determinants. It is shown in Section VI.3. that
also the equations for the boundaries of the physical

¢
region 1in terms of invariants are obtained requiring a
certain set of Gram determinants to vanish.

The Gram determinant of four-vectors Pys-«+>Pn5

< P 'e is
_.l) ’..L

(A.L)

]

q. (i=1,...,n),

A symmetric Gram determinant, p. 5

is called An :



] ) . Dy--eDP
A {Dy...D = |
ntP1 “n 5 )
Pl""n/
(A.2)
2
P4 Pily ess PyR_
wle - S
- i
PnP1 PpPo Py
In applications the »p are particle four-momenta or
linear combinations of these. G and & are evidently

invariants.
Wnen n 1s small G and & rhave a direct
? n

connection to geometric quantities. The first, 4. ,

2 2
A (p = p,~ = m," . A.3)
: ~ P1y . :
The scalar procuct G(U ; ¥ D-P, 1s simple in the rest
42/ b
frame of one of the particles:
o (A.4)
Gi{_~ =D = m,E for = 0. o4
\p,/ P1P2 1%2 2

If V 1s the relative velocity of the two rest frames

and r the corresponding rapidity, then

'_.J

G( ) = mlm2y(z) = mlm2coshr‘. (A.5)

D
P2
Eq. (A.5) gives now

- e B 2
A2(plp2) - i - mlui2(l—Y (Y__))

(A.8)
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or
T/—Az(plpz) = mlmzsinhr*. (A.7)

In the rest frame of 1 this is simply

2.2
8,(pypPy) = -mP, . (A.8)

When there are three particles, we can take the
rest system of one of them, say 1. In addition to
My My 5Ty there are three parameters: P2, P3 and the

angle 6 Dbetween p, and p, . The m, and P, are

obtained from (A.3), (A.8). The angle 6 involves

. P1P2
D15Py5Py simultaneously and thus e.g. G(plp3 .
In the frame p, = 0, it 1is
D~ Pn l mi mlE2 ? 3
G( - *} = | .. | = -mSP,P.cos6. (A.9)
P1P3 zmlEﬁ E,E3-Dp, B3 172" 3

{P1P
There is a way to write ka b

which deepens its interpretation. From (A.5)

2) in terms of rapidities,
3

q
b

2 |
G(plPZ) } } m mlmQCOShrlZi
P;P3 {mlm3coshr13 mzmscoshrzsi

The law of addition of velocities (II.4.13) implies

cosh r,3 = cosh ry, cosh i3 - sinh r, sinh ra cosd ,

and thus
P,P
[PrBgy | .2 . , 7
G\plpa) = "mlm2m331nh T, sinh r,; cosé . (A.10)



The symmetric b4 contains essentially the same
information as (A.9). In the frame py = 0 it is

easily reduced to

(

J

- 2 .
1PpP3) = | 0 -p5 “Py Py

0 -p,'P; -P3
(A.11)

2

222
antasln 0.

T

4

o2 2
= mylpyxpgl” = m

(A.9) and (A.11l) are different in that cos® gives 8
unambiguously, but Ay ~ sin26 does not distinguish
between 6 and w-8. The expression of A4 in rapidities

is

A = m.m.m.sinh r sinh r., sins. A.12
V/25(pyp,Py) 1 MyMgsini vy 13 Sinh ( )
When 4 four-vectors are given,the various AT,AZ,A3
ke

fix m;,P., and the angles 64j between p. and B
b o

There 1s one new geometric quantity which involves all
four P; simultaneously. It can be defined in the frame
Py = 0 as the angle ¢ Dbetween the planes R,5D3 and

D,»>R,- A reduction similar to (A.ll) gives

2 4 2
Py (p5xpy) | for p, = 0. (A.13)

2
Ul By BaPaRyd = =y

Its geometric signicance is seen writing the matrix

| - = b Z

1 P PL Py

‘ X =

E; Py P3P
& = | o x vy z

'3 P3Pz P3

'E. x v z

| =y pq, pq p1+

i
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and denoting the metric tensor as G = (g:) . Then

t(AGAT) = —(peta)? .

is the volume squared of the four-dimensional
parallellopiped with edges Pye.eDy Setting p, = 0 in
4 -

A gives (A.13). According to elementary geometry the

triple vector product in (A.13) gives

= 3 i L
A.(ﬁlpngpq) = —(mlePqus;ne233*n6248*“9) . (A.14)
Expressing Pi s in terms of rapidities gives
VCAu(p1p2p3P4> lmzwamg31nhr251;hr sinhr, s;pe‘351n62451n?

