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3.1 OVERVIEW

This Chapter explains how one calculates weak amplitudes using staggered fermions,
and why such calculations are interesting. Numerical results are discussed separately,
in Chapter 8.

The fundamental motivation for using staggered fermions is that there is a chiral
symmetry even at finite lattice spacing. This is in contrast to Wilson fermions, for
which the chiral symmetry is completely broken. Staggered fermions are thus well
suited to studying quantities constrained by chiral symmetry. Two such quantities
are of particular interest: the chiral condensate (1), and the amplitudes for weak
decays involving kaons and pions.

The price one pays for the chiral symmetry is that a single lattice fermion rep-
resents more than one continuum quark. This is a manifestation of the fermion
doubling problem. In the Hamiltonian formulation there is a two-fold degeneracy in
the continuum limit [1], while the Euclidean formulation is four-fold degenerate in
this limit [2, 3]. We concentrate here on Euclidean staggered fermions since numeri-
cal calculations use this formulation. To highlight the appearance of the degeneracy
factor, we often refer to it as /Ny. This does not indicate that we could choose other
values—we always mean N; = 4.

It turns out that to make use of the lattice chiral symmetry we must introduce
one lattice fermion for each continuum quark. In the continuum limit, the lattice
theory thus represents four degenerate up quarks, four degenerate down quarks, etc.
We call this continuum theory QCDN;. To extract matrix elements we must first
relate the lattice theory at finite lattice spacing to QCDN, and then relate the latter



to QCD. These steps make the calculations more complicated to set up than those
with Wilson fermions. This is the price we pay for the axial symmetry. Numerical
results indicate that it is worth paying this price when calculating kaon decay and
mixing amplitudes.

This Chapter is organized as follows. In the three subsequent sections we explain
how QCD matrix elements are transcribed onto the lattice. Section 3.2 introduces
staggered fermions, explains how the N; continuum fermions arise, and how the
full SU(Ny) flavor symmetry appears in the continuum limit. Section 3.3 explains
how matrix elements in QCD are related to those in QCDN,, while section 3.4
discusses the relationship between lattice and QCDN, matrix elements. We then
turn to the rewards for using staggered fermions. Section 3.5 explains how the lattice
axial symmetry implies Ward identities, which in turn can be used to show that
suitably chosen lattice amplitudes have the same chiral behavior as their continuum
counterparts. This chiral behavior includes the presence of chiral logarithms due
to pion and kaon loops, and these are discussed separately in section 3.6. We close
with a brief discussion of the outlook for future calculations.

Partial reviews of the subjects covered here are to be found in Refs. [4] and [5].

3.2 ACTION AND SYMMETRIES

To understand staggered fermions it is useful to begin with the naive discretization
of the continuum fermion action, which describes so-called “naive” fermions,

S = X2 [0 g (Uit = Uyt = ) =) + ) so)
(3.1)

Here n is a four-vector of integers labeling the lattice points, and U,(n) are the gauge
fields residing on links. The lattice spacing is set equal to unity. Throughout this
Chapter we work in Fuclidean space, with y = 1—4, and with hermitian gamma ma-
trices satisfying {v,,7.} = 26,,. Naively one expects that, in the continuum limit,
this action will describe a single Dirac fermion. Instead, the fermion propagator
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has poles close to the 16 positions in the Brillouin zone where all components of sin &,
vanish. Each pole represents a separate fermion with mass m in the continuum limit.
This is the fermion doubling problem.

To label the poles we use four-vectors A, with components either 0 or 1: the
A’th pole is close to k, = 7 A,. The 16 possible vectors A correspond to the corners
of a 2 hypercube, so we call A a “hypercube vector”. The addition of two such
vectors is defined by combining components modulo 2, €, =; A, + B,,.



To reduce the degeneracy, we use the trick of spin-diagonalization. Performing
the change of variables [2]

B(n) = 1x(n) » Bn) =Xl 7, = A (3.3)

in which 4, depends only on mods(n,), one finds

Sk = Zn: [X(n) Z %nu(n) (Uu(n)x(n—l—p) — Up(n — N)J[X(n_ﬂ)) + mx(n)x(n)| -
(3.4)

The gamma matrices have been replaced by the phases!
Buln) = () 7mes™ (3.5)

so that the four spinor components of y are only coupled by gluon exchanges. Stag-
gered fermions result from simply deleting three of the four components of y, leav-
ing a one component fermion on each site. This reduces the number of continuum
fermions from 16 to Ny = 4.

This theory still does not seem useful for studying QCD, which, after all, has
only two nearly degenerate quarks. We discuss in the next section how one can
overcome this problem while retaining the N;-fold degeneracy. We note here two
alternative approaches. First, it is possible to reduce the degeneracy by a further
factor of two [3, 7], thus producing a theory with two fermions. Second, one can add
extra mass terms so as to break the degeneracy [8], and then use the four flavors to
represent u, d, s and ¢ quarks. Unfortunately, both of these alternatives remove the
lattice axial symmetry which, as we shall see, is crucial to the study of weak matrix
elements. For such studies it is better to use the Ny-fold degenerate theory.

Staggered fermions represent four degenerate flavors in the continuum limit,
but at finite lattice spacing the flavor symmetry is broken. The only continuous
symmetry of the action Eq. 3.4 is that corresponding to fermion number

x(n) — explifv]x(n) , X(n) = X(n) exp[—ifv], (3.6)

which we refer to as U(1)y. In the massless limit, the continuum symmetry enlarges
to SU(4)r x SU(4)g, while the lattice action has an additional symmetry

x(n) — expli(=)"04]x(n) , X(n) — X(n)exp[i(=)"04] , (3.7)

where (—)" = (—)mtmtnetn  Ag we will see, this is a flavor non-singlet axial
symmetry in the continuum limit, and we refer to it as U(1)4. The remaining
symmetries are translations, rotations, reflections and charge conjugation [7]. These
are the discrete remains of the flavor and Poincaré symmetries.

To use staggered fermions, we must learn how to identify the continuum spin
and flavor transformation properties of fields constructed from y and Y. We also

1Other choices of phases are possible, but all are equivalent [6].



need to know how the full symmetry group is broken at finite lattice spacing. To do
this requires some notation. We denote quark fields in a continuum theory with four
degenerate fermions using upper case letters, e.g. (), ,. These have a spinor index
(here ) and a flavor index (here a), both running from 1 to 4. Quark bilinears in
this theory are of the general form @aﬂ’ygﬁf%ng’b. Here 75 determines the spin of
the bilinear, £ the flavor. S is one of the 16 hypercube vectors, and labels Dirac
matrices as in Eq. 3.3. We also use gamma matrices as the generators of the U(4)
flavor group. More precisely, we follow the notation of Ref. [9] and use ¢ = 45,
with F' another hypercube vector. To keep the notation as clear as possible, we
always use the ¢ matrices for flavor, and v matrices for spin. It is convenient to
combine spin and flavor matrices into a single 16 x 16 matrix (vs @ r). The general
bilinear is thus

Qa2 Q0 = Qo u(1s @ Er)° Qg - (3.8)

We usually abbreviate the notation to Q(vs @ &r)Q, treating @) as a 16 component
column vector. For example, the scalar-isoscalar bilinear @CX@QCW is written ys @ ¢p
with S = F = (0000), or equivalently as 1 @ 1. Color indices play no role in the
discussion of this section, and we do not show them explicitly.

We also need two other sets of matrices which are unitarily equivalent to (ys®@&r).
Both sets trade the indices [a, a] for a hypercube vector. In the notation of Refs.
[10, 9], the sets are first the “hypercube” matrices

(vs @ éF)ap = iTrhijmpt] (3.9)

1 1
= (7)™ (s 5F)M’ﬁb(§73)ﬁb : (3.10)

and second the “pole-space” matrices
(75 @ E€F) 45 EZZ(—)A'O (’ys@fF)ODZ(—)D'B . (3.11)
cD

Here A.C' = 37, A,C,. The reasons for the choice of names will become apparent
shortly. The multiplication rule for each of the representations is as for a direct
product, for example

(15 @ €r) (750 @ €r) = (15750 @ EFérr) = (Y550 @ EFFr) (3.12)

In the last equality we use the abbreviation ysvs: = vss:. Either of these new sets
of matrices could appear in bilinears in place of (vs @ £p) without changing the
physical content of the theory.

With this notation in hand we discuss first the symmetries of the free stag-
gered action. This is best done in momentum space. Since continuum fermions
are constructed from the 16 poles close to k, = wA,, it is convenient to use the
decomposition

kM:kL+WA;A§ —7r/2<k;§7r/2. (3.13)
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Figure 3.1: Notation for Feynman diagrams.

For physical quarks the “small” component £’ is close to zero: if kppys is the physical
momentum and a is the lattice spacing then k' = akphys. k' is conserved by the
action, Eq. 3.4, whereas the alternating phases n,(n) cause the large component Ax
to change. The fermion propagator is thus a matrix acting on the indices A, and
can be written [7, 8] (see Fig. 3.1 for notation)

GYq,p) = G +7B,p +74) (3.14)

= (¢ +p) |m(A@ ) g +1> sing, (1. @1)g,| » (3.15)
"

where 8(q' + p') is the periodic delta function, which sets q, +p, =0 (mod 27).

There are various noteworthy features of this result.

1. The propagator has exactly the same form in spin and flavor space as a
free continuum propagator, except that the matrices are in the “pole-space” basis.
Thus the free lattice action is invariant under an SU(4) flavor group, which we
identify with the corresponding group in the continuum. Furthermore, if m = 0 the
symmetry is the full chiral SU(4)r x SU(4)g. Thus, in the continuum limit, the
16 components of x(p' + 7 A) for fixed p’ become equivalent to the continuum field
Q(p')a, where the latter has been rotated into the pole-space basis.

2. The lattice propagator does not have the full Euclidean symmetry because of
the appearance of sinp, in place of p,. Since sinp, = p/, + O(p"), and p' = O(a),
the symmetry is broken only by corrections of O(a?), This should be compared to
Wilson fermions, which have corrections of O(a).

3. Because the flavor symmetries are momentum dependent, almost all involve
non-local transformations in position space [6]. This explains the lack of correspond-
ing local, continuous symmetries of the action Eq. 3.4. The non-local symmetries
are not useful, however, as they do not survive the introduction of interactions.?

4. The only flavor symmetries which correspond to local transformations are
U(l)y and U(1)4. In momentum space the vector symmetry becomes

X(p'+7C) = explify(1 @ 1)gp] x(p'+ D) ; (3.16)
X(¢' +7D) = X(¢' +7C)exp[—i0y(1 @ 1)¢p] , (3.17)

?The appearance of non-local symmetries is nothing new for free fermions: there are an infinite
number of the form (p) — exp(iw(p))y(p).
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while the axial symmetry is

X(P'+7C) = explifa(ys @ &s)eplx(p' +7D) (3.18)
X(¢'+7D)—  X(¢' +7C)explifa(ys @ &s)op) - (3.19)

These are both symmetries of the full action including interactions. Eq. 3.18 shows
that the axial symmetry is a flavor non-singlet, and is thus not anomalous in the
continuum limit. It plays a crucial role in the study of weak amplitudes.

5. A discrete subgroup of the flavor and spin symmetries correspond to local
transformations, and survive in the presence of interactions. For example, the sym-
metry transformation corresponding to a shift in the p direction is a pure flavor
rotation [8]

x(p'+7A) — explip] (1@€,) 5 x(p'+7B) . (3.20)
Note that here the matrix is an element of the flavor group, and not its Lie algebra.

That the non-local flavor SU(4) is broken by the interactions can be seen by
looking at the quark-gluon vertex. Aside from color factors this can be written as

8, 9]

Vu(ql + WBaPI + TA, k) = _igg(pl + q/ + k) COS(‘]; + ku/2>(7u ® 1),4]37 (3-21)

where p is the gluon polarization direction, and the momenta are defined in Fig. 3.1.
For physical quark and gluon momenta (i.e. p’,¢’,k = O(a)), the vertex conserves
flavor and agrees with the continuum vertex up to corrections of O(a?). In loop
diagrams, however, the momenta need not be physical. For example, if the gluon
momentum is k = k' + xC, with C, # 0 for some v # u, and ¥ = O(a) (k' has no

physical significance for the gluon), then the vertex becomes
Vg +7B,p'+7A K +7C) = —z'gg(p’—{—q’—{—k') cos(qL%—kL/Q)(*yﬂa ® fg)AB . (3.22)

Here we follow Ref. [9] and define CN',l =2 >z, Cu- The appearance of the flavor
matrix {5 means that the vertex does not conserve flavor. This flavor symmetry
breaking is not suppressed by powers of a.

Thus we see that gluons with “large” momenta cause a large breaking of the
non-local flavor symmetry. It is important to understand how this affects physical
amplitudes, i.e. those in which all external particles have physical momenta. To
address this question, we imagine making the lattice spacing very small, and then
integrating out quarks and gluons with physical momenta above a scale y. We choose
i to be far below the cutoff, i.e. pa << 1, but large enough that perturbation theory
is valid. The only subtlety is that for quarks the physical momentum is the distance
from the nearest of the 16 poles. The integration yields the effective action, and we



are interested in its symmetries.®> The leading term in the effective action is simply
the tree-level Lagrangian, and we have already seen that two and three point vertices
do not break the flavor symmetries for low momentum quarks and gluons. Potential
flavor breaking comes from two sources. First, from the exchange of a gluon with
one or more components close to w. This leads, for example, to a four fermion
vertex which does break the flavor symmetry [1]. It is, however, suppressed by
O(a?), because the gluon energy is of O(1/a). The second source is loop corrections
involving large momentum gluons, e.g. self energy and vertex corrections. These are
potentially dangerous as they are suppressed only by powers of g%, not by powers
of a. They turn out, however, not to break flavor symmetry at O(a®), because the
flavor breaking vertices always come in pairs. It is relatively simple to see that the
flavor breaking “cancels” in 1-loop corrections. In Ref. [3] it is argued that, due to
the discrete symmetries of the action, flavor symmetry breaking does not occur at
O(a®) to all orders in g?. A more explicit demonstration of this result for the quark
propagator has been given in Ref. [12].

In summary, flavor symmetry breaking in physical amplitudes vanishes in the
continuum limit. It is reasonable to assume that the leading flavor breaking terms
are of O(a?), since there are only O(a?) corrections to vertices and propagators.
Recent numerical evidence supports this assumption [13]. We do not, however,
know of a proof.

A related claim of Ref. [3] is that perturbative diagrams can be written so that
there is an explicit factor of Ny for each fermion loop, with an integrand which is
the same as for naive lattice fermions (Eq. 3.1) except that the range of integration
is restricted to —7/2 < k, < x/2, and thus includes only a single pole. This
shows that, in a certain sense, there are Ny fermions even at finite lattice spacing.
Furthermore, it makes taking the N;’th root of the fermion determinant, which
is the standard method for reducing the degeneracy in fermion loops, seem more
reasonable.

The pole-space representation of the symmetry group is useful in perturbative
calculations, but we need a position space representation for numerical simulations.
This is provided by the work of Ref. [6]. The lattice is divided into 2* hypercubes in
one of the 16 possible ways. Points on the original lattice are specified by a vector
y labeling the hypercubes (with all components even), and a vector A determining
the position within the hypercube (with all components 0 or 1). We collect the 16
components of x for a given y into a “hypercube field”

X(y)a = ix(y +A), (3.23)

3This is equivalent to the following renormalization group approach [11]. The continuum sym-
metries are those of theories on the renormalized trajectory. This is the trajectory in the space
of actions that one flows towards as one integrates out the high momentum quarks and gluons.
By starting with a small enough lattice spacing, and integrating far enough, one approaches ex-
ponentially close to this trajectory. This assumes that the mass term, which is the only relevant
operator, is tuned to zero appropriately.



where we have used the notation and normalization of Ref. [10]. It is shown in Ref.
[6] that, in the continuum limit, x(y)4 becomes equal to the continuum field Q(y),
if the latter is in the hypercube basis. Thus, the bilinear

Osr(y) = > X(y)alys @ r) 4px(y)B (3.24)

has the same flavor, spin and normalization as Q(y)(vs @ £é)Q(y) in the continuum
limit. We often refer to Ogspr by the abbreviated form Y(ys ©@ ér)y. We also use
(vs @ &), when confusion with the matrix that this notation also defines is unlikely.

The equivalence of x4 and () is established by showing that the Fourier trans-
form of x(y)a is equivalent to x(p’ + #A), which we have already seen is equivalent
to Q(p')a. All of these equivalences hold only in the continuum limit. These rela-
tionships are in momentum space, which on the lattice extends only to n/2. This
means that in position space, x(y)4 is related to the continuum field Q(y)4 smeared
over the hypercube.

