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There are two problems of basic interest in modern theoretical physics. The first is to

unify all the fundamental interactions including gravity at the quantum level. Nowadays

it is a general point of view that the quantum gravity problem is in fact a problem of
unification of all 1nteract10ns

The second is a problem of exact solvability in quantum ﬁeld theory and qua.ntum

‘statistics. During the recent years there has been a cons1dera.ble success in solving

2D conformal models, however the main problems in D>2 are still open. This is the

exact theory of phase transitions in D=3 ‘and a confinement groblem in D=4.
The question arising here is: What new methods should be developed to approach

_these problems? The _dev,elopment of theoretical physics during the whole centufy shows

that practically all new fundamental results"_were_ obtained on the basis of discovering

some novel symmetries. So it may'bel said: symmetry is a guide for physicists.

Then, whé.t symmetries inay be expected to appear to help us to solve the above
problems? At least oxle thing can be said for sure: they will be inﬁnite-dimensional
symmetries. | |

Two types (classes) of mﬁmte d1mens1ona.l (super)symmetnes were proposed by our

| group at Lebedev Physlcal Instltute
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(1) Higher Spin' Anti-de Sitt’t;;rv('Fradkir; & Vasiliev (1986), (1987¢), (1988); Va.sili;ev
(1988), (19894,b), (1991)) and Conformal (Fradkin & Lincisky (1989a), (1990a);
(1991a)) supersymmetnes :

(2) Virasoro-like (super)symmetrles in d1m<;:n81on D>2 or more generally a new class
AC(g) (and its central extension AC(g)) of infinite-dimensional algebras, con-
structed By our method of infinite 'extengion (“analytical continuation”) of any

semisimple'ﬁii;ite Lie algebra (Fradkin & Linetsky (1990b), ( 19916,3, 1))

From the mathematical point of view these infinite-dimensional algebras, containing
the give# éemisimple finite-dimensional Lie algebras g as a maximal finite subalgebra,
(for possibility of having a spohtaneous broken phase with the iower-energy g-symmétry) |
are devided into two classes under the ﬁaﬁﬁrql representation [g, ‘] §f « g The ﬁ:st-dass

algebras (the hig'hqr\ spin or Kéc—Moody algebras) are decbmpbsed »only into a direct

- sum of finite-dimensional irreducible g-modules. Second-class algebras (Virésoro like* or

more generally AC (9) and AC(g) algebras) involve a.lso infinite-dimensional g-modules
(irreducible or/ a.nd non-decomposa.ble) We believe that these infinite-dim. a.lgebra.s‘
and their representation theory will play an 1mportz_mt role in solving the problems of
unification of all interactions and of exact solvability in QFT and statistics. In the
present talk I shall try to givé a brief account of our a.ftempts to construct a local
unified theory on the basis of the infinite-dimensional higher spin symmetries and the

corresponding higher spin gauge theories proposed by us.

*The 'simplest example of second-class infinite-dimensional algebras is Virasoro-algebra (TC—'(&I,)). ;
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1. THE PROBLEM OF UNIFICATION OF ALL FUNDAMENTAL |
INTERACTIONS INCLUDING ' GRAVITY (BAsSIC RESULTS).
During the whole twentieth century the \selfccmsistenfﬁniﬁcationof all the funda-

mental 1nteractlons 1ncludmg gravity has been a centra.l problem of theoretical physms

This problem came into existence nght after Einstein formula.ted General Relatlwty as -

e

a theory of gravxty At the begmmng the problem cons1sted in umﬁcatlon of grawty and

electrodyna.mlcs in the framework of classical field -theory (it is »suﬂiclent to mentlon the

Weyl conformally-mvana.nt approach and the Kaluza—Klem a.pproach) At the stage it
was realized that gauge invariance pnnc1p1es could glve keys to the umﬁca.tlon of inter-

actions, and all the a.ttempts to construct a Unified Theory a.ctua.lly had been a search

of some extension of the general coordmate transformation groups to incorporate also

the gauge group of vector fields in a natura.l way

The progress in physrcs has led to the estabhshrﬂent of the following main criteria _

that a Unified Theory must satisfy (for more dets.ils see Frddkin. (1989)):

(1) it should be selfconsmtent at the qua.ntum level;

(2) it should give an a.dequa.te descnptxon of low-energy physws

The anomaly cancellatlon cond.ltlons for all class1cal symmetnes of the theory and the

* finiteness, of the Unified Theory are. understood as a selfconsrstency Slmultaneously y

- this criterium of anomaly cancellation 1rnposes strong restrictions on the spectrum of
elementary pa.rtxcles and the gauge group for Vector ﬁelds (Fradkin E. S. and Tseytlm
A.A (1.984), Green M.B. and Schwarz J.H. (1984))

An adequate description of low-energy physics must include a solution of the cos-

mological constant problem, an answer to the question why the world we live in has |

" just four observable ‘dimensions, and it must predict the observed spectrum of elemen-

tary partlcles and fundamenta.l forces, including the Cla.show-Sa.la.m—Wemberg model,
quantum chromodynamlcs and gravity, in ﬁnal spontaneously broken pha.se

Conventlonally the evolution of theoretlcal physms on the way towa.rds a Unified The—

3

3



gy

ory cé,n be \divided into two stages. The first one is a lowe'f spin stage, 'ihcluding only
lower spin (s < 2) fields. A number of important discoveries hasvbeen obtained in this
stage (the discovery of global non-Abelian symxhctﬁés among elementary particles led
to their successﬁﬂ classification, the discovery vof 'non-Abelian“Yang—Mills‘ga.uge syminé—
tries allowed ohe to unify the vector interactions and 1ed to the Unification of electro-
magnetic, weak and strong interactions in thg: framework of Grand Uniﬁca.tioh Modevls;' N
the ’discovery of global supersymihetry aﬂofved §nef to unify Bose and Ferm1 particles
together in um'ﬁed supermultiplets and led to the Supersymmetric Grand Unification
Models. At last, by gauging the global supersymmetry, supergra.\nty was dxscovered)

The golden age of supergravity theones at the end of the seventies was a culmination
of the lower spin stage on the way towards a Unified Theory. There had been d.i:scovered
three fypes of supersymmetﬁes é.nd, \correspondiﬁgly,‘three types of superg:avfty theo-
ries: Poincaré, anti-de Sitter and conformal ones. They describe systems of intera.ctihg
gauge fields with spins s = 2 (graviton), s = 3/2 (gravitino), s = 1 (Yang-Mills vector
fields), as well as matter fields with s = 0,1/2 in extended models. (More details see in
the review articles Niewwenhuizen (1981); Fradkin & Tseytlin (1985a).)

However it dld not become the end of the way. Eventually it turned out none qf
thé known superg;aﬁty theoﬁes éompletely met the sirong requirements for a Unified
Theory. They were neither finite (except for the N = 4 conformal supergravity) nor
contained the observable spectrum of elementary particles because there gppea.red a re-
striction N < 8 on the aegree of N -hxtended sﬁpexfsymmet;y* (or N<4 ;n conformally
invariant case).

In this way, fealizing that it does not seem possible to construct a selfconsistent quan-
tum theory mcludmg gravity and observed spectrum of elementary pa.rtxcles without
introducing an infinite number of thher spin particles which are reqmred both to make
the theory finite and to get more extended supersymmetnes, one comes to the next

stage on the way towards a Umﬁed Theory, the higher spm stage Accord.mg to the

*N > 8 supersymmetries mvolve higher spins S > 2 in the supermultlplets
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classification of sepersym'metries andi sﬁpergr’aﬁﬁes," there vmaj; e:icist‘:,three.k'inds" of the-
ories involving infinite towers of higher spins a.lengf:v'vithfthevlower spin supergravity
sector: Poincaré, anti-de Sitter and cqnformally-iﬁvaﬁent theones "

The higher spin stageca.n be divided into ftwo sﬁbstages: ama.ssive higher spin stage ‘
and massless gauge symmetry h.lgher spin stage. . | | ;

Superstring theory provides a first successful example w}nch extends Einstein super~ '
grawty to the case of all massive higher spms It describes gramty coupled Wlth an
infinite number of massive spin fields. In stnng theory there is a natural mass pa.ram— -
eter inversely related w1th the square root of the string slope /. In the zero-slope
limit o' — 0 masses of all the higher spin excitatioﬁs, as weIl vask of the lower spin -on‘es
of higher levels, tend to infinity and only the massless (super)gravity a.nd Yang-Mills
sector remaiﬁs as observed [in det’eﬂ see: Green, Sckwaré and Witteﬂ, String Theory
(Cambridge (1987))] |

However, as far as the higher energy domain is concerned, a]l the hlgher sﬁm exa—v
tations of the string become equally essentla.l and give their contributions to the inter-
action. This situation gives rise to severa.l‘interestiﬁg higheri energy phenomena. The
interaction vertex in string theory conta.iﬁs increasingly ﬁgher derivatives (up to in-
finity). .'This in turn inVol;es the negative power of the ma'ssbpara.meter to make the
whole action dlmensmnless As a result the interaction turns out to be non-a.nalytlcal
in the mass parameter* (which is proportlona.l to (a')"l/ 2 in string theory) and this
non-a,na.lytlclty bnngs about the formal obstruct;on to the massless limit a — ocoon
the flat backgr,ound.‘ | |

A striking example of the non-analyticity on the mé._ss parameter m = (o' )_1/ 2 of
the interaction in étrihg theory is the tree effectiv action for the dectromegneti‘c field -
in strmg theory. As a consequenee of the contribution of the interacting inﬁmte tower
of higher spin exeitatioqé in the effective actien of strings (Frddkin 54 :‘Tseytlin (1 985¢-

e ) ), the effective Lagra.ngian of the electromagnetic field has a Born-Infeld form (see:

*However, it is natural to wait that a nontrivial phase transition with a drastical change in the structure
of the flat vacuum in string theory makes possible the contmuous massless limit for the higher spins.



