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1. We consider Hamiltonian Systems of the form 

(1) 

where H =H(x,y,t) has the period 21r in t and is a power series in 

x and y which contains no constant and linear terms. That neans 

x =y =0 is a solution which we call the reference solution. We also 

want to assume that this reference solution isstable according to a 

linear theory, i. e. according t·o the equations of variation. Under 

these circumstances it is no loss of generality to assume that H has 

the form 

• 

It is well known that a sy~tem of this nature does not admit 

a non-trivial integra~that is a function I(x,y,t) for which 

(2) ..J! I =It + I H - I H' =0dt x -7 Y .~ 

hold~which has the period 21r in t and does not vanish identically. 

On the other hand it was proven in an earlier paper* that there 

* J. Moser Stabilit!tsverhalten kanonischer Differentialgleichungs­
systeme, Nachrichten der Akademie der Wissenschaften, 
G~ttingen, 1955. 
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exists a formal power series eXPansion (which is divergent in general) 

for an integral which satisfies the equation (2) in the formal sense, 

that means the coefficients of the series in (2) are all zero. These 

formal eXPansions prove to be of importance in deciding the stability 

of the reference orbit. Even more they allow an asymptotic description 

of the motion near the reference orbit. 

In the paper just mentioned only the existence of such expan­

sions for I was proven. But this proof involves many transformations 

of coordinates and it would be desirable to construct these series 

directly. Such a construction has the following difficulty: If one 

tries to compute the coefficients of I from (2), one sees that they 

are not uniquely determined by this equation, the reason being that 

with I every function of I is an integral and hence satisfies (2). 

But if one chooses the undetermined coefficients, say of order n in 

I, ina definite way, one is not able to satisfy equation (2) for the 

terms of order greater than n and is led to a contradiction. In other 

words, one has to determine the coefficients of I in a definite way 

which guarantees that equation (2) can be satisfied for all terms. 

It is the aim of this note to give such a construction which is a 

purely formal problem. The rriethod will be applicable just as well 

to construct one invariant for a Hamiltonian system of two degrees 

of freedom. 
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2. The condition for I to be an integral is given by equation (2). 

This equation does not determine I uniquely as we saw above. This 

caused the difficulty of constructing I. In order to choose the arbi­

trary coefficient in I in the right way - as to obtain compatibility 

of the terms of higher order - we will add a second equation for I which 

has to be fulfilled ~irnultaneously with (2). It is this second equation 

that we want to reveal. 

For this purpose we write the system in polar coordinates: 

Let 

R -_ x2 + y2 nd _rW'a x = 'f n. COS", y= ...JT sin 'P 

and 

-2H =K(R, f' t) =w R + ••• • 

Then the system (1) transforms into 

eP =KR� 
•� 
R = -Ktp 

and «p , R are canonical conjugate variables. The condition for 

I (R, ep, t) to be an integral is 

Introducing the notation 

we have 

It + [I, ~ =O. 
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The second equation which we will add artificially is 

I (R, Cf , t) + ut + '"' u CIt = K(R, Cf ,t) - Co) R 

where u(R,ot,t) is a function which has to be determined additionally 

and whpre for ~ we have to insert 

q> = 0( + ~ (R,ot,t). 

The functions I and u have to be determined as to have the period 

27r in t. The system we have to solve then reads as follows: 

I t + [I, KJ = 0 

{ I(R,at+uR,t) +u +cuuOl. =K(R,cx.+utt,t) - cuR. 
t 

We want to show how this system can be solved by determining 

the coefficients step by step. For this purpose we expand I and u in 

a power series in ~ namely L:I~ R te, EU R~ • 
te 

Since I,u have the period 27t' in t and <p reap , ex. , we can expand 

I k ,u te:: in a Fourier series 

so that we write the general term in I,u, as 

where 2 I<:; is a positive integer and/""' ,,, are integers. 
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How to determine the coefficients: We will assume that c..> = ~ 

is a rational number. (In the case of irrational cu the procedure is 

even easier.) Let us assume we have determined I ' u~,,"v fortep y 

t<. < k already and try to determine them for K = k , By expanding the 

functions in (3) we see that 

..a I +c.u-a..I 
ae k d<p k 

I k + a~ uk + co ~ ~ 

are given functions which can be computed from t he determined coefficients. 