To establish the relationship between x(y)4 and x(p'+7A), we change the former
to the pole-space basis and then Fourier transform

X(p')a =16 Z; eXp(—ip’-y)i(—)A'Bx(y)B :

<p < (3.25)

s
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The factor of 16 accounts for the fact that the hypercube has a volume of (2)* in
lattice units [10]. Using the even-ness of y we can rewrite Eq. 3.25 as

X(p')a =Y exp[—i(p' + Ax).(y + B)]exp(ip’. B)x(y + B) . (3.26)

This differs from the standard Fourier transform,

X(p' + mA) = exp[—i(p' + Ar).(y + B)|x(y + B) , (3.27)

y,B

only by the factor of exp(ip’.B) in Eq. 3.26. In the continuum limit, when p’ — 0
for physical quarks, the two sets of fields are the same.

It is important to determine how quickly the position space bilinears approach
their continuum limits. We have argued above that amplitudes involving the mo-
mentum space fields (with physical momenta) differ from their continuum limits
by terms of O(a?). But when we take matrix elements of Osr (Eq. 3.24) between
quarks and antiquarks with definite physical momenta, we are, in effect, using x(p') 4
rather than the exact Fourier transform yx(p’ + 7 A). It is easy to see from Eqs. 3.26
and 3.27 the difference between these fields is proportional to exp(ip’) — 1 o« p,
and is thus of O(a). This means that matrix elements of the operators Ogr have
O(a) corrections, which will, in general, be larger than the O(a?) flavor breaking
corrections coming from the action. Thus we expect larger scaling corrections in
matrix elements than in hadron mass ratios.



It is quite simple to improve the operators so as to remove the O(a) corrections
[14]. One of many methods is to make the replacement

X()a = 1 Sy + A+ 271 - 24,]) (3.23)

where i is a vector whose p’th component is 1 while all other components zero.
Such improved operators should be used as numerical work progresses.

It is instructive to display some hypercube operators explicitly. The analog of
wu + dd in QCD is the flavor singlet scalar density,

(1o D(y) = x(y+Ax(y+A4). (3.29)

Numerical simulations indicate that it gets a vacuum expectation value, which breaks
the U(1)4 symmetry dynamically.? Results are shown in Chapter 8. This means
that the pion with flavor &5 is a pseudo-Goldstone boson. In fact, using the axial
symmetry one can derive Ward identities from which it follows that the ¢5 pion mass
satisfies m2 oc m,, with the form of the relationship the same as in the continuum
[15]. Such Ward identities are discussed further in section 3.5. We will refer to the

flavor &5 pion simply as the Goldstone pion. A field which creates this pion is

(75 @ &s5)(y) = D Xy + A)x(y + A)(—)* . (3.30)

Both this operator and that in Eq. 3.29 are completely local in terms of y, whereas
most of the Ogp are slightly non-local. One can see from the definition of the hyper-
cube fields (Eqgs. 3.24 and 3.10) that if S, 42 F,, = 1, then the fields are separated
by a link in the p direction. Thus the fields in the axial current associated with
the dynamically broken symmetry, (7,5 @ &5), are separated by 1 link, while those
in the flavor singlet current (v,5 @ 1) are separated by 3 links. Non-local operators
such as these must be made gauge invariant in some way. Various possibilities are
discussed in section 4.

In the remainder of this section we collect various facts about staggered fermions
which are needed in the subsequent discussion. For further details readers should
consult the references given above, and also Refs. [16].

Aside from the U(1l)y x U(1)a currents, all flavor currents are broken by the
action. In particular the other axial currents are not conserved, so that the corre-
sponding pion fields are not pseudo-Goldstone bosons. They should become degen-
erate with the Goldstone pion in the continuum limit, with the mass splitting falling
as a?. The numerical results show a clear drop in the splitting, consistent with the
expected dependence on a, though the errors are large [17].

4For m = 0 one can choose how to combine left and right handed fermions into Dirac fermions,
which means that the assignment of non-singlet symmetries as vector or axial is arbitrary. Thus, in
a certain basis U(1) 4 is a vector symmetry. The fact that the flavor singlet field has an expectation
value, however, does fix the U(1)4 symmetry to be axial.



The mass of the flavor singlet “pion” (i.e. that created by (vs @ 1), a 4 link
operator) should not be degenerate with the other pions in the continuum limit,
because of the axial anomaly. This enters with staggered fermions in much the same
way as for Wilson fermions, i.e. through the regulator terms [3]. It is this pion
which has an anomalous three point vertex with two U(1)y currents analogous to
the mgyy vertex in QCD, as has been shown explicitly in Ref. [18]. The Goldstone
pion has no such vertex because the triangle graph has a vanishing flavor trace.

At finite a, lattice states lie in representations of the discrete symmetry group
consisting of shifts, rotations, translations and charge conjugation. The represen-
tations of this group for states at zero and non-zero momentum are worked out in
Refs. [16] and [15] respectively. It is also known how the discrete group is embedded
in the continuum spin and flavor group, so that continuum representations can be
decomposed into their lattice parts. For example, the 14 non-singlet non-Goldstone
pions with zero spatial momentum fall into four three-dimensional and two one-
dimensional representations. Using these symmetries allows one to construct meson
and baryon operators which couple to only a single lattice representation [16], and
to understand which states are created by the extended sources that are in common
use in numerical simulations [19].

The symmetries are also useful as a check when studying the possible mixing
amongst lattice operators [8, 9, 20]. As discussed above, we know that mixing of the
flavor-singlet operators in the action with flavor non-singlet operators is suppressed
by a®. This suppression is not true in general when we renormalize an external
operator. The flavor mixing is generically of O(g?), and may be substantial in
present numerical simulations. We discuss this in detail in section 3.4.

3.3 TRANSCRIBING OPERATORS

In this section we explain how staggered fermions can be used to calculate QCD
matrix elements [21]. It turns out that there are many ways to transcribe a particular
continuum matrix element onto the lattice, and in general there is no clear reason to
prefer one choice over the others. For matrix elements involving pseudo-Goldstone
bosons—pions, kaons and etas—there is, however, a subset of preferred choices,
those which make maximum possible use of the lattice axial symmetry. These are
the matrix elements for which staggered fermions are at an advantage compared
to Wilson fermions, and we concentrate entirely on such matrix elements in this
Chapter. Exactly how the lattice axial symmetry constrains the results is explained
in section 3.5. For a discussion of other approaches see Refs. [5] and [22].

The method can be broken down into a number of rules, which we explain by
working out the lattice transcription of a variety of QCD matrix elements. Further
applications of the method are discussed in sections 3.4 and 3.5.

The first rule is to introduce a separate lattice fermion for each continuum quark,
i.e. for three flavor QCD we use x,, x4 and xs. This means that in the continuum

10



limit the theory we obtain is not QCD but QCDN,, i.e. QCD with N; degenerate
copies of each quark. The transcription of continuum matrix elements onto the
lattice thus breaks up into two stages. First, we match QCD matrix elements to
those of QCDN,. This matching is the subject of this section. It is designed so
that there are no perturbative corrections: the contractions in the two theories are
formally equal diagram by diagram. Second, we match operators in QCDN/ to those
on the lattice. In the previous section we explained how to do this at tree level, and
we give further examples of tree-level matching in this section. In the following
section we extend the matching to 1-loop order.

The reason for the first rule is that it allows us to take lattice matrix elements
between lattice pseudo-Goldstone bosons. A single lattice fermion produces only a
single Goldstone pion, but with three staggered fermions there are 3 x 3 = 9, more
than enough for the eight pions, kaons and etas. The second rule is to transcribe
continuum pions, kaons and etas into QCDN pseudoscalars with flavor &5, so that
on the lattice they become the Goldstone pions. For example, the QCDN; version of
the K° is created by D(7y5@¢5)S, while the lattice “kaon” is created by ¥, (75 @ &5)Xs-
(Recall that the upper case letters represent the four flavor fermions of QCDN;.)
This rule is crucial if we are to use the lattice axial symmetry to constrain the
amplitudes.

The third rule concerns the flavor of the operators to be used: it should be chosen
so that the matrix element does not have a vanishing flavor trace. We illustrate this
with two examples. The first is the kaon decay constant

V2 Kpu = (0] 57,75d| K°) . (3.31)

According to the second rule, the QCDN; kaon has flavor £5. This means that the
QCDN; transcription of the axial current must also have this flavor, and thus is
S(7.7vs @ &5)D. Any other flavor would yield a vanishing flavor trace. At tree level
this QCDN operator matches onto the lattice operator X,(yus @ &5)xa. It turns out
that, because of the discrete lattice symmetries, loop diagrams do not cause mixing
with other operators. Their only effect is to change the relative normalization of the
lattice and QCDN operators [9].

The second example is the pion scalar transition matrix element (7% |wu|7*).
The QCDN; equivalent uses U(ys @ &5)D to create the pion, and the conjugate
operator to destroy it. The scalar operator acts between two pions of flavor &5, and

thus, for the flavor trace to be non-zero, the QCDN, operator must be the flavor

singlet U(1®1)U. This transcribes onto the lattice as y.,(1 @ 1)y, again with loops
only changing the normalization but not causing mixing.

In each of these examples there are Ny quarks flowing in the quark propagators
of the QUDN/ contraction, as compared to a single quark for QCD. The fourth rule
is to divide the QCDN; matrix element by a factor of Ny for each fermion loop.
When we transcribe the matrix elements onto the lattice we continue to divide by

the same factors of Ny.

11
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Figure 3.2: Contractions contributing to (7+|01|K*). (a) eight and (b) eye diagrams.

This rule also applies to the disconnected quark loops produced by the fermion
determinant. It is equivalent to taking the N;’th root of the QCDN determinant,
which does yield the QCD determinant. To match QCDN, onto the lattice theory,
we simply take the N;’th root of the lattice determinant.

This procedure has aroused some controversy, because, once we take the N;’th
root of the lattice determinant, we do not know what the lattice action is. Nev-
ertheless, the lattice action differs from that of QCDN; only by terms of O(a?),
so that in the continuum limit it does describe N; flavors, and taking the root is
legitimate. At finite lattice spacing there are corrections, but these are no different
in character from the those introduced by discretizing the continuum theory. In
particular, taking the root does not break any of the lattice symmetries discussed
above. In fact, in perturbation theory, it is claimed in Ref. [3] that loop diagrams
come naturally with an overall factor of N}OOP. Altogether, then, taking the N;'th
root of the determinant seems reasonable, though it is of considerable interest to
check this claim with explicit calculations.

To illustrate why we take matrix elements between lattice Goldstone pions, we
consider the continuum relationship

(w* [aulrt) = V2 £ (0ldysulrt) (14 O(m2 /(47 £,)?) (3.32)

which follows from the approximate chiral symmetry of QCD. If we transcribe the
matrix elements using our rules then the lattice axial symmetry guarantees that this
equation holds also for the lattice quantities [15].

The fifth and final rule applies to matrix elements in which the operators have
more than one contraction with the external states. This is the case for some four
fermion operators. The rule is that the transcription is to be done separately for
each contraction. Different contractions will in general require different operators.
There is not a one-to-one mapping between QCD and QCDN/ operators.

We illustrate this with our final example. We consider

(rT|OK™) = (77 [[Way(1+75)da] [S57, (1475 us] [ KT) (3.33)

where we have reinstated the color indices. The operator O; plays a major role in
the weak decays of kaons. There are two types of contractions, illustrated in Fig.
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3.2, and colloquially referred to as “eights” and “eyes”. Consider the eight-diagram
first. In this, Sp7,(1475)us is contracted with the K*, w,v,(14+75)d, with the = *.
Each of these contractions consists of two parts, that with the axial current 5,7s,
and that with the vector current -,. Because of parity, only the “vector-vector”
and “axial-axial” contractions survive.” These are transcribed to QCDN; using two
different operators. First consider the vector-vector contraction. As always, the
QCDN; external states have flavor {5. This means that both bilinears must also
have this flavor. The same is true for the axial-axial contraction, so that

vector —vector eight: Oy —  [U,(7, @ &) Da] [Sy(7, @ &)Ub]/N? , (3.34)
axial —axial eight: O; — [Ua(’yu% @ &5)D,] [?b(’m% ® &)Ub]/N? .(3.35)

There are three important points to note here

1. The factors of 1/N} cancel the flavor factors from the two loops.

2. The two QCDN/ operators have different lattice transcriptions, the first (Eq.
3.34) consisting of 3-link bilinears, the second (Eq. 3.35) of 1-link bilinears.

3. Each of the QCDN, operators themselves have both an eight and an eye type
contraction with the external states, but we keep only the eight contraction.

This takes care of the eight diagrams. For the eye diagrams we face a new
decision, namely whether or not to Fierz transform the continuum operator to

O1 = [Wayu(1+75)us] [So7,(1475)da] - (3.36)

(We have included the sign from fermion anticommutation in the Fierz transform.)
We choose to use the Fierz transformed operator, because then both eight and eye
contractions contains two traces over spinor indices. We indicate this in Fig. 3.2 by
splitting the operator up into two bilinears. We choose the same number of spinor
traces for each contraction since this is necessary for the derivation of Ward identities
[15]. These identities also hold, however, if we Fierz transform the operator so that
there is only a single spinor trace in all contractions. There is no strong reason to
prefer two spinor traces over a single trace, but, since present numerical calculations
use the two-trace transcription, we adopt it exclusively in the following sections.

Having made this choice, there are again vector-vector and axial-axial contrac-
tions. In this case, however, the QCDN operators should be flavor singlets in order
that the contractions have a non-vanishing flavor trace. Thus we use

vector—vector eye: O1  —  [Ua(v, @ 1)Us] [Sy(7y, @ 1) D] /N7 (3.37)
axial —axial eye: 07— [Uu (7,75 @ 1)Us] [Se(7u75 @ l)Da]/N; . (3.38)

5This solves a puzzle that may have occurred to the reader. How can the chiral weak interactions
be put on the lattice, given that the lattice theories are vector-like? The answer is that, since the
strong interactions conserve parity, one only has to transcribe non-chiral quantities such as the
vector-vector contractions onto the lattice.
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Each of these QCDN; operators has both eight and eye contractions, but we keep
only the latter.

Taking into account color indices, we end up needing four different QCDN;
operators, one per contraction. Beyond tree-level, the matching of these operators
with lattice operators does involve mixing, and such mixing forms the main topic of
the following section.

3.4 RENORMALIZATION

In this section we discuss the O(g?) corrections to the tree-level relationships be-
tween lattice and continuum operators. We consider one loop corrections to fermion
bilinear and quadrilinear operators. These corrections vanish logarithmically in the
continuum limit, and thus dominate over scaling violations of O(a) for small enough
lattice spacing. As explained in the previous section, the lattice operators are to be
matched with those in QCDN, the continuum theory with Ny degenerate versions
of each quark. Thus we adopt the following notation in this section: “continuum”
operators (OY°NT) are from QCDN; and not QCD.

Perturbative calculations with staggered fermions were pioneered in Refs. [3]
and [2] and extended in Refs. [8], [9] and [20]. It is possible to write the expressions
for loop diagrams in such a way that they are similar to those in QCDN,. The main
difference is that the lattice gluon can change the flavor of the quark it couples to, if
the gluon has a momentum with one or more components close to 7. These contri-
butions break the flavor symmetry, so that operators which do not mix in QCDN;
can mix on the lattice. The size of this flavor symmetry breaking is, however, per-
turbatively calculable for small enough lattice spacing, since it is momenta close to
the cut-off that are responsible for the mixing. For more discussion of the reliability
of lattice perturbation theory see Ref. [23].

The general form of the relationship between QCDN, and lattice operators is

2
OFONT — OATT L 5™ I (4L, + ¢j) O + 0(¢*) + O(a) ,  (3.39)

Z 1672

where O; is a set of operators, and L, = 2In(pa/7). Such relations are derived by
comparing the matrix elements of lattice and continuum operators between external
quark and antiquark states. On the lattice the momenta of external particles must
be physical, i.e. each component should lie close to zero or 7. The coefficients ¢;;
and d;; do not depend on the external momenta except through terms suppressed
by powers of the lattice spacing. Similarly, the mass dependence is suppressed by
powers of O(ma). We do not discuss these corrections here.