Fradkin & Tseytlin (1985f))

Less = Cv] \/det(cs,,,; + 27a’ F,,,,) ) (1.1)

An other important and closely related consequence of the inﬁnitge interacting tower of
spins is the upper bound* on the stress tensor Fi*®in (1.1). Moreover, when the electnc "
field E tends to its critical value E™% = (21ra') ~1 the mass of the higher spins tends to
- zero. This iHﬁstrates the possibility of a phase transition from the massively higher spin
stage to the “non-broken” phase — the massless (gauge) higher spin stage. (Moreover it
is natural to suppose ,th‘at the masses of the higher spine in the massively higher spin
st‘a.ge'a.re resulted by spontaneous breakdown of the higher spin gauge symmetry.)

- The massless higher spin gauge stage of Umﬁca.tlon of all interactions was initiated and
developed in our group at Lebedev Physical Instltute Two types of such gauge theories
descnbmg mﬁmte towers of massless higher spin gauge fields coupled to supergravity:
Anti-de Sitter Higher Spin and Conformal Higher Sping Gauge Theories have been
obta.ined ‘

Antl-de Sitter hlgher spin gauge theories in four space-time dimensions have been -
developed by Fradkin and Vasiliev (1986), ( 1987a-c), (1988) and Vasiliev (1 988 )
(1989a,b), ( 1 990), (1991). They are based on a new infinite-dimensional higher spin
glebal supersymmetry gehera.lizing‘ the ofdinary anti-de Sitter vsupersymmetry to a]l
higher spins which was discovered by Fradkin and Vasiliev (1986), (1987c) aed Vasiliev .
- (1988). From the mathematical point of view this is an infinite-dimensional Lie su-
peralgebra containihg osp(N | 4) as its ma.xima_.l finite subalgebra. Its representation
~ theory was studied by Vasiliev (1987) and K onstein and Vasiliev (1989), (1990). These
global higher spin symmetri'es/ may be gauged similarly to the AdS supergravity. The
_' correspending gauge theory was constructed by Fradkin and Vasiliev (1987a,b) in the

cubic approximation in the framework of La,grvangia.n field theory, and then extended to

*The critical bound of the physical quantities (electromaghetlc stress tensor, gravity curvature, tempera-
ture, etc.), and the essential non-linearity of the tree effective actions for the fundamental fields is typical
for a finite quantum theory and this makes finite also the classmal limit of such theories.
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all erders in the l;n;;era;ction by VaZsz"h'ev (1 .9.90 ), (1 991 ) in the ﬁameuvofk of the‘inva.riant ”
' equatlons of motion. Two most interesting qua.htatwe phymca.l propertles of the theory
are the presence of hgher denva.tlves in the interaction vertxces as in stnng theory, and
a pecuha.r non-analyticity of the 1nteract10n in the a.ntl-de Sitter cosmologlcal constant \
A. This non-analyticity does not allow one to pesst-o the naewe.ﬂat limit A — 0. The
situation here is qu:ite' similar to one in the clo“sedgst'ring theery where one is net allowed
to pass to the massless limit o' — oo (T - 0) due to the non-ana.lytlmty of string
vertxces in the stnng {ension. . \ ; | |

It should be mentloned a.lso that our results d18prove the common belief that con-
sistent gauge-invariant interaction among massless hlgher spms a.nd gravity does not
exist (the so-called “no-go” theorem*) A key point here is Just the above m/entloned ’
non-éna.lyt:cxty in the cosmological consta.nt and the presence of h15her derivatives i in-
teraction vertlces in our higher spm gauge theories. | -

The conformal higher spm gauge theory has been developed by I"radlcm a.nd Lmet.sky
- (1989a), (1 990a ), (1991 a) It genera.hzes the eonformal supergravity (supersymmetnc :
extension of the C? conforma.l ga.wty dxscovered by Hermann Weyl) and descnbes a con-
formally invariant mteraetlon_ among, hlgher spin ﬁelds, in four space—tune chmensmns.
This gauge theery is based on the global inﬁm'te—d.imensi'ona.lrhigher-spin con‘forrnald |
supersymmetry discovered by Fradkm and Linetsky (1 9900.) From the ma.thema.tlcal |
: pomt of view it is an 1nﬁmte-d1mens1ona.l Lie superalgebra conta.lmng S U(2,2|N)as its
miaximal finite suba.lgebra The invariant Lagra.ngxan genera.hzmg the Weyl Lagrangla.n :

,‘,,m (C-Weyl tensor) to the mteractlon of all higher spins was constructed by Fradkin

*It was demonstrated that the minimal gravitational interaction introduced by means of covariantizing
the derivatives violated the higher spin gauge symmetry under which the free higher spin massless action
was invariant. Precmely, in the higher spin gauge variation of the higher spin action there appear some
terms including gravitational Weyl tensor (already in the cubic order). Such terms cannot be compensated
not to violate the gauge symmetry of the higher spin action via any modifications of the transformational
law of the gravitational field (metric) because the variation of the Einstein action is proportional only to
the Ricei tensor, no longer the whole Riemann one. (More details see: C. Aragone and 5. Deser, Phys.
Lett. B86 (1979) 161; S. Christensen and M. Dutt, Nucl. Phys: B154 (1979) 301; F.A. Berends et al.,
J. Phys. A13 (1980) 1643; B. de Wit and D.Z. Freedman, Phys. Rev. D21 (1980). ) This no-go theorem .
had served for a long time as an obstruction to all the attempts to buildup a massless higher spin gauge
theory coupled with gravity. . -




and Linetsky (1989a), ( 1991 a) in the cubic ‘or&er appmﬁmation. Most important qual-
itative feature of this theo;ry is the absence of a’njr scale pé.ra.meters. The only arbitra.ry‘
parameter in the theory is a dimensionless We&l gravity coupling constant. Hence such
"a theory might be regarded as an asymptotic theory of gravity and higher spins in the
ultha—hjgh energy domain where any mass parameters become insufficient.

In particular, all the three theories, strmg theory, anti-de Sltter higher spin gauge
theory and conforma.l higher spin theory, though they are essentxally dlﬁ'erent mlght
turn out eventually to be actually three different phases of one and the same Unified
field theory (see Fradkin and Ltnetsky (1991 g) ) with new forces conditioned by hig‘her' B

- spin gauge fields.

2. ANTI-DE SITTER HIGHER SPIN GAUGE THEORY

Below I will draw more details upon the ideas, methods and the structure of the
Higher Spin Gauge Theories constructed by us. The cornerstone of our approach is a
new class of symmetries, so-called higher spin symmetries and their loca.h'z‘a.tion.

The mathematical hasis to describe AdS higher spin symmetries,‘ generalizing the
usual ﬁnite'. space-time (super)symmetries is a.n infinite-dimensional Lie superalgebra

which contains osp(N | 4) as its maximal ﬁhite-d.imensiona.l suba.lgebra.

2.1. The superalgebras for higher spins in Ang. ‘

There is more than one way to construct the infinite-dimensional global superalgebra.s
One way is to postulate the superalgebra spectrum w1th respect toa ﬁmte—d:mensmnal
subalgebra g and, by i 1mposmg some additional restrictions, solve the Jacobi identities
for the structure constants of the infinite-dimensional superalgebra. In this way we
(Fradkin 5‘ Vasiliev (1986), (198 7c )) ﬁret obtained the simplest superalgebra of higher
spins in AdSy, denoted by shs(1 | 4) (shs means super higher spin). The anti-de Sitter
superalgebra osp(1 | 4) is its ma.ﬁmum finite-dimensional suhalgebra. The gauge fields

8.



p,a(n),ﬂ(m) Wlth arbltrary n,m > 0 The fields

w w1th an even (odd) number of spmor indices are commutlng (a.ntlcommutmg) They

~ of this superalgebna ha.ve the labelhng w

also satisfy the hermiticity relation*®

i = Celmae @D

The curvatures of shs(1 | 4) are of the form (Fradkin & Vdsiliév' (1 987c ))

By bom) = A a(n)bm) T

. o0 nlm!
nm:
+ z i8+t_1 1a! |k'l‘t| X
. plq!s!klite!
P,9,8,k,1,t=0 : o

142 (fn—m|~Ip+s—k—tlg+s—i~t])
x A2 . X ‘
X 8(|@+E)a+D) + @+ E)e+0) + (g +D(a+8) +115) x

x §(n—p—gq) 5(”" k- l) wp,a(p)7(8)sﬁ(k)8(t) %

X Wya (¢ ) (s ) sﬂ(l) () “ ; ‘ ’ (22)

Here 6(n) equa.ls 1or0forn=0andn #0 respectlvely, and 6(| n |2) equa.ls 1 or 0 for .

n even and n odd respectively. The real parameter A coincides with the inverse radius

of the background anti-de Sitter space. The cosmological constant A is proportlonal to
5t | |

The curvatures (2.2) contain both pdsitive and negative‘ powers of .. This is the reason -

for the non-analyticity of the \higb;er-spin interaction in the .cosmologica.l constant. Note

that the linearized curvatures, unlike the full ones, are analytic in A and Sdmit the flat

limit A — 0.

