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There are two problems of basic interest in modem theoretical physics. The :6.rst is to 

unify all the fundamental interactions including gravity at the quantum level. Nowadays 

it is a general point of view that the quantum gravity problem is in fact a problem of 

unification of all interactions. 

The second is a problem of exact solvability in quantum field theory and quantum 

statistics. During the recent years there has been a considerable success in solving 

2D conformal models, however the main problems in D>2 are still open. This is the 

exact theory of phase transitions in D-3 and a confinement problem in D=4. 

The question arising here is: What new methods should be developed to approach 

these problc;ms? The development of.theoretical physics during the whole century shows 

that practically all new fundamental results were obtained on the basis of discovering 

some novel symmetries. So it may.be. said: symmetry is a guide for physicists. 

Then, what symmetries may be expected to appear to help us to solve the above 

problems? At least one thing can be said for sure: they will be infinite-dimensional 

symmetries. 

Two types (classes) .of infinite dimensional (super )symmetries were proposed by our 

group at Lebedev Physical Institute: 
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~;._ (1) Higher Spin Anti-de Sitter (Fradlcin & Va.siliev {1986), {1987c}, {1988); Va.siliev 
. ' 

{1P88}, {1989a,b), {1991)) and Confonnal(Fradkin & Linet.sky {1989a), {1990a); 

{1991a)) supersymmetries. 

(2) Virasoro-like (super)symmetries in dimension D~2 or more generally a new class 

AC(g) (and its central extension AC(g)) of infinite-dimensional algebr~, con-

structed by our method of infinite extension ("analytical continuation") of any 

semisimple finite Lie algebra (Fradlcin & Linet.sky {1990b), (1991b,e,f)). 

From the mathematical point of view these infinite-dimensional algebras, containing 

the given semisimple finite-dimensional Lie algeb:ras g as a maximal finite subalgebra, 

(for possibility of having a spontaneous broken phase with the lower-energy g-symmetry) 

are devided into two classes under the natural representation [g, ·] of g. The first-class 

algebras (the high~r spin or. Kac-Moody algebras) are decomposed only into a direct 

sum of finite-dimensional irreducible g-modules. Second-class algebras (Virasoro like* or 

more generally AC (g) and AC(g) algebras) involve also infinite-dimensional g-modules 

(irreducible or/and non-decomposable). We believe that these infinite-dim. algebras. 

and their representation theory will play an important role in solving the problems of 

unification of all interactions and of exact solvability in QFT and statistics. In the 

present talk l shall try to give a brief accoµnt of our attempts to construct a local 

unified theory on the basis of the infinite-dimensional higher spin symmetries and the 

corresponding higher spin gauge theories proposed by us. 

*The "simplest example of second-class infinite-dimensional algebras is Virasoro-algebra (Ac(sl1)). 



1. THE PROBLEM OF UNIFICATION OF ALI,. FUNDAMENTAL 

INTERACTIONS INCLUDING , GRAVITY (BASIC RESULTS). 

During the whole twentieth century the selfconsistent unification of all the funda­

mental interactions including gravity has b~n a central problem of theoreti~al physics1 

This problem ca.IIle into existence right after Einst'ein formulated General Rel~tivity as 

a theory of gravity. At the beginning the problem consisted in unification of gravity and 

electrodynamics in the framework of classical field theory (it is sufficient to mention the 

Weyl conformally-invariant approach and the Kaluza-Klein approach). At the stage it 

was realized that gauge invariance principles could give keys to the wtlfication of inter­

actions, and all the attempts to construct a Unified Theory actually had been-a search 

of some extension of the general coordinate transformation groups to incorporate also 

the gauge group of vector fields in a natural way. 

The progress in physics has led to the establishment of the following main criteria 

that a Unified Theory must satisfy (for moredetails see 'Fra.dlcin {1989}}: 

, . (1) it should be selfconsistent at the quantum level; 

(2) it should give an adequate description of low-energy physics. 

The anomaly cancellation conditions for all classical symmetries of the theory an~ the 

finiteness, of the Unified Theory are understood as a selfconsistency. Simultaneously , 

this criterium of anomaly cancellation imposes strong restrictions on the spectrum of 

elementary particles. and the-gauge group for vector fields. (Fradkin E.S. and T.seytlin 

A.A. {1984), Green M.B. and Schwarz J.H. (1984)). 

An adequate description of low-energy physics must include a solution of the cos­

mological constant problem, an answer to the question why the. world we live in has 

just four observable dimensions, and it must predict the observed spectrum of elemen­

tary particles and fundamental forces, including the .Clashow-Salam-Weinberg model, 

quantu~ chromodynamics and gravity, in final spontaneously broken phase. 

Conventionally the evolution of theoretical physics on the way towards a Unified The-
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ory can be divided into two stages. The ·first one is a lower spin stage, including only 
I 

lower spin (a <. 2) fields. A ·number of important discoveries has. been obtained. in this 

stage (the discovery of global non-Abelian symmetries among elementary particles led 

to their successful classification, the discovery of non-Abelian Yang-Mills gauge symme­

tries allowed one to unify the vector interactions and led ~o.the Unification of electro­

magnetic, weak and strong interactions in the framework of Grand Unification Models;. 

the discovery of global supersymmetry allowed one to unify Bose and Fermi particles 

together in unified supermultiplets and led to the Supersymmetric Grand Unification 

Models. At la.st, by gauging the global supersymmetry, supergravity was discovered). 

The golden age of supergravity theories at the end of the seventies was a culmination 

of the lower spin stage on the way towards a Unified Theory. There had been discovered 

three types of supersymmetries and, correspondingly,·three types· of supergravity theo­

ries: Poincare, anti-de Sitter and conformal ones. They describe systems of interacting 

gauge fields with spins s = 2 (graviton), s = 3/2 (gravitino), a~ 1 (Yang-Mills vector 

fields), as well as matter fields with a= 0, 1/2 in extended models. (More details see in 

the review articles Nieuwenhit.izen {1981}; Fradkin iJ T8eytlin (1985a).) 

However it did not become the end of the way. Eventually it turned out none of 

the known supergravity theories completely met the strong requirements for a Unified 

Theory. They were neither finite (except for the N = 4 conf~rmal supergravity) nor 

contained the observable spectrum of elementary particles because there appeared a re­

striction N ~ 8 on .the degree of N-extended supersymmetry* (or· N ~ 4 in conformally 

. invariant case). 

In this way, realizing th~t it does not seem possible to construct a seliconsistent quan-

tum theory including gravity and observed spectrum of elementary particles without 

introducing an infinite number of higher spin !>articles which are required both to make 

the theory finite and to get more extended supersymmetries, one comes to the next 

stage on the way towards a Unified Theory, the higher spin stage. According to the 

* N > 8 supersymmetries involve higher spins S > 2 in the supermultiplets. 
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classification of supersymlnetries and supergravities, there may' exist. three kinds of the­

ories involving irifi.nite towers of higher spins along· with the lower spin supergravity 

sector:· Poincare, anti-de Sitter and conformally-irivariant theories. · .. 

The higher spin stage can be divided into two substages: a massive higher spin stage 

. and• massless gauge ~ymmetry higher spin stage .. 
'' 

· Superstring theory provides a first successful example which extends Einstein super-
\ 

gravity to the case of all massive higher spins. It describes gravity coupled with an 

infinite number of·massive spin fields. In string theory there is a natural mass param­

eter inversely related with the square root of the string slope a'. In the zero-slope 
' 

limit a' -+ O masses of all the higher spin excitations, as well as of the lower spin ones 

of higher levels, tend to infinity and only the massless (super)gravity and Yang-Mills 

sector remains as observed [in detail see: Green, Schwarz and Witten, String Theory 

(Cambridge (1987))]. 
' ' ' 

However, as far 8.s the higher energy domain is concerned, all the higher spin exci-

tations of the string become equally essential and give their contributions to the i~ter­

action. This situation gives rise to several interesting higher energy phenomena. The 

interaction vertex in string theory contains increasingly higher derivatives (up to in ... 

finity). This in turn involves the negative power of the ma.Ss parameter to make the 

whole action dimensionless. As .. ~ result the iAteraction turns out to be non-analytical 

in the mass parameter* (which is proportional to (a')-112 in string theory) and this 

non-analyticity brings about the formal obstruction to the massless limit a'. -+ oo on 

the flat background. 

A striking example of the non-analyticity on the. mass parameter m ~ (a')-112 of 
' ' ' 

the interaction in string theory is the 'tree effectiv action for the electromagnetic field' 

in string theory. As a consequence of the contribution of the· interacting infinite tower 
' ' 

of higher spin excitations in the effective action of strings (Fradkin & Taeytlin {1985c-

e) }, the effective Lagrangian of the electromagn.etic 'field has a Bom-lnfeld form (see: . 