The matrix elements of the continuum and lattice operators between external
quark and antiquark states are ultraviolet and infrared divergent. The infrared
divergences are handled by adding a gluon mass in one loop calculations. The
ultraviolet divergences can be removed in the continuum using one of the standard
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renormalization prescriptions. We follow Ref. [24] and use dimensional reduction
with a renormalization scale g. On the lattice the ultraviolet cut-off is 1/a. If one
has transcribed the continuum operators correctly onto the lattice then the infrared
divergences cancel, and the ultraviolet divergences combine to give finite factors
proportional to In(pa). This cancellation has been assumed in writing Eq. 3.39.
The coefficient of the logarithm, d;;, is proportional to the anomalous dimension
matrix. The remaining finite terms are contained in the coefficients c;;.

With staggered fermions the operators are quasi-local rather than local, and
must be made gauge invariant in some way. We discuss three alternatives. In Refs.
[8, 9, 20] gauge invariance is insured by inserting the appropriate product of gauge
links between quark and antiquark, and averaging over paths so as to maintain
rotational invariance. A second approach is to project the average of the products
of gauge links back into the gauge group SU(3). This only affects operators with
two or more links, but reduces the fluctuations in these operators. In numerical
calculations using staggered fermions it is more convenient to use a third method:
fix to Landau gauge and simply leave out the gauge links. As we will see, this not
only reduces fluctuations due to gauge links, but also considerably simplifies the
perturbative calculations [25]. The disadvantage of Landau gauge operators is that
they may not be well defined due to Gribov copies. Such copies do not show up
in perturbation theory, but could effect non-perturbative quantities such as weak
matrix elements. This topic is under active investigation.

We present results for all three types of operator for fermion bilinears, since the
comparison between them is instructive. For quadrilinear operators we give results
only for Landau gauge operators.

3.4.1 Bilinear Operators

The one-loop diagrams one must calculate on the lattice are shown in Fig. 3.3. The
three diagrams in the top line are common to all types of operators, while those of
the second line are absent for Landau gauge operators. For calculations involving
Landau gauge operators one must use the lattice Landau gauge gluon propagator,
while the gauge choice is irrelevant for the gauge invariant operators. The continuum
calculations require only the first two diagrams of the top line.

In the continuum, the logarithmic divergence does not mix the bilinears, and
its coefficient depends only on the spin of the operator and not its flavor. It is a
non-trivial check of the transcription of operators onto the lattice that the same is
true for the lattice operators. Thus lattice and continuum bilinears have the same
anomalous dimensions (as has been implicitly assumed in writing Eq. 3.39), with
d;j = 0 for 7 # j. Results for d;; are given in Table 3.1.

The finite part of the correction does cause mixing amongst bilinears. Mixing
occurs for vector, axial-vector and tensor operators, and is always between operators
having the same spin but different flavor. For example, (v, @ &,) (¢ # v) mixes with
(7, ©€,) (no sum on g). It turns out, however, that present numerical calculations
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Figure 3.3: Diagrams contributing to the renormalization of fermion bilinears.

Spin  Flavor d Name (a) (b) (c)

1 1 3 c¢ss -35.36 -35.36 -35.36
1 s 3  csp 42.22 6.34 -3.22
1 Tu 3  csv 4707 477 -13.95
1 Yus 3 csa 28.84 6.33 -4.42
1 Vv 3  csr 14.30 443 -6.81
Yu 1 0 Cys 0 0 -10.18
Yo s 0 cyp 21.51  -1.01 -11.76
Yo Y 0 c¢yyvo -15.78 -15.78 -15.78
Yo Yy 0 cyvva 9.04 -0.83 -12.08
Vu Yus 0 cvas 33.500 -2.38 -11.95
o Yus 0 cvaq 9.06 -0.81 -12.06
Tu Vv 0 covm -4.40  -4.40 -13.57
Tu Yop 0 cyrs 21.24 -1.28 -12.02

Table 3.1: Results for the diagonal part of renormalization constants at one-loop, i.e. d = dy;
and ¢;;. An overall color factor of Cp = 4/3 has been taken out. The components u, v and p are
all different. The finite parts ¢;; are given for three choices of operator: (a) with gauge links [9];
(b) projected gauge links [25]; and (¢) Landau gauge [25].
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do not require knowledge of the off-diagonal corrections. Nor do we need either
the diagonal or off-diagonal corrections for tensor operators. Thus in Table 3.1 we
give results for the diagonal corrections for scalar and vector operators. Because
of the U(1) axial symmetry, the corrections are the same for the two operators
(vs @ ¢&r) and (ys5 @ €ps). Thus the table applies also to pseudoscalar and axial-

vector operators, e.g. cap = cys.

To evaluate the corrections we need to choose a value for g and a scheme for
g*. A one-loop calculation gives no guidance as to how to make these choices, so we
rely on the general arguments of Ref. [23]. The renormalization scale y should be
a typical loop momentum, and we take p = x/a. This choice causes the d;; term
in Eq. 3.39 to vanish. Other reasonable choices do not change the correction by
much. More important is the choice of scheme for ¢g%. In present simulations the
bare lattice coupling is ¢g* ~ 1. It is argued in Ref. [23] that one should not use
the bare coupling, but instead pick a coupling constant evaluated in a continuum
scheme such as M S, which is larger by a factor of about 2. Using the bare lattice
constant a typical correction (¢ ~ 10) is about 8%, while the largest corrections are
~ 35%. With a continuum ¢?%, the corrections range from —60% to +70%.

The major cause of the large range of the corrections is the fluctuations in the
gauge links in the non-local operators. This is shown by the increase in ¢ as the
number of links in the operator varies from zero (cgs) to four (¢sp and ¢y 44). This
variation is reduced substantially using the projected gauge links, and is reduced
still further with Landau gauge operators. In fact, aside from cgg, the corrections to
Landau gauge operators are uniform and relatively small. The large size of cgg does,
however, make a calculation of the condensate potentially unreliable. This issue is
considered further in Chapter 8.

3.4.2 Four Fermion Operators

The calculation for four-fermion operators with (unprojected) gauge links has been
done in Ref. [20], and that for Landau gauge operators in Ref. [25]. We focus
on Landau gauge operators, and in particular those needed for the calculation of
B, since the numerical calculations are well advanced [26]. The method we outline
can be used for all four-fermion operators, except that some operators require the
calculation of penguin diagrams, which are discussed in Ref. [25], but which we do
not discuss here.

The mixing of four fermion operators is very messy, because huge numbers
of operators can mix with one another. To begin we must introduce a compact
notation for the operators. We will only to consider the 256 operators of the
type (7s @ €r) (s @ &), i.e. those in which the spins of the two bilinears are

the same, as are the flavors. (Strictly speaking, we also need those of the form
(s @ &F) (vs5 @ €rs), but the corrections for these can be obtained with no addi-
tional calculation.) In fact, we are only interested in those linear combinations of

these operators which are scalars under the Euclidean lattice rotation group [27].
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There are 35 such operators. To define them we first consider spin and flavor sepa-
rately. The five scalar operators for spin alone are

S=1-1I; P=7-7; T:ZTMV; V:ZVM; A:ZAua (3.40)
p p

u<v

where (no sum over repeated indices)

V=Y s A= v 57 T = %Yo " Yo Vu - (3'41)

The dot separates the matrices in the two bilinears. Exactly the same list applies
for flavor, and the first 25 diagonal singlets are the products of the five spin singlets
with the five flavor singlets. The notation we use for these products is exemplified

by

[Ax P] = Z (Yus @ &s) (150 © &5) - (3.42)

7

The remaining 10 operators are somewhat more complicated. They are

Vi x Vil =22 (0 @ &) (0 © &) (3.43)

o

with [V, x A,], [A, x V,] and [A, x A,] defined similarly;

[Vu X Tu] = Z (7u & ‘fuu) (’Yu b2y fuu) - (7u ® ‘fw5) (7u ® ffwu) ) (3'44)

w,v
uFtv

and the analogous [A, x T,], [T, xV,] and [T, x A,]; and finally

[T-xT] = Z (Vv @ Euv) (You @ Evn) + (Vs @ Euvs) (Vv @ Esup)

p<v

- ('hw ® fuv5) (%u ® 551/#) - (7uv5 ® 5#”) (75vu ® 51/#)

with [Ty x T4] defined analogously. Linear combinations of these operators are
concisely written as

[(V+ A xT]= [Vi xT,]+ [Ayx T,] . (3.45)

Finally, we consider the color indices. These can be contracted either between the
bilinears or within each bilinear. These we label color-types (I) and (II) respectively:

Or= (75 @&F) (75 @Ry, 3 Or1 = (15 @ &F) ,10(15 @ EF)yy - (3.46)

This notation is used because, when the operators are contracted with external color
singlet mesons, those of type (I) give rise to a single color trace, while those of type
(IT) produce two traces.
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3.4.3 Corrections Needed For By

We illustrate the calculation for the lattice transcription of the QCD matrix element
needed to calculate By

M = (K°|[5au(1475)da] By (1475 ) ds) | Ko) - (3.47)

We must first write down an equivalent matrix element in QCDN,. Using the rules
of the previous section we find that the operator we need is QOB/N]%, where

Op=01+0,; O1= [(V—-A)xPl;, Oy= [(V—A) xPliy. (3.48)

The minus sign multiplying A appears because the continuum operator has the form
YuYs - Yuys Whereas A = 7,75 - v57,. The matrix elements of Op are to be taken
between kaons with flavor £5. Furthermore, we must only use the contractions in
which the quark and antiquark from one bilinear are connected to the external Ko,
while those from the other bilinear are connected to the Ky. It is because of this
restriction that O must have the flavor P = &5 - 5.

At 1-loop, the continuum operator O5°NT does not mix under renormalization:
OYONT and OYONT mix into one another, but do so in such a way that their sum
receives only an overall renormalization. On the other hand, the lattice operator
OLAT does mix with many of the 35 operators discussed above, as well as with flavor
off-diagonal operators. The only constraint comes from the U(1)4 symmetry, which
restricts the mixing to be with operators that, like Opg, have an odd number of links
in each of their bilinears. Even with this constraint, it would appear that numerical
calculations would have to include a large number of operators to take into account
perturbative corrections even at 1-loop. This would make such calculations all but
intractable.

In fact, one does not need to include all the operators when projecting the
external states onto a definite flavor. Here we project onto flavor £5. If there were
no flavor-symmetry breaking, the lattice kaons would only couple to operators with
flavor P. The flavor symmetry breaking at large momenta is taken into account by
the perturbative calculation to be described. The remaining symmetry breaking is
from small loop momenta, and this is suppressed by powers of the lattice spacing.
If we ignore such scaling violations, we can restrict ourselves to the operators with
flavor P. Combining this with the restriction that all bilinears have an odd number
of links, we see that we need only keep track of the mixing between the four operators
O1, O,

Os= [(V4+A) xP]; and Oy= [(V+A) X Plis. (3.49)

This is why we discarded off-diagonal flavor mixing when discussing fermion bilin-
ears, for at one-loop such mixing always leads to four-fermion operators which are
flavor off-diagonal. In a two loop calculation, however, one would have to keep all
operators at intermediate stages.

For the Landau gauge version of Op, the corrections to four-fermion operators
can be obtained from those for bilinears, as for Wilson fermions [28]. There are three

19



(a) (b) ()

Figure 3.4: Diagrams contributing to renormalization of four fermion operators for Landau gauge
operators.

types of diagram involving a gluon connecting two external legs, as shown in Figure
3.4. The two boxes in the figures represent the two bilinears in the operators. In
addition, there are the external leg renormalizations (not shown). It turns out that
these combine with the gluon exchange diagrams with the correct factors to make
the calculations the same as for bilinears.

The simplest part of the calculation is the evaluation of the color factor, i.e. the
term of the form Y~ 7% - T, where T are the color group generators. This is just
as in the continuum, and mixes the color types as follows

Fig. 3.4a (1) — —é(l) + %(H) (1) — %(II)
Fig. 3.4D : (1) — %(1) (I1) — %(1) - %(II)
Fig. 3.4c : (1) — —é(l) + %(H) (1) — %(1) - é(n) .

Since mixing between color types is independent of the spin and flavor mixing, we
can ignore color factors until we collect the results at the end.

We now turn to the calculation of spin and flavor mixing. The calculation of
Fig. 3.4a is identical to that for bilinears. For the example of the operator O =
[(V — A) x P], the correction due to this diagram is

5(10 = QCVP [V X P] — QCVS [A X P] (350)
= (CVP + Cvs) [(V — A) X P] + (CVP — Cvs> [(V + A) X P] . (351)

The notation here is as follows: 6,0 is the contribution to O¢ONT — OLAT from
Fig. 3.4a, except that we have extracted an overall factor of ¢*>/1672, and removed
all color factors. We have also set pa = 7 so that the d;; terms are absent. We
can always reconstruct the d;; since they appear with the ¢;; in the same proportion
as in Eq. 3.39. The factors of 2 in Eq. 3.50 arise because each four fermion
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operator consists of two bilinears, both of which are renormalized. Since cyp # cys,
the mixing brings in [(V 4+ A) x P]. The coefficient of this operator contains no
logarithms, however, because dyp = dys.

The calculation of Fig. 3.4b is more involved. To bring the calculation into the
form of a bilinear correction one must first do a Fierz transformation of the spin-
flavor indices. It is here that the complications of staggered fermions enter. The
Fierz transformations for spin or flavor alone are

V—A &« A-V
VoA o 25-P)
294+ P) & S+P+T

2I' & 35+3P-T.

It does not matter whether we treat the fermions as anticommuting (we have not
done so in the above relations), because any sign cancels when we Fierz transform
back. For the 25 scalar operators built as products of S, P,V, A and T the Fierz
transforms are obtained by simultaneous transformation of the spin and flavor parts,
for example

OO0 =-[(A-V)x (S+P+T -V — A4)]. (3.52)

1
4
The corrections to the Fierzed bilinear can now be calculated. In this example we
have

46,0" = 2cyp([Ax S]— [V x P]) + 2¢cys([A x P]— [V x 9])
2evva([V X V] = [A X A]) + 2(cvvo—cvva)([Vi x Vo] — [A x A,])
2eva2([V x Al = [Ax V]) + 2(cvas—cvar)([Vi x A,] — [Ay x V,])
(ecvritevrs) (A=V) xT] + (evrs—cvr) [(Ay+ V) x T
+ off —diagonal .

The result is then Fierz transformed back, giving
O =Cy [(V—-A)x Pl+..., (3.53)
where

8Chy = cvs + cvp + 3cvve + cvvo + 3evaz + cvaa + 3evr + 3evrs - (3.54)

The ellipsis in Eq. 3.53 represents the operators with flavors other than P. Note
that this diagram does not cause mixing with [(V + A) x P].

To bring the third type of diagram (Fig. 3.4c) into canonical form, we have to
follow a series of steps. First, one of the propagators appearing in the loop must be
“charge conjugated”, which results in an overall sign because the momentum flow
is opposite for quark and antiquark propagators. Second, one of the bilinears must
be conjugated, using

(1, ©@8,) =g O, - (3.55)
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Next one does the Fierz transformation, calculates the correction, Fierz transforms
back, and finally conjugates again. In our example, the result is

8560 = —(CSS + csp + 6C5‘T + 4CSV + 4CSA) [(V — A) X P] + ... X (356)

where again we have kept only those terms with flavor P.
We now collect together the corrections to the operator Op, including the color
factors and the logarithmic terms. With the definition

2
OFPNT = O + 155 3 C,01T (3.57)

J

we have
Cy =-2L,—-3554, Cy=—-2L,—29.69 , C3=—-0.26, Cy =290 .

Since (7 ~ Cy and (5 ~ (4 ~ 0, the major effect is a diagonal renormalization
of Op. This is exactly true for the anomalous dimension matrix, i.e. the terms
proportional to L,. The corrections are relatively large, 30-50% depending on the
choice of ¢2.

In practice, however, we calculate Bg, which is proportional to the ratio of the
matrix element of Op to that of [A X P];; evaluated in vacuum saturation approx-
imation. In this approximation only Fig. 3.4a contributes, so that the correction is
just twice that for the bilinear (y4 @ £p). Including color factors the correction to
the vacuum saturation calculation is 2Cpeys = —27.133. Since this is a diagonal
correction, it does not affect C3 and (4, but should be subtracted from 7 and Cj,
giving C] = —=2L, —8.41 and C} = —2L, — 2.56. Thus there is a large cancellation,
and the perturbative corrections to a calculation of Bk are small.

We have presented the results for By in detail to illustrate the issues and the
problems. Other results are given in Refs. [20] and [25]. In particular the latter
reference contains a discussion of the penguin diagrams which are needed in the
calculation of the Al = 1/2 amplitudes in kaon decays.