\ -

*Spins s of the field w, ,a(n),6(m) 2T connected with n and m by the relatlon n+m = 2(s—1). Each set of

spinor indices a(n) and ﬁ(m) takes the values 1, 2 and is symmetrized separately The indices are raised
and lowered by the respective antisymmetric symbols api €4 4 The dynamical fields are components of

Wy a(n)f(m) With | n—m |< 1. The components with n —m = 2 are auxiliary fields. The components

with | n — m |> 2 are called extra fields. The extra and auxiliary fields can be expressed through
the dynamical fields and are needed for the construction of the curvatures. For example, in the case of
gravitational fields, w Wy af is the vierbein, and the auxiliary fields w,q(3), w up(z) are components of the
Lorentz connection. For more details of other notatlons see appendu:

9
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This method, connected thh the explicit solvmg of the J acoln ldentltles, is, however,

- very cumbersome and, therefore, practically mapphca.ble to more comphca.ted cases such

as the conformal theory. Another method, based on the operator realization of the al-

gebra, is much simpler and more illuminati-ng. This method for the construction of the

~ infinite-dimensional superalgebra G conta.ining a given finite-dimensional subalgebra g

.consists of the following (Vasiliev (1988) ) First, one chooses an appropriate operator

realization of the subalgebra g by quadratic and linear combinations (genera.lly, with

'addltlonal constra.mts) of the generators Z4 of the Helsenberg-Chfford supera.lgebra.

(The supercommutator of Z4 is [Z 4,2g] = CaB where C 4B is a constant orthosym-
plectic matrix.) Next, one considers an associative a.lgebra. of polinoms of all powers
in the operators Z4. In this algebra one introduces the Grassma.n, parity e(A) and the
supercommutator |

4,8 = 4B — (-1 BA. (23)
Technica.lly,the prohlem,is to find the structure constahts of this Lie sﬂperalgebra (G).
Its generators T4 are expressed through the powers of the operators Z 4 in the Weyl
(symmetric) normal form, and one must compute [TA,TB] = FEBTC. Such prohlems
are most conveniently solved, by the method of symbols (Beresin (1966)). Let the Weyl

symbol of the gauge field w,,(Z ) corresponding to the superalgebra G be wy(Z). Then

for the operator curvature one has

~.

Ru(2) = Byon(2) + lonlD), wnlD)] e

and the corresponding eymbol is of the form | .
Rul2) = 8,0(2) + wul2), w(B)Y, e
[ABY = A+ B— (1B g 4 4 (2.6)

where * denotes the associative multiplication of Weﬂ symbols:

A+ B = AZ) ep(R)BZ), 2.7)
10 | |
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Now let us censider_ the higher spin extensi"on of AdS supersymmetry (where gv’ = =
o.sp(N |4)) Firsvt'iiv’ev choose an appropriate opex‘ator rea.iization of osp(N | | 4).

Let go, 7 4 and 9; be Heisenberg-Cliﬁ'ord generating elemente with non-zero suf)ercom-
mutators ' | s ‘

4o 98] = 2ieaﬁ,‘ [rasrs) = 2ic, 5, T (293)
, B g -

{11’1’1[’]} = 251.]’ , - : | (29b)

‘where &@,8 =1,2and &, 8 = 1,2 are dotted a.nd undotted two-component 31(2 C) multi-

spinorial indices, e, = —aﬁa, 6B = -—sﬂd are the symplectic metrics; the Hermitian

conjugation is defined as follows -

@)t = ()t = e ) = (29)

andi=1,- N are SO(N) internal indices. ‘Then the second—order polynom1a.ls on

the generating elements g, r and ¢ with the basis

o iy S
Map = 3 998y Mg = 37"y Pap = tamg
o 1 N ) ) - '
Tj = ¥ Qia = ga¥is Qi = rats (2.10a)

form a./Lie superalgebra isomo:phic‘,to osp( N | 4) (Mg =' M,ga, Md 3 = M 46 aTe the
sl(2; C) Lorentz geﬁereto:s, P - AdSy ti‘anslaﬁidns, T;j = —T,-,- — 80(N)-generators,
and @, Q-supersymmetry generators). | | , . e

An idea to geﬁeralize this cons‘truction’to‘ the case of all h.igher spins consists in
mtroducmg 1nto the game polynomals of all even orders on the generating elements g, |
and 9 (the restriction to only even polynommls here is for convemence, it does not lead
" to any loss of the information, see ( Va,.nlze'v (1 988 )).) Accordmg to this idea, the gauge
fields of all thher spms are generated from. the smgle ob Ject w,,(q,r 1/) | z) as follows :

11
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(qﬂ'ﬂ(’l“’) E Z nlmlk! o an,ﬂl ﬁmu ik

n,m=0 k=0

X q(al e qa") (B .. pm) ¢[’1 ¢”‘] n+m+kiseven.
(2. 11a)

(The k’rou‘nd (sﬁua;e) brackets mean complete symmetrization (anti-symmetrization),
that corresponds to the Weyl ordering of the bosonic ga, 4 a.nd fermionic 1; operators.) |
The terms with n + m +k=2in the above expansion corresponds to the N -éxtended
AdS, supergravity gauge fields, while the collection of fields ‘with h+m+k=2(sm-yl),
~ form osp(N | 4)-irreducible higher spin supermultiplets with the maximal épin Sm
(take into account additional unitvy due to the vector index p of wy). Such an infinite-

dimensional Lie superalgebra formed by thé generators

1

T“("):Ié(m)»i(k) = nimik Ye-dan) T(ﬁ'¥7..r,§,n) %[il-.-'ﬁ;’,,] (2.10b)

was denoted (Vasiliev ( 1988)) as shsE(N | 4) (shs means super higher spin). The

curvatures of the AdS4 higher spin gauge theory based on shs-algebras are defined as

usual

pr = a“wl/ - aVWu -+ [‘U“,wlj} . (2.11b)

To calculate the supercommutator of two gauge fields wyu(q,r,%) and wy(q,r,9) it is v
helpful to employ the very convenient formalism of the Weyl symbols corresponding to

quantum operators. As a result one arrives at the final expression for the curvature

12



( —Vaailiev ( 1 988)}
Ry (1) im) = a”wﬂ,t(f).a(n),ﬂ(rn) B a““’v,z(f).a(n),ﬁ(m)

| 1 _1V/2 fintm!
+ E m, (-1t Plglslklltlulvlr!

p,q,8,k 1t uu,r=0
x (h)r+s+t—1 A1+(|n-m] [p+s—k—-t| |q+a-—-l-t|)/2

X 6(ffu—v)5(n—p—q)5(mj-k—l)
x 6(|(p+E)g+1) + (p+E)(s+1)

+ (g+ (s +1) +u;v+ru-ri+‘v T+ 1|2),

. : S0 | .(f) ( ‘
X wu,i(u)j(r),a(p)'y(s)}ﬂ(k)ﬂ(\t) wﬂ" z(v),a(q) 7 ) ,ﬂ( ) (2 12)

In the case when N =1, (2.12) coincides vnth (22)

In the structure constants of the AdS4 higher spip supe;algebra and, consequently; in
the expressions for the curvatures thé;e is a dimensional pa‘.ré.meter’l. All the deﬁen-
dence on A ié uniquely fixed by fhe AdS4 commuta.tibﬁ relations [P,‘,P,,] = —-AzMw,
(that is ——/\J2 ~ A is the AdS cosﬁologica.l constant) and the requirenient'on, the gauge
 higher spin fields to have correct physical dimensions to describe free ‘d'yn\amicsb. The
crucial point here is a no;l-analyticity of the ,"strﬁl;t‘:ti‘lré’consta.nf’s and curﬁtufes in the
AdS cdsmologica.l constant A ~ —\2. Indeed it is easy to see .that in the above ex-
pression for the curvatures both positivé a.nd negative powers of A are involved. This
non—analyticity results in the non—a.na.lyticify of_ the higher-épin-g‘ravita.fiqnal interaction
and does not permit one to pass to the naive flat ba.ckéround A—0. |

It should be meﬁtione& that' we have prese.llitved here only the simpleét versions of
the AdS, higher-spin superalgebras torillustra;te the very idea of construction. In fact,
in praétice some more complications are needed to obtain alsg fhe necessary kset‘s of
auxiliary fields and to meet the rgtiuirément of unitarity.