*However, it is natural to wait that a nontrivial phase transition with a drastical change in the structure 
of the fiat vacuum in string theory makes possible the continuous massless limit for the higher spins. 
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Fra.dkin 8 Taeytlin (1985/ )) 
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An other important and closely related consequence of the infinite interacting tower of 

s;pinsis the upper bound* on the stress tensor~ in(l.1). Moreover, wh~ the electric' 

field E 1tends to its ·criticid value E'7"'Z , (2?ra't·1 the ~ass 'of the higher spins tends to 

zero'. This illustrates the possibility of a phase transition from the massively high~ spin 

stage to the "n6n-brok~" phase...;. the.~assless (gauge) ·higher spin stage. (Moreaver it 

is natural to suppose .that the. masses of the higher spin~ in the massively higher spin. 

stage.· are resulted by. spontaneous breakdown of the higher spin gauge synl'.rpetry.) 
. . . 

· The massless higher spin gauge stage of Unification of all interactions was initiated and 

developed in our group at Lebedev Physical Institute. Two 'types of such gauge theories 

describing infinite towers of massless highef spin gauge fields· coupled to supergravity: 
.. . . ' ,.,, ' 

Anti-de Sitter Higher Spin and Conformal Higher Sping Gauge Theories have been . . ' . 

obtained. 

Anti-de Sitter 1higher spin g~uge theories in foUl' . space-time ·dimensions hav~ been 

developed by Fro.die.in and Vuiliev {1986), {1987a-c), _(1988} 8.nd Vuiliev .(1988), 

{1989a,b), (1990}, (1991). They are based on a new infinite-dimensional .higher spin 

global supersymmetry generalizing the ordinary anti-de Sitter supersymmetry to all 

higher. spins which was discovered by F'l'atl.lcin and Vaailiev (1986); {1987c} and Vaailiev 

O 988 ). Fr6m the mathematical point of view this is an infinite-dimensional Lie su­

peralgebra containing o~p(N I 4) as its maximal finite subalgebra. Its representation 

theory was studied' by Vcuiliev {1987} and Komtein and Vciailiev {1989), {1990). These 

global higher spin symmetries may be gauged 'similarly to the AdS supergravity ... The 

corresponding gauge theory was constructed by Fra.tl.lcin and Vuili~v (1987a.,b) in th~ 

cubic approximation in the framewo~k of Lagrangian field theory, and then ~ended to 

*The critical bound of the physical quantities (electromagnetic stress tensor, gravity curvature, t~pera­
ture, etc.), and the essential non-linearity of the tree effective actions for the fundamental fiel~ is typical 
for a finite quantum theory and this makes finite also the cJ.a..ical limit ofauch theories. 



.... ·' 
all orders in th~ interactio~ hy Va.sil•e1!(1990}, {1991) ib.the framework of the invariant · 

equations of motion. Two most interesting q~alitative physical properties of the theory 

' are the presence of higher derivatives in the interaction ve:rtices, ¥in string theocy, and 
I 

a peculiar non-analyticity of the interaction in the ·anti-de Sitter cosmological constant 

A. This non-analyticity does not allow one to pass to th~ naive.flat limit A-+ 0. The 

situation here is quite simileµ- to one in the closed string theorr where one is not allow;ed 

to pass to the massless limit a' -+ oo (T ..._., 0) due to the non-analyticity of string 

vertices in the string tension. 

It should be mentioned also that our results disprove the common helie{ that con­

sistent gauge-invariant interaction among massless higher spins and gravity does not 

exist (the so-called "no-go" theorem*). A key point here is just the above mentioned.· 

non-analyticity in the cosmological constant and the presence of higher· deriVa.tives in-

teraction vertices in our higher spin gauge t,heories. 

The conformal higher spin gauge theory has been developed by Fradkin and Linetlky 

{1989a}, {1990a}, {1991a}. It generalizes the confo~al supergravity (supersymmetric 

extension of the 0 2 conformal gavity discovered by Hermann Weyl) and describes a c.on­

formally invariant interaction among higher spin fields in four space-time dimensions. 

This gauge theory is based on the global infinite-dimensional higher~spin conformal 

supersymmetry discovered by Fradkin and Linet.sky {1990a). From the mathematical 

point of view it is an infinite-dimensional Lie superalgebra containing SU\}.; 2 I N) as its 

miaximal finite subalgebra. The invariant Lagrangian gen~ralizing the Weyl Lagrangian 

C~vpcr (0-Weyl tensor) to the interaction of allhigher_spins was con,structed by Fradkin 

*It was demonstrated. that the miniilla!. gravitational interaction introduced by means of covariantizing 
the derivatives violatEki the higher spin gauge symmetry 'under which the free higher spin massless action 
was invariant. Precisely, in the higher spin gauge variation of the hight;r spin action there appear some 
terms including gravitational Weyl tensor (already in the cubic order). Such terms cannot be compensated 
not to violate the gauge symmetry of the higher spin actio~ Via. any modifications of the transformational 
law of the gravitational field (metric) because the variation of the Einstein action is proportional only to 
the Ricei tensor, no longer the whole Riemann one. (More details see: C. Anigone an~ S. Deaer, Phys. 
Lett. B86 (1979) 161; S. Chriatenaen and M. Dutt, Nucl. Phys. B154 (1979) 301; F.A. B~renda et al., 
J. Phys.· A13 {1980) 1643; B. tle Wit and D.Z. Preellmcaa, Phys. Rev. D21 (1980).) Thiz n~go theorem 
had served for a long time as an obstruction to all the attempts to build uJ> a massless higher spin gauge 
theory coupled with gravity, · 
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and Li~et.sky (19894}, {1991a} in the cubic order approXimation. Most important qual .. 

itative feature ~f this theo.~ is. the .absence of any ~cale parameters. The only arbitrary 

param.et~ in the theory is a dimensionless Weyl gravity coupling constant. Hence such 

·a th~ry might be regarded as. an asymptotic theory ~·gravity and higher spins in the 

ultra .. high energy domain where any mass parameters become insufficient . 

. In· particular, all the three theories, string theory, anti-de Sitter . higher spin gauge 

theory and conformal higher.spin theory, ·though they are essentially different, might 

turn out eventually to be actually three different phases of one and the same Unified 

field theory (see Fradlcln and Linetslcy {1991g}) with: new forces conditioned by higher 

spin gauge fields . 

. 2. ANTI-DE SITTER HIGHER SPIN, .GAUGE THEORY 
, 

Below· I will draw more details upon t'he ideas, methods and the stru~ure of 'the 

Higher Spin Gauge Theories constructed by us. The comerstone of our approach is a 

new class of symnietries, so-.called higher spin symmetries and their localization .. 

· The mathematical basis to describe AdS higher spin symmetries,, genera.Uzing the 
i 

·usual finite sp~time (super)symmetries i~ an infinite-dimensional Lie SUJ?eralgebra 
,.,. 

which contains osp( N I 4) as. its maximal finite-dimensional subalgebra. 

2.1. The super8lgebras for higher spins. in AdS,; · 

There is more than one way to construct the infuµte-dimensional global superalgebras. 

One way is to postulate the superalgebra. spectrum with re~pect to a finite-dimensional 

subalgebl'.a g and, by imposing some additional restrictions, solve the Jacobi identities 

for the structure constants of the infinite-dime:iisional superalgebra. 'In this way we 
< ' • • 

(Fradkin 8 Vasiliev {1986}, (1987c)) first obtained the simplest superalgebra of higher 
/ : 

. . 
spins in AdS4, denoted by shs(l I 4) (shs means super highq spin). The anti-de Sitter 

' • 0 F ' > 

s~peralgebra osp(l J 4) is its maximum finite-dimensional s_ubalgebra. The gauge fields 

8. 
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of this sup·. eralgehn ... · ·h11.oVe the labelliq w .. ··•c· . :)>RI.· )• . With a.rl>itte.ry n, m > ·.· O. Theii.elds . · · . . .· µ,a n ,,...\ m ·. . . . . . · . . 

w with an even (odd) number of spinor indices are com.muting (ant,commuting). They 

also satisfy the hermiticity relation* 

(2.1) 

The curvatures of shs(l I. 4) are of the form (Fradkin & Va.,ilie'IJ (19_87c)) 

R . 
µv,a(n),,B(m) - Br,..wv],a(n),P(m) + 

+ 
oo ·nlml L ·•+t-1 . . . 

i x 
L l . p!q!s!k!l!t! 

p,q,a,lli, ,t=O 

1 ' 
l+- (ln-ml-lp+•-1:-tl-lq+•-l-tl) 

x ,\ 2 . ' x 

x 6(1 (p+k)(q+l) + (p-+k)(s.+t) +(q+l)(s+t)+ 112) x 

x 5 (n - p- q) cS(m - le ~l) wµ,o(p)'Y(•),P(l:)cS(t) X 

- x w 'Y(•) . 6(t) 
v,o(q) ,tJ(l) · (2.2) 

Here cS(n) equals l or 0 for n = 0 and n ";/; 0 respectively, and c5(l n 12) equals 1 or 0 for 

n even and n odd respectively. The real parameter ,\ coincides with the invene radius 

of the background anti-de Sitter space. The cosmological constant A is proportional to 

-.\2. 

The curvatures (2.2) contain both positive and negative powers of l. This is the reason 

for the non-analyticity of the\higher-spin interaction in the .c;osmological constant. Note 

that the linearized curvatures, unlike the full ones, are analytic in,\ and a'.dmit the flat 

limit ,\ ~ 0. 