Since these calculations are an important ingredient in all matrix element cal-
culations, it is important to test their reliability. This can be done by comparing
results with operators which should differ only by normalization factors. Only very
limited testing has been done to date. One can also test how effectively the exter-
nal states project onto operators of a given flavor by comparing matrix elements of
operators which differ only by terms which should vanish upon projection.

3.5 WARD IDENTITIES

In the study of weak amplitudes involving pseudo-Goldstone bosons, the approxi-
mate SU(3) x SU(3)r symmetry plays a central role. The symmetry relates ampli-
tudes differing by one pseudo-Goldstone boson, e.g. A(K — 37) and A(K — 27),
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and predicts the momentum dependence of the amplitudes for small momenta, i.e.
the “chiral behavior” of the amplitudes. The various predictions are most easily de-
rived using the chiral Lagrangian. In many instances the predictions are successful
at the ~ 25% level for processes involving kaons and pions.

The major advantage of staggered fermions for the calculation of weak ampli-
tudes is the existence of the axial U(1)4 symmetry at all lattice spacings. This
symmetry implies Ward identities which constrain the behavior of amplitudes in-
volving external pseudo-Goldstone pions. With a suitable transcription of operators,
the lattice amplitudes satisfy similar Ward Identities to their continuum counter-
parts, and have the same chiral behavior, even at finite lattice spacing. This is in
contrast with Wilson fermions, for which the amplitudes have the correct chiral be-
havior only in the continuum limit, so that at finite lattice spacing the continuum
amplitude can be obscured by lattice artifacts.

In this section we discuss two examples of the Ward identities and their conse-
quences. The first concerns the calculation of Bx. While a partial analysis has been
given previously [21], the full analysis involving non-degenerate quarks is new. The
second example is the calculation of matrix elements of Og, which are needed to
predict the CP violating part of the K — n7w amplitude, i.e. the quantity €. This
example is more complicated, and has not previously been presented, although it is
similar to the analysis of Ref. [15] for the operators needed to discuss the Al = 1/2
rule.

The basic tools are two identities for quark propagators which show the effect
of zero momentum insertions of the Goldstone pion (X(n)x(n)(—1)") and the scalar

density (X(n)x(n))

(matms) Y Gingsn)(=1)"Ga(n;n) = (=1)" Ga(ng; )+ G (ng; na)(=1)™ (3.58)

(m1—m3) Y Gi(ng;n)Ga(n;ny) = Ga(na;ng) —Gi(nasna) (3.59)

Here G;(nq;n) is the propagator from nq to ny of a quark of mass m;. Color indices
are suppressed, since they play no role in the following discussion. These identities
can be established, for example, using the hopping parameter expansion [15].

3.5.1 By And Related Matrix Elements

To extract the kaon B-parameter we need to calculate Mg (Eq. 3.47). Using the
chiral Lagrangian one can show that

My = (K°|[57.(1475)d] [37.(1+75)d]| K°) (3.60)
= —'ymme—l—O(m}i—lan), (3.61)

where ~ is an unknown constant. The fact that Mg vanishes in the chiral limit
causes a potential problem for lattice calculations. If there are corrections, sup-
pressed by powers of the lattice spacing, which do not vanish in the chiral limit,
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then these corrections can obscure the physical amplitude v. What we show here
is that, with staggered fermions, the lattice transcription of Mg has the chiral
behavior of Eq. 3.60 for any lattice spacing.

We have discussed the transcription of the Mg onto the lattice in the previous
section. There are three important features:

1. The transcription requires a combination of the operators [A x P];, [A X P]yy,
[V x P];y and [V x P];;. Many other operators are produced by mixing, but
none has the correct flavor to give matrix elements in the continuum limit. It
turns out, however, that the Ward identities apply separately to each of the
operators which appear in the mixing calculation. All that is needed is that
there be an odd number of links between quark and antiquark fields in both
bilinears. In the following we use O to refer to any operator with this property.

2. The matrix elements are to be taken between lattice kaons having flavor ¢s.
In numerical calculations one can create the kaons with any operator having
the appropriate symmetries. To derive the Ward identities, however, one must
use the local pseudoscalar operators, for example

K(t) = Z:Yd(ﬁ’t)XS(ﬁ’t)(_l)n : (3.62)

We have set the spatial momentum to zero since this is necessary for the
following derivation.

3. Only one of the contractions between the operators and the external kaons is
to be kept. This restriction is illustrated in Fig. 3.5. The operators consist of
two bilinears, shown by the two squares. The quark-antiquark pair emanating
from the operator creating each external kaon must be contracted with one of
the bilinears. It is useful to define the matrix element so that the restriction
on contractions is automatic. This requires the introduction of two additional
quarks fields s’ and d', with masses equal to those of the s and d quarks,
respectively. One of the bilinears and one of the external kaons are constructed
from these primed quarks. Thus the operator [A x P] becomes (ignoring color
indices)

Z[Ys/(%s @ &s)xar] [Xs(us @ Es)xal - (3.63)

1w

The primed fermions are not to be included in internal loops.
The complete correlator is thus
Cxk(t,t") = (K(t)O(0)K'(t")) , (3.64)

where the expectation value represents the functional integral over gauge and fermion
fields. The operator O is placed with the corner of its hypercube at the origin. When
we formally integrate out the fermions fields, the correlator becomes the product of
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Figure 3.5: The correlator Ckxk.

quark propagators shown in Fig. 3.5. By adding the contribution from a gauge
configuration and its conjugate, one can see that Ckg is real.

To derive the Ward identities we make repeated use of Eq. 3.58. Each application
reduces the number of kaons by one, and changes the flavor-spin of one of the
bilinears in the operator. This is analogous to continuum PCAC calculations in
which one reduces in a pion or kaon and obtains commutator terms which change
the parity and flavor of the operator. To make use of the Ward identities, we must,
as in the continuum, expand the amplitudes as a function of the quark masses and
kaon momenta, keeping terms only up to a given order. Quark masses count as
two powers of energy, since for both continuum and lattice theories Ward identities
imply that m% o m, + my. For reasons which will become clear, we must keep all
terms up to quartic order in momenta.

We begin by Fourier transforming Ckk to energy space

Cri(E, E') = e FiOkg (t, t)e | (3.65)

t,t!

and using the parameterization

4% V2
(E? + mi) (B 4+ mi.)

Cxx(E,E') = Ny Axk(E, E') . (3.66)

In writing this equation we have dropped all terms of O(a), as we do throughout
this section. This means that, for example, we do not distinguish between sinh £
and E. The lattice correlator differs from the corresponding QCD correlator by an
overall factor of N?. Our parameterization is chosen so that the factors of Ny do
not appear in Agk. One factor of Ny is explicit, while the other is contained in the
Z-factors, each of which are proportional to \/Ff The Z-factors and masses are
obtained in the standard way from two point functions. Using axial Ward identities
one can show that [1

5]
A K m 2{ )
~GN,=fK@%im@(“+OW%D’ (3.67)

a relation we use frequently in the following derivations.
Applying the reduction theorem, we see that Axx(—imy, —img) is the on-shell
matrix element we are interested in. To use the Ward identities, however, we must
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parameterize Agk for off-shell energies extending from the kaon poles down to zero.
We assume that Agg varies smoothly in this range, and can be expanded in a power
series in the energies. A necessary condition for this to hold is that the poles from
excited states, which are contained in Agg, are at energies much higher than mg.
The fact that Cxk(t,t) is real restricts the expansion to even powers of energy

Axk = a+ BE*+ B E* +yEE' + §E* + §'E"™* + e E°E' + ¢ EE® + nE*E™ + O(E®) .

(3.68)
The coefficients «, 3, ... are themselves expansions in the quark masses. To the
order we are working, « is a quadratic function of m, while 3, " and v are linear
functions, and the remaining coefficients are constants.

We have left out of Eq. 3.68 the non-analytic terms which are generated by
Goldstone-boson loops. These turn out to be non-leading for the combination of
operators which corresponds to the matrix element Mg, the matrix element in
which we are mainly interested. For other operators, however, the non-analytic
terms are dominant. We discuss them in the following section.

With the tools in hand, we now proceed to the Ward identities. Summing over
t, and using Eq. 3.58, gives

(ms+my) zt: Cxk (t,1) = (|07 (0) — 07 (0)] K'(t)) = Cko(t') . (3.69)

The new operators O, are related to O as follows: the bilinear in O with flavor

3d has both its flavor-spin multiplied by (y5 @ €5), and its flavor changed to 3s (for
O;) or dd (for OF). For example, if O = [A x P] then

07 =3 X (1 © )X Xor (5 @ €)X - (3.70)
"

The superscript indicates that these correspond to negative parity continuum oper-
ators.

The correlator Ckp in Eq. 3.69 vanishes explicitly when m,;=my: the two terms
in the Ward identity Eq. 3.58 cancel because the bilinears have an odd number of
links between quark and antiquark fields. Cke also vanishes when my = mg, for
then one can show that on each configuration the result is purely imaginary, and so
cancels between a configuration and its conjugate. Thus, we can parameterize the
Fourier transform as

Cro(E') =3 Cko(t)e " = i NP (my—ma)(my—ma)Ako . (3.71)
t/

= 2 2 !
B+ mi.

The amplitude Ake is independent of quark masses at the order we are working,
and has been constructed so as to have no dependence on /Ny in the continuum limit.
Substituting the parameterizations of Cxx and Cke into Eq. 3.69, we find

V2fk(a+ B E? 4+ §'E") = (my—mg)(mg—ma)Axo . (3.72)
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Thus at the order we are working, we find
6/ = 5/ = 0, and \/§f]{a = (ms—md)(msr—md/)AKo . (373)

The latter relation shows why we had to keep all terms of O(m?, E*) in Akk.

Summing over ¢’ rather than t gives the same result, except that primed and
unprimed fields are interchanged. This does not effect a, but shows that 7 =6 = 0.
The upshot is that the only term of O(m, E?) that survives in Ckk is yEE'. Thus
the on-shell matrix element is

on—shell __

A
K = —y'mgmy + (ms—md)(msr—md/)\/_Q—KJE9 + O(m%—) ) (3.74)
K

We have collected into 4 the contributions from =, €, € and 7, so that 4" is the most
general quadratic function of mg and mg:.

The main conclusion of this analysis is that the lattice amplitudes Agg vanish in
the chiral limit. We also see that there are complicated quartic corrections, one of
which is related to Cxeo. Both of these results are identical to those which apply to
QCD amplitude we wish to calculate. The only flaw in the analysis is the omission
of non-analytic terms due to pion loops, a flaw we correct in the next section.

3.5.2 O

One of the major contributions to the imaginary part of the K — w7 amplitude is
from the “penguin” operator

6=—2 > Sc(l=75)q Gu(1+75)da - (3.75)

g=u,d,s

The color indices ¢ and d are dropped in the following. Under the SU(3)r x SU(3)r
symmetry Og transforms as (8, 1), which implies that its matrix elements vanish
in the chiral limit. This is easily seen using the chiral Lagrangian. At lowest order,
only a single operator contributes to the physical K — w7 amplitudes [29]. For

example, the K° — 7% amplitude is

Aon—shell _ \/ﬁa
000 = 3
RE

with only the single coefficient a undetermined.®

(my —mz) + O(mg) , (3.76)

In principle we can transcribe Og onto the lattice and directly calculate Aggg.
The continuum Ward identities which guarantee the chiral behavior of Eq. 3.76
can also be derived on the lattice. In practice, however, this calculation is difficult
because, among other things, one must understand final state interactions between

6The notation is standard but unfortunate. There should, however, be no possibility of confusing
this coefficient with the lattice spacing, for the latter equals unity throughout this section.
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Figure 3.6: Contractions contributing to the K — 7% correlator of Og: (a) eight diagram; (b)
eye diagram. For the specific example discussed in the text, the square and circular boxes represent
pseudoscalar and scalar operators, respectively.

the pions. This approach has been pushed further with Wilson than with staggered
fermions, and we do not discuss it further.

Instead, we focus on the less ambitious but more practical calculation which
aims to extract the leading chiral coefficient a. We use the method of Ref. [29], the
strategy of which is to relate Aggy to the K° — 7% matrix element of Og, which we

call Agg. This method is based on the Ward identity

Aooo(p1=0) = %Aoo + non—pole terms , (3.77)
where p; is the outgoing Euclidean momenta of one of the pions, and the “non-pole
terms” vanish when the K° and the second 7° are on-shell. This relation is true both
in the continuum and, with staggered fermions, on the lattice. To use it requires
an off-shell parameterization of Agge. In the chiral Lagrangian, the operator which
gives rise to the on-shell amplitude gives

Aooo = —\/—%ﬁ(PK “(pr+p2) +2p1 - p2) + 0(1’4) ) (3.78)

with pg the incoming kaon momentum, and p,, like p;, an outgoing pion momentum.
Combining this with the Ward identity Eq. 3.77 yields

g5 = s + 0(nk) (7) (3.79)
from which it appears that one can calculate a simply by evaluating Agy. Unfortu-
nately, the parameterization of Eq. 3.78 is not complete, so that Eq. 3.79 is wrong.
The calculation of @ turns out to be far less straightforward.

To set the stage for the lattice calculation, we first discuss the difficulties with
Eq. 3.78 in the continuum. We summarize the analysis of Ref. [29]. Both eight and
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eye diagrams contribute to Agg, examples being shown in Fig. 3.6. In addition to
the usual mixing with other dimension 6 operators, the eye-diagrams allow mixing
with bilinear operators of lower dimension, i.e. 3d and 5v5d. The mixing coefficients
are divergent, i.e. proportional to inverse powers of the lattice spacing. We do not
normally worry about such mixing, for it can be absorbed, by a chiral rotation, into a
redefinition of the mass matrix and vacuum [30]. Indeed, in continuum calculations
using dimensional regularization such divergences are automatically ignored. But
in lattice calculations the weak interactions are not included in the action, instead
being added by hand. Thus the mass matrix and vacuum are not affected by the
perturbation, and we must manually subtract the effects of the mixing.

In the continuum, Og can only mix with (8, 1r) operators, and the only example
with dimension less than six is (in Euclidean space)

— —

Osub = 37, (1+75)(Dy — Dy)d . (3.80)

Using the equations of motion (valid for on-shell correlators) this can be written as

Oab = (ms+mg)3d + (ms—mg)3ysd (3.81)
(ms+mq) , _ (ms—myq) , _
m@(ﬂﬂ) + m@(ﬂﬂs@- (3.82)

From this we see that Ogy, has the following properties [29].

1. For my # my it is a total derivative. Thus it cannot contribute to amplitudes
in which the operator inserts no momentum. In particular, it makes no con-
tribution to the physical amplitude Aggg, so one need not be concerned about
Ogup if one directly calculates the K — 77 amplitude.

2. Ogup does contribute to K — 7« matrix elements, for the operator inserts
momentum (proportional to (ms—myg)). In fact, it contributes even when my =
mg because of the singular denominator multiplying 5y,d. The contribution
to Ago is proportional to (ms+mg).

Thus the mixing with Ogp, introduces an additional term in Ay which invalidates

Eq. 3.79. Since the new term is proportional to (ms;+myg), it does not affect the a

term. The corrected relation is 7

. @ , (ms+md) 4
»AOO = —a f2 PK *Pr — b \/Z]? + O(p ) ) (383)

™

with b being the new constant. The matrix element still vanishes in the chiral limit,

but contains a term unrelated to A5, It is important to realize that the Ward

“In the following discussion, some results differ from those in Ref. [15]. This is partly due to
the use of K% — mg rather than K+ — 7% matrix elements, and partly due to the use of (1+7s)
instead of (1—vs5) as the left handed projector. There are also, however, some sign errors in [15]
which are corrected here.
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Figure 3.7: Contractions contributing to matrix elements of Os (a) K° to vacuum and (b) ¥ to
vacuum. For the specific example discussed in the text, the square and circular boxes represent
pseudoscalar and scalar operators, respectively.

identity Eq. 3.77 remains valid; it is the parameterization of Agg (Eq. 3.78) which
is incomplete.

We are not interested in the b term, which is an unphysical, cut-off dependent
quantity. To remove it, we form the subtracted operator Of*"* = O — pOyyp, and
find the coefficient p such that there is no b term in its K — 7 matrix element.
Various methods have been suggested for doing this subtraction [29, 15, 31, 32].
In practice, the most successful for staggered fermions has been that of Ref. [29].
Chiral symmetry relates the matrix elements of positive and negative parity parts
of 0" and it is shown in Ref. [29] that removing the b term from Ag is equivalent
to the condition

(0|0 K°%) =0 . (3.84)

Physically, this means that the kaons are orthogonal to the vacuum, which is a non-
perturbative analog of the requirement that there be no mixing between the s and
d quarks. There are corrections at O(m} ), so this condition can only be used to
extract the leading coefficients in the chiral expansion. At the same level of accuracy,
Eqgs. 3.83 and 3.84 can be combined to give an equation for b

V2(ms—my)
—

Figure 3.7a shows an example of the contractions which contribute to this matrix
element. One can see from the figure that (0|Og|K°) vanishes when ms = my, so
that b has a finite chiral limit.