(A.15)

'he angle also comes out of unsymmetric 3x3 Gran
y

determinants. A straightforward evaluation yields

P1P2P3 2,2 . .
> = myP,P,P; sinb, sinb, cose . (A.186)

o

he preceeding discussion shows what are the values

= fixed frame p, = 0. We list

@ L4

of momenta and angles in
them here using the notation p,q,r,s,Q = |a| ,

6 = ¥(a,r), ¢= ¥(gr,gs)

A,(piQ = —Az(pq)

= Al(p)As(pqr)

s o
Az(pq>A2(pr)31n )
= Az(pq)A“(pqrs)

.2 .
(pqr)A3(pqs)51n 04 (A.17)

3
[4,(pgla,(pr)] cos® = G(gg)

4

_ (qu)

/2
cosq = G pas

[a5(par)a (pgs)]
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pl"-p

. . " n
With n > 4% in A or G( )
n qQqe--q,

changes completely. More than four vectors in four-

, the situation

dimensional space are always linearly dependent.

There are thus coefficients as that
n
L_ a.p: = 0 , not all a. = 0 (A.19)
i:l_z.l X

Taking the scalar product of (A.19) with g,, then with
G,, etc. to q, results in n homogeneous linear equations

for the invariants Diqj. According to (A.19) this

P

system has a non-trivial sclution Gpsenes@y and thus

. . . pl"'pn
the coefficient matrix G(O q
"l... n

Adding a vector p, to the set Pye+-Py_3 gives

) must vanish.

four new parameters but n new scalar products Pipj'
Thus n-4 equations (A.1l8) are to be found going from
n-1 to n four-vectors. We just saw that 5x5 determinants

vanish, and thus, denoting o by i,

"
(@)

5,(12345) ;
12345, _
85(12348) = G(y,5,¢) = 0, (A.20)
oo 12345, _ 12348

"The number of equations in (A.20) 1is %(n-3)(n—u). It
is evident that if Pys-..,p, are four-vectors, also

the following is true:

A5(12345) a,

6, . (A.21)

A5(12346) A6(123456}

8,(1234587) = G, etc.

A5(12347) A6(123457)
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It is clear that Gram

determinants of order five

or more do not give values of geometric quantities, but

express necessary relations between invariant quantities.

Eqs. (A.20) raise the converse problem: If the invariants

p.p. are given, do the conditions (A.20) suffice to

3 &

guarantee that there exist one or more sets

e e e3P
PysesesPy

with the given invariants. This complicated problem is

discussed in Chapter VI.

The elements, of the Gram determinants 4A_ are the

invariants p

P

[0

i
invariant masses

P

. In practice, more useful are m-particle

2

s.. = (py*Pi¥pyt.. )" . (A.22)

Outward directed momenta are taken positive, ingoing

particles have a reversed sign in (A.22). A Gram

determinant £, 1in pipj

to a Cayley determinant of

The expression of s

0 1
1 &
2
- ntl |1 pj
Ap{py-epy) = L_i%“__ 2
A& 2 l Dl—
2
.
1 pn

To prove (A.23), one simply
from all the following rows

the following columns.

can be shown to be identical

dimension n+2 in s.. .
TG Ko
as Cayley determinant is
i 1 w @ 1
2 2 2
1 P A o
2 2
0 (pl—pz) - (pl—pn) ‘
2 2
(p1-py) . (po-p,)7|
- 2 . 2 .
(pl—pn) (pz—pn) v b 0

(A.23)
subtracts the second row

and the second column from all
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Equation (A.23) is not yet in terms of s.

iik...
To get this one writes the identity
8.(pysP5s-0.5D ) = Ar(pl,pl+p2,...,p1+p2+...+p%) (A.24)

which results from. adding rows and columns in .- On the

P

right hand side of (A.24%) the difference squared of two

arguments 1is of the form

S
1+1

Explicitly A is then

123

12

b

.

'..’j.

23..