*Spins• ofthe field w.,,a(n),P(m) are connected with n and m by·the relation n+~ = 2(•-1). Each set of 

spinor indices a(n) and /3(m) takes the values 1,2 and is symmetrized separately. The indices are raised 
and lowered by the respective antisymmetric symbols ~api e.,p. The dynamical.fields are components of 
w.,,a(n),P(m) with I n - m I~ 1. The components with n - .m = 2 are auxiliary fields. The components 
with I n - m I > 2 are called extra fields. The extra and auxiliary fields can be expressed through 
the dynamical fields and are needed for the construction of the curvatures. For example, in the case of 
gravitational fields, w.,,aiJ is the viei-bein, and the auxiliaryfields W11a(2)i w.,p(2) are components of the · 
Lorentz connection. For more details of other notations see appendix. 
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This method, connected with the explicit solving of the Jacobi identitie,, is, however, 
- I 

' \ 

very cumbersome and, therefore, praetically inapplicable to more complicated. cases such 

as the conformal theory. Another method, based on the operator realization of the al­

gebta; is much simpler and more illuininating. This method for the construction of the 

-. infinite-dilnensional superalgebr& G containing a given finite-dimensional subalgebra g 

-consists of the following ( Vuiliev {1988}}. First, one chooses an appropriate operator 

realization of the subalg~bra g by quadratic and linear combinations (generally, with 
. ~ . 

additional constraints) of the generators Z A of the Heisenberg-Clif~or.d superalgebra. 

(The supercoIIlJilutator of ZA is [ZA, ZB) - CAB where CAB is a constant orthosym­

plectic matrix.) Next, one considers an associative algebra of polinoms of all powers 

-in the operators ZA· In this algebra one introduces the Grassman parity e(A), and the 

supercoIIlJilutator 

(2.3) 

Technically, the problem is to find the_ structure constants -of this Lie stiperalgebra ( G). 

Its generators TA are expres&ed through the powers of the operators ZA in the Weyl 

(symmetric) norm&I.form, and one must compute [TA, T11) . F'j_BTc. Such problems 

are most conveniently·solved, by the method of symbols (Bere.sin (1966)). Let the Weyl 

symbol of the gauge field wµ(Z) corresponding to the superalgebra G be wµ(Z). Thep 

for the operator curvature ·one has 

Rµv(Z) - BrPw111(Z) + [wµ(Z), ~v(Z)J. (2.4) 

and the corresponding symbol is of th~ form 

(2.5) 

[A, B}* = A • B ...... (-l)e(A)e(B) B * A ·(2.6) 

' -
where * denotes .the associative multiplication of Weyl symbols: 

-A•B A(~) exp (6) B(Z), (2.7) 

. 10 
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(2.8) 

Now let us consider the higher spin extensfon of AdS supersYmmetry (where g -

osp(N 14)). First we choose an appropriate operator realization 6£ osp(N 14). 

Let qa, r /3 and t/Jt. be Heisenberg-Clifford generating elements with non-zero supercom­

. mutators 

(2.9a) 

.. (2.9b) 

where a,/f = 1, 2 and a,{3 = 1, 2 are dotted and undotted two-component al(2; C) multi­

spinorial indices, eap = -q3a,e&i:J = -e/jQ .are t~e symplectic ~etrics; the Hermitian 

co~jugation is defined as follows · 

(2.9c) 
.\ 

. and i = 1, · · · , N are SO(N) internal indices. Then the second-order polynomials on 

the generating elements q, r and t/J with the basis. 

Map 
1 

Ma/3 
1 

- 2 q(aqfj)' - 2 .,.(ar P)' Pap - qar13 

1 
Qia T.·· - 2 1/J[i.,p j], , IJ - qa't/Ji, QiQ =· r ·t/J· a ' (2.lOa) 

form a Lie supera.lgebra isomorphic to osp(N 14) (Map = Mf3a, M0 13 =Mp& are the 

sl(2; G) Lorentz generators, Pa/3 - AdS4 translations, Ti; = -T;i - so(N}-generators, 

and Q, Q-supersymmetry ge11;erators). 

An ·idea to generalize this construction to the case of all higher spins consists in · 

introducing into the game polynomials of all ev~n orders on the genera.ting elements q, r 

and·.,p (the restriction to only even polynomials here is for convenience; it· does not lead 

to any loss of the information, see (Va.ailie11 {1988)).) According to this idea, the gauge 

fields ofall higher spins are generated from the single object wµ(q,r,.,P I z) as follows: 

11 



. wµ.(q,r,.,P I z) -
1 

---w. . . 
n!m!k! µ.,0t1 ···an,f:J1 ···/3m,i1 ···i1c 

n,m=O k=O 

x q(a1 ... qOtn) ,.(Pi ... rl3m) ,p(i1 • .. ,pi1c], n + m + k is even . 
{2.lla) 

('the round (square) brackets mean complete symmetrization (anti-symmetrization), 

that corresponds to the Weyl ordering of the bosonic qa, r /J and fermionic "'1i operators.) 

The terms with n + m + k = 2 in the above expansion corresponds to the N-extended 

AdS4 supergravity gauge fields, while the collection of fields with n+m+k.=2{sm-1), 

form osp(N I 4)-irreducible higher spin supermultiplets with the maximal spin sm 

(take into account additional unity due to the vector indexµ of wµ). Such an infinite-

dimensional Lie superalgebra formed by the generators 

Ta(n),/J(m),i(k) - (2.lOb) 

was denoted (Vasiliev (1988}} as shsE(N I 4) (shs means super higher spin). The 

curvatures of the A~S4 higher spin gauge theory based on shs-algebra.s are defined as 

usual 

{2.llb) 

To calculate the supercommutator of two gauge fields wµ.( q, r, 1/J) and w11( q, r, 1/J) it is 

helpful to employ the very convenient formalism of the Weyl symbols correspon.ding to 

quantum operators. As a result one arrives at the final expression for the curvature 

12 



R . 
µ11,i(/),a(n),/j(m) 811w µ,i(f),a(n),P(m) - 8µw11,i(f),a(n),i;l(m) ·. 

00 

I: 
.. . . f' lml 

i•+t-1 ...,.1 r(r(._1)/2 . . n. · 
( ) · ·· p!q!s!k!l!t!u!v!r! + 

p,q ,a,k ,l,t, u, 11,r=O 

X (li)r+•+t-1 Al+(ln-mj-jp+a-1-tl-lq+a-l-tl)/2 

x 6(/ - u - v) 6(n - p- q) 6(m - k - l) 

x 6(1 (p+ k)(q + l) + (p + k)(s + t) 

+ (q + l)(s + t) + u · v + u · r + v · r + 112) 

x w . .·. . . ; w i(r) ·c· ) ( ) 7(•) . 6(t) . 
11,i(u)j(r),a(p)7(•)~,8(k)6(t) µ, ' 11 ,a q .. · ,/3(1) . {2.12) 

In the case when N = 1, (2.12) coincides wi.th (2.2). 

In the structure constants of the AdS4 higher spin superalgebra and, consequently, in 

the expressions for the curvatures there is a dimensional parameter· A. All the depen­

dence on A is uniquely fixed by the AdS4 commutation rel,itions (Pµ, P11] = -A2 Mµ11 

(that is -A2 "'A is the AdS cosmological constant) and the.requirement.on the gauge 

higher spin fields to have correct physical climensions to describe free dynamics. The 

crucial point here is a non-analyticity of the .structure constants and curvatures in the 

AdS cosmological constant A ,..., -A2• Indeed it is easy to see that in the above ex-

pression for the curvatures both positive and negative powers of A are involved. This 

non-analyticity resuits in the non-analyticity of the higher-spin-gravitational interaction 

and does not permit one to ·pass to the naive fl.at background ~ --. 0. 

It should be mentioned that we have pr~ented here only the simplest versions of 

the AdS4 higher.:.spin superalgebras to illustrate the very idea of construction .. In fact, 
I 

in practice some more complications are needed to obtain also the necessary sets of 
I I - . 

auxiliary fields and to meet the requirement of. unitarity. 

It is known that in supergravity, without auxiliary fields, the numbers of boson and 

fermion off-shell degrees of :freedom are not equal toeach other, and the local gauge 

algebra is open. The introduction of auxiliary fields closes the algebra off shell. This 
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essentially facilitates both the construction of the full Lagrangian. and the quantiza­

tion procedure. Such a superalgebra is obtained (Fradkin & Va.siliev {1988)) which, in 

addition to the higher-spin gauge fields, gives rise to auxiliary fields generalizing the 

"new minimal" formulation of N == 1 supergravity (Soknius & West {1981)). This 

superalgebra shsa(l) ("a" means auxiliary) admits a natural operator realization gen..; 

eralizing the previous construction. Namely, in addition to the spinor operators (2.lla) 

one introduces the operators Q and R such that 

A2 A2 A A A 

Q = 1, R = 1, [Q,R] = 0, {Q,qa} 0, 

[Q, f p1 = o, {fl., f pl == o, [fl., qa] = o, 

(2.13) 

The gauge·fields of shsa(l) are of the form 

Wµ = L (Q)A(fl.)BwtB(q,r), (2.14) 
A,B=O,l 

and for the curvatures one finds (Fradkin & Vasiliev {1988}} 
' 

+ 6(1F+A+C12)6(1G+B+D12) 6(n-p-q) 
p,q,a,A:,l,t;A,B,C,D 

I I 
x 6(m - k - l)i"+t-1 (-l)C(p+a)+D(t+A:) x n.m. 

p!q!s!k!l!t! 

x 6(IO(p+s) + D(k+t) + A(q+s) + B(l+t) 

+ s + t + (p + k + s+ t) (q + l + s + t) + 1 12) 

X WAB . • wCD -y(a) . 6(t) 
v,a(p)'Y(a),P(A:)6(t) µ,a(q) ,fj(l) (2.15) 

The fields wAB with A = B = 0, 1 describe higher spins and wAB with A = 0, B - 1 or 

A = 1, B = 0 are auxiliary fields as one can see after the localization of this algebra. 