A straightforward transcription of the preceding analysis onto the lattice faces
the following possible problems. First, the fact that Agg vanishes in the chiral limit
requires a cancellation between eight and eye diagrams. This cancellation might
work only in the continuum limit, with corrections having the wrong chiral behavior

(0|06 K°) = b (3.85)

appearing at finite lattice spacing. Second, there could be more than one lower
dimension operator to subtract on the lattice, so that the continuum subtraction
method would not work. Finally, even if there is only a single operator to subtract,
the method using Eq. 3.85 may only work in the continuum limit. At finite lattice
spacing the subtraction might remove part of the a-term in addition to the b-term.
Since b is a quadratically divergent quantity, the ratio a/b vanishes as the square
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of the lattice spacing, so that any contamination of b in a could have disastrous
consequences.

It turns out that, with staggered fermions, all these problems can be avoided, at
least for gauge invariant operators. This is entirely due to the U(1)4 symmetry. We
transcribe the matrix elements in Eqs. 3.83 and 3.85 onto the lattice using the rules
of section 3.2, extract the lattice coefficients ay and b7, and in the continuum limit
ay, becomes equal to the desired coefficient a. To demonstrate this, we show first
that the lattice K — 7 matrix elements have the form of Eq. 3.83, with by defined
by the lattice transcription of Eq. 3.85. This shows that Agg is not contaminated
with corrections having the wrong chiral behavior. Since the lattice and continuum
matrix elements have the same form and relationships, it also suggests that ap,
should be identified with a. To really establish this, however, we show that the eye
diagrams cause mixing with a single lower dimension operator, and that subtracting
this operator in the manner described above removes the by, term from Ay without
affecting the ay, term.

These results follow from lattice Ward identities, and to discuss these we must
define various correlators. In addition to the kaon field defined in Eq. 3.62, we need
pion and scalar fields

Ho(t> = Z: (_\/1§)n [Yu(ﬁvt)Xu(ﬁvt) - Yd(ﬁvt)xd(ﬁvtﬂ ) E(t) = Z:Yd(ﬁvt)Xs(ﬁvt) .
' i (3.86)

The correlators of interest are (with the superscript on Og indicating the parity)

Cka(tr tr) = (K°(tx)OF (0)I°(tr)) (3.87)
Ck(tx) = (Og(0)K°(tx)) , (3.88)
Cs(t) = (OF(0)2(2)) . (3.89)

Strictly speaking the operator in C'x should be the commutator of the pion axial
charge with OF, but this is proportional Of. In the continuum, there are many
contractions contributing to each of these correlators, the general form of which is
shown in Figs. 3.6 and 3.7. As discussed previously, we Fierz rearrange the operators
so that the contractions all have two spinor traces. There are contractions in which
the bilinears are scalars, pseudoscalars, vectors and axial-vectors. We focus here on
the dominant contribution, that in which the external pions or kaons are connected
to pseudoscalars, while the remaining bilinears are scalars. To make clear which
contractions we are considering, Figs. 3.6 and 3.7 show the scalar bilinears as circles
and the pseudoscalars as squares.

To transcribe these contractions onto the lattice, we must use the staggered
flavors appropriate to the external flavor ¢5 states. The resulting operators are

Oy = 2%, 0 &)xa [(10 Dy — X1 @ 1)xd] (3.90)
of = 0:-0%, (3.91)
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O = —2x,0@ Dxa (IO xs + (10 Dxd| (3.92)
O = —2¢.(7 @ &) xa [Ys(’ys @ &5)xs + Xa(75 ®f5)Xd] . (3.93)

The contractions of these operators are constrained: we use only those shown in
Figs. 3.6 and 3.7. In addition, only the O2 part of Of contributes to C'z. Thus
in the lattice matrix elements, the circles in the figures represent (1 @ 1), the boxes
(75 @ &)

These contractions are the only ones leading to operators without gauge links.
The transcriptions of other contractions require operators whose bilinears have 1, 3
and 4 links. It turns out that the following analysis applies separately for operators
with a given number of links. For 4-link operators the steps are essentially identical
to those below. The analysis for 1 and 3 link operators is slightly different, and is
given in Ref. [15].

The Ward identities we need follow from repeated use of Eq. 3.58

\/ﬁ(ms+md)ZCKw(tI&’7tw) = —Cz(tr) (394)
QﬂdeCKW(tK,tW) = —C]((t]{) - Cz(t]() ; (395)

while from Eq. 3.59 we find
(ms—{—md)ZCK(tK) = (md—ms)ZCg(t) . (396)

1374 13

These identities are the transcriptions of those one gets in the continuum using the
standard PCAC method of reducing pions.
To use these identities we define an amplitude from Cxk,

VZk VZ,

CK?T(EIX ) e+ZEA tr CKr(tIxa ) bt - Nf.Aoo .
) (B + ) (B + )
(3.97)
and then use the most general quadratic form for this amplitude
Ao = o+ B E.* + B Ex® — \/_QQL Ex b, . (3.98)

I?

We have chosen the coefficient of EFx E, to match with the continuum definition,

Eq. 3.83. The on-shell amplitude is thus (E, = tm,, Fx = tmg)

2
Aon shell _ /Br 6]{m§{ + %

We also must parameterize the K to vacuum amplitude

ZK N3/2 \/§(m
EI&"Z + m%{ ! f7r

MEM, . (3.99)

CI& EI& Ze_ZEAtR CI& (tlx) = md) bL s (3100)

tK
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where by, is the lattice transcription of b (Eq. 3.85). Here we are using the fact that,
as in the continuum, the matrix element vanishes when m, = my. This can be seen
directly from Fig. 3.7. Finally, we must parameterize Cy,. This has no pion or kaon
pole, and thus, to the order we are working, is independent of £

Cx(E)=N}As; Nids =) Cx(t). (3.101)
t

It is now simply a matter of plugging the parameterizations into the Ward iden-
tities. From Eq. 3.94 (i.e. setting Ex = 0) we find that o + 3,F,* must be
proportional to m?2 + E,? so as to cancel the pion pole on the left hand side. Thus

a = fB.m? (3.102)

which means that « has no term of O(1), and that the combination a — 3,m?2 does
not contribute to the on-shell matrix element. The vanishing of the O(1) term in o
is due to a cancellation between the eight and eye diagrams. Next we note that Eq.
3.96, together with Eq. 3.67, implies ®

2, = — Ay . (3.103)

Here we have set fx = f., which is valid at leading order in the chiral expansion.
Finally we use Eq. 3.95 (i.e. setting F, = 0) and, after some algebra involving Eq.
3.103, obtain

2 (ms+ma)
P = ——— by . 3.104
mg ﬂf \/ﬁfﬁ L ( )
Putting this all together, we find that the on-shell amplitude is
on—shell __ ﬂmfm]{ (m5+md) (3105)

o TN T A

i.e. it has the same form as the continuum Eq. 3.83. It is important to realize
that no approximations have been made aside from the usual ones needed to make
PCAC arguments. Although the lattice current algebra is different from that in the
continuum, because of the extra lattice flavors, the form of the result is the same as
in the continuum.

We now show that the removal of the b; term from Agyy corresponds to the
subtraction of a lower dimension operator (which we call OF,) having the same
properties as the continuum Ogy,. The eye-diagrams allow the lattice operators to
mix with others of lower dimension. The positive parity part of the subtraction
operator, O}, appears in Ck, and Cy, while the negative parity part, O, , con-
tributes to C'x. There are two constraints on OF, . First, it must satisfy the Ward
identities Eqs. 3.94, 3.95 and 3.96. Second, under the discrete lattice symmetries,

OF, must transform as a scalar and O_, as a pseudoscalar. In addition, we want

8This is an alternative method for calculating b [32].
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OL. to be as local as possible. Together, these conditions restrict OL, to be the
lattice transcription of the continuum operator Og,,. Rather than write down this

lattice operator, it is simpler to use the lattice equations of motion to obtain
Ogp = (ms+ma)X, (1@ 1)xa + (ms—ma)X,(75 © &) xa - (3.106)

This is the operator actually used in practice to do the subtractions. It does not
satisfy the Ward identities, but it has the same on-shell matrix elements as the true
OL. which is all that matters for doing the subtraction.

The operator OF. has the same properties as its continuum counterpart Ogyy,.

sub

In particular, it can be rotated into the mass term, and so does not contribute to
physical amplitudes. Thus we want to subtract it, i.e. form Og— pOgyp, and adjust p
so that there is no mixing between the s and d quarks. To do this we assume that the
correct non-perturbative condition is as in the continuum, namely that the K — 0
matrix element of the subtracted operator should vanish [29]. Since OF, satisfies
the same Ward identities as Og, we know that its K — 7 matrix element must have
the form of Eq. 3.105, with coefficients a5 and 63", and with b}"" related to the
K — 0 matrix element as in Eq. 3.100. The only difference is that, because O},
is explicitly proportional to (m,+my), ai®® = 0. This means that the subtraction
removes the entire by, term without changing the value of ay. We conclude that ay,
is the lattice correspondent of the continuum a.

We have made this argument for the contractions involving operators without
gauge links. For operators with gauge links the same argument works as long as
they are gauge invariant. For Landau gauge operators (i.e. those in which the links
are set to the unit matrix) the second part of the argument fails. This is because
Og can mix not only with O, but also with an operator of the same form but with
covariant derivatives replaced by ordinary derivatives. (One can see explicitly that
this operator appears at one-loop [25].) The equations of motion cannot be used
to simplify this operator, and thus one cannot show that its positive parity matrix
elements are proportional to myg + m,. This leaves open the possibility that this
operator may contribute to ay. Further study of this issue is required. It is not
very important, however, for Og, as the dominant contributions involve operators
without gauge links.

This concludes the analysis. We have shown that, for staggered fermions, one
can take over the continuum analysis of Ref. [29]. All the lattice transcriptions
of the (8z,1r) operators, including those needed for discussion of the Al = 1/2
rule, satisfy the same Ward identities, and so the same subtraction method can be
used for all. The only unresolved difficultly is that, for Landau gauge operators, the
subtraction may not completely remove the mixing with lower dimension operators.

3.6 CHIRAL LOGARITHMS

In the previous section, we used analytic functions of momenta to parameterize the
matrix elements under study. This leaves out the non-analytic terms which arise
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Figure 3.8: Diagrams giving chiral logs in fx. The box is the axial vector current. The flavor of
the quarks in the loop can be either u, d, or s.

from loops of pseudo-Goldstone bosons, the so-called chiral logarithms, or “chiral
logs” for short. For example, in the limit m, = my = 0, fx has the expansion [33]

5 mr \ A2
frx=f(1+ ZLK +omi); Li = (471-]}%) In (m%) : (3.107)
Chiral symmetry alone does not determine f, A or ¢ (in fact ¢ can be absorbed into
A), but does fix the coefficient of the chiral log Lx. The diagrams giving rise to the
chiral log are shown in Fig. 3.8.

There are three reasons for considering chiral logs. First, for quantities for which
one calculates only the leading term in the chiral expansion, the chiral logs give
an estimate of the higher order terms. For example, this would be useful for the
calculation of the K — m7 matrix element of Og using the method explained in
the previous section. To estimate the size of the logs we take A = m,, for which
Lg(mg) =~ 0.15. This is actually very close to the maximal value of Lx(m) as a
function of m. Since the coefficient of Lx has a magnitude typically in the ranges
1 — 10, the chiral log can be a very significant correction.

Second, if one is calculating a quantity without recourse to a chiral expansion,
as in the example of By, then one can check the calculation by seeing whether the
result contains the correct chiral log. This tests that the correct physics is being
included. One searches for the chiral log not by looking at the variation with m%,
which is difficult, but by looking at the dependence of the result on the volume of the
box. As we explain below, associated with each chiral log is a known finite volume
dependent correction.

Finally, chiral logs give an estimate of the size of the error introduced by the
quenched approximation. In most quantities the chiral logs have a different coeffi-
cient in the quenched approximation and in the full theory. For example, the dia-
grams of Fig. 3.8 require internal quark loops, and thus are absent in the quenched
approximation [34].° This suggests that the quenched calculation of fx may have a

9This is strictly true only for degenerate quarks, and thus for f,, while not for fx. The loops
of the type shown in Fig. 3.10 do contribute chiral logs to fk, as discussed below and in Ref. [37].
These logs are not, however, present in full QCD, and thus do not alter the basic observation that
quenched chiral logs differ from those in full QCD.
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systematic error of ~ 20%. Part of this may be absorbed into an overall shift of scale,
so it is more reasonable to consider dimensionless ratios, for example R = fx/f. —1.
Experimentally R = 0.22, whereas the chiral log is 0.75Lx ~ 0.12 in full QCD [33].
Since there is no chiral log in the quenched theory, the latter may underestimate R
by 50%.

The calculations are most simply done using the chiral Lagrangian (see Ref.
[35] for a description of the method). In full QCD the logs are known for many
amplitudes, e.g. for Bi see Ref. [36], and for K — 77 amplitudes see Ref. [38].
For quenched QCD it is known that there are no chiral logs in f, and ¥1), except
for the gauge group SU(2) [39, 34]. The only other results are for Bx and related
matrix elements [40, 41], and this is the calculation we discuss here. All calculations
are done in the continuum, and can be applied to lattice calculations only if one has
taken the continuum limit. In practice, the continuum results can be modified to
account for some of the lattice artifacts. Although not dependent on the the type
of lattice fermion, the results have been used so far only for staggered fermions.

The kaon B-parameter is defined as the ratio of Mg to its value in vacuum
saturation approximation

M = (K°|[(5a7u(1475))dal (57 (1+75)do)| | K°) = —E—Gf?(m%’Bz«' , (3.108)
where the normalization is such that f, = 93 MeV. As discussed in the previous
section, the lattice calculation is done contraction by contraction, and we pick out
the contractions by substituting d,s — d’, s’ in one of the bilinears and one of the
external kaons. Only the unprimed quarks are kept in disconnected loops. A check
on this procedure is that the resulting chiral logs in By agree with those directly
calculated in QCD [38].

With this device we can write Bx = By + B4 with

By = Byi+ By (3.109)
=~ . - 8

Mvi = (KO3 y.d;)|[57.da] | K°) = —gfi'm%Bv,I (3.110)
A _ -~ 8

My = <A0/|[§;7ud:1][5b7udb]|[‘0> = _gfIZ{m?(BV,Hy (3.111)

and By defined similarly with v, — =,75. The subscripts I and I refer to the
number of traces over color indices. We label the operators appearing in the matrix
element My as Oy, etc. The arguments of the previous section apply to the
lattice transcriptions of the individual matrix elements such as My ;. If one ignores
the chiral logarithms, each of these matrix elements was shown to vanish as m3.
The calculation of the chiral logs is standard [41], and we give only an overview.
One begins with the chiral Lagrangian for the appropriate number of flavors. For
example, if one is interested in the quenched logs there are four flavors: s, d, s’ and
d'. Then one finds the chiral operators which transform under the chiral symmetry
as Oy, etc. This fixes the form of the operators, but not their magnitudes. Finally,
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Figure 3.9: Quark diagrams giving chiral logs in Mg, My and M4.

one calculates the loop diagrams and extracts the chiral logs. The diagrams which
contribute to Mg, My, etc. are shown in Fig. 3.9. Each quark-antiquark pair
represents a pseudo-Goldstone boson. Given the definition of the B-parameters,
one also needs to know the chiral logs in f7.

An important simplification is that the diagrams of Fig. 3.9a and 3.9b, which
involve only one of the external kaon legs, do not contribute to the B-parameters.
This is because they give the same multiplicative correction to the matrix elements
as the diagrams of Fig. 3.8 give to f#. Chiral logs in Br, By and By thus come
only from diagrams of the type shown in Fig. 3.9c. Since these diagrams do not
contain an internal quark loop, the logs are the same in full and quenched QCD.
(Strictly speaking, this is only true for m; = my, as discussed below.) This result
is important for two reasons. First, we see that quenched B-parameters do contain
chiral logs, and so we can test the calculation by checking for their presence. Second,
the B-parameters should suffer from smaller systematic errors, when calculated in
the quenched approximation, than quantities which have different logs in quenched
and full QCD, e.g. fx/fx-

For simplicity, we present the results for ms = my. For Bx we have [41]

2
My

J&

By = BY (1 _ %/ka(k) + /kG(k)2 + O(m;,.)) , (3.112)
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where G = 1/(k* + m?) is the kaon propagator, and [, = [d*k/(27)*. If we cut off
the integrals at |k| = A, we find

BK = B?{(l + 3LK + O(m%)) : (3'113)

Terms proportional to A% coming from quadratic divergences have been absorbed
into BY. In the matrix element M, the chiral log is proportional to m% In(mg),
which is a correction to the leading m3 behavior. Numerically, the correction is
significant, roughly a 35% correction if A = m,,.
For By the result is
BY.