I;c ‘is known that in Supergravity; without auxiliary fields, I_t}/xe numbers of boson and
fermion off-shell ‘degre;es of ftéedom are not equal to each othér; ba.nd fhe‘lbcal géuge
algebra is open. The introduction of auxiﬁé.ry; fields closes the aigebra off .she.ll.f This
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essentially facilitates both the constru'ctioﬁ of the full Lagrangian and the quantiza-
tion procedure. Such a supera.lgebra is obtained (Fradkin & Vasiliev (1988)) which, in
addition to the higher-spin gauge fields, gives rise to a.uxilia.fy ‘ﬁelds geﬁeré.liziﬁg the
“new minimal” fqrmula.tio’n of N=1 supergravity (Sohnius & West (1981)). This
superalgebra shsa(1) (“a” ﬁleans auxiliary) admits a natural operator realization gen-
eralizing the previous construction. | Namely, in addition to the spinor operators (2:11a) -

one introduces the operators Q and R such that

Rt =0, ¢t =k  (218)

The gauge-fields of shsa(1) are of the form

w= Y QAR @), (214

A,B=0,1

and for the curvatures one finds (Fradkin & Vasiliev (1988)) -

FG . - 8wF¢ . - 8,,FG .
up.,a(n),‘ (m) a"wu,m(ﬂ.), (m) : aﬁwu,a(n), (m) | _
Y §(1F+A+Cl2)§(1G+B+Dlz)é(n—p—aq)

p)Q13$ksllt;A1B)CtD

. ‘ i N lom !
1 \e8+t=1/_\C(p+8)+D(t+k n:m:
x 8(m = k= )it (—1)TERRDIAR) PRTATIT

X 6(1C(p+s) + D(k+1) + Alg+s) + BI+1t)
a4t d (prh+s+t)(gHl+a+t) +1]2)

AB CD (s) . &t '
“via(p)r(2).B(k)é(2) “rala) ™) B(0) . , (2.15)

The ﬁelds wAB with A=B = 0,1 describe higher spins and wAp with A=0,B=1or

A =1, B =0 are auxiliary fields as one can see a.fter the localization of this algebra. "
In the supéralgebxja; shsa(1) all spins are contained twice. That suci1 a doubling should

indeed take plaée is seen from the following considerations. A necessary con&ition for
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the c_xiéteﬂcpbf a full theory eof‘massleéq higheréspin fields is the existence of massless
unitafy pértide—ﬁke representations of the global superalgebra describing the higher-spin
symmetry, which have the same spectrum as gauge fields have. The ex:stence of such

representations requlres the doublmg of the ﬁelds of higher spins (K. onstem 6’9' Va.nlzev

(1 989), (1990)). Thm fa.ct can be 1llustrated asfollows .Theantl-de Sitter group 0(3 2)

possesses two elementa.ry representations (smgletons) discovered by Dlrac* They are. |

denoted by Di and Rac.

The supersingleton S = Di @ Rac forms a representation of bap(l | 4) which can
be continued to a reprééenta.tion of the higher-spin superalgebra. The square of the

supersingleton equals
S®S = (Di®Di) ® (Rac® Rac) &
® (Di ® Rac) ® (Rac®Di) (2.16)
and the spin content of these representations is as follows

(Rac® Rac) = (04,1,2,--),
(D"' ®Dz) = (02)1)_2"“);

135 1y . RN
(Di@RGC) = (5, 5, —2',"') (217)

where 0! and 02 are masless represéntationé with zero spin: (1, 0) and‘ (2 0) respectively.
(It is important that the unitary representatxons conta.m all lower-order spins including
spin 0.) The square ¢S ® S contains all massless umtary representatlons of 0(3,2) twice
and can be continued to a umtary representatlon of the full supera.lgebra ahs-f (1) which
contains all higher spins twice and is a subalgéBra of shsa(1). On the other 'h‘a.n‘d,, the
supex;algebra shs(1 | 4) which contains all spins only once hé.s no uﬁitary representations
with the -~;equired properties. |

The fact of the doubling of all spins ra.ises the question of their interpreta.tion, par-

ticularly of spin 2. Onc possibility is that only some spemﬁc combinations of the spm-2

*See also: Flato M., and Fronsdal C Phys. Lett. 97B (1980) 236 Fronsdal c, Phys Rev. D26 (1982)

-~ 1988.
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fields mll remain massless iﬁ a physically relevant pha\.sé with sponfa.neously broken
higher spin symmetrigs; and this combiﬁatipn will be the only "caﬁdidatg for the role of
the gra;,vitational field. |

To summarize, higher spin symmetries cdnstitute a novel class of fundamenta.l sym-
rﬁetries generéh'zing the space-time symmetries, rsome‘wha.irz like sﬁpersymﬁetﬁes. The
- discovery of supersymmetry introduced in physics spin 1/ 2 supersymmetry generators
and spin 3/2 gauge fields. Similar to this, higher spin symmetries introduce into the
galﬁe an infinite tower of higher spin generators and gauge fields, wﬁich,‘ue also oblig-

atory for finiteness of the local theory.

2.2. Angl Higher Spin Gauge Theory.

Having the infinite-dimensional higher-spin superalgebra, corresponding gauge fields
and curvatures at one’s disposal and basing on the supergravity experience, one can try
to .consvtruct an interacting gauge theory for higher spins. One of the elegant approaches
to build up an action starting from the known curvatures is the higher épin extension
of the R4 A RgQAB appfoach*. This R A R approach was applied first to the AdS,
higher-spih gauge theory based on the highér—spin superalgebras shs(N | 4) (. Fradkin
- & Vasiliev (1987a )) It turned out that there exisis- a unique real, P-invariant action
which, when supplementea with s§me suitable curvatﬁre'éonstra.ints, currently descfibe's
the free fields of higher spins in AdSy4 as well as their cubic interaction. This action ié
of the form | | | | .

; ﬂ °° jntm+l o '
S = 3 Z i A~In=ml g(n —m) x

[ @ Rty B *) B

N

- (2.18)

and the additional constra.iﬁts read
el Ry a(n) pim-1)5 Mo ®=0forn2m >0 (2.19)

*This approach was introduced in gi:avity by MacDowell S. and Mansouri F., (1977).
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fbvforn;>n>o o @20)
Here £(n — m) equals 1 for n > 0, 0 for n =m and -1 for n < m. The action S contains
two 1ndependent parameters - the cosmologmal constant A and the overall fa.ctor B.To
arrive at the eorrectly normalized Emstem (spln-2) action — (1 /4x2) [ d*z\/=g R the
constant should be f = -1/ 16x2. |

To analyze the a.ctlon S one may expa.nd 1t to the pomt where all ﬁelds, except the

gravrtatlona.l field, vamsh a.nd |

O

Puop = Dpafp Wia(®) = Oua@y Waja) = w“,ﬂ(z) (221)
where h and W, W are respectiVely the vierbein and Lorentz connectlon of the back-
ground AdS4 space. It can be shown that the fields w(n,m) with | n —m |> 2 (the
so-called “extra” ﬁelds) fall out of the a.ctlon (more premsely, they enter the total-
denvatlve terms). However, these fields enter the full curvatures of shs(1 | 4). Tl\:us is

the reason why the action should be supplemented with the constraints (2 19), (2.20).

The constraints and equations of motion make it possible to express the curvature as -

follows (Vasiliev (1 987))

! | A, .
va,a(n),é(m) = §(n) huy hv’ - Cﬁ(m)6(2) +
+ §(m) h" h,, Ca(myvz) (2.22)7

where C and C genera.]ize the gravita.tional Weyl tensor ( a(4) and C' A 4)) to the case
of hlgher spins. (2 22) generalizes the hneanzed Emstem equatlons and expresses all
curvatures through the lngher-spm Weyl tensors. The Weyl tensors of the AdS4-space

satisfy the equations

hZY Dy Cofn-1)y = 0, ‘ . (2.23)
thDL ﬂ(m—-l)6 =0. . (2.24)

which follow from (2. 22) a.nd the linarized B1a.nch1 1dent1t1es for the curvatures of
shs(1 | 4). In (2. 23) and (2.24), DT is the Lorentz-covanant denvatlve with the con-
nection W, W. 4 ‘
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The gauge invariance of the actlon in the trilinear a.ppronniatxon can be verified as
~follows. The variation of the action in thls a.pproxlmatlon has the structure f R'Rle. |
By virtue of the linearized equation (2.22), the expression contains only terms of the
_type CC and C—'C_’ (the terms CC do not enter S owing to the identity
hY . = 70). The condition for the cancella.tioﬁ of these terms leads

, B op
to an equation for the bilinear form Q4P in the action JRaA RpQ4B, which has

WP o ihva®

the unique solution consistent with the free theory (see Vasiliev (1987)) of higher
spins in AdS4. This unique solutiop is given by (2.18). So the a.boire action and
constraints provide‘ a consistent description of the intéracting collection 6f massless
>spins 3/2 < s < oo,’ in the cubic approximation. Taking into account that the
no-go theorem also dealt with just the cubic approximation, one comes té the con-
clusion that the nd-go thedrem does not hold well oﬁ the non-trivia‘.l'Ads background.
The key point here.’is the celebrated non-analyticity in A, and the existence of non-
minimal higher-derivative interaction vertices. N

Actually this is a quite non-perturbative result with respect to the flat background,
beca.z.use' in this case cosmological ‘terms cannot be tréated as perturbati»onsb over‘t‘he
trivial flat vacuum. In fact; the anti-de Sitter vaéuum ‘and‘ the flat vacuum may be
related Ion\ly byr some non-trivial phase tfansition, rather than a nai#e flat limit A — 0,
when massless higher spins are presented in the AdS phase.