In order to solve for I and ~ expand these functions in Fourier series
k 

with respect to e:p, t, resp , 0(" t , We find that 

i (v - c.uJ't) Ikf'-v 

Ikp,v - i("V -. wI') ~r"V 

are numbers which can be computed by known coefficients. If now 

V - (,,))L :; 0, we easily obtain I from the first equation and u
kpY kp,v 

from the second. If, however, v - (.o).f'L =0, thenIkp v is determined by 

the second equation, while u remains arbitrary, and the first equation 
. kpv 

will be satisfied automatically. This underlined statement will be proven 

below. In other words, the coefficients UK!"", for which v -tA> /A" = ° 
are arbitrary and after they have been chosen, I is determined uniquely. 

In order to achieve that I is a real power series, we have to 

choose the arbitrary coefficients uK,..v with l' - t..>r =0, so that 

• 

Then I, u will be real automatically. 
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3. Before proving that this method actually never leads to a 

contradiction, let us add a few remarks: 

a.� Actually this method will be more interesting when G&l is 
p

only close to a rational number, say Co) rv -. In that case one would 
q 

replace the equations (3) b.1 

I t + [I, K] = 0 
P{ r(R, Of. + 11.., t) + u + E Uac. =K--R 

it t q q 

and determine the first coefficients of I, u from these equations. 

Expanding into a series we obtain for I 

PI = (Co,) _ -) R + ••• • 
q 

The higher terms will be responsible for the shape of the level lines 

of I. 

b. This method can be applied to systems of two degrees of 

freedom just as well. The equations (3) have to be replaced by 
:1 

I +L.I' TL -I K =0, V" = 0(..,- + ~lo»t v-.1 tpp --a-» Rv <f" 

I + u + t..:> ua. + "> u_ =K - Co) R - c..:Jt I I .I, .... ~ • 1 l. R2• 

Thus we obtain one formal integral. 

c. For actual computations the coordinates R, Cf are somewhat 

. inconvenient, but it is no difficulty to reWrite (3) in the old coordi­

nates x, y. For t his purpose one introduces a function v(x,." t) =x'7 + ••• 

and fulfills instead of (3) the equations 

It + r H_ - I H = 0, y = v x y y x� x 

and 
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Expanding with ,respect to x, "'lone can determine the coefficients of 

I, v successively. 

lu Finally we want to show that the equations (3) really can be 

solved step by step and do 'not lead to a contradiction. For this purpose 

we define a canonioal transformation of R, <f into P, ce. by the equations' 

P =R + uCL 

where R oL + u(a, 0<., t} forms the generating function. By this transfor­

mation the system with the Hamiltonian K(R,~ ,t} will be transformed 

into a system with the Hamiltonian F( P, CL,t} where 

F =K - Uta 

We first rewrite the equations (3). Introducing the function' 

I(R~ ~,t) =F - C4> P we have because of P = R + ~ 

I + ut + Co) Uoc.� = F - c.o P + ut + co Uoc. 

=F-c..)R +u 
t 

=K-(,,)R 

which is exactly the second equation of (3). 

In order to rewrite the first equation, we observe that the 

Poisson bracket 

G H - G H ex. p p� CL 

has a meaning independent of the canonical variables used. Therefore we 

have - observing that F is a Hamiltonian ­

d
F = - F­ rF, FJ = 2. F =.!! (I + c...> P) = .2. I + CAJ [p, B 

t dt L.: dt dt� dt 
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and since 

F~ = [F, pJ - -� [p, ~ 

we have� 

Ft + Co) ~~ =d~ I =It + [I, K] •� 

Therefore the equations (3) have the meaning that the transformation� 

determined by the generating function RQL + u transforms H into the� 

Hamiltonian F( P ,ex., t) which satisfies� 

Ft + Go:) FQL� =O. 

Now it is� sufficient to show that the two equations 

F(R + uQl.'~,t) + ut =K(R,~,t) 
(5) { F +(.,)FoL - 0� . 

t 

can be solved step� by step. We expand� 

F = 2: F p~, u = L: u., R~
 .... . "' 

and assume that F!'C ,u ~ for te:<. k are determined already. Then we form 

. the terms of order k in (5) and find from the first equation that 

is a given� function, and from the second that 

By expanding F ~	 into a Fourier series:k, 

~	 i(j,C.G(. -~t) _ ~ ei(pO<. -"J't)
F =L-F e' Q L-Q

k 'pI V� kr v ' 1C - ,AA,"V }{"u-v 
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we see that 

and that 

is a given number. If v - (.) A4 =t= 0, we have Fk = 0 and u is 
~ . ,lAo" k~~ 

uniquely determined. If, however, 11 - (.,.)1"- = 0 then Fk)L v is determined 

from the second equation and the first one is satisfied automatically. 

Since we saw that the equations (5) are equivalent to (3), we 

thus proved the compatibility or t~ equation (3). 