In the superalgebra shsa(l) all spins are contained twice. That such a doubling should 

indeed take place is seen from the following considerations. A necessary condition for 
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the existenc_e of a full theory .of IDusl~ bi~er•spin fieldS is •h.e exist~<:e of massless 

unit~y particle'."like representations of the global superalgebrade8cribingthe higher-spin 

symmetry, which have the same spectrum as gauge fields have. The existence of such 

representations requires the doubling of the fields ~f higher spins (Kon.stein & Va.siliev 

{1989}, {1990}}. This fact can be illustrated as follows. The anti-de Sitter group 0(3,2) 

possesses two elementary representations (singletons) discovered by Dirac*. They are 

denoted by Di and Rae. 
' ' 

The supersingleton S = Di EB Rae forms a representation of oap(l I 4) which can 

be continued to\ a representation of the higher-spin superalgebra. The square of the 

supersingleton equals 

S ® S = (Di® Di) EB (Rae ®Rae) EB 

EB (Di® Rae) EB (Rae® Di) 

and the spin content of these representations is as follows 

(Rae® Rae) ::::: (01, 1, 2, ... ), 
,. 

(Di ®Di) -- (02, 1, 2, ... ), 

(Di ®Rae) (~ ~ ~ ... ) 
2' 2' 2' 

(2.16) 

(2.17) 

where 01 and 02 are masless representations with zero spin: (1,0) a_.nd (2,0) respectively. 

(It is important that the unitary representations contain all lower-order spins including 

spin 0.) The square S ® S contains all massless unitary representations of 0(3,2) twice 

and can be continued to a unitary representation of the full superalgebra ahsf (1) which 

contains all higher spins twice and is a subalgebra of ahaa(l ). On the other hand, the 

superalgebra. shs(1 I 4) which contains all spi~s only once has no unitary representations 

with the required properties. 

The fact of the doubling of all spins raises the question of their interpretation, par-

ticularly of spin 2. One possibility is that only some specific combinations of the spin-2 

*See also: Flato M., and Fronatlal 0., Phys. Lett. 97B (1980) 236; Fronatlal C., Phys. Rev. D26 '{1982) 
1988. 
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fields will remain massless in a physically relevant phase with spontaneously broken 

higher spin symmetries, and this combination will be the only candidate for the role of 

the gravitational field. 

To summarize-, higher spin. symmetries constitute a novel class of fundamental sym­

metries generalizing the spac~time symmetries, somewhat like supersymme'tries. The 

discovery of supersymmetryintroduced in physics spin 1/2 supersymmetry generators 

and spin 3/2 gauge fields. Similar to this, higher· spin symmetries introduce i.nto the 

game an infinite tower of higher spin generators and gauge fields, which ·are also oblig­

atory for· finiteness of the local theory. 

2.2. AdS4 Higher Spin Gauge Theory. 

Havin,g the infinit~dimensional higher-spin superalgebra, corresponding gauge fields 

and curvatures at one's disposal and basing on the supergravity experience, one can try 

to construct an interacting gauge theory for higher spins. One of the elegant approaches 

to build up an action starting from the known, curvatures is the higher spin extension 

of the RA/\ RBQAB approach*. This R /\ R approach w~ applied first to the Ad$4 

higher-spin gauge theory based on the higher-spin superalgebras shs(N I 4) (Fradkin 

& Va..siliev {1987a.)J. It turned out that there exists a unique real, P-invariant action·. 

which, when supplemented with some suitable curvature constraints, currently describes 

the free :fields of higher spins in AdS4 as well as their cubic interaction. This action is 

of the form 

s 
00 

L 2 
n,m=O 

in+m+l 
---.\-In-ml e{n-m) x 

n!m! 

X J tftz eµvpu R . . R a(n) P(m) 
µ11,a(n),,8(m) , fJU> · . ' 

and the additional constr~nts read 

vµpu R · · · h 6 0 ~ > 0 e . µ11,a(n),,8(m-l)c5 p,a . i.or n - m > ' 

*This approach waa introduced in gravity by MacDowell S. and Maruouri F., (1977). 
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~, .. , .>¢: .... -f '. " 

e"µpo. R · ·c . 1)·. ·. ·. ttt ,) h7 . = 0 ror<m. > .· n > 0: vµ,a n- -y,,...\m p,{3 . ·· ·. · ', (2.20) . 

Here e( n - m) equals l for n > 0, 0 for n = m and -1 for n < m. The action S contains 

two independent parameters - the coslllOlogical constant~ and the overall factor fJ., To . 

arrive at the correctly normalized Einstein (spin-2) actio~ - (1/41'2) J d4z..j=g R the 

constant fJ should be fJ = -1/16~2 . 

To analyze the action S one may expand it ·to the point where all fields, except the 

gravitational field, vanish and 
. . . 

. · 0 ·. . 0 - .· 0 

hµa/3 = wµ.,a,/3' wµ,a(2) = "'µ,a(2)' wµ,/3(2) = wµ,/3(2) (2.21) 

where h and W, W are respectively the vierbein and Lorentz connection of the back-

ground AdS4 space. It can be shown that .thf7 fields w(n,m) with. I n - m I> 2 (the 

so-called "extra" fields) fall out of the action Cmore preci,sely, they enter the total­

derivative terms). However, these fields enter the full curvatures of shs(l I 4). T~s is 

the reason why the action should be supplemented with the constraints (2.19), (2.20). 

The constrai.nts and equations of motion make it possible ~C> express the. curvature as · 

follows (Va.siliev {1987)). · 

R~v,a(n),/3(m) = c5(n) hµ,1 6h,,, 16 C/3(m)cS(2) + 
(2.22) 

where C and C generalize the gravitational Weyl tensor (Ca(4) and 013(4)) to the case 
, 

of higher spins. (2.22) generalizes the linearized Einstein equations and expresses all 

curvatures through the higher-spin Weyl tens()rs. The Weyl tensors of the AdS4..,space 

satisfy the equations 

h'; 1)~ Ca(n-l)'Y = 0, 

h¢vLc-. · - o 
a P f3(m...:...1)6 - ' 

(2.23) 

(2.24) 

which follow from (2.22) .·and the linarized. Bianchi identities for the curvatures of 

shs(l I 4). In (2.23) a.lid (2.24), vL is the Lore~tz-covariant derivative with the con-

nection W, W. 
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The gauge invariance of the action in the trilinear ,approximation can be v~fied as 

follows. The variation of the action in this approximation has the structure J R1 R1e. 

By virtue of the linearized equation {2.22), the expression contains only terms of the -

type GO and CC {the terms CC do not enter fiS owing to the identity 

eµ"fKT h µa6h110 6 h pyfih :/:J = 0). The condition for the cancellation of these terms leads 

to an equation for the bilinear form QAB in the action J RA/\ RBQAB, which has 

the unique solution consistent with the free theory {see va.,ilie11 {1987}} of higher 

spins in AdS4. This unique solution is given by {2.18). So the above action and 

constraints provide a consistent description of the interacting collection of massless 
' 

spins 3/2 :::;; s :::;; oo, in the cubic approximation. Taking into account that the 

no-go theorem also dealt with just the cubic approximation, one comes to the con-

clusion that the no-go theorem does not hold well on the non-trivial AdS background. 

The key point here is the celebrated non-analyticity in A, and the existence of non-

minimal higher-derivative interaction vertices. 

Actually this is a quite non-perturbative result with respect to the flat background, 

because in this case cosmological terms cannot be treated as perturbations over the 

trivial flat ".'&cuum. In fact, the ~ti-de Sitter vacuum and· the flat vacuum may be 

related only by some non-trivial phase transition, rather than a naive flat limit A-+ O, 

when massless higher spins are presented in the AdS phase. 

It is worthwhile to emphasize now that in the AdS higher spin gauge theory there are 

only two independent. coupling constants. These are gravitational /t and cosmological 

A ,..., -.X2 ,constants. In the N-extended theories in the action (or cubic order) there is 

·also an additional Yang-Mills term integration with a constant e but it is in fact related 

to the first two e2 = 4.X21t2 (Fradkin fJ Vuilie11 {1987b}). 

The same situation . with coupling constants takes place also in the AdS4 extended 

supergravity and, therefore, the introducing of an infinite tower of higher spin fields does 

not bring any new esse~tial independent. physical parameters in the theory. All· higher 

spin interaction coupling constants tutn out to be related with the only fundamental 
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we:tJ??_, 

ones A, " and tfbt the very p0~ i,~~ft?;t~dimensiona.l higher,~:P#i •Y•••wetey. 
- - . ' ' : . . 