2
By =8 — b= bty | Gk + (15B% = ba) Lic + O(m) (3.114)
K

where p = m3%:/(mq+ m;), which tends to a constant in the chiral limit. The result
for By is identical, except that the constants b; flip sign, so that we recover Eq.
3.113 upon adding By and Bj. The most important feature of Eq. 3.114 is that
the chiral log in the by term (1672 [, G(k)* = —In(m3) + ...) is not multiplied
by m?, and thus diverges in the chiral limit. The matrix element My does not
diverge, behaving as m3 In(mg), and so vanishing in the chiral limit. Nevertheless,
the non-analytic corrections dominate the analytic terms for small mg.

The source of the enhanced chiral logs is the following. In Fig. 3.9c the kaons
produced by the four-fermion operator have the flavor composition sd and s'd, i.e.
they are produced with the wrong flavor to match onto the external kaons. The
four kaon vertex reorganizes the flavors into sd and s'd . This means that the kaons
in the loop are being produced by the Fierz rearranged operator. In the notation
of section 3.4, we have 2V — A —V 4+ 2(S — P) and —24 — A -V = 2(5 - P).
(Recall that the operator in By is —A in this notation.) The important point is
that the Fierzed operators include P, i.e. (3v5d')(53'vsd). The matrix elements of
this operator are enhanced by p*/m3 over those of ¥V and A. This factor changes
the canonical chiral log, m} In(mg), into the enhanced form p*m% In(mg). The
same is true for the scalar operator 5, though its matrix elements are much smaller
numerically. The enhanced chiral logs do not appear in Bg because V — A does not
contain S or P in its Fierz transform.

The analysis of lattice Ward identities given in the previous section can presum-
ably be patched up to include the loop effects which give rise to the chiral logs.
This should be possible because the lattice Ward identities are exact results, and
are of the same form as the continuum Ward identities which underpin the use of
the chiral Lagrangian. What needs to be changed are the parameterizations of the
correlators.

The enhanced chiral log in By does not multiply the lowest order term, unlike
the chiral log in Bg. Instead, the constant by in Eq. 3.114 is given by

8
Mp=Ms = b [’ 1+ 0(m})] (3.115)
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Mp = (B|5 )55 + Forsdlsirsda] K0) (3.116)
Mg = (]TO/HEQdQ][Ebdb] + [8Ld}] [Bpd,] | K°) . (3.117)

The normalization is chosen so that b = 1 in vacuum saturation approximation,
which we expect to give the right sign and correct order of magnitude. Since, for
small mg, [, G(k)* ~ In(A/mg) > 0, the divergent part of By is negative. As
discussed in Chapter 8, numerical results do see a negative divergence in By (and a
corresponding positive divergence in B4) with the divergence canceling in Bx (Ref.
[40]).

It turns out to be difficult to extract the coefficient of the logarithm from fits
to the B-parameters. For By, the range of mg is too small, and does not extend
to small enough values, so one cannot distinguish L from m% and m3% terms. For
By and By, a log term is needed, but its coefficient is poorly determined. A much
better way of picking out the chiral log is to use the associated finite volume effects.
This can be done using the methods of Ref. [42], as we now describe.

The basic loop integral can be rewritten

d*k
Gk E/ CEak) = Ga(z=0) 3.118
LGty = [ 556 = Gal=0) (3.118)
where (G5 () is the configuration space kaon propagator smeared with a function of
range 1/A. In a finite box of size L, with periodic boundary conditions, the kaon
propagator can be expanded in a sum over image terms involving the infinite volume
propagator

GE(0) = GA(0) 4+ GA(L,0,0,0) + GA(0,L,0,0) + ... 4+ GA(L, L,0,0) + ... (3.119)

Since G(L) ~ exp(—mgL) for mg L >> 1, the expansion converges rapidly, and we
need only keep the terms from the nearest images. Furthermore, the typical box is
much longer in the time direction than in the spatial directions, so we need only
keep the 6 adjacent spatial images. If L >> 1/A (which is true in practice) we can
drop the smearing function for the image propagators, so that

/kG(k) ~ Gia(2=0) + 6G(L,0,0,0) . (3.120)

We have used the lattice rotational symmetry to collect terms.
To evaluate the image propagator we use

G(L,0,0,0) = /OOdodo(Qa)SJL(Qa)e—Sae—am?« (3.121)
0
o 1 —L?/40 —am?.
~ /0 das—e P oemom (3.122)

1 8rmg _,.
16,%2\/ TR wlh (3.123)
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where [7, is the L’th modified Bessel function. The first line is the exact lattice
result, the continuum limit of which is given in the second line. The third line is the
saddle point approximation to continuum integral. It is a reasonable approximation
to the lattice result, differing by 10 — 15% for present parameters [26].

We also need the loop integral involving two kaon propagators

d
2 = i T .
/kG(k) = gz /kC(k) (3.124)
~ - g (0) — GLG(L 0,0,0) (3.125)
- dmi, A dmi, B '

Again we are interested in the finite volume dependent part of this

d 1 27
—G(L,0,0,0) = —_
(£,0,0,0) 1672\ my L

- 2
dmi

e il (3.126)

This analytic form approximates the true answer to within a few percent.
Collecting these results we find

Br(L) — Bk k| d
k(L) — Br(oo) _Gmhl G(L,o,0,0)+2G(L,0,0,0)] (3.127)

B T Tk Ldmik
6 2 ,—mkL 92 4
L0 S — [1 - ] . (3.128)
(47er) mg L mg L
In present calculations mg L. = 4 — 10, so there is a large cancellation between

the two terms in the last parenthesis, which makes the analytic approximation less
reliable. This is not very important in practice, since the cancellation also reduces
the size of the correction to a level significantly smaller than the statistical errors in
present calculations [26].

The finite volume effect is much larger in By and By

—mKL

By(L) — By(co) = —(Ba(L) — Ba(co)) ~ —b; ,/nijL 65;]%)2 . (3.129)

Since the constant by is not known precisely, the magnitude of the effect should
be treated as a rough prediction. The shape of the curve as a function of myg 1is,

however, completely predicted. Testing this result provides an important check on
the ability of lattices to properly include loop effects.

To apply this result to staggered fermion calculations there is one further subtlety
that must be dealt with. As described in section 3.4, the Fierz rearrangement
of the operator affects both the spin and staggered flavor. The flavor Fierzes as
4P — S+ P+ T —V — A, so that only a sixteenth of the loops contain Goldstone
pions (which have flavor P), i.e.

1 Goldst 15 —Goldst
_ oldstone _ non oldstone . ‘1
G = G + 150 (3.130)
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Figure 3.10: Additional diagrams contributing chiral logs to Bx in the quenched approximation
for ms # my.

For the non-Goldstone part of the loop, one should use the non-Goldstone pion
masses. On present lattices all pions are degenerate within 10%, so this does not
have a large effect. More important is the fact that matrix elements and scattering
amplitudes involving non-Goldstone pions will differ from their Goldstone counter-
parts. This increases the uncertainty in the overall normalization.

We close by mentioning an unresolved question concerning quenched chiral logs.
In the quenched approximation the flavor-singlet 5’ is a pseudo-Goldstone boson,
in the sense that the diagrams which differentiate it from the flavor non-singlet
pions are absent. This has two effects. First, the quenched mass eigenstates, for
non-degenerate quarks, are 5s, dd and TWu rather than the 5’,  and 7y of QCD.
This affects the masses which enter in the loop diagrams, which in turn changes the
coefficient of the chiral logs. For example in By, for m,, = my = 0, the coefficient
of Lx in Eq. 3.113 is 10/3 in full QCD, while it is 4 in quenched QCD.

Secondly, there are additional diagrams such as those shown in Fig. 3.10. These
violate the standard power counting rules which imply that each loop comes with
an extra factor of m%. They do not contribute to fx and Bg if the quarks are
degenerate, but they do effect my and (1)¢p). These diagrams are under study
[41, 37], but remain to be fully understood.

3.7 OPEN PROBLEMS

Many of the theoretical problems involved in setting up the calculation of weak
matrix elements using staggered fermions have been understood. Numerical cal-
culations have progressed in parallel with increases in theoretical understanding.
Nevertheless, significant challenges remain. Particularly interesting is a direct cal-
culation of K — 77 decay amplitudes. Here we must face up to the problems
of extracting complex amplitudes from Euclidean calculations [43], and the related
problem of dealing with final state interactions [44]. Numerical calculations are in
their infancy.

It is also essential to continue tests of the method of extracting QCD amplitudes
with staggered fermions. To this end, some two loop calculations would be of con-
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siderable interest, for they would allow one to test whether the factors of Ny are as
harmless as claimed above.

Two loop calculations are also needed to fix the scale to be used in the 1-loop
perturbative matching, and to reduce the scheme ambiguity. Although strong argu-
ments have been made in favor of a particular choice of g* (Ref. [23]), these need to

be backed up.
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Chapter 8

KAON DECAYS WITH
STAGGERED FERMIONS

Stephen R. Sharpe
Physics Department, University of Washington, Seattle, WA 98195, USA

8.1 OVERVIEW

This chapter describes the numerical calculations of weak matrix elements using
staggered fermions. The theory behind these calculations is explained in Chapter
3. After a brief discussion of the numerical methods, we discuss results for (1)v),
the kaon B-parameter (Bk), and the real and imaginary parts of K — 7x decay
amplitude. The bulk of the discussion concerns By, the results for which are by far
the best and most comprehensive.

Nearly all present simulations use the quenched approximation, and thus suffer
from an unknown systematic error. We have argued in Chapter 3 that this error is
likely to be smaller for By than for most other quantities. Nevertheless, because
of this unknown error, we do not stress the phenomenological implications of the
results. Instead, we concentrate on the extent to which the sources of systematic
error other than quenching have been controlled. These errors are due to finite
volume, finite lattice spacing and unphysically heavy quark masses.

In Chapter 3 we explained how, in theory, the lattice axial symmetry makes it
advantageous to use staggered fermions when calculating quantities constrained by
chiral symmetry. The advantages come at the cost of requiring more complicated
operators. The overall conclusion we draw from the results of this chapter is that the
theoretical promise of staggered fermions is realized in practice. The complications
can be dealt with, and the resulting amplitudes behave as expected in the chiral
limit.
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Figure 8.1: The method of calculation of matrix elements used for calculating (a) eight and (b)
eye diagrams. The large box represents the lattice, with Euclidean time running horizontally. The
small box represents the lattice operator. The vertical dashed lines represent the wall sources.
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8.2 NUMERICAL METHODS

The most difficult aspect of calculations with staggered fermions is that the lattice
transcriptions of local continuum operators are not themselves local. In the simplest
transcription, explained in Chapter 3, bilinear operators involve quark and antiquark
fields at different positions on a 2% hypercube. Thus the quark and antiquark can
be separated by up to four gauge links. In addition, to project onto definite spin
and staggered flavor the fields must be summed over the entire hypercube, keeping
the same relative position.

The non-locality of the operators presents various problems for matrix element
calculations. In such calculations one evaluates correlators involving the weak op-
erator and a number of external particles. The most straightforward method of
calculation is to place the operator at the origin of the quark and antiquark prop-
agators. Most calculations with Wilson fermions can be done with local operators,
and for these the method requires only a single propagator calculation (at least for
eight-diagrams). With staggered fermions, on the other hand, the method requires
the calculation of 16 propagators, one for each point in the hypercube. (One can use
lattice symmetries to reduce the number of propagators for spectrum calculations,
but not for those of matrix elements of four-fermion operators.)

A related problem is that one must make the non-local operator gauge invariant.
Three possible methods are discussed in Chapter 3. The results presented here use
only the simplest method in which the configurations are fixed to Landau gauge and
the gauge links left out of the operator.

To reduce the number of propagators needed, present calculations with staggered
fermions [1, 2, 3, 4, 5, 6] use the method illustrated, for eight-diagrams, in Fig. 8.1a.
Two wall sources are placed far apart in time, and a quark-antiquark pair emanates
from each. The four propagators are joined at the four-fermion operator in the
center of the lattice. Since one calculates the propagators from the sources to all



points on the lattice, one has complete freedom to choose the form of the operator.
There is thus no difficulty in using non-local hypercube operators. Furthermore, one
can reduce the statistical errors by summing the operator over the entire timeslice,
and, in addition, over a range of timeslices far enough from both sources that only
the lightest state contributes to the matrix element.

Since antiquark propagators can be obtained with no extra work from quark
propagators, this method requires only two propagator calculations, one from each
source. The reduction in the number of calculations from sixteen to two does,
however, come at a price: the projection onto definite external states has been
lost. We are interested in the matrix elements of the operator between Goldstone
pions having zero spatial momenta,! but there is contamination from all other states
which couple to the sources. The main problem comes from other pion states, for
these have only slightly more energy than the Goldstone pion. The problem is
particularly serious for staggered fermions because there are fifteen non-Goldstone
pions which become degenerate with the Goldstone pion in the continuum limit. Also
potentially dangerous is the contamination from pions with non-zero momenta. Less
problematic is the contribution of heavier mesons such as the p; this can be reduced
to an insignificant level by keeping the operator far enough from both sources.

The contamination from unwanted pion states can be removed using a combina-
tion of wall sources [2]. In these, the source timeslice is fixed to either Coulomb or
Landau gauge, and the quark and antiquark sources are then independently summed
over the timeslice. Thus both the quark and the antiquark have zero spatial mo-
mentum, so that the particle constructed from them also has zero momentum. This
removes contamination from non-zero momentum pions. With staggered fermions,
forcing the source to have zero spatial momentum stills leaves the choice of an alter-
nating phase, corresponding to a choice of the spin and flavor of the source. It turns
out that by combining propagators from two types of wall source one can project
against all pions except the Goldstone pion. Thus, for a cost of only four propa-
gators (two from each end) one eliminates all contamination. For a more detailed
discussion of wall sources, see Ref. [2].

Lattices have a finite length in the time direction, and so one must take care that
the calculation is not contaminated by pions propagating “around the world”. Two
methods have been used to avoid this. The first uses Dirichlet boundary conditions
in time, and places the source on or near the boundary [2]. This maximizes the
number of time slices on which to calculate the matrix element, but at the price
of loosing a certain number of timeslices due to reflections off the boundary. The
method is efficient because the timeslices lost to boundary reflections are also those
in which there is contamination from p mesons.

This method is well suited to calculating ratios of matrix elements (such as the
B-parameters discussed below). It is less good at calculating the matrix elements
themselves. For example, the errors in fx are much larger than those in Bx. To
calculate matrix elements one needs to know the “strength” of the sources, i.e. the

!Throughout this section “pion” refers to all pseudoscalar mesons, including kaons and etas.
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Figure 8.2: Correlators needed to calculate kaon to vacuum amplitudes needed for subtractions.

amplitude for the wall-source to create a pion. To extract this amplitude one must
calculate the pion propagator from one wall source to the other, and the resulting
signal is relatively poor [2].

A second method is designed to alleviate this problem [6]. The lattice is doubled
in the time direction (L; — 2L;), and periodic boundary conditions used for prop-
agators on the doubled lattice. A single propagator from a wall-source now has a
forward and backward component, both propagating over the same gauge links (in
opposite directions) since the lattice is doubled. Thus the backward component can
be shifted in time by L;, and then combined with the forward component just as in
Fig. 8.1a. The work required is essentially the same as for the first method, since a
propagator on a doubled lattice takes roughly twice the computer time to calculate
as two undoubled propagators. The advantage is that there are no boundary effects,
so that the amplitude for the wall-source to create a pion can be obtained with good
accuracy. We refer to this as the “FB” method.

A variant of this method combines the forward component of a propagator from
a source at ¢ = 0 with the backward part of a propagator from a source at t =
1.5L;. This extends the distance between the sources. Since the second propagator
emanates from the center of the lattice, we refer to this as the “FC” method.