I /is* worthwhile to emphasize now that in the AdS higher spin gauge theory there are
only two independc;nt coupling constants. These are gravitational x and 'coéﬁ;ological
A~ —Az‘consta.nts. In the N-extended theoﬁes in the action (or cubic order) there is

‘ also an additionﬂ Yang-Mills term integration with a constant e but it is in fact related
{o the first two e? = 42252 (Fradkin & Vasiliev (1987)). |

- .- The same situation mth .coupling constants takes place also in the AdS, extended

supergravity and, thefefore, i/'.he introducing of an infinite tower of higher spin fields does

- not bring any new esseqtial independent /physiCa.l parameters in the theory. All'lﬁgher

spin interaction coﬁp]ing constants turn out to be related with the only fundamental
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ones A, v:e’:;é.nd e bftlze very powerfulmﬁmte-dlmenmonal lngher spm symmetry : |

This situation is quite similar to string theory with the stringftensi‘on T = (2na’ )"'.1
on the place of the cosmological eOnSta.nt ‘A. Mo’reover, theconnection :o‘f ;ez- and K2
is quite similar 4to vtb'e heterotic superstring‘ca.lse-vwitb' the accuracy of the interchange
A & T. So to say, we eonl1e' back again to onr :p:ara.lle.lfbetween the AdS radius and ’the
string “length”. gt

Above we have considered the higher sp'in dynamics in the cubic approximation. The
way beyond this approximation requires knowledge of the complete constraints up to -
all orders, along mth the very Lagrangian. It produces some serious difficulties whlch
have not been overcome in this approach up to now. |

However, a very important progress has been recently achieved i in quite another ap-
proach ( Vasiliev (1990), (1991)) where on the ba.81s of superalgebra shsa(l) (2.13) -
(2.15) and 1ts conformal extensions consistent equations of motlon desnblng mtera.ctlng
massless ﬁelds of all spins, from zero to mﬁmty, have been const_rueted in the frarnework i
of the so-called free differential algebra.

This system of equations-describes higher spln interactions up to all orders and it is
gauge invariant under an infinite-dimensional algebra'. They have a rather specific form,
like some zero-curvature conditions for an enlarged infinite algebra, supplemented with
some additional constraints. The problem of corresponding complete Lagra.ngla.n is now

under mvestlgatlon

3. CONFORMAL HIGHER SPIN THEORY
Let us turn to the second possibilit‘y for a higher spin gauge theory, which is a hi\gher‘~
spin (s > 2) genera.lization of usual conformal supergravify |
In a series of papers (Fradkin & Linetsky (1 989a,b ) (1990a) (1 9.91 a) ) a superconforma.l
‘higher spm gauge theory has been proposed in dlmensmns D < 4 (but on.ly for lower

dimensions (D < 4) the action is constructed exactly).
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- conformal Higher Spin Theory in three and four dimensions.

Below I adduce more details of the main results of‘o’ur attempt to construct Super-

v\

'~ 3.1. Conformal Higher Spin Gauge Theory in D=2+41.

For the construction of a conformal higher spin theory in D = 2 41 first of all we

~ choose a suitable operatorial realization of the conformal superalgebra in D = 2 + 1,

osp(N | 4). Let aq, i’a and ; be the generating elements with non-zero commutators

6o, bg] = 2ieag , 4 = G , b = ba, (3.1a)
{5} = 26, ¥F =% - (3.1b)
where the Greek letters o,f8,--- = 1,2 are the 30(2 1)- splnonal indices and 1,5 =

, N are the internal md1ces Then the osp(N | 4) genera.tors (translation, SO(2,1),
conformal boost, dilatation, SO(N), supersymmetry and special conformal supersym-
metry generators) are Pa(z) = %&aaa, Ma(z) ——(a.aba + baaa), a(2) = 5‘8"3""
D =  %(&a5“+i)"‘&a), T,-;- e -21/3,-@5, Q,-a‘: %&M&, and S;, = ~2—‘ba¢,-, respectively. Gener-
ators of the infinite-dimensional generalization of the conformal superalgebra osp(N | 4)
can be chosen in the form of alllorder polynomials that commute with “particle number”

opérator N = a%b,y

o) [ (21 + 1) 1/2
i(k)e@) T | GO +o)li-c)l(s+I1+1)
X Pi - Pi, Ga " Ga ba - ba (a%ba yt, (3.2)
- I—c I+c. ‘ ’

where (and bélow) we have passed to the Weyl symbols of the operators and a, b, are

' the symbols of the generating elements in (3.1). In (3.2) the indices have the following

meaning: s determines the SO(3, 2)-irreducible representation space with the dimension
d(}é')'= (2s+3)(25+1)(s+1)/3; cis a conformal weight of the generators ([D, T = cT®);

l is the SO(2, 1)-signétu17e; k is a number of the’ internal indices and

; 1 | _ ’
8 = Oai’l’“'; c = —8, ,8 l =ICI)"' 8y (33)
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k= 0,1:,’- N andk+ 2s is even '

The last restriction has been introduced for convenifence‘. The géner#tors (3:2) form a “
coﬁfbrmai b;sis (D is diagonal) in a conformal higher spin E‘sil‘pera.lgebra.' which we call
shsc(N | 3). The structure consta.nts of ahsc(N | 3) in the conforma.l bams associated
with the reduction to a suba.lgebra osp(N I 4) — SO(3 2) @ SO(N) — SO(2. 1) @
S 0(1 1) @S O(N )- Gauge fields a.nd curvatures correspondlng to ahsc(N | 3) have the -
form (Fmdkm ] Innetsky ( 1989%), (19.90«:)) | '

LT | - |
wp = gp 2w bl 71((815,)«:(21), | (3.4)

Rﬂsv,ct(k),a(ﬂ) = O ws,z(l)n),a(m) ,(l‘;"v"”’)
+ E i"+3 ‘-8+T—|1‘|3ﬁ—1 k 6(’6 o — 1])

ahole!

x 8(p—1'—1"+1) (g1 +1" - DEE-1"+1-1)

x w(ds's" + 5 + 5" — 5+ uv +r(u+v)+ 1)

s & s
W)
X (C,', % f) “uilu)i(r) o (o)
< W | )

y,i(v) ] a(t):

"

s ‘ ’
‘l:" ') 6(c+c c")e(a 4 a")e(l,l',l")

(R A

~0 &
®

where (

Ty
-

x[ o (2l+1)'(2l’ +1)'(2l" +1)! 1/2 |
('+"—"’)'(l—l'+t")'(t'—l+l")'(z+z' z"+1)'] |

( s+k s—k l"

: 2 ? 2"

4 k") ! Y ' 1!
B S - " n‘ " " -
: s +k 8 k "

.2’ 2
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, . ' . -

&y (2) () £, o (-3)

stk s+k 4R\ . [s—k &k s*—kv\71/2’
[A(z" 2’ 2.)A(2’ 2 2)] :

8(0'1;6)6) = 1(0) fOI‘ c€ {la'_blxa+b} (c ¢{|a'—b|1 )a"'!-.b})a

(a+b—c)(a—b+c)(b—a+c)
(a+b+b+1)

-

A(a,b,c)

k — —l,"',l, kl — —l',"',ll, k” = —l",—l”"'l,"‘,l”

‘w(n) = 0(1) for n even (odd). N - (3.5&)

We have expressed the structure coefficients of the *-product in the conformal basis in - -
terms of the 9 j-symbols and particularly values of the Wigner d-functions d( %)

The gauge field w,u is the element of the second—class Grassmann shell of ahsc(N | 3)
(w "’T" = (- 1)4” yid w”, Grassmann parity is ¢(T?®) = e(w®) = g, = 0(1) for s integer
(half)) and the hermxt:atj-cond;tlon is read |

E(k-1)
(a,c)

, 8,c + N
“"z =T (w:(t,i(;é),a_(ﬂ)) = (-1 ° “wik)e(an) (3.6)

‘In three dimensions, the action invariant under the gauge transformations of the

algebra shsc(N | 3) has the Chém—Simon_s form (Fradkin & Linetsky (1990a))
S = /tr(w/\dw+—2—wf\w/\w); o (3.7)
. 3 |

where w A w = wy * wydz” A dz¥ and the *-multiplication of Weyl symbols. This
action generalizes the three-dimensional conformal supergravity action. The cdnfdrma.l‘

supergravity fields in our notation are
(eua(z) Fua2): “ua(a) bur Auisy $uics Yysia) |
((1 -1) (L) | (10) (10) W0 (1/21/2) (1/2 1/2))

Ypa(2) “a(2) “pa(2y VB0 Yaij 0 Cpia | W pice (39)
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The equa.tlons of motlon of the conforma.l hlgher spin ﬁelds in D 2 + 1 have the formf =

Rffu’,cs)(é),a(zz) 0. SR (39)

* These equations genera.hze the D=2+1 conforma.l supergrawty equations.