This situation is quite similar to stri~g thee>ry with the string t~sion T = (27ra1)-1 

on th~ place of the cosmological crinstant A. Moreover, the connection of e2 and K-2 

is quite similar to the heterotic superstring case with the accuracy of the interchange 

A ..... T. So to say, we come back again to our parallel ·between the AdS radius and the 

string "length". 

Above we have considered the higher spin dynamics in the cubic approximation. The 

way• beyond this approximation requires knowledge of the complete constraints up to 

all orders, along with the very L1,1.grangian. It produces some serious difficulties which 

have not been overcome in this approach up to now. 

However, a very important progress has been recently achieved in quite another ap­

proach {Va&iliev {1990}, {1991}} where on the basis <;>f superalgebra shsa(l) (2.13) -

.(2.15) and its conformal extensions consistent equations of motion desribing interacting 

massless fields of all spins, from zero to infinity, have been constru~ted in the framework 

of the so-called free differential algebra. 

This system of equations describes higher spin interactions.up to a.11 orders and it· is 

gauge invariant under an infinite-dimensional algebra. They have a rather specific form, 

like some zero-curvature conditions for an enlarged infinite algebra, supplemen~ed with 

some additional constraints. The problem of corresponding complete Lagrangian is now 

under investigation. 

3. CONFORMAL HIGHER SPIN THEORY 

Let us turn to the second possibility for a higher spin gauge theory, which is a higher . 

spin (s > 2) generalization of usual conformal supergravity. 

In a series of papers {Fradlcin & Linet&lcy {1989a,bJ'{1990a} {1991a}} a superconformal 

higher spin gauge theory has been proposed in dimensions D < 4 (but only for lower 

dimensions (D < 4) the action is constructed exactly). 
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Below I adduce more details of the main results of our attempt to construct Super­

conformal Higher Spin Theory in three and four dimensions. \ · . 

3.1. Conformal Higher Spin Gauge Theory in D = 2±1. 

For the construction of a conformal higher spin theory in D = 2 + 1 first of all we 

choose a suitable operatorial realization of the conformal superalgebra in · D = 2 + 1, 

osp(N ] 4). Let aa, ba and .J,i be the generating elements with non-z~ro commutators 

(3.la) 

(3.lb) 

where the Greek letters o., {3, '. · · = 1, 2 are the so(2, 1 )-spinorial indices and i, j = 

1, · · · , N are the internal indices. Then the osp(N 14) generators (translation, 80(2, 1), 

conformal boost, dilatation, SO(N), supersymmetry and special conformal supersym-
1 . 1 .. .. 1 .... 

metry generators) are Pa(2) = 4i&atia; Ma(2) = 4i(tiaba + bacia), Ka(2) = 4ibaba, 

1 .. .. 1 .. . .. 1 .. 1-- .. 
D = ---:(aab0 +baa.a), Tij = -'r/Ji'tPj, Qia =-&at/Ji and Sia= -ba'r/Ji, respectively. Gener-

8i 4 ·. 2· 2 . 

ators of the infinite-dimensional genei;alizati<:>n of the conformal superalgebra osp(N 14) 

can be chosen in the form of all order polynomials tha.t commute with "particle number" 

T(s,c) [ . (2l ± 1)! l l/2 

i{A:),a(2l) - (s - l)!(l + c)!(l - c)!(s ± l + 1)! 

X. "'" ... tPi aa ... aa ba ... ba ( a0 ba)s-l 1 l ~..___....., , 
{3.2) . 

l-c l+c. 

where (and below) we have passed to the Weyl symbols of the operators and a, b, 'i/J are 

the symbols of the generating elements in (3.1). In (3.2) the indices have the following 

meaning: s determines the 80(3, 2)-irreducible representation space with the dimension 

d(s) = (2s±3)(2s+l)(s+l)/3; c is a conformal weight of the generators ([D, Tc] = cTc); 

l is the 80(2, 1 )-signature; k is a number of the internal indices and 

1 
s = O, 2'' 1, · · · ; c' = -s, · · · , s; l = I c I,··· , s; (3.3)' 
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------------ ---..---. ~fl._..-----------,-·. 

k =0,1,··•N and k+2.9is even. 
. . . . . -. 

. . - . 

The last r~striction has been introduced for convenience. The generators (3.2) form a 

coliform.al basis (Dis diagonal) in a conformal higher spin superalgebra which we call 

shsc(N I 3). The structure constants of shsc(N I 3) in the confo:flllalbasis associated 

with the reduction to a subalgebra osp(N ( 4) --+ SO(;l,2) eSO(N) --+ 80(2.1) e 

80(1, 1) e SO(N). Gauge fields and curvatures correspondirig to shsc(N j 3) have the 

form {Fradkin & Linetaky {1989b}, {1990a}) 

· 1 "- ·-£. (•,c)i(A:),a(2l) T(a,c) 
Wµ = 2i L...J i Wp , i(A:),a(2l) , 

R(•,c) - 8 . (•,c) ( ·. . ) 
pv,i(A:),a(2l) - µ wv,i(A:),a(2l) .:__ I' H 11 

I 

kl . 
+ " i•'+•"-•+r-lrl2-l -··- fi(k - u -v) 

L...J u!v!r! 

x fi(p - l' -l'' + l) fi(q - l' +l" - l) fi(t - l" + l' - l) 

x w {4s' s11 + s' · + s'' - s + uv + r( u + v) + 1) 

x ( ~: ::: : ) w(:l,c') 
l' l" l . µ,i(u)j(r),o:(q}y(p) 

• (•",c'')j(r) 7(p) 
x wv,i(v) ' o:(t)' 

where (: ~~ . ::: ) . - 5( c + c1 - c") e(s, s', a") e(l, z', l11 ) 

ll'l"' 

(3.4) 

(3.5) 

x [ (21 + 1 )i(2l1 + 1 )!(21" + l )! ·. ] 1/2 
(l + l' - l11 )!(l - l' + l 11 )!(l1 - l + l")!(l + l' + l 11 + l)! · 

x:· E , < _ 1 >112c •+•' -•" -1c~.,, +A:") 

lc,lc' ,le" 
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x 
[.t:.(•+i- a'+i' &''+le") t:.("-lc &'-It:' &''-It:")] 1/2, 

2' 2' 2 2'. 2' 2 

e(a,b,c) 1(0) for c E {I a...., b..I, ···a+ b} (c ¢ {I a - b I, .. · , a+ b}), 

f:.( a, b, c) -
(a+ b- c)!(a - b + c)!(b - a+ c)! 

(a+b+b+l)! 

k -l,···,l, k' = -z',···,l', k" - -z",-z"+l,···,Z" 

7r(n) - 0(1) for n even (odd). (3.5a) 

We have expressed the structure coefficients of the *-product in the conformal basis in 

terms of the 9 j-sym.bols and particularly values of the Wigner d-functions d{ +i). 
The gauge :field wµ. is the element of the second-class Grassmann shell of shsc(N I 3) 

(w~T81 = (-1)4681 T 81 w~, Grassmann parity is e(T8 ) = e(w8 ) = e8 = 0(1) for s integer 

(half)) and the hermiticity condition is read 

1(1-1) 

· + ( (a,c) )+ 
Wµ. = -wµ., wµ.,i(i),a(2l) (-l) 2 (a,c) 

- w µ.,i(i),a(2l) · (3.6) 

In three dimensions, the action invariant un<;ler the ,gauge transformations of the 

algebra shsc(N I 3) has the Chern-Simons form (Fradkin & Linef.8/cy (1990a)) 

S = J tr ( w A dw + ~ w Aw Aw), (3.7) 

where w Aw = wµ. * w11dz 11 A dz" and the *-multiplication of Weyl symbols. This 

action generalizes the three-dimensional conformal supergravity action. The conformal 
' ' 

supergravity fields in our notation are 

' 
(eµa(2)> /µ.a(2)> wµa(2)> bµ., Aµij> </>µ.ia' 1/Jµ.ia) 

( . (1,-1) (1,1) (1,0) (1,0) (1,0) (1/2,1/2) (1/2,-1/2)) 
,...., w µa(2) , w µa(2)' w µa(2), Wµ. , wµ.ij , wµ.ia , wµ.ia . 

' {3.8) 
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The equations of motion of the CQnformal 'hi$her, spin fie1dJ; in P 7-, 2+ l.have the form 

R. (•,e) 0 
µ11,i(J:),0(21) . = . (3.9) 

These equations generalize the D = 2 + 1 confqrmal supergravity equations. 

For the quantization of Chern-Simons theory (the rang•one theory) we introduce a 

ghost and antighost fields, c .- EA CATA,c =EA cATA,e(CA) = e(wµ.,A) + 1 and 

a gauge fermion W . EA J d3zCAw A with gauge conditions WA (A is the collective 

index in the algebra). Then the exactly generating functional for the three-dimensional 

superconformal higher spin quantum theory reads as follows 

Z = j 'Dw'DC'DC'D7r exp {iSeff} , (3.10) 

Seff - S + J d3 ztr (!:: * 'Dµ.C 

6r'1! . · 6rw · ) . 
+ 60 * C * C + 60 * 7r + .JP. * Wµ. , (3.11) 

where S is the origin Chern-Simons action, 7r is the Lagrangian multiplier for the gauge 

conditions,:;= EA 661 TA for Z = (w,C,C,7r) and 'Dµ. is the covari~t derivative. 

