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Abstract 

It is shown that all important closed Robertson-Walker-Friedmann 

universe models have an analytic continuation into the Euclidean re­

gion with wormhole-type topology. 
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1. Classical wormholes usually are Euclidean metrices which consist of 

two large regions of spacetime connected by a throat. They are instantons, 

solutions of the Euclidean Einstein equations and can be obtained also as 

an analytic continuation of the Lorentzian solutions to the imaginary time: 

t -t -it. They play important role in quantum gravity [1-2] and should 

effect on physical constants, particularly the cosmological constant (see e.g. 

numerous references concerning this problem in [3]). In connection with 

these problems the microscopic wormholes which have Planck size throat 

were investigated mainly (1]. But the global wormholes with the size of the 

throat equals to the maximum size of the universe can exist also and they 

should define the global topology of the Euclidean sector of our universe. 

In our paper we shall show that closed Friedmann universes have wormhole 

type Euclidean continuation for most important cases and we think all closed 

models of universe should have this property. 

2. All known now exact classical wormhole solution~ are reduced usually 

to the three main cases: 

a). Axionic instautons. 

The scale factor in this case has form 

a= ai cosh1
/

2 2.,,, (1) 

where T/ is Euclidean conformal "time" and Robertson-Walker-Friedmann 

(RWF) metric is taken (usually if it is not stressed separately we consider 

the 4-dimensional spacetime manifold). This Euclidean Einstein equations 

solution was obtained for the first time in [4] in the case of a third-rank 

antisymmetric tensor (axion) as a matter source. That is why it has the 

name of axionic instanton. Generalization of this model was performed in 

[5,6]. 
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Recently it was shown [7-9] that instanton with exactly the same geo­

metrical structure take place for the RWF universe filled by massless scalar 

field minimally coupled to the gravity. In [8] this model is generalized to the 

case of multidimensional universe and the scale factor corresponding to this 

instanton reads 

_2_ J 

a= at2 [cosh(d - 2)71]T-2, (1.a) 

where d ~ 3 is the dimension of the Euclidean region and the formula (La) 

is reduced to (1) ford= 4. 

b.) Conformal scalar feild instantons. 

In this case the scale factor is 

a = a2 cosh 71. (2) 

This type of wormholes was described first in [10] and in [11] was shown that 

this wormhole corresponds to the solution of the Euclidean Einstein equations 

with a conformally coupled scalar field. The same type of wormholes was 

obtained in [12] with the help of cutoff in the scale factor. It gives the 

possibility to avoid the negative values of the effective gravitational constant 

problem in the model with conformal scalar field. 

It is easy to see that the scale factor in (La) for d = 3 has the same 

behaviour as in (2) although the result (2) was obtained in the case of 4-

dimensional (d = 4) RWF spacetime.' 

c.) Minimum resolution distance instantons. 

For this model the wormhole solution is 

a= a3 (1+cosh71) (3) 

and this result was obtained in [13] due to an extra quantum term arising from 
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the insertion of a minimum resolution distance in the background theory. As 

a background theory the RWF universe was taken. 

We should stress here again that all these instantons were considered as 

microscopic ones mainly [1-5,12,13] and the throat sizes a;(i = 1, 2, 3) in for­

mulas (1)- (3) have Planck scales: a; ....., Lp1. They can be obtained also as 

an analytic continuation of the corresponding Lorentzian solutions for closed 

RWF metrics. The wormhole type solutions take place if the models possess 

the conserved charge which is not changed during the transition from clas­

sically allowed Lorentzian region of space-time to the classically forbidden 

Euclidean region of space [3,8,11]. In the case of minimally coupled massless 

scalar field (case a.) the momentum p"' conjugated to the scalar field <.p is 

constant and this quantity is regarded as conserved charge [3,8]. The square 

of p'P is proportional to the scalar field energy and play the role of conserved 

parameter in the Einstein equations [8]. The constancy of momentum leads 

to the imaginary values of scalar field in the Euclidean region [3,8,9]. In the 

case of the conformal scalar field (case b.) there is analogous of the conserved 

quantity also. It is the energy of the conformally transformed scalar field [11] 

and this quantity is not changed during transition from Lorentzian region to 

Euclidean. 