For the quantlza.tlon of Chern-Slmons theory (the rang-one theory) we mtroduce a
ghost and antlghost fields C = ZA C4TA, C’ EA C TA,e(CA) = g(wy,4) +1 and
a gauge fermion ¥ = Z af d3zé'A\I’ A w1th gauge condltlons V4 (A is the collective
index in the algebra). Then the exactly generating functmnal for the three-dimensional -

superconformal higher spin quantum theory reads as follows

_ / DuDCDCDr exp{iSess},  (3.10)
| e
Seff =S + / d3ztr (—6;; *x D,C |
5r¥ 6r¥ ‘ L
+ —E *’C C + ﬁ *"fr + J“ %* w”) B (3.11)

where S is the origin Chern-Simons action, 7 is’;the Lagrangian multiplier for the gauge
condltlons e E 4 —TA for Z = (w C"C_' ,@) and D, is the covariant deriva.tive

| To conclude this sectlon let us consxder the compactlﬁcatlon of Chern—Slmons theory

Introducing a notation ¢ = wy and expandmg the gauge ﬁelds by coordinate z2 Wy =

Yom oo w“(n)e"”' re, where rc is a compactification ra.dius, we have an action in

D=1+1 | | |

Z / tr (¢(n) R(—'n) + — w(-—-n) Aw(n)) (3.12)

; n.-—oo

In addition to usua.l action in D =1 + 1, the action (3 12) also contains a “topologxca.l

mass term” ir En - w(—n) A w('n). The corresponding ghost Lagrangian has the form

Lgh = oot ‘(3—;{:—(% * (DuC)(—n)

;1:00 5r¥ 67"1' - k '
+ — = 6¢(-—n) C(n) + C(n), * m+§_n C(m) * C(k) L
R [¢,cun>) o e




'3.2. Conformal Higher Sg‘ in Theory in D =3 +1.

Now let us turn to fhe second po’Ssibﬂity for # higher spin ga.ugé theory in four
dimensions as a hlgher spin extension of conformal supergra.wty We start with the
conformal supergravlty wh.lch is a supersymmetry generalization of the Weyl gravity
with the qua.dratlca.l'Weyl tensor action.

Similar to the AdS4 supergravity, conformal supergrﬁvity is constructéd as a gauge
theory for a conformal superalgebra SU(2,2 | N) [see rev. of conformal supergré,vity

- (Fradkin & Tzeytlin‘(198,5a))]. |

Since we are going to construct higher spin generalizations of the conformal super-
- gravity, a first thing to do is to find ;a higher spin genera]ization‘ of the foﬁr—djmensional
conformal supersymmetry. It was done (Fmdkm & Linetsky (1 989a.) ( 1990a) ) by the
: .method of the opera.tor realization.

A conforma.l higher spin superalgebra can be s1mp1y constructed by employmg quan-

tum (super)twistors: (& and & are Fermi-operators)
Zy = (a%038), 2% = (8a,3",67); [24,28} = 265.  (314)

Then the conformal superalgebra SU(2,2 | N) is realized as an a.lgebéra. of sécoﬁd-drder
| ‘polynomials that commute with the “particle number” operatoi T = ZAZ 4, 1.e. the
" SU(2,2| N) gene’rators are:
T8 = % (ZAZg + (—1)PaPe 2524) — Z:l"f 8T.  (315)
Then an infinite-dimensional conformal higher spin supefalgebra. shc®(4| 1) is deﬁmv:d‘
as an algébra at all order polynomials that commute vﬁth T, excluding powers of T
'itself..‘ " |
To construct a gauge theory it is necessary to introduce the basis on 80(4,2)-irrepses
connected with the decompb‘sition ’30(4, 2) @ 50(3,1), where 50(3,1) is the Lorentz subal-
gebra and s0(1,1) generated by dilatation generatc;\r D. In this basis all generators and
the ga.ﬁge fields will have the defined Weyl weight and the manifest four-dimensional in-
dex Lorentz structure. Sﬁch a superconformal basis was constructed by standard groﬁp-
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theory methods and the structure constants of ahac°°(4 | 1) in ﬂns ba.sls was obtamed

(see Fradkin & Lmet.sky ( 19904), ( 1991 a)).

As aresult, the ga.uge field correspond.lng to ahac°°(4 | 1) isa functlon of superthstors '

(wu(z,2 | z); [T,wpu(z,2 | z)] =0) and has the form

’ (N a,s,c,u)
Z E Z | p,a(21),ﬂ(2_1)

N=1 s=1 (s,c,u, ,7)

T(Na,s,c,u)a(zl).ﬂ(zJ) | - ST (3.16)

€5 = 0(1) for s integer (half-integer).
Here indices of the fields and generators have the following meaning. The index

N =1,2,--- isa number of the level L(N). The index 8=1,2;... ,N defines -

su(2,2 | 1)-irreps V(s) (the gauge fields w1th the fixes s form the su(2,2 | 1) -super- ‘

multlplet with maxlma.l spln s+1;1 due to the a.ddltlona.l vector mdex #). Thus on the

N-th level there are n conformal supermultlple_ts wﬂ:h the manmd spins from N +1
to 2. The index s = s—1,8-1/2,s deﬁnes the conformal multiplet (the gadge ﬁelde ;
describe the spin s+1). The index u is a chiral weight and u = 0 for Bosons (s= inlteger) ‘
and\u = £1/2 for Fermions (s = halﬁnteger) The index ¢ = —s, —5 + 1,--; ,5 is a

conformal weight of the generators and the indices 1, =0,1/2, 1,--- deﬁne a Lorentz

*Under the su(2, 2 | 1) representation each level decompoaes into the direct sum of su(2, 2 | 1) irreducible

representatxon spaces (1rrepses) L(N) = $ V(s). In 1ts turn the irreps V(s) decompoaes into the sum of

30(4 2) irrepses, V(s) = D(a,a,O)G)D(s—;,a—; —) @D(a-—;,s-—%b—-) eD(a 1,s-1, 0) where

‘ D(nl,ng,na) is the so(4,2) irreps with the highest weight (n;, n3,n3) under the Cartan subalgebra of
s0(4,2). Here 7, is the maximal conformal weight in the representation and (nz — n3)/2 and (n; + n3)/2
define a Lorents signature ((ng — n3) and (n; + n3) are the numbers of dotted and undotted mdxcee,

respectively) of the vector with highest conformal weight. Note that the representatxons (s- 7 s- -, - 2)
are mutua.lly conjugated under the Weyl reflection (these are 'usually called chu'ally or complex comugated
representations). The dimension of the so(4,2) irreps D(s, s, u) i is equal to d(s, s; u) = ;(25 +3)(s+
u+1)(s+u+2)(s—u+1)(s —u+2). The first level consists of only one su(2,2 | 1) irreps V(1)

which is the adjoint representation, and under so(4,2) we have V(1) = D(1,1,0) ® D(- % :) ®

D(%, %. —‘) @ D(0,0,0). The basis in these irrepses can be chosen as follows: D(1, 1,0): {P,K, M, D}
111 i . v o

D(2 3’ 2) {5a:Qs}. D (2 2 ;) : {Sp,Q,},D(q,o,o) : {U}.
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signature (2! and 2_1' are the numbers of dotted and undotted indices) and the following

restrictions take place

c+ﬁ
2

145 <5 12|28

y J 2 ; - (3.17)

’ witﬁ I+ E;—u and j+ -c%'i integers.

It should be mentioned that the structure of the gauge field (2.13) is analogous to the
structure of the string ﬁela ®[X] in the st.ring field theory. There is an infinite tower of
levels and there are fields with all spins from maximal (s = N + 1) to minimal (s = 1)

| on each N-th level. For effective work with >the infinite tower of levels 6ne ca.n‘ use the
following approximafion procedure. The number N should be limited by Nygz and
ghcn Npgz — 0. ‘ |

Note that the gaﬁge fields of usual conformal supergravity (N = s = 1) are, in our

notations*,

(e € o “uc(2) @ up(2) Ok Fuapy A“”p"“"l’uﬂ"b“""/)nﬁ)
[ (1,1,1,-1,0)  (1,1,1,0,0) (1,1,1,0,0) w(l 1,1,0,0) (1 1,1,1,0) (1 1,0,0 o)
l‘)asﬁ p ,0(2) ’ pib(z) T8 ’ I‘»avﬁ &
(1,1,1/2,-1/2,1/2) (1,1,1/2,-1/2,—-1/2) (1,1,1/2,1/2, 1/2) (1 1,1/2,1/2,1/2)
Wu,a :‘”F 8 yWa “ B
’ . ‘ | | ' ; (3.18)

Now we can give explicit formulae for the curvatures of h3c°°(4 | 1) (Fradkin & Linetsky
(1990a), (1991a)). o | |

Ruyy = Buwy — Bpwy + ["’m wy}, |
A
A ‘ A B C
Ry = G, + [BC wy Wy, N o (3.19)

(N“e“) . (Nl‘lst-.w) (N,s,5,~5,1/3)
are: lwu.u(a).ﬁ(‘e) sya(s+1/3),8(s—1/3)

(for half-mtegers 5) These fields generalize the conformal supergravity ones e

*The physical spm—(s+ 1)-fields i inw, (for integer s); or w and
(N,s,5,~5,~1/2)

@ a(5-1/2),8(s+1/2) pap

Yuas Y41 Au. The constraints allow to express all other (auxiliary) fields through the physical ones up

to a pure gauge part.
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(N, s,s,c,u)

_ (N,s,s,c,u) |
(2l (23) — 0P aat) Bty (“ v) - ‘ o
+ Z 6(c +c" ~ ¢c) 6(u +u" ‘ u) 6(m l" +0)§(r=1"+1-1)

x §(¢—1I'+1"-1)6(p—3j —-J"+J)5(q i"-i+3")

X 6(k—j — ' +§") w(N + N' 4 Ny g3+~

d & d u I j

8 S c (72
s s ¢ w U j)
(Wodon) (NS | i) A
X wu,a(lh(m),ﬁ(k)ﬁ(p) “valr) o) (3.20)

Here the parity function m(n) = 0(1) for n even (odd) They are expressed through
the group-theoretlca.l factors which are well known from angula.r momentum theory
(Clebsch-Gordan coefficients, 93 symbols etc) Some simple symmetry propertles of |
the structure coefficients provide the existence of mvanant bilinear form on ahc°°(4 | 1)
(A, B) = tr(A * B), where the trace is deﬁned by tr(A(z,z)) = A(O 0) and AxBis the
Weyl product-of tl;e symbols A and B (see in detail: Fradkin & Lmet.sky (1991a)).