To conclude this section let us consider .the compactification of Chern-Simons theory. 

Introducing a notation </> = w2 and expanding the gauge flelds by coordinate z 2 , wµ. = 

E~=-oo wµ(n)ein r2/rc, where re is a compactification radius, we have an action in 

D=l+l 
r 

S = =f;oo J Ir (~(n) • R(-n) <: w(-n)Aw(n)). (3.12) 

In addition to usual action in D = 1+1, the action (3.12) also contains a "topological 

mass term" tr En in w( -n) J\ w( n). The corresponding ghost Lagrangian has the form 
re . . , . . . 

. oo ( ~w . 
Cgh = n~oo tr . 6wµ.(n) * ('Dµ.C)(-n) 

in 6rw · 6rw 
+re 6</>(-n) * C(n) + fiC(n) * L- C(m) * C(k) 

m+l:=-n 

6rw ) + fi</>(-n) * [ </>, C](n) . (3.13) 

23· 



.. 

, 3.2. Conformal Higher Spin Theory in D == 3 ± 1. 

Now let .us turn to the second possibility for a higher spin gauge theory in ·four 

dimensions as a higher spin extension of .conformal supergravity. We start with the 

conformal supergravity which is a supersymmetry generalization of the Weyl gravity 

with the quadratical Weyl tensor action. 

Similar to the AdS4 supergravity, conformal supergravity is constructed as a gauge 

theory for a conformal superalgebra SU(2, 2 I N) [see rev. of conformal supergravity 

{Fradkin & Tzeytlin {1985a})]. 

Since we are going to construct higher spin generalizations of the conformal super-

gravity, a first thing to do is to find a higher spin generalization 6f the four-dimensional 

conformal supersymmetry. It was done (Fradkin & Linetsky {1989a}, {1990a}) by the 

method of the operator realization. 

A conformal higher spin superalgebra can be simply constructed by employ}ng guan- · 

tum (super)twistors: (&and&+ are Fermi-operators) 

Z ( a A) ·z-B ·(- -/3 "+) [z z-B} \ 2 ~B . A . a , afJ' a , = aa, a , a ; A,, . = oA . (3.14) 

Then the -conformal superalgebra SU(2, 2 I N) is realized as an algebera of s~cond-order 
-A . polynomials that commute with the "particle number,, operator T = Z Z A, i.e. the 

SU(2, 2 IN) generators are: 
) 

(3.15) 

Then an infinite-dimensional conformal higher spin superalgebra ahc00(4 11) is defined. 

as an algebra at all order polynomials that commute with T, excluding powers of T 

itself. 

To construct a gauge theory it is necessary to introduce the basis on so( 4, 2)-irrepses 

connected with the decomposition ao( 4, 2) $ ao(3, 1 ), where a0(3, 1) is the Lorentz subal­

gebra and ao(l, 1) generated by dilatation generator D. In this basis all generators and 

the gauge fields will have the defined Wey} weight and the manifest four-dimensional in-

dex Lorentz structure. Such a superconformal basis was constructed by standard group 
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theory me~hods and the structure constant~ ti{ .t~c<X>(4 l1)' Qi_'~hi& bMis wa:&:obt~ 

(see Fro.ti.kin tJ LinetJlcy {1990a.), (19910.)). 

As a result, the gauge field Co~ponding. to ahac00( 4 11) is a function ~f supertwistots . -

(wµ(z,z I z); [T,wµ(z,z I z)]= 0) arid has the form* 

oo N , 
_ "" "" "" ·. ·-e. (N1_•1• 1c1u). - L., L., L., .J ·W • . 

. ·, . · µ 1a(21)1,8(2j) 
N=l r-:1 (s1c,u,l13} . · _ 

X T(N,a1.s1c,u) a(21),h(2;) (3.16) 

es = 0(1) for .s integer (half-integer). 
' .. 

Here indices of the fields. and generators· have the ·following meaning. The index 

N = 1, 2, · · · is a number of the level L(N). T:\le index a= 1,2; · · · ~N defines· 

au(2,2 I 1)-irreps V(a) (the gauge fields with the fixes~ form the au(2,2 I 1)-super- · 

multiplet with maximal spin a+ 1; 1 due to the ad~tional vector indexµ). Thus o;n the . 
' ' . ' ', . 

N-th level there are n co'mormal sup~rmultiplets _with _the maximal spins ~OJ;il N + 1 ' ' 

to 2. The index s =a_-'- 1, a.- 1/2, a. defines t;he conformal multiplet (the gauge fields 
• • . t 

describe the spin s+l). The index u is a chiral weight and u -:--0 for Bosons (s =integer). 

and u = ±1/2 for Fermions (s = halfi.nteger); The indeJ[ c = ..:....s, -.s + l, • · ~ ,.sis a 

conformal weight of the genefators and the indices l,{= O, 1/2,l, · · · define a Lorentz 

*Under the au(2, 2 j 1) representation each level decomposes into the direct sum of au(21 2 I 1) irreducible 
' ' - . ' . 

representation spaces (irrepaea) L(N) = Ea V(a). ID. its turn the irrepa V(•) decompoaea into the sum of - - ' •=1 . ; . . - ' . -· ' ' ( 1 11) . '(. 1 1 1) '( ) so(4,2)1rrepaea, V(•)=D(a1 a,O)E&D_ •.-:-;1•-;1 3 E&D •-;~•-·; 1 -; E&D a-..11 •-.1,0 ,where 

D{n1,n2,n3) is the ao(41 2)irrepa with the highest weight (n11 1121 na) under the Cartan subalgcibra of 
so(41 2). Here n 1 is t_he maxim-1 conformal weight in the representation and (n2 -n3)/2 and (n2 +na)/2 
define a Lorentz. signature ((n2 - na) and (n2 + na) &J'e· the ·numbers of dotted and undotted indices, 

respectively) of the vector with highest conformal weight. Not~ that the representations ( •-i1 •-i.• ±i). 
are mutually conjugated under the Weyl reflection (these a?e-,u1fo.ally called chirally or compl~ conj~ated 

representations). The c:liJnenaion of the ao( 4, 2) irrepa D(•, • 1 u) is eqpal to d(•; •; u) = ~ (2.s + 3)(.s + _ 
u + 1)(• + u + 2)(• -: u + 1)(• - u + 2). The first level consists of only one. au(21 .2 I 1) ii-reps V{l) 

w:hich ,is the adjoint representation, and under ao{4,2) we have V(l) = D(l, 1, 0) Ea D(~1 ~ 1 ~) EB - . . ' 2 2 2 

D(i• ;.-i) EBD{0,0,0). The l?uis in these irrepaea can be chosen as follows:. D(l, 1,0): {P1 K,M,D}; 

D(:, :, :) : {Sa~ Qp}, D·(~. ~. -:) : {Sp,''Qa}1 D(O, O, 0) :{U}. 
222 22 2 ' ' . . ' 
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signature (21 and 2j are the numbers of dotted and undotted indices) and the following 

r,estrictions take place 

(3.17) 

. h l c-u d . c+u . t wit + - an J + - m egers. 
2 . .2 

It should be mentioned that the structure of the gauge field (2.13) is ap.alogous to the 

structure of the string field +[X] in the string field theory. There is an infinite tower of 

levels and there are fields with all spins :Crom maximal (s . N + 1) to minimal (s = 1) 

on each N-th level. For effective work with the infinite tower of levels one can use the 

following approximation procedure. The number N should be limit.ed by Nma.z and 

then Nmaz ~ oo. 

Note that the gauge fields of usual conformal supergravity ( N = a = 1) are, in our 

notations*, 

( e µaP' wµa(2)> w µ,8( 2)' bµ, f µa/j' Aµ, .,Pµa, .,P µ/J' .,Pµa, 1/J µp) 

' [ (l,l,1,-1,0) (1,1,1,0,0) (1,1,1,0,0) . (1,1,1,0,0) (1,l,1,1,0) (1,1,0,0,0) 
,...., w µ,a,/3 'w µ,a(2) , w µ,/3(2) , w µ 'w µ,a,/3 'Wµ ' 

(1,1,1/2,-1/2,1/2) (1,l,1/2,-1/2,-1/~) . (l,1,1/2,1/2,-1/2). (1,1,1/2,1/2,1/2)] 
wµ,a ,w p' ,wµ,a ,w p' .• 

µ, - µ, (3.18) 

Now we can give explicit formulae for the curvatures of hac00 (4 I 1) (Fradkin & Linetslcy 

{1990a}, {1991a)). 