1 .1
219 sr Sqg
S9 + Sy3
0 . Say
S3 <+ Syg
Say,.n ** U

(A.25)

.




ippendix B

Swherical Trigonometry

Formulas of spherical trigonometry are often neecded
to discuss differential cross sections and spectrometer
apertures. These formulas are easily found from various
handboocks, but we shall here derive the basic formﬁlas
in a way which emphasizes their symmetry properties.

Consider the spherical triangle with sides a, b, ¢
and angles A, B, C as shown in Fig. B.l. Choosing the
axes as in Fig. B.l, the unit vectoré to the corners of

the triangle are

e, = (0,0,1)
e, = (sinc,0,cosc) (B.1)
ey = (sinb cosA, sinb sinA, cosb) .

The law os sines 1s obtained by evaluating the volume of

the parallellipiped spanned by the e.:

.
-
ke

€ * ey X ey = sinb sinc sinA (3.2)

But by cyclic symmetry this evidently equals sinc sina sinB

or sina sinb sinC , which leads to the law of sines

sina _ sinb _ sinec (B.3)

- -

sinA sinB sinC

The law of cosines for sides is obtained by computing the

scalar products between the e,

. e, = cosa = cosb cosc + sinb sinc cosA (3.4)

€9 3

etc. cyclically.
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In order to obtain further formulas
fashion one has to consider the spherical

by the basis vectors éi dual to the e.:

i
e X €
31 » ~2_“.~£i_5 , ete. cyeclically
[ez X e3[

By explicit computation from (B.l) and (B.

Pe

e, = (-sinB cosc, -cosB, sinB sinc)
32 = (sinA, -cosA, 0)
ey = (0, 1, 0)

In evaluating (B.6) the y-component of @l

most simply from

él-gs = -cosB, etc. cyclically

The volume of the parallelipiped generated

in a symmetric

triangle generated

(B.S)

5)

(B.6)

is obtained

(B.7)

by the e

gives again the law

give the law

of siries, but the scalar products

of cosines for angles:

g.-¢e

1)
~

-e_'e, = cosC

etc. cyclically.

If one of the
simplified formulas

Choosing C = 90°

= cosA cosB - sinA sinB cosc (B.8)

angliles of the triangle is 90°, the

may be summarized in Napier's rule.

this rule says that, in the diagram of

Fig. B.2, the cosine of any guantity equals

a) the product of cotangents of adjacent quantities,

b) the product of sines of non-adjacent quantities.
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ppendix C

e e

—

Three particle integration

The integral
3

d pyd p,d pa
- -1 2 3 4 2
I3 = j/ s (pI—pl—pz—pB){A[ (C.1)

= T
8Llu2E3

can be written in terms of five independent variables. In
the absence of polarization, lA]2 does not depend on
the rotation around the beam axis. Integration over it

gives 2n. The remaining integrals are written
bL+ b3 b2 71.
- 12
I, = 2nj(dxuj,dx3j’dx2) dx, W(xi)[Al (C.2)
a, ag a, aj

Several choices of X, are listed in Table C.1 and the
corresponding weigﬁt functions are in Table C.2 (Pirild 1971).
The function A; is written explicitely in Chapter Vs

The limits for invariant’combinations (tl’tZ)’
(sl,tl) and (82’t2> can not be stated in a compact form
and the reader is referred to Chapter V. Permuting the
invariants in thé cases I and J also gives such complicated
limits and these are not written in the tables. Otherwise
Table C.l contains @ll the essentially different choices

of variables in which the angles can vary freely.



1 2 3 1 2 3 a
(Fa Cosoal c030§3 27 -1 1
A3 00802%2) cose;:3 same as A
. 2
3 coseal t2 27 -1 1 G(s >12>m3,m§,m§,sl)f_0
> 2
(12) ®1=(M )
7\3 cos6 t, same as C
= 2 2
)\3 coseb3 52 27 -1 1 G(S’m2’sl’82’m1’m§)fq
@‘a coso(l;l) t, 2% -3 1 see Chapter V
3z
¢, cosei, ty 2 -1 1 - "~
(23)
Xy cos0, t, 27 -1 1 - "
2 2 2 2
(N tl t, 27 G(sl,tl,mz,ma,tz,ml)io G(s,tz,ma,mi,m
sli(mlw‘m?)2
2 2 2 2
A3 t2 82 . 21T G(82 ,tz ,m3,tl)mb,m2)§0 G(S3m2>sl)82,mi,m§)i0
t2 tl S, Aq 0

Table C.1.