-3.3. The Cubic Invariant Action in Superconformal Higher-Spin Theory.

' The action ba.sed on the conforma.l h1gher—sp1n superalgebra shac°°(4 | 1) of the type
(3:20) can be wntten in the form ( Fradkin 8! Lmetsky (1991a) ) '

oo N

'Sal Z Z Z (‘I)N—’ n+m+1 E(n m)

N=1 s=1 s,c,u,nm

(N,s,8,c,u) (N,s,9,— c,—u)a(n),ﬂ(m)
X f Bon ).ﬁ(m)AR - (32

(N100 0)

and the Yang-Mills term for vector fields wy rea.ds |

-1 & - e Nioo‘o N,
= 12 2:( 1)” ' / d4‘”\/—99"" Fiad R&u’ 0.00) plg10.00) " (3.22)

27



‘and the following constraints™ _ | »
KR=0. o (3.22a)
The action A = Ag + Ay, does not contain any~dimensiohful patameters. The mgtﬁc
in (3.22) is defined as

1 (1,1,1,-1,0) (1,1,1,-1,0)a,8
= —w 1 ) w 1y 3
uv ,2' TR-N) v ’

¢ = (gw)”", g = det (o). . (32)
- First it was demonstrated (Fradkin & Linetsky (1991a)) that (3.21)-(3.22a) determined
the linearized theory completely. The linearized curvatures R! = dw + Pw are coﬁ-
st;ucf;ed with the help of the nilpotent P operator, Pw = [P“ﬂ, Y A w), acting on the |
 differential forms taking their values in shs®(4 | 1). With the heli) of the generalization
@ = oR of the Hodge star including Weyi reflection R (in the s0(4, 2) representations
it changes the sings of ¢ and u), the nilpotent operator X = @P® conjugated with P
under some natural scalar product [ ir(A A ®B) was introduced. The operators P and
K converted the sequence of linear spaces of g-forms into the conformal cohomological
cdmplex_ which is analogous to the de Rham complex on the Riemann manifold. The
linearized constraints K Rl =0 allow us to express all auxiliary fields thréugh thg phys-
ical \on‘es up to a pure. k‘gauge part. The -general solution of thesé constraints in terms of
the curvatui'es was obta;ined. It turned out that all curvatures can be c;ipressed through
(derivatives on) the Weyl multispinors representing thé Weyl tensors and spindr-ténsors.
The Weyl tensors in this context are non-trivial cohomological classes (harmonic forms)
fo¥ the conformal cohomological complex. The linearized actions quadratic on the cﬁr—
vatures R A R! both for integer and half-integer spins were brought to the free C2-form
as in the tensor formalism. .I.n‘ this way the equivalence of our geometrical formulation

and the usual formulation for free higher spins in the symmetric tensor formalism was

established (see Fradkin & Linetsky (1991a)).

*Two nilpotent operators P and K, which are very useful on conformal higher spin theory, was introduced
by us. The operator P increases the rank and decreases the conformal weight of an arbitrary differential
form at unity and anticommutes with the usual exterior differential. The operator K decreases the rank
and increases the conformal weight of a differential form at unity. o
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The (3.21) is a epecial form of our seherhl extension of 'Ma.eDovteH-MansouI:i,aotith :
1 f [RAARBG 45 - RAARB G for h.tgher 'sbin’s, tvhere RA(R*{) is the set of curvatures
a (n)’ B(m) with n > m(n < m) (the curvatures R“ w1th n= m do not enter the actlon)
and Gup5,G ; Ap are e the blocks of the invariant blhnea.r form in the algebra. The cubic
invariant action for conforma.l hxgher-spm theory (Bose case) then is chosen in the
above form. The proof of cubic gauge invariance has the followmg steps The genera.l
structure of the gauge variation in cubic order i is R'ARIE. Firstly, due to the symmetry
properites of Gyp and Gip the terms RAARBg a.hd the complex conjugates RAARBg »
are cancelled separately. Second.ly, taking into account the self-dua.hty of R4 and the |

antlself-duahty of R' as follows from the hnea.nzed conventional constra.mts, the terms

R'A A R'BE vanish 1dent1ca]ly. Fma.lly, among the remaining terms R’“ A RAE and

I(N s,a)
a(2),8(s) °

They must be compensated for by some deformatlons Aw in the gauge transformation

Rle A RAg only the terms with Ri“ = are non-zero due to the constraints.
law for auxiliary fields. Obtaining Aw from the teﬁuiremeht 6gA+ Aw =0, one should
verify that these &efofma.tions are compatible with the conventiona.l oonsti'a.ints In this
.way we find the second-order constraints for the part of a.u:nha.ry fields (only for those
which get the deformatlons Aw). The action found in such a way is umque

In the superconforma.l case the Ya.ng-Mllls term for the vector fields must be added
~ along with the above-cOnsidere_ci action. The proof of | iht'aﬁance here is analogous to
the purely bosonic case w1th eonie technical coinp]ications stipulated by the increased
number of terms (more details see: Fradkin & Linetsky (1991 a)). | '

Let us briefly sum up the main results and point out a numher of problems that need -
further study in COnforrhal higher spin theory.

We have shown that there exists a gauge mvana.nt cubic interaction among boeomc :
and fermionic conformal hlgher-spm fields mcorporatmg conforma.l supergravxty ‘This .
result opens up the pos51b1hty of constructmg a self-consistent mtera.ctmg conforma]ly
invariant thher-spm theory. Together with previous results about thher-spm interac-

tion in AdSy, it gives hope to solve the longsta.ndmg hlgher-spm problem wh.lch would be
| 29 |




a considerable stépthards ai unified théory‘ Tt seems na’.tﬁfa.l thaf‘;b in our constru‘cti'oni
there is an infinite number of fields of each spin. It is completely analogous to string
field theory. Each level contains all spins from maximal to minimal (spin 1). Such a
structure of levels also looks natural from tl;e point of viéw of spontaneous symmetry
breaking. Only the first lgvel (spins < 2) might rema.in‘ massless; the other higher levels
shoﬂd become ma.séivé. .

Howe§er rega.rding»tkhe infinite multiplicify of spins lin the gauge invariant conformal
higher-spin interacting i:heory one should keep the following circumstances in mind.
Right ffom the start we have dealt with the sup,era.lgeblv'a‘ah.s°°(4 | 1). In principle
it is not impossible for the invariant interaction to be based on anoﬂier supera.lgebré. |
containing each spin with a finite multiplicity. We constructed (Fmdkin & Linetsky
(1990a)) a whole family of such superﬂgebru ahsc&n) (4] N ), where nbv= 1,2,-.- is
theﬁ multiplicity of S'U_ (2,2 | N )—supermﬂltiplet with the fixed maximalv spin in the
algebra and p € R somé numerical parameter. They are factor-algebras of the original
superalgebra 3h§c°°(4 | 1). However all those superalgebras seemingly may not be |
locaﬁzed. To build a cubic gauge invariant interaction it is necessary tha.t‘ some i\nva.ria.nt‘
 bilinear form exists on the algebra. ‘But ahscg,n)(4 | 1) apparently (‘ioesk not pbssess
any invariant bilinear form (the structure constants of fmtdr—élgebfas have no simple
~ symmetry properties which differ from shsc9°(4 | 1)). Meanwhile it éﬁnnot beiéxcluded
that any such superalgebras [e.g- | certain factor-ﬂgebras of the universa.l‘e‘nveloping
algebra U (30(4; 2))] with a finite zﬁultipﬁcity of spins exist.

There are a number of problems that require a.fu;ther study. The first is to expand
the construction presented here to all orders in the interaction; in particular, to find -
a non-linear version of the standard constraints‘. Another problem'is to conétruct N-
extended theories. These theories may be based on the N-extended conformal higher-
spin superalgebras shsc®(4 | N ) constructed by us (Fradkin & Linetsky (1990a)). To
transfer the theory presented here to higher dimensions and the extensions with non-

trivial (in general an operator) central terms as well as certain non-linear terms in the
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right side ‘of this supercommutator in the higher spin symmetry are also important

tasks.

4. CONCLUSION

Now it is time to summarize everything. Thus, there are just three principal possibilities.