(3.19) 

*The physical spin-(s+ 1)-fields in w<N•~cu) are: w(N,•, 1•:- 90> (for integers)· or w(N,i,i,-i,l/?) and 
. µ,a,fJ µ,a(•),fJ(•) 1 µ,a(1+1/2),fJ(•-1/2) 

w~~~~;,0~).~~:!112) (for halr-integers .s) •. These fields generalize the conformal supergravity ones eµaP' 

1/Jµa, 1/Jµp,Aw The constraint& allow to express all other (auxiliary) fields through the physical ones up 
to a pure gauge part. 
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R( N,11,s ,c, u) 
µv,a(2l),/j(2j) 

.' 
. -'·-.>'.;~·.:!~i::~~·-";: ".'_F:~7Y~'-':":'_'- ·, 

> .,'•<,, 

8 (N,11,s,c,u) ( ) 
= µW 11,0t(2l),P(2l).. - J.' +-+ V 

+ L.:: 6(c' + c" - c) 6(u' + u." .- ~) ~<m-:'. z' -1"+ z) 6(.,. - z" + 11 - z> 

x 6( t - l' + l" - l) c5(p - i' - i" + j) c5( q - ;" - j + i') 

x c5(k - j -i' + i") 7r(N + N' + N 11 ) ii'+i"-i-l 

N' s' ' c' u' l' ·I 
J 

x N" s" s" c" u" l" ·II 
J 

N 8 5 c u l J 

(N' ,111,!1,c' ,u') w(N",1111,s'',c'',u'')'y(m) • tS(p) (3.20) x w • . 
µ,a(l)'y(~),/j(k )6(p) 11,0t(r) ,p(q) · 

Here the parity function 7r(n) = 0(1) for n even 11(odd). They are expressed through 

the group-theoretical factors which are well known from angular momentum theory 

( Clebsch-Gotdan coefficients, 9j-stmbols etc.). Some simple symmetry properties of 

the structure coefficients provide the existence of invariant bilinear form on shc00( 4 I 1) 

(A, B) =tr( A* B), where the trace is defined. by tr(A(z, z)). = A(O, 0) and A* Bis the 

Weyl product of t~e symbols A and B (see in detail: .Fradkin & Linetalcy {1991a}). 

·. 3.3. The Cubic .Invariant Action in Superconformal Higher-Spin Theory. 

The action based on the conformal higher-spin superalgebra shsc00( 4 ] 1) of the type 
, 

(3.20) can be written in the .form {Fradkin & Linetsky {1991a}) 

Ao 
oo N _ ~ '°' '°' ·"' (-l )N-11 ;n+m+l E( n _ m_) 8a2 ~ ~ .~ · · 

N =1 :11=1 s,c,u,n,m · 

x J. R(N,11, ... ,c,u) AR(N,11,s,-c,-u)a(n),P(m) 
. . a(n),/j(m) · (3.21) 

and the Yang-Mills term for vector fields w1N,l,O,O,O) reads 

(3.~2) 
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and the following constraints* 

KR= 0. (3 .. 22a.) 

The action A= Ao+ AyM, does·not contain any·dimensionful parameters. The metric 

in (3.22) is defined as 

9µ11 
1 (1,1,1,-1,0) {1,1,1,-1,0)a,/3 

- -w. R W11 , 
,2 µ,a,/J 

= (9µ11 )-1, 9 = det (9µ11) . (3.23) 

First it was demonstrated (Fradkin & Linet&ky {1991a}) that (3.21)-(3.22a) determined 

the linearized theory completely. The linearized curvatures R1 = dw + 'Pw are con­

structed with the help of the nilpotent P operator, Pw = [Paf', O"af3 /\ w], acting on the 

differential forms taking their ~ues in shs00 ( 4 j 1 ). With the help of the generalization 

® = *on of the Hodge star* inclu~ng Weyl reflection n (in the so( 4, 2) representations 

it changes the sings of c and u), the nilpotent operator IC = ©'P© conjugated with 'P 

under some natural scalar product J tr( A/\ @B) was introduced. The operators 'P and 

JC converted the sequence of linear spaces of q-forms into the conformal cohomological 

complex which is analogous to the de Rham. complex on the Riemann manifold. The 

linearized const~aints K R1 = 0 allow. us to express all auxiliary fields through the phys­

ical ones up to a pure gauge part. The general solution of these constraints in terms of 

the curvatures was obtained. It turned out that all curvatures can be c;:xpressed through 

(derivatives on) the Weyl multispinors representing the Weyl tensors and spinor-tensors. 

The Weyl tensors in this context are non-trivial cohomological classes (harmonicforms) 

for the conformal cohomological complex. The linearized actions quadratic on the cur­

vatures R1 /\ R1 both for integer and half-integer spins were brought to the free C2-Jorm 

as. in the. tensor formalism. In this way the equivalence of our geometrical formulation · 

and the usual formulation for free higher spins in the symmetric tensor formalism was 

established (see Fradkin & Linet&ky {19910.)). 

*Two nilpotent operators P and K, whieh are very useful on conformal higher spin theory, was introduced 
by us. The operator P incr~ases the rank and decreases the conf'ormal weight of an arbitrary differential 
form at unity and anticommutes with the usual exterior differential. The operator K decreases the rank 
and increases the conformal weight of a differential form at unity. · 
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The (3.21) is a special form of our general eXten&ion ofMacDowell.;.MansoUri action& 

if [RA ARBO AB -:-RA ARiJG .AiJ for higher spins, ~here RA(RA) is the set ofcurvatures 
. , ,I . 

' R~(n)~P(m) with n > m(n < m} (the curlatures R° with n ·. m do not enter the action), 

and GAB, G AiJ are the blocks of the invariant _bilin,ear form in the algebr~; The cubic 

invariant action for conformal higher-spin theory (Bose c~e) then is chosen in the 

above form. The proof of·cubic ga:uge invariance has the following steps. The general 

structure of the gauge variation in cubic order is R1 AR1£. Firstly, due to the symmetry 

.properit~s of GAB and G AiJ, the terms RA ARB£ ~d the complex conjugates RA ARiJ £ 

are . cancelled separately~ Secondly, taking into account the self-duality of R1A and the 
I. 

antiself-duality of R1A as follows from the linearized conventional constraints, the terms 

R1A A R1iJ £ · vanish identicall;y. Finally, among the remaining terms Rla. A -RA£ and 

R1• A~£ only the terms with Ji" = R'!i~•) ":"' 11:=-zero due to the c;onstra.ints. 

They must be compensated for by some deformations 6.w in the gauge transformation 

law for auxiliary :fields~ Obtaining 6.w from the requireme~t 69 A + Aw = O, one should 

verify that these deformations are eompatible.with the conventional ~nstraints. In this 

way w~. :find the second-order.constraints for thepart of auxiliary fields (onlr for those 

which get the deformations 6.w). The action found in such a way is unique. 

In -the superconformal case the Yang-Mills term-for the vector :fields ~ust be added ·· 

· along with the above-considered action. The proof of invariance here is analogous to 

the purely bosonic case with some technical complications stipulated by the incr.eased 

number of terms (more details see: Fradkin- tJ Lineta/cy {1991a.)). 

Let us briefly sum up the main results and point .out a n'1Dlber of problems that need 

fur-ther study in conformal higher spin theory. 
. \ .' 

We have shown that there exists a gauge invariant cubic interaction among bosonic · 

and fermionic conformal higher-spin :fields incorporating ·conformal sµpergravity. 'This 

·result opens up the possibility of constructing a _sdf~consistent interacting conformally 

invariant higher-spin theory. Together with- previous results about higher-spin intetac-
' I ' • 

tion in AdS4, it gives hope to solve the longst'~ding Jrigher-spin problem which would be 
' .· A 
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a considerable step towards a unified theory. It seems natural that in our construction 

there is an infinite number of fields of each spin. It is completely analogous to 3tring 

field theory. Each level contains all spins from maximal to minimal (spin 1 ). Such a 

structure of levels al.so looks natural from the point· of view of spontaneous symmetry 

breaking. Only the first level (spins~ 2) might remain ma.ssless; the other higher levels 

should become massive. 

However regarding the infinite multiplicity of spins in the gauge inv8.riant conformal 

higher-spin interacting theory one should keep the ·following. circumstanees in mind. 

Right from the start we have dealt With the superalgebra shs00 ( 4 I 1 ). Jn principle 

it is n~t impossible for the invariant interaction to be based on another superal.gebra 

containing each spin with a finite multiplicity. We constructed {Fra.dlcin & Linetslcy 

{1990a}) a whole family of such superalgebras shsc~n)(4 I N), where n - ,1,2, ... is 

the multiplicity of SU(2, 2 I N)-supermwtiplet with the fixed maximal spin in the 

algebra and p E JR some numerical parameter. They are factor-algebras of the original 

superalgebra shsc00( 4 I 1 ). However all those superalgebras seemingly may not be 

localized. To build a cubic gauge invariant interaction it is necessary that some invariant 

bilinear form exists on the algebra. But shsc~n)(4 I 1) apparently does not possess 

any invariant bilinear form (the structure constants of factor-algebras have no simple 

symmetry properties which differ from shsc00( 4 I 1) ). Meanwhile it cannot be· excluded 

that any such superalgebras [e.g. certain factor-algebras of the universal enveloping 

algebra U(so(4, 2))] with a finite multiplicity of spins exist. 