As explained in Chapter 3, kaon decay amplitudes require the calculation of eye-
diagrams in addition to eight-diagrams. The generic form of the eye-diagrams is
shown in Fig. 8.1b. The extra ingredient needed is the quark loop. What one needs
is the propagator from every lattice site to its nearby points. The present method
of choice is to use pseudofermions, as explained in Ref. [4]. These give a noisy
estimator of the propagator from all sites on the lattice to all others, the accuracy of
which diminishes rapidly as the distance of propagation increases. For pseudoscalar
and scalar operators (such as are needed in the calculation of Bs and Bg described
below) one obtains sufficiently good statistics with 24 pseudofermions per lattice.
For vector and axial operators (needed to study the Al = 1/2 rule), the signal is
poor with this many pseudofermions.
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Figure 8.3: Correlators needed for vacuum saturation and subtraction matrix elements.

As explained in Chapter 3, eye-diagrams give rise to mixing with lower dimension
operators, the contribution of which must be subtracted. This subtraction requires
the calculation of the kaon to vacuum matrix elements illustrated in Fig. 8.2. Es-
sentially what is needed is the ratio of Fig. 8.2a to that of Fig. 8.2b. The result is
then multiplied by the bilinear matrix element shown in fig. 8.3a. To repeat the cal-
culations in vacuum saturation approximation requires, in addition, the condensate
of Fig. 8.3b.

The kaon to vacuum amplitude of Fig. 8.2a is proportional to m;—my, and what
is needed is the proportionality constant. In the degenerate limit this constant can
be evaluated by replacing one of the propagators in the correlator with a “derivative
propagator”, dGG/dm. For the example of Bs and Bg discussed in Chapter 3, it is the
propagator in the loop which is replaced by a derivative. Given 7, the calculation

of dG'/dm uses
7dG(§2;n1) = —ZG(ng;n)G(n;nl) , (8.1)
m ko3

and thus requires only one extra inversion [7].
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Figure 8.4: Results for the condensate at 3 = 6, together with linear fits. Results for the intercept
are also shown, fit to b + cmg.

8.3 CHIRAL SYMMETRY BREAKING

The major reason for using staggered fermions is the existence of a continuous chiral
symmetry, similar to that of QCD. Numerical simulations show that this symmetry
is broken dynamically. With staggered fermions the condensate, (Yx) = x(1 x 1)y
(for notation see Chapter 3), is an order parameter for chiral symmetry breaking in

the massless limit. One expects, for a given lattice spacing, that

(Xx) = (Xx)o + emq + O(m?) (8:2)

where ¢ is constant. A non-zero intercept, (Xx)o, indicates that chiral symmetry is
broken. The quantities appearing in Eq. 8.2 are dimensionless, so that the relation
to the physical condensate (1)¢) is (Yx)o = Np{(¥)a® + O(a*). (The factor of
Ny = 4 appears since there are four staggered flavors propagating around the quark
loop.) The factor of a® means that the intercept (Yx)o decreases rapidly as the
lattice spacing is reduced. The slope ¢, however, is not physical (it is a quadratic
divergence cut-off by the lattice), and varies slowly with the lattice spacing. Thus
it becomes increasingly difficult to extract (Xx)o as one approaches the continuum
limit.

For finite volume the symmetry cannot be broken, and, as m, is reduced to zero,
Eq. 8.2 eventually fails [8]. In practice one uses quark masses large enough that
finite volume effects are small, and assumes a linear form for (Yx). An example
of the results is shown in Fig. 8.4 (Ref. [2]). The lightest quark mass, m, = 0.1,
corresponds roughly to 0.5m;. The finite size effects are smaller that the statistical



errors, which are themselves small. It is clear that (}x) has a non-zero intercept,
with (Xx)o = 0.033(2) on the 24? lattice. As explained in Ref. [7], with no additional
work one can also calculate Int = (\x) —md(Xx)/dm. This removes the linear term
in the expansion of the condensate [7]. Results for this quantity are also shown in
the Fig. 8.4, and confirm the non-zero intercept.

To extract the physical condensate we need to know the lattice spacing. An av-
erage value, based on comparing a number of quantities to their experimental coun-
terparts, is 1/a = 1.9 GeV. The lattice result is then (YX)phys = 0.054(4)GeV?, three
to four times larger than the continuum estimate of Ref. [9]: (wu) = 0.0144GeV? at
ascale p ~ 2GeV. Part of this discrepancy can be explained by perturbation theory,
as discussed in Chapter 3. The correction factor is ~ 1 + ¢*35/167% which is ~ 1.4
if one uses ¢? ~ 2, as suggested by Lepage and Mackenzie [10]. This reduces the
discrepancy to about a factor of two. A reasonable hypothesis is that this remaining
factor is due to the use of the quenched approximation, as explained in Ref. [2].

Surprisingly, this discrepancy does not appear to affect many other quantities.
For example, the ratios m,/fr and mproton/m, are close to their physical values
[2, 11]. In addition, the value for the strange quark mass obtained from the vector
mesons (i.e. comparing (mg+—m,)/m, to experiment) is close to that obtained
from the pseudoscalars (using mg/f;). It is very important, however, to try to
understand why the large lattice condensate does not distort hadronic properties.
Without such understanding, one does not know whether a given quenched result is
likely to be wrong by a factor of three.

One aspect of the puzzle that can be understood is the effect on quark masses.
When one uses mg/f, to fix the strange quark mass, one is, in effect, fixing the
product ms(Xx)o to its physical value [2]. Since the lattice condensate is three times
too large, the lattice quark mass must be smaller than continuum estimates by the
same factor, as is indeed true. This is directly relevant for the continuum matrix
elements of the operators Os and Og, as discussed below.



B Ny a(fm) 1/a(GeV) L L; BC Configs
57 0 0.2 1 16 32 D 30
6.0 0 0.105 1.9 16 24 P+A 40

16 40 D 14417
24 40 D 1549

6.2 0 0.08 2.5 18 42 D 27
32 48 P+4+A 12411

6.4 0 0.06 3.4 32 48 P+A 84847

5.7 2 0.1 2 16 32 D 40

Table 8.1: Parameters of simulations. Ny is the number of dynamical fermions. Lattices are
of size L3 x L;, with periodic boundary conditions (BC) on the gauge links. Fermionic BC are
periodic in space, and either Dirichlet (D), periodic (P) or antiperiodic (A) in time, as given in the
table. The numbers of configurations in independent streams are given.

8.4 DATA SAMPLE

We give a status report on the results for weak matrix elements as of March, 1992.
Numerical results are available from the set of lattices shown in Table 8.1. The
only unquenched lattices are those generated by the Columbia group, using quark
masses m, = 0.0l and m, = 0.025, roughly 0.5m, and 1.25m; respectively [12].
Discussion of the lattice generation parameters for the quenched simulations, and
of the calculation of propagators with Dirichlet boundary conditions in time, can
be found in Ref. [2], while propagators with periodic and antiperiodic boundary
conditions in time are discussed in Ref. [6].

When we present results we need to know the lattice spacing for each of these
lattices. Various estimates can be made, using, for example, the rho mass or f;
extrapolated to zero quark mass. These estimates need not agree, however, because
the calculations are done using an approximation to QQCD. For definiteness, in much
of the following we use the average of the estimates obtained using the nucleon and
rho masses, which are given in the table. Other estimates differ by up to 20% from
these values [2].

8.5 By AND RELATED MATRIX ELEMENTS

Bg, By and B4 have been discussed at length in Chapter 3. These are the best
measured matrix elements, with results good enough to study volume, quark mass
and lattice spacing dependence. The accuracy of the calculations is due to a number
of factors. First, one can write the B-parameters as ratios, for example

(KO By 4+95)da] (507, (1+5)ds] [K°)
(KO [527(1475)da] [0)(0] [S57,(L+5)dp] [K°) -

3
B =3 (8.3)
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Such ratios have smaller statistical errors than the matrix elements themselves.
Second, there are no noisy eye-diagram contributions. Third, the fact that the B-
parameters are ratios means that they can be calculated using wall sources, for one
only needs to have sources of K° and K9 mesons, but one does not need to know
their strengths, since these cancel in the ratio. Wall sources have various advantages,
as discussed in section 8.2.

To make use of the lattice results we must convert them to a continuum renormal-
ization scheme. This involves two steps, which we discuss for the phenomenologically
interesting quantity Bg. First we must calculate the perturbative Z—factors, i.e.
match the lattice and continuum operators. The calculation is explained in Chapter
3, and yields the result that the corrections are small, ~ 1 —2%. They are, however,
uncertain as it is not completely clear which value of the coupling constant ¢g? should
be used [10]. Because of this, we simply omit the perturbative corrections from the
results presented here.

The second step is slightly more involved. Although By is dimensionless, it de-
pends on the lattice spacing a through its non-zero anomalous dimension. At one
loop, in the quenched approximation, the dependence is Br o ¢%? o |Ina|=%/°.
Thus the combination Brg~*?, or a quantity proportional to this, is scale invari-
ant. (In the full theory with four active flavors the anomalous dimension differs
slightly and the invariant quantity is Bxg~'?/2%.) It is this invariant quantity that
we are ultimately interested in calculating, since the CP-violating parameter € is
proportional to it. In addition, it must be used when comparing results at different
lattice spacings, and when comparing to continuum estimates of Bx. Unfortunately,
the one-loop anomalous dimension does not determine which value of ¢ to use, and
this introduces some uncertainty in the comparisons. Possible choices are the bare
lattice coupling (defined by g*> = 6//3), and the coupling in a continuum scheme such
as MS. Arguments for the latter choice (with a scale ~ 7/a) are given in Ref. [10].
The choice is important, since g*(MS) is roughly twice the bare lattice value.

What we do here is the following. When comparing results at different lattice
spacings at a qualitative level we simply ignore the ¢=4/?, since for our range of 3
it varies by only ~ 2%. In quantitative comparisons we use Bxg~%? with ¢ being
the bare lattice coupling. This probably underestimates the dependence on lattice
spacing, but has the advantage of being entirely defined in terms of lattice quantities.
In effect, we renormalize all results back to g = 1, i.e. to f = 6. Finally, to compare
lattice and continuum estimates we use BK = BKas(,u)_G/%, which is the standard
normalization used in the continuum. To be precise, we first use the bare lattice
coupling to renormalize the results back to 5 = 6, and then, following Ref. [13],
calculate By using o, (ff = 6)_6/25 = 1.34. This is the value obtained in the M S
scheme, with A = 200 MeV and the scale g = 0.92/a, with a given in Table 8.1.
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Figure 8.5: Results for B—parameters on L = 16 lattices. Quenched results at 3 = 6 from
Ref. [1], unquenched from Ref. [5]. The kaon masses have been converted to physical units using
a~! =2 GeV for both lattices.

8.5.1 The Effect of Quenching

Results from quenched and unquenched simulations on 16° lattices are shown in Fig.
8.5. The valence quark masses are m, = 0.01, 0.02 and 0.03 in lattice units, which
roughly correspond to mg/2, ms and 1.5m;, respectively. The dynamical mass in
the full QCD simulations is m, = 0.01, so that only the lightest mass point has the
same dynamical and valence quark masses.

The figure shows that the effect of dynamical fermions with m, = m;/2 is small.
This is also true of the results with dynamical mass m, = .025 &~ 1.25m; [5]. Indeed,
with the accuracy of present calculations, it is difficult to distinguish between the
quenched and dynamical lattices using either By or the spectrum. There is a small
difference between quenched and full QCD results for By and By, but this could be
due to an incorrect choice of lattice spacing for one or other of the theories.

It is not clear how to interpret the apparent unimportance of dynamical fermions.
On the one hand it could indicate that quenched By is a good approximation to that
in the full theory. This would be consistent with the fact that the chiral logarithms
are the same. On the other hand, one does not expect large effects (other than
changes in the overall scale) until the dynamical quark mass is considerably smaller
than mg/2. Clearly what is needed is results at smaller dynamical quark masses.
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Figure 8.6: Finite volume effects in By [3].

8.5.2 Finite Volume Dependence and Chiral Logarithms

For the remainder of this section we concentrate on quenched calculations of B
parameters, with the aim of showing the extent to which systematic errors are under
control. As explained in Chapter 3, By and B4 are predicted to diverge as & In(mg),
respectively, due to the contributions of chiral loops. The divergence should cancel in
Bg = By + By, which is expected to have a finite chiral limit. Figure 8.5 shows that
these expectations are qualitatively correct. The quantitative agreement is, however,
less convincing [3]. Although By and By fit reasonably well to the expected form
c1In(mg) + e2 + cam3c + cam,, the coefficients are large and poorly determined, and
the truncation in the series is not justified. A fit to the simple form c¢o/m% + ¢ is
actually better. A power divergence is not expected, however, and, if present, would
indicate a failure of the theoretical analysis explained in Chapter 3. Fortunately, as
we discuss shortly, there is better evidence for the existence of the chiral logarithm
from the finite volume dependence. If the case for presence of chiral logarithms is
to be completely convincing, however, results at smaller quark masses are required,
for these will be able to distinguish between the two fits.

The evidence for the existence of chiral logarithms is shown in Fig. 8.6. As
discussed in Chapter 3, the chiral logs give rise to finite volume effects in By and By,
the form of which can be predicted analytically. This has been tested at = 6 using
the lattices with L = 16 and 24. It turns out that L = 24 is indistinguishable from
infinite volume with the present errors. Fig. 8.6 shows the difference in By between
the two lattices together with the analytic form. The shape is completely predicted,

11
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Figure 8.7: Bk at 8 =6, using a=! = 2 GeV. 16% x 40 and 243 x 40 results from Ref. [1], the
remaining points from Ref. [14]. Some points are offset for clarity.

and is in good agreement with the results. The overall size of the effect is predicted
only roughly, but agrees in sign and order of magnitude with expectations. This is
a good example of the use of chiral logarithms as a diagnostic tool in calculations.

The analysis also predicts both the magnitude and shape of the finite volume
effects in Bx. They turn out to be small, about a ~ 0.5% difference between L = 16
and L = 24 at the lightest kaon mass. As shown in Fig. 8.7, this is too small
to be observed with present errors, and, indeed, there is no significant difference
between the results from L = 16 and L = 24 lattices. In turn this means that, at
3 = 6, a lattice of size L = 16 is large enough to calculate Bx to better than 1% for
mg > ms/2. Thus, at 3 = 6.4, where the lattice spacing is half that at 3 = 6, the
lattices of size L = 32 should be large enough.

The figure shows that Bx has a smooth chiral limit, with no indication of a diver-
gence at small mg. This is expected with staggered fermions because of the lattice
axial symmetry. The data are not good enough, however, to differentiate between
analytic terms of the form a + Sm% + ymj, and chiral logarithms proportional to
m¥ Inmg. Thus the prediction for the coefficient of the chiral logarithms discussed
in Chapter 3 cannot yet be tested. This test is not crucial, however, because one
does not need to extrapolate to extract the physical Bg. Since the lightest lattice

kaon mass is close to the physical quark mass, one simply reads off Bj((m%bys).

12
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Figure 8.8: Bg for various 3, with mg converted to physical units using a~! from Table 8.1.

8.5.3 Lattice Spacing Dependence

Also shown in Fig. 8.7 are preliminary data from 16® x 24 lattices [14]. These are
chosen to have a physical size close to that of the 32% x 48 lattices at 3 = 6.4. They
serve as a test bed for the new methods employed on the the latter lattices, and on
322 x 48 lattices at 3 = 6.2. For example, the new methods use wall sources in Landau
gauge, as compared to the Coulomb gauge sources of the earlier calculations.? The
fact that the two sets of results (labeled FB and FC in the figure) are consistent
with each other and with the older results engenders confidence in the new methods.

The results for Bx from all values of 3 are collected in Fig. 8.8. For 3 = 6, only
the L = 24 results are shown. These and the results at 3 = 6.2 on the 18% x 42
lattices are from Ref. [1]. The results at 3 = 6.2 and 6.4 from the 32° x 48 lattices
are preliminary [14], and are the average of the results obtained from the FB and
FC methods. At 5 = 5.7 the results for the heavier quark masses are also new [14],
while those at the lighter quark masses are from a reanalysis of the data presented
in Ref. [1]. The original analysis contained an error.

There is a clear trend visible from the figure: By falls with increasing 3, which
corresponds to decreasing lattice spacing. The evidence for this trend is strengthened
by the new results at 7 = 6.2. These have smaller errors than the old results on
L = 18 lattices, and give a lower estimate for By (mp), although the two sets of
data are consistent within errors.