2
b)sl)f.o

b2

(€8]
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1/2
{k(s,sl,mg)x(sl,mi,mg)}
.Sussl
same as A
1/2
1 fk(sl,mi,mg)
32s4 ik(s,mg,mg)
same as C
.
32s
1/2
2 2 2
1 A(tl,tz,ma)k(tl,ma,ml)
2 2 2
32t1 A(s,ma,mb)x(sl,tl,ma)
2 1/2
1 A(s,sl,m3)
32s A(sl,tz,mi)
2 2 2 1/2
1 {k(s>52,ml)x(sz,m2,m3)

2

2 2
a,mb)k(s,sl,m3)

3252 A(s,m

1
' 2 2 2 1/2
ls{x(s,ma,mb)x(sl,tz,ma)}
l ——
2 2 2 1/2
lS{x(s,ma,mb)A(s,sl,m3)}

1
f 2 2
J -
32lx(s,m ,mb) ( A4>

}1/2




Answers to the Exercises

IT.1. Length of the accelerator seen from by the

electron = (3km) x log(g—) 4 me/(E—me) = 81 cm.
“e

A

II.3. a) vy S (1+e)/(1-e), v 5 2/e
b) v 2 1/(1+e) , vy 21//2¢ .
To an accuracy of 1 % the approximation

E m+p2/2m can be used if p £ 0.2 m, E = p if

v

o) 7 m.

IT.4, 10.0 ns, 10.1 ns, 13.7 ns.

II.5. a) a = y(ey', v'y*vyv'), where y' = y3vv'/c2

and the prime denotes a derivative with respect

to time, b) That a‘u = 0 is obtained by
differentiating u-u = c2, c) a*a = Ys(v')z.
1.6, v = 0,952, M= 3.26, ¥ = -1.46 Gev/e,

EX = 2.65 GeV.

II.7. In the target system the momentum vector lies on

the hyperboloid p2 - (YCMVCM)Z(p2+p2) = (m YCMVCM)Z.
P Zz x Yy

The maximum value in the CMS is P¥* ¢ % Vs—umz.



- 196 -

Answers to the Exercises (continued)

IIT.1. a) Gev®™ ., b)) gev?® ¥

ITI.2. I(E) = (2wm)S™/2 g30/2-1,004./2)

III.3. S = %n + n log(!gﬁ) , where 22 = 3wn/mE
A

(Sackur-Tetrode's formula)

- Vn(gz)Sn/Z

IIT.4. Z(T,V,n) P
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Figure captions

Fig. I.1l.1. Particle decay and particle collision.

Ty
-
ltje]
4
—
N

Example of a distribution in an energy

variable.

IT.1.1. Frames defining a Lorentz transformation.

g
[N
Uq

Fig. II.l.2. Transformation with arbitrary direction of

the velocity.
Fig. II.1l.3. Longitudinal and parallel components of x.
Fig. II.2.1. Transformation of velocities.
Fig. II.7.1. Definitions of various Lorentz systems .

Fig. II.8.1. Definition of the Cartesian and polar

coordinates of p -
Fig.III.4.l. The unitarity relation.
Fig. IV.1.1l. The scatte;ing angle 6.
Fig. IV.1l.2. The opening angle 01,

Fig. IV.1.3. Distributions in the opening angle 6.,
of a yy-final state for some values of

the velocity v of the decaying systen.
Fig. IV.2.1l. The 'CM momenta and scattering angle.
Fig. IV.2.2. Mandelstam variables.

Fig. IV.2.3. Momenta in s-, t-, and u-channels.
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The Mandelstam plane.

Physical regions for the process
O £ * m = /-
m (138)+w(784) + n (140)+= (1408), and the

crossed channels. The masses are related as

iy ¥ Wy % g ¥ Mgk Hp ¥ Mg T Hy T gl

m,m, > Mgm, . Decay 1s possible.

The process K(494) + N(S38) - p(760) + Y™(41680),
with m, > m, > my > m,; m.m, > m,mg;

TZ + wz > mé + m2 Ng deca

-l,l 14 2 3- i y'

The process y + N(S38) = =(140) + N (1238)

with m, = a, m, > my > mg; m, > m2 v omg.

Oecay is possible.

The process 7y + N{(338) ~ p(780) ~ N™(1238)

with m, = 0; Mg > My > Mg3 My, = Mg < My < my * Mg

No decay.