There are a number of problems that require a further study. The first is to expand 

the construction presented here to all orders in the interaction; in particular, to find · 

a non-linear version ofthe standard constraints. Another problem·is to construct N-

extended theories. These theories may be based on the N-extended conformal higher­

spin superalgebras shsc00(4 I N) constructed by us {Fradkin & Linetsky (1990a)). To 

transfer the theory presented here to higher dimensions and the extensions with non­

trivial (in general an operator) central terms as well as certain non-linear terms in the 
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right side of thls supercom.mutator in·. the hlgher spin _s~etry···are .also important 

tasks. 

4. CONCLUSION 

Now it is time to summarize everything. Thus, there are just three principal possibilities. 

e Supetgravity (without cosmological term) and an infinite tower of massivly higher 

spins (superstrings, or string-like models); 

• AdS supergravity and an infinite_ tower of massless high~r spin fields with an 

infinite-dimensional higher spin gauge symmetry (AdS higher spin theory); 

• Conformal supergravity and an infinite tower of conformal higher spin fields with 

infinite-dimensional conformal higher spin symmetry (conformal higher spin the-

ory). 

These three seem drastically different. However, a synthesis could be conjectured, when 

with the increase of temperature there is a phase transition in strings. Then· a higher 

spin symmetry is restored, higher spin excitations become massless and a C()Smological. 

constant of the Planck order is induced. 

However, there is still a dimensionful parameter, 11. cosmok>gical constant, in the the-

ory. Meanwhile illlY quantum theory in the ultra. hi~h energies domain may be described 

by some scal~·ttee conformally invariant theory. Conformal, higher spin theory might 

play a role of such an asymptotical theory. 

Summing-up the above expounded , arguments, . the following scenari~ may be sug­

gested. In the ultra high-energy domain a unified theory is effectively described ~ 

a conformal higher-spin theory generalizing Weyl gravity. The spontaneous confor-
' . 

mal symmetry breaking leads to the massless higher-spin theory in the anti-de Sitter 
\ . 

universe generalizing the AdS supergravity. Further the AdS higher-spin symmetry 

31. 

• 



' ' 

breaking leads to the s.tring-like phases in AdS transitory .asymptotically to the mas-

sivly higher-spin string phase coupled to the Einstein gravity on the fiat background 

with. zero cosmological constant. The above scenario is schematically illustrated in fig. 

1. 

It should be mentioned that one can look at the above scenario in two different ways. 

Firstly, it may be treated in a straightforward way as a scenario for the fundamental 

unified theory, i.e. the unified hypothetical lagrangian, or its spontaneously broken 
. \ 

versions, 

Conformal Phase:. 
Conformal Supergravity + Infinite Tower of Conformal Higher Spin Fields 

AdS Phase: 
AdS Supergraviiy + Infinite Tower of Massless Higher Spin Fields 

String Phase: 
Einstein Supergravity + Infinite Tower of Massive Higher Spin Fields 

FIGURE 1: Phases of Unified Theory. The arrows 1,2 denote the symmetry breakings (see in the text). 

actually describe~ this picture at all energies. 'then, apparently, the scenario should be 

played in high dimensions .. Secondly, it may be considered as a hierarchy·of effective 

theories, each working effectively only in its own energy domain; and ,their lagrangians, 

generally speaking, are not connected in a ~traightforward way with each other. Subse­

quently it also might be considered in four dimensions. 

To have such a scenario of phase transitions it is necessary first to demonstrate a) 

that a critical AdS string (superstring) model does exist not only in 26(10) dimensions; 

b) that an AdS higher spin theory exists in the same space-time dimension with the 

same degrees of freedom as in AdS string model. Such a family of critical strings 

in D < 26(D < 10) described by anti-de Sitter non-compact caset models SO(D -
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1, 2)/ SO(D -1;1) (e~clidian versicin SQ(J?,1)/SO(D)) ancl,tJieir (Kazama-Suzajri) 

superextension has been recently introduced {Bar& 8 Nemeih.a.mlcy (1991),• Fradkin 

8 Linet$ky {1991 c)). 

It was demonstrated that these models are free of collformal anomaly in any D < 26 

and the anomaly cancellation condition actually fixes the value of the "effective radius 

of the universe" at a given D. The crucial features of these vacuum solutions in string 

theory are: 1) the space-time is non-fiat and 2) there is a space-time dependence of the 

background fields (metric, dilaton and, generally, also antisymmetric tensor field). For 

D = 2 such a calculation has been performed by (Elitzur, Forge 8 Ra.binovici {1990}; 

Witten {1991}; Dijkgraaf, H. Verlinde 8 E. Verlinde {1991}; T&eytlin. {1991)). For 

D = 3 by (Fradkin & Linetd:y {1991}; Cre&cima.nno {1991}; Bar& & Sfet&o& {1991}; 

Chamseddine {1991}}. A preliminary cosmological interpretation of these resultsis pro­

posed. Roughly, string theory seems to admit non-trivial cosmological (time-dependent) 
. ' 

I ! 

background solution where the universe created as an anti..:de Sitter universe (after the 

phase transi~ion from the higher spin phase to the string phase in AdS) and then un-
' . 

. . . 
der the in:O.u'.ence of the fundamental fields, which acquires non-zero background wilue 

( dilaton, metric, Higgs. particle, .etc.) increasing in time, it begins . to expand and the 

higher spin gauge fields become (generally step by step) massive. Let us note, that non­

perturbative effects leading to the appearance of a non-trivial dilaton potential (with a 

mass term) are very essential. 

In the case, when a selfconsistence theory eXists ollly in D > 4, it is natural to 

expect a Kaluza-Klein version, when in string phase by the non-static solutions of 

the background, ollly three-space dimensions have the effective ·expant;ion (inflation) 

by time, which brings us to an asymptotical fiat four spacC-:tin:ie. (The rem~ning 

· dimensions can contract or oscillate with a radius of Planck order.) 
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APPENDIX 

We adopt here the notations and conventions. The Greek indices µ, v, p, a = 0, 1, 2, 3 

are the indices of components of diffetential forms. The :flat Minkowsky metric is 

T/µv( +, -, -, -). The two-component dotted and undotted spinorial indices Ot.,{3, · · ·; 

a.,{3, · · · take on the values 1 and 2. They are raised and lowered by means of the 

symplectic metric Ea.fJ = -e{Ja, ea.fl= -E:{Ja, e12 = e12 = 1 as 

(A.1) 

and analogously for dotted indices. 

A symmetrization is implied separately for any set of upper or lower dotted or undotted 
I 

spinorial indices denoted by the same letters. The ususal summation conVention is 

understood for ea.ch pair of a lower and upper index denoted by the same letter. The 

number of indices is indicated in parantheses (except for a single index). After the 

symmetrization with the indices is carried out, the maximal possible number of upper 

and lower indices denoted by the same letter should be contracted. For instance, 

Aa.(n) = ~ {Aa1 ... a.n + (n! -1) permutations of a.1 ···an), 
n. 

(A.2) 

C . - A Ba(m) - A · BfJi~ .. An > 
. a(n-m) - a.(n). - (fJ1· .. An0t.m+i'·"an) 'n - m, (A.3) 

where brackets denote full symmetrization. Aµ.= aOt.P Aa.pi Aap = a:,BAµ.. 

The :flat vierbein is 

(A.4) 

where I is the unit matrix and <Tl,2,3 are the Pauli matrices. The :fl21.t vierbein satisfies 

the following properties: 

tT • awr6 2 c'Y c6 µ.afJ - Oa 0 /3> , u . u"a./i 25~ . µa{J - .- (A.5),(A.6) 

The vierbein one-form is 

tT • - " • d ~µ. afJ µ.afJ , (A.7) 
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and for its ~or product we have 

(A.8) 

·where 

(A.9) 

and 

(A.10) 

I' 

The two-: forms O'a(2). and uP(2) ( O'O!"f = 0'7a, uPS = o-6/J) are antiself-dual and~ self-dual . 

respectively, 

(A.11) 

or in the components 

~. e/Wl'U O'"" a(2) _ _ i O'p11a(2) 2 ,,_ , (A.128.) 

(A:.12b) 

The quantities D'µ.11 a(2} and u/W fJ(2) a.re, as a matter. of fact, projectors on the antiself­

dual part and self~dual part of the arbitrary two-form R ('t Hooft tensors) 

1 a(2) . . . 1 8(2) - . 
Rµ.11 = 4 CTµ.11 . Ra(2) + 4 '/W R/J(2)' 

R 1 . µ.vpu R 
~(2) = 4 1 £ O' µ.11a(2) fl(T' 

Evident~y, the following relations hold: 

j R /\ R . · i j d4,z{Rp(2) tt/JC2) :- Ra(2) Jl0!(2)}, 

I RA* R = - J d4 z {Ra(2) ;R"(2) + J'tP(2) _n.8(2>) , 

due to the identities 

O'a(2) /\ 0'7(2). == -16i~~ d4z, 

o-PC2) "0-6<2> = 16i6f 6f d4 z, 
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(A.14) . 

(A.15) .·. 

(A.16) 

(A.17a) 

(A.18a) 

., 
\ 



(A.19a) 

r " or in the componeJJ.tS 

J.WfKT .· a(2) . 16 · "a "a e . D'µv · u fKT7(2) = - i o7 o7 , (A.17b) 

(A.18b) 

(A.19b) 
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