’o' Supergra\fity (without‘cosmological term) and an infinite tower of massivly higher .,
- spins (superstnngs or string-like models), _ |
- e AdS supergravity and an 1nﬁn1te tower ‘of massless hlgher spin ﬁelds with an
mﬁmte—dxmensxonal higher spin gauge symmetry (AdS higher spin theory),
e Conformal supergravity and an infinite tower of conformal higher spin fields with
- infinite-dimensional conformal higher spin symmetry ‘(couforma.l higher spin the-

ory).

These three seem drast1ca.lly different. However, a synthems could be conjectured when
with the increase of temperature there is a pha.se transition i in strings. Then a hlgher
spin symmetry is restored, higher spin excitations become massless and a cosmological
constant of the Planck order is induced.

- However, there is still a dimensionful parameter, a cosmological constant, in the the—

- ory. Meanwhile any quantum theory in the ultr,a' high'energies domain may be described

" by some scale-free conforma.lly invariant theory Conforma.l higher spin theory might

play a role of such an a.symptotlcal theory.

Summing-up the above expounded arguments, the followlng scenano may be sug-'
gested. In the ultra lugh—energy doma.m a unified theory i 1s effectively descnbed as
a conforma.l higher-spin theory generalizing Weyl grav1ty The spontaneous confor-
~ mal symmetry breaking leads to the massless lugher-spm theory in the a.ntl-de Sltter |
universe generahzmg the AdS supergravity. .Further the AdS hxgherfspln symmetry
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b;eakixig leads to the strihg—like phases in AdSv tra.nsitoiy asympt&tica.lly to the n;és-
sivly higher-spiﬁétriné i)has; coupled to the Einstein gravity on the flat backgrguhd
with zero cosmological constant. The ‘abéve scenario is schematically fillustratéd in fig.
1.

It should be mentioned that one can look at the above scenaric in two different ‘wa.yé.
Firstly, it may be treated in a straightforivard way as a scéna.rio for the fundar‘nental’
~ unified theory, i.e. the unified hypothetical lagrangian, or its spontgnéously, broken

versions,

. Conformal Phase:, 5
Conformal Supergravity + Infinite Tower of Conformal Higher Spin Fields |

1 1
: : ~ AdS Phase: : ~
AdS Supergravity + Infinite Tower of Massless Higher Spin Fields

2

; String Phase: .
Einstein Supergravity + Infinite Tower of Massive Higher Spin Fields

FIGURE 1: Phases of Unified Theory. The arrows 1,2 denote the symmetry breakings (see in the text).

actually describes this picture at all energies. Then, apparently, the scenario should Be
played in high dimensions. Secondly, it may. be considered as a hierarchy of ,eﬂ'ective
theories, each ﬁorking effectively only in its own énergy domain; and their lagrangians,
generally speaking, are not ‘connectec.l in a straightforward way with each other. Subse-
quently it also might bg considered in four dimensiqns. |

To have such a scenario of phase transitions it is necessary first to demonstrate a)
that a critical AdS string (superstring) model does exist not only in 26(10) dimensions;
b) that an AdS higher spin fheory eﬁsts in the same space-time dimension with the
same degrees of freedom as in AdS string model. Such a family of critical ‘strings
in D < 26(D> < 10) described by anti-de Sitter non-compact caset models SO(D —
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1,2)/50(D —1,1) (euclidian version so(b 1)/S0(D)) anﬂ'their, (kazaﬁaa.Suzuki) |
superextensmn has been recently introduced (Bars 8 Nemeshamky (1991 ) Fmdkm
é Linetsky (1991c))

It was demonstrated that these models are free-of conformal anomaly in any D< 26

‘and the a.n,oma'.lyv 'canceﬂafion condition actua.llyﬁxes the value of the “effective radius
of the universe” at a given D. The crucijal ‘fea.tores of these vacuum solutions in string
theory are: 1) the space-time is non-flat and 2) there is a space-time deoendence of the
backgrounci fields (metric, dilaton aod, generally, also a.htisymmetric tensor ﬁeld). For
D = 2 such a calculation has been oerformedjby (Elitzur{ Forge ("5 Rabinovici (1990);
Witten (1991); Dijkgraaf, H. Verlinde YEJ‘E.‘ Verlinde (1991); Tseytlin (1991)). For
D = 3 by (Fradkin & Linetsky (1991); Cresei‘}ﬁanno (1991 ),' Bars & Sfet,sos (1991);
Chamseddine ( 1991)). A prelim.ine.ry eosmologicel interpreta.tion of these results is pro-/
posed. Roughly, string theory seems to a.dm1t non—tnv1a.1 cosmologlcal (tlme-dependent)
background solutlon where the universe created as an anti-de Sltter universe (a.fter the
phase tra.ns1tlon from the h1gher spm pha.se to fthe string phase in AdS) and then un-
der the influence of the fundamenta.l fields, whlch a.cqmres non-zero background value
(dilaton, metric, nggs partlcle, etc.) mcreasmg in time, 1t begins to expand and the
higher spin gauge fields become (genera.]ly step by step) massive. Let us note, that non-
perturbative effects lea.ding to the appearance of a non-tﬁvial dilaton potential (with a
mass term) are very essential.

In the case, when a selfcons:stence theory ensts only in D > 4, it is natura.l to
 expect a Kaluza-Klein version, when in strmg phase by the non-statlc solutlons of
the ba.ckground only three-space dlmensmns have the effective ‘expansion (mﬂatlon) ‘
by time, which brings us to an a.symptotlca.l flat four-space—tlme. ‘(The remalmng‘

dimensions can contract or oscillate with a radius of Planck order.)
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APPENDIX

We adopt_here the notatioils and conventions. The Greek indices u,v,p,0 = 0,1,2,3
“are the indices of compbnents of differential forms. The flat Minkowsky metric is
ﬂ,‘,_,(+, —,—>—). The twb-éé)mponenig dotted and undotted spinorial ind.ices &, B, “=3 ‘k‘
a,f3,--- take on the values 1 and 2. They are raised and lowered by means of the
1

§ymplectic metric £, = —eﬁa,a"‘ﬁ = —sﬁa,elz =el2=1as

A% = EaﬁAﬂ, Ao = EﬂaAﬂ ‘ V(A.l) '

and analogously for dotii\ed indices.

A symmetrization is imi:lied separately for any set of upper or lower dotted or undotted
spinorial indices denoted by the same letters. The usuéai summation convention is
understood for each pair of a lower #nd upper indéx denoted by the same letter. The |
number of indices is inﬂicgted in parantheses (except for a single index). After the
symmetrization with the indices is c#.’rried out, the maximal possible number of upper,

and lower indices denoted by the same letter should be contracted. For instance,
1 I A
Aa(n) = (Agyan, + (n!—1) permutationsof aj---ay), (A.2)
Co(n-m) = Aa(n)Ba(m) = A(g,.frampran) Bﬂy--ﬂm,rn > m, (A.3)

- where brackets denote full :symmetrization. }1,, = a“i’Aa g Aa §= az BA“.

The flat vierbein is

'a,":ﬂ = (I,al,a'z,a;;)“'é, , ‘ (A.4)

where I is the unit matrix and 01,2,3 are the Pauli matrices. The flat vierbein satisfies

the following properties:
0y M1 = 218, o, 50" = 28]  (A5),(A.6)

The vierbein one-form is
O = Tuop dz#, (A7)
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and for its exterior product we have -

2PN g™ = 2158 4 Pger (A.8)
‘where . |
v oy __ 0 » v —,85 — aﬁtf » v
07 = oy dzt Ad2”, o = Gy, dzt Ad2¥ (A.9)
and -
ow 77 = alla/é du7ﬁ; 'b"p,,'m = (dﬂV,ﬂs) = 0,“7ﬂay’16_ (A.10)

t

The two-forms o®(2) and 5P(2) (go7 = o7, P — 508 ) are antiself-dual and self-dual
respectively, |

Cx0®@ = g 4 5 —c 5P, (A.11)

or in the components ]
1

e gy ald) o _jome®,  (a12a)
.;.euupa Fpo P2 _iemB (A.12b)

The Qua,ntities Ouy «(2) and Gy A(2) aie, as a matter of fact,v‘ projectors on the antiself-

~ dual pa.rf and sélfj'dual part of the arbitrary two-form R (’t Hooft tensors) |

1, 1 gy s
B = 3 ow @) Ra2) + 10 Ry (A13)
- Ra(2) = Z‘IE“ WU“ya(Z) Roo, . Rﬁ(z) = (Rﬂ(z)) (A.14)_.

Evidently, the following relations hold:

[ RAR =i [ da(Ryy RO - Ry @), (a15)
/ RAxR = — / d*z (Ry(q) B*®) + Ry, RA@y, (A.16)
.due to the identities | ‘ | / | L o | S
DNy = —16i8263 d*z, . (AlTa)
&ﬂ(?)ﬁ/\ag(z) = k16i6§6§d“z, -  (A.18a) |
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or in the components

%a(2) Ng(z) = 0

e 0, °® 0,500 = — 1636362,

8“”’” a’;w ﬂ(2) &Wé(z) = 1616?6?,

WP ,,%2) 5,, A2) = o,
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(A.17b)

(A.18b)

(A.19D)
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