The process Y + N(938) =+ Y + N
with m, # m, ; m, = mg = 0.
Oecey is possible.

The process N + N - N + N

with m, = m, = mg = mg. No decay.

, : T -
Chew-Low plots for the system =« w 7~ in the

reaction K-p > 1w won
Extremal points of the Dalitz plot.
le}ts of S,5 for given Sog.

Dalitz plot at large energy.

[N

Change in the plot with energy increasing.

Bl
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he process 2 - 3.

Invariants for the process.

cle scattering processes.

S8

Quasi two part

Intersections of the surfaces S, = const.

and t, = const. with the Pyx’ Piz plane at
i ]

P, = 30, All units GeV.

Iintersection of the mass consiraint ellipsoid
11 0
with P3x’ P3 plane for the case pp =+ pr p,

= 10, t, = ~-0.4.

S2 1

Delitz plot of the reaction pp - pﬂ+ﬁ at 5.5 GeV.

Boundaries of t,t, plots for values of s and the

masses denoted in the figures.

-

T o [ 74 = & 1 1} M Hoe
The curves s, Lb1t2) S 44 (tz) with all branches
included for a reaction with the masses, in |

N T + 4 = = = = = 5 '
arbltrary units, m,=m, 3 5 Mg =m,=mc 1, and for

(a) s = 80, (b) s = 37, and (c) s = 35

= threshold energy squared.

2016 events of the reaction with m1=m2=3,
m3=m3=m5=1, and s=50 distributed according to

phase space.
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Multiperipheral process
A cascade decay

Izltiparticle process via one

compound system
Tree graph for multiple decay
Invariants of the basic process 2+2

Diagram for calculation of the effective

mass distribution

Two-particle mass distribution of the
Zr-system of the reactions X N » Ks(n-'w)

at 3.4% GeV/c computed from phase space

Three-particle mass distribution of the

srm-system of KN » Xs(n-w) at 3.4 GeV/c

Distribution in the opening angle between

two pions in K+3w computed from (5.11)
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P]J

ig. X.3.1. Monte Carlo integration of a function f(x)
over the interval (0,1): r) is a random

point, m is the exact value of the integral.

Fig. X.3.2. Illustrating the convergence of Monte Carlo
integration. The function to be integrated
is f(x) = x; the curves show how the
normalized probability densities of the Monte
Carlo estimates are peaked closer and closer

to the correct value 0.5 as N increases.

Fig. X.5.1. Cascade-type choice of variables for the

process pa+pb - p,+...+pn .

Fig. X.5.2. Choice of variables at one of the vertices

in Fig. X.5.1.

Fig. X.5.3. Domain of integration over the two masses

M, and M for N = 4,
3 2

Fig. X.5.4%. Example of an output of a Monte Carlo

program. Details are explained in text.

Fig. X.6.1 Behaviour of the root B8(E) for the masses
noted in the figure. The NR and ER limits

are also shown.

Fig. X.0:2 Behaviour of the error of the zeroth and
first-order approximations as a function of

multiplicity in the ER and NR limits.
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Center of momentum eni
system (CMS): Pa = 75
Target system (TS): » o

% 2=0

Beam system (BS):

Colliding peam
system (CBS):
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Fige IV.1.1

/
-
A
|
* 6

P =9 v=, =9 =0
4 !
i { ] !
ﬂ. y (\g ]

. i { |

d | {{ I

‘\ )\ I I
A t \ |
; n \ AN
3 I Io I 7 @13
‘ 90 180° -

Fig. IV.1.73



- 209 -




-~ 210 -




- 211 -

/\[ ! ’ ':"
\_/ (\Ch’\ﬂ@a -

u=2

Channel u Channel
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Fig. IV 3.90.
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Fig. @ 3.7
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INT

F£v123

FRVAL

B RGO D OO e oo O L

RELOW

0,600F
0.6450E
0.500F
0,550
0.,60CE
O,¢u0E
0.700F

"Tq 0, 75%0F
0.800L

. 0,r50E
2D 0,000F
N 0,050F
2 0,16G0E
\/’(Ii 0;10’1{
0.110E
0,115F
g;jgoolyﬁE
0.125F
04130F
0¢13LE
0,140F
Ocl’l%g
04180F
Oo ’ C)')E
0.160GC
00 1 "‘v"?E:
0.,170¢
0.475E
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