The trend is illustrated more clearly in Fig. 8.9. This shows the scale invariant

2For a discussion of the effect of this gauge choice see Ref. [2].
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Figure 8.9: Scaling behavior of By g~*/° using a~' from Table 8.1.

combination Bxg~*?, evaluated at the physical kaon mass, plotted versus lattice
spacing. This quantity should approach its continuum value with corrections sup-
pressed by powers of a. To extract the continuum value we need to know whether
the dependence on a is linear or quadratic. As discussed in Chapter 3, the correc-
tions from the staggered fermion action are most likely of O(a?), while the operators
whose matrix elements we are calculating have, in general, corrections of O(a). For
the operators we use, however, the O(a) terms vanish at tree level, and thus are
suppressed by at least one power of a;. Thus it is unclear whether the dominant
correction should be linear or quadratic in @, or some combination thereof.

To investigate this, we make linear and quadratic fits to the first three points,
i.e. we fit to

Bfﬂ'g_él/g = Bcont(1 —I_ (aA’rL>n) 3 n = 17 2 . (84)

We do not include the point at 3 = 5.7, since the correction there is so large (80-
100%) that it makes no sense to truncate the series in a. The fits are shown in the
figure. The quadratic fit is slightly better (x* = 0.5 vs. x* = 1.2), but both fits are
reasonable. The fits give Ay = 1.1 GeV and Ay = 1.0 GeV. Clearly, present data
are not good enough to decide on the form of the dependence on a. This is a major
source of uncertainty in Bg.

We collect the results from Fig. 8.9 in Table 8.2. We include the values of the
continuum quantity BK. The results for BK are lower than previous estimates [1]
because of the rapid dependence on a. This reduction is of considerable phenomeno-
logical significance [13]. This is particularly true if it indicates that there are large
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# a(fm) Size Configs Bg(mg) BK(mK)g_‘l/g By

5.7 0.2 163 x 32 30 0.88(1) 0.87(1) 1.20(1)
6.0 0.105 242 x 40 15 0.70(1) 0.70(1) 0.96(2)
6.2 0.08 32%x48 12411  0.62(1) 0.63(1) 0.86(2)
6.4 0.059 323 x48 848+7 0.60(3) 0.61(3) 0.84(4)
00 0 Quadratic 0.54(2) 0.75(3)
o) 0 Linear 0.44(4) 0.61(5)

Table 8.2: Quenched results for By evaluated at the physical kaon mass.

O(a) effects in all matrix elements, for then extracting continuum values will require
smaller lattice spacings (and consequently larger lattices) than previously expected.
Thus it is important to discuss possible sources of error. These include:

1. The results at 5 = 6.2 and 6.4 are preliminary, and so the errors are not
completely trustworthy.

2. The quark and antiquark in the lattice kaon are almost degenerate, unlike those
in the physical kaon. We discuss this effect below, and find that it appears to
increase Br(my) by about 3%. We have included this factor in the values of
By given in Table 8.2. This enhancement factor is, however, quite uncertain.

3. When calculating Bxg~%?, one must choose whether to use the bare lattice
value of ¢2, or a continuum value such as that in the M S scheme. The latter
is about a factor of two larger [10]. As discussed above, we use the bare lattice
value for the results presented in the figures and the table. With the boosted
g2 the extrapolated results for By increase to 0.78(3) and 0.66(6) for quadratic
and linear fits, respectively. These numbers include the 3% increase due to
non-degenerate quarks, and thus can be directly compared to those in Table
8.2. There is a few percent increase.

4. The use of Landau gauge operators. As explained in Chapter 3, these are
defined by first fixing to Landau gauge, and then removing the gauge links
from the non-local operators. This is a well defined prescription in perturbation
theory, but non-perturbatively there are Gribov copies, so the prescription is
ambiguous. In practice, one simply defines “Landau gauge” as the result of
using a particular algorithm for a certain number of iterations. Since the
operators only extend over a hypercube, we expect that any problem from
Gribov copies should vanish as a power of the lattice spacing, and should
not influence the continuum limit. It may, however, increase the size of O(a)
corrections. Indeed the values for Ay, are twice as large as those obtained
from a study of flavor symmetry restoration [14].

Another problem of Landau gauge is that its spectrum contains unphysical
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states. For example, there may be quark and gluon states in addition to
hadrons. In the calculations which use Landau gauge wall sources (those at
f =6.2 and f = 6.4 in Fig. 8.9), it is, in principle, possible that the matrix
element being measured is contaminated by unphysical contributions. An
uncorrelated quark—antiquark pair is likely to be the unphysical state with
smallest energy which can contribute. In practice, however, it is found that
the energy of this pair is close to the rho-meson mass, and far exceeds the pion
mass [15]. Thus the contamination, if present, is exponentially suppressed.

The uncertainty due to gauge fixing is the least well understood, and requires
further study. The calculation should be repeated using gauge invariant operators.

Another way of improving the reliability of the lattice results is to use smeared
operators in which the parts proportional to a are suppressed by an additional power
of a;. As discussed in Chapter 3, it is relatively simple to construct such operators.
Calculations using these operators are underway [14].

8.5.4 Quark Mass Dependence

We end this subsection by discussing the following issue: the quarks comprising the
lattice kaons have masses much closer to each other than those of the physical kaon.
A useful measure of the quark mass difference is § = (ms; — my)?*/(ms + mg)?. This
is nearly unity for physical kaons, while ranging from zero (degenerate quarks) to
0.25 for the lattice kaons. To obtain the physical result we have to extrapolate in
0. To aid in this extrapolation, we recall the discussion of the chiral behavior of By
given in Chapter 3. Defining y = m7. /(47 f)?, the result is

By = Bo[l + by + cys — (3 + §)yIny] (8.5)

where b and ¢ are unknown constants [16]. The last term is the chiral logarithm, the
expression for which is an approximation valid for 6 < 1, and reasonably accurate
for 6 ~ 1. As explained in Chapter 3, there are unresolved problems due to loops
of flavor singlet pions in the quenched theory, which may lead to additional terms
proportional to . Finally we note that in the full theory the expression is the same,
except that (3+6) — (3 +6/3).

The best test of the quark mass dependence comes from the results at § = 6
on L = 24 lattices. The available quark masses are 0.01,0.02,0.03, which we label
1,2,3 respectively. The quark masses are then written as [mgms,m/m’.], where
the primes distinguish the masses in one kaon from those in the other. Thus, for
example, [13,13] means that my = m/ = 0.01 and my; = m, = 0.03. The results
are shown in Fig. 8.10. The issue is whether [11, 11], [22,22], and [33, 33] lie on the
same line as [12,12], [13,13] and [23,23]. In addition, there are two points, [11, 13]
and [11,33], for which the two kaons are not degenerate, so that the weak operator
inserts momentum. The chiral behavior of Eq. 8.5 still applies, with m?% replaced
by mx:mg in y, except that there are additional terms proportional to m%, — m3%.
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Figure 8.10: Bg for various combinations of quark masses [6].

The results show that the terms in Eq. 8.5 dependent on y alone give the
dominant non-leading chiral correction. There is some indication, however, of an
increase in By with §, though it is as yet of marginal significance. To give an idea
of the possible magnitude of this effect, we take seriously the difference of ~ 0.01
between [22,22] (6 = 0) and [13,13] (6 = 0.25). Linearly extrapolating to the
physical value § = 1, Bk increases by ~ 0.04, roughly a 5% increase. This is for
a lattice kaon somewhat heavier than the physical kaon. According to Eq. 8.5 the
effect is roughly proportional to yé oc m3-6, and so will be smaller for the physical
kaon. Using ™! = 1.9 GeV, the reduction is by a factor of 1.7, so that the increase
in By is roughly 3% for the physical kaon. This number is illustrative only, but
it shows that the issue deserves further study. The conclusion of Ref. [1] that the
effect on By of extrapolating to 6 = 1 was less than 1% was over-optimistic.

8.6 K —mm AMPLITUDES

We are interested in both the CP-invariant parts (which are the real parts in our con-
vention) and the CP-violating imaginary parts of the X' — 7x amplitudes. The real
parts exhibit the puzzling Al = 1/2 rule, Ao/ A; = 22, where Aj is the amplitude
for kaon decays to pions of isospin I. The part of the effective weak Hamiltonian
responsible for this decay is completely known, and shows a mild enhancement of A
over Ay, but the bulk of the enhancement must be due to QCD effects. Establishing
that this is indeed so is an important challenge for lattice calculations.

The imaginary part of the amplitude can be measured experimentally by observ-
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ing a non-zero €. The present experimental situation is confused, which allows the
exciting possibility of a prediction of €/. Here the effective weak Hamiltonian is not
completely known, due to the uncertainty in m; (the dominant contributions to ¢’
involve internal top quarks) and in the CP-violating angle 6. These uncertainties are
being steadily reduced, however, so that the accuracy of a prediction, if one could
be made, is improving.

What we must calculate are matrix elements of the form (K|O|nx), where O
is one of the four-fermion operators in the effective weak Hamiltonian. Present
calculations with staggered fermions do not attempt the direct calculation of this
amplitude, but aim to calculate its value (up to phase space factors) in the chiral
limit. As explained in Chapter 3, to do this one need only calculate (K|O|r) and
(K|0]0). It is important to realize, however, that there are likely to be large higher
order terms in the chiral expansion. The dominant such terms are probably due to
final state interactions between the pions. In model calculations these increase I = 0
amplitudes by as much as a factor of 2, and reduce I = 2 similarly [17]. Nevertheless,
a calculation of the amplitudes in the chiral limit would be an important first step.

8.6.1 CP Violating Amplitudes

The calculation of the imaginary parts of the amplitudes is more advanced than that
of the real parts. A large contribution comes from the “strong-penguin” operators

Os = =2 > Sa(l=7s5)q G(1+75)da , (8.6)
g=u,d,s

Os = =2 Y Sa(l=75)qa G(1+75)ds (8.7)
g=u,d,s

These have been written in Fierz rearranged form, for the dominant contractions
are those involving scalar and pseudoscalar bilinears. The matrix elements of Og
are discussed at length in Chapter 3, and the discussion can be taken over without
change to Os. The upshot is that one has to calculate eight-diagrams, eye-diagrams
and the diagrams needed for subtractions. The general form of the on-shell matrix
elements is

<I(|O576|7T> =a — 57/1—7”721— - B}Xm% +ymigm. + O(m}i— In mK) + O(m}i—) . (8'8)

The primes indicate that the coefficients differ slightly from those used in Chapter
3, in that they do not depend on the quark masses. The result of Chapter 3 is
that all the coefficients are non-zero for the eight and eye diagrams separately, so
that neither diagram vanishes in the chiral limit. When one adds these diagrams,
however, the o' and 3/ terms vanish, so that the sum goes to zero in the chiral limit.
The subtraction term by itself also has only 3% and v terms non-zero. When added
to the sum of eights and eyes, however, the 3} term vanishes. The total amplitude,
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Figure 8.11: Matrix elements of Qg for L = 24, 3 = 6 lattices, using a=! = 2 GeV [5]. The
eights and eyes are fit to a form b/m% + ¢, while the subtractions and total are fit to b + cm%.

therefore, contains only the term proportional to mgm,. As shown in Chapter 3,
its coefficient 7 is related in a known way to the chiral limit of (K |O|x7).?

These cancellations are clear in Fig. 8.11, which shows the matrix element di-
vided by m3. f& [5]. If o # 0, the result should diverge like 1/m%. As expected,
this it true for both eights and eyes. Both the subtraction and the total should not
diverge, and the results are consistent with this expectation. Because the calculation
is done with all quarks degenerate, so that my = m,, it is not possible to distinguish

', By and v terms. Thus we do not expect the results for the subtraction and total
matrix element to look different in shape. We do, however, expect there to be a
significant numerical cancellation, since the subtraction is an unphysical, quadrati-
cally divergent quantity, whereas the total amplitude is physical. This expectation
is borne out by the results: the cancellation among the three contributions reduces
the matrix element by about an order of magnitude.

Figure 8.11 does not demonstrate convincingly that the total matrix element has
the correct chiral behavior. This is partly because the quark masses are relatively
large (ms/2 < m, < 3ms/2), so that higher order terms may be significant. These
terms are reduced in importance by considering ratios of matrix elements. One can
calculate the matrix elements of Os and Og in lattice vacuum saturation approxima-

3Strictly speaking, this has only been fully demonstrated for gauge invariant operators, and not
for Landau gauge operators. This hardly affects the results for Bs and Bgs given below, since the
dominant contribution is from gauge invariant operators. It might have some effect on the results
for Ag, but, as will be seen, these results are not statistically significant.
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Figure 8.12: Bs and Bs at 8 = 6 on two lattice sizes, using a=! = 2 GeV [6].

tion [18, 19, 20]. Taking the ratio of the matrix elements to their respective values in
vacuum saturation approximation defines Bs and Bg. These B-parameters should
tend to a constant in the chiral limit. The results are displayed in Fig. 8.12, and
indeed show a smoother chiral limit than the matrix elements themselves. The re-
sults show some finite volume dependence, although improved statistics are needed
to establish this convincingly. We conclude that the subtraction method works for
staggered fermions, and that Bs; and Bg are both close to unity in the chiral limit.

It is important to distinguish the two types of prediction made by the vacuum
saturation approximation: (1) the overall magnitude of the matrix elements, e.g.
Bs = 1; and (2) the ratios of matrix elements with different color index contractions,
e.g. Bs = Bg. If the latter relation holds, then the matrix element of Og is three
times that of Os, which is the expectation based upon the color Fierz factor and
factorization. Large N, arguments suggest that the second type of prediction should
be less reliable than the first [21]. Instead, the results show that the latter predictions
are more accurate. This presents an interesting challenge to large N, calculations.
The fact that vacuum saturation is a better approximation for Bs ¢ than for Bx may
well be due to the complete failure of the approximation for the two parts of By,
i.e. By and By4. The predictions By = 0 and B4 = 1 fail because of the enhanced
chiral logarithms (discussed in Chapter 3). There are no such logarithms for the
components of Bs or Bg.

The most reasonable way of using these results in phenomenological studies of ¢’
is to take the lattice Bs and Bg and multiply them by the matrix elements evaluated
in continuum vacuum saturation approximation [22]. This is the approach used in
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Figure 8.13: Results for Ag/As at 3 = 6 using a=! = 2 GeV. The 243 results come from the
sample of 15 lattices, except at the highest mass where there are also results from the independent
sample of 9 lattices [6].

various recent analyses, for example that of Ref. [13]. It has three advantages over
a direct lattice calculation of the matrix elements: (1) the uncertainty in the lattice
spacing only enters through the anomalous dimensions of the operators; (2) the
matrix element in vacuum saturation approximation turn out to be proportional to
1/ms [22], and, since the lattice value for m; in the quenched approximation differs
substantially from the continuum value, it is better to use the continuum myg; (3)
the perturbative corrections are large (see Chapter 3) but substantially cancel in the
B-parameters. In fact, the perturbative corrections are not included in the results
of Fig. 8.12. The main disadvantage of this approach is that the higher order chiral
effects (e.g. final state interactions) are not included, for these do not appear in the
vacuum saturation estimate of K — w7 amplitudes.

8.6.2 CP Conserving Amplitudes

We close this chapter with a brief summary of the status of the calculation of the
real parts of the kaon decay amplitudes. As for the imaginary parts, present cal-
culations only attempt to extract the value of these amplitudes in the chiral limit
using (K|O|x) and (K|O|0). The real part of Ay requires only eight diagrams (the
calculation is essentially the same as for Bg), and is known with small errors. To
calculate Ag, however, requires eye diagrams and subtractions. The bilinears ap-
pearing in the operators are vectors and axial-vectors, and it turns out that the
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signal for these is much worse than for scalar and pseudoscalar bilinears which dom-
inate Bs and Bg. The collected results are shown in Fig. 8.13 (Ref. [6]). There
appears to be a significant finite volume effect at the highest quark masses, but the
disagreement between the two independent L = 24 calculations suggests that the
statistical errors may have been underestimated. It is clear that to extract a reliable
chiral limit much improved statistics are needed.

One tentative conclusion that can be drawn from these results is that A/ A, is
not large in the chiral limit.* Tt seems unlikely that the result will exceed Ay/A; =
10. If so, then the experimental value of &~ 22 can only be reached if there are large
higher order chiral corrections to K — w7 amplitudes.

A possible source of such corrections is the final state interactions between the
two pions. This motivates a study of 77 interactions, as a preliminary step towards
the calculation of the full K — n7 amplitude. The calculation has been done for
the I = 2 channel, which involves quark or antiquark exchange only [23, 24, 25].
The results for the scattering amplitude at threshold are in good agreement with
the current algebra predictions of Weinberg. It will be interesting to repeat the
calculation for the more challenging I = 0 channel, for which one must include
quark annihilation.
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