3. We want to show now that for the most well-known models of the RWF 

universes there are wormhole type continuation into the Euclidean region and 

all these solutions usually have the form of (1 )-(3). 

For the closed RWF metric the master equation which define the time­

dependence of the scale factor is [14] 

(4) 

where 71 is Lorentzian conformal time. The first term in (4) has its origin 
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in the curvature of the 3-dimensional hypersphere and the three other terms 

define the mass-energy density (all numerical constants are included into f 

and each of f is up to numerical factors conserved energy of the corresponding 

type of the m,atter). The first of them is the energy density of the ultra-stiff 

matter with the equation of the state (15] P = p. The second one represents 

the energy-density of the radiation with the equation of state P = ~P· And 

the third term is the energy-mass density of the dust with the equation of 

state P = 0. Let us consider all three cases separately. 

a.) Ultra-stiff matter filled universe. 

The solution of the ( 4) in this case is 

(5) 

We should make an important remark here. The point is we are looking 

for the Lorentzian solutions which should have wormhole type continuation 

into Euclidean region. The wormholes usually are symmetric with respect 

to the throat. Thus our Lorentzian solutions should be also symmetric in 

respect of the origin of the time axis. This condition defines the constant of 

the integration of master equation. 

After analytic continuation into the Euclidean region T/ --) -i11 the ex­

pression (5) takes the form of the axionic instanton (1). It is easy to show 

that this solution describes the two asymptotically flat Euclidean regions con­

nected with each other by the throat· (handle). If we use the transformation 

[9] from conformal "time" T/ to new "time" T: ad11 = [1/(2a)]dr then 

2 l a= (tu+ T )•, -OO < T < +oo 

and asymptotic metric for JTI >> (fu)t is 

ds 2 
= 41~1 (dT) 2 + ITl[dx2 + sin

2 x(d02 + sin
2 Od<p2

)]. 
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(6) 

(7) 

After transformation R = ITlt we get 

(8) 

This metric describes the 4-dimensional flat Euclidean space. The size of the 

throat is r0 = (fu)t which coincides, as it follows from (5), with maximum 

size of the Lorentzian region of the universe. 

b.) Radiation filled universe. 

The symmetric (with respect to the_time axis origin) solution of the (4) is 

l 
a= f; cos T/, (9) 

Analytic continuation into the Euclidean region gives the wormhole with the 

conformal scalar field instanton geometry (2). In the synchronous Euclidean 

"time" t : ad11 = dt this wormhole can be rewritten in ,the form 

( 2)l a= fr+ t 2, -oo < t < +oo (10) 

and for the large "times" It I > > (Er) t we have two 4-dimensional flat Eu­

clidean regions with the asymptotic metric (8). The size of the throat here 

is r0 = (fr)t which again coincides with the maximum size of the Lorentzian 

region of the universe described by (9). 

c.) Dust filled un~ verse. 

The solution of the (4) which is symmetric in respect of the time axis origin 

has the form 

(11) 

and the analytic continuation into the Euclidean region gives the wormhole 

with the minimum resolution instanton geometry (3). It is easy to see that 
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for the "times" 17 >> 1 this wormhole takes the form (10) in synchronous 

"time" 

(12) 

and there are again two flat Euclidean regions which' are connected with each 

other by the troat of the size r 0 = fm· 

It is not difficult to check that all these wormholes (6), (10) and (12) 

can be obtained directly as solutions of the Euclidean version of the master 

equation (4) and the energies c: play the role of the conserved parameters 

(charges). 

4. With the example of the most important cases of the closed RWF 

universe we have shown that all of them have the analytic continuation into 

the Euclidean region and this continuation has the wormhole geometry. We 

think it is a general property of all RWF closed universes. It is interesting 

that our universe, if it is closed, has a continuation into the infinite-size re­

gion - the region where time is absent - and this region has a non-trivial 

topology. Of course, this sector of our universe is classically forbidden. 
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