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Abstract

We have investigated the nonlinear effects of the
SSC~CDR clustered lattice, 1In this note, we will give
a brief theoretical discussion and an overview of some
of our results using program HARMON. Tune diagrams
for the structure resonances of the SSC are also
included.

I. Introduction

We have investigated the nonlinear effects with
the emphasis on nonlinear resonances [1~3]. 1In this
paper we present some of our findings (e.g., the struc-~
ture resonances; stop bandwidths, etc.) for the
SSC~CDR clustered lattice using program HARMON [4].
This program is based on "finding the adverse effects
of a particular quadrupole-sextupole configuration and
then adjusting the sextupole strengths to minimize
these effects". The functions to be minimized are
chromatic effects (variation of particle motion with
respect to the variation in particle momentums) and
non-chromatic effects due to presence of nonlinear
elements (chromaticity correction sextupoles). In
section II we discuss the general treatment of the
nonlinear effects following Guignard [5] and Donald
[4]. In section III using program HARMON the non~
linear effects of the SSC~CDR clustered lattice is
analyzed and tabulated. These as well as higher order
resonances are discussed in references [1 and 6] using
program NONLIN (since HARMON is not equipped to do
s0).

II. Theory

Perturbation theory no longer holds when the
system is operating near a resonance. Although, an
approximate invariant can be found for system near a
single resonance if the contribution from the other
resonances are small. The perturbing part of the
Hamiltonian near a given resonance can be expressed
as:

2 31
H = EI ely + ) Vilx + R cosyy (1)

k=1

where the bandwidth e = nyvy + nyvz; = p; Iy and Iz are
the action (proportional to the square root of the
emittance (Ey and Ez) and ¢ is the conjugate phase.

R is the resonance strength; Vi are the stabilizing
coefficients; s is the distance along the orbit (the
time variable of the Hamiltonian); vy, vz are the beta-
tron tunes; ny, n; and p define a given resonance.

Eq. (1) is an approximate invariant as long as the
contribution of the other resonances are small in the
Hamiltonian.

Following Guignard [5], dynamic properties can be
found from invariant of the motion H. The stop band-
widths (Ae) are defined to be the smallest bandwidth
such that the action in Eq. (1) is still bounded.

This can be done by first considering the fixed points
of Eq. (3) which are defined to be the points at which
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there is no motion. These fixed points are the
solutions to the following equations (note Iz can be
treated as a constant since it is also an invariant orf
the motion).

a1 -
0~ = %%x = A sinyy (3)
0 =4  2H
ds 3Ty (4)
.g—‘le\f Z (-;4-1) kaJlt/Z

k=1
+ ﬁx COS Py

Eq. (4) has many solutions, gy = nm, which leads to
two cases, cos(yy) = ¢ 1, in Eq. (3). Note that, for
the smallest positive value of Iy there is at most one
solution for each of these two cases corresponding to
stable and/or unstable fixed point(s). The nature of
these solutions are determined by the bandwidth (e)
and the stabilizing coefficients (Vy).

The stop bandwidth for these two cases can be
found by substituting cos{yy) = + 1 into Eq. (1) which
leads to the following two equations:

K
=1
G, = gﬂ ely + ) vkli + R (5)
k=1

From these four equations (for the given initial condi~
tions) can be deduced:

Gt (Ixo) G: (Ix) =0
(6)
Gi (Ix ) - Gt (Iy) =0
o

We can then obtain the extreme values of Iy and the
stop bandwidths from these equations. Eq. (6) can be
satisfied for any values of action I if e<Ae (Ae is
the stop bandwidth). The necessary distance (&e)
between the operating tunes (vy, vy) and the resonance
line [5] which must be kept to limit or avoid the

relative growth of amplitude or beating of a single
particle in a given interval

172 _

A = [(Ix/Ix ) 1]

[¢]
is as follows:

For a sum resonance

2

+ 1 ny E; + ny Ey )
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A nZ2 E; + n2 By

se2

and for difference resonance

Ae 1
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In section III, we give some of our results for
the SSC including the stop bandwidths (defined above)
using program HARMON.

III. Results for SSC-Lattice

We consider the SSC~CDR clustered lattice [8] with
operating tunes of vy = 78.265, vy = 78.280 and a peri-

HARMON ~ CDR IATTICE FOR SSC
[INITIAL EMITTANCE:

WITH BETA*=6,

EXO= EZ0 = 2.5700E-07]

FOURIER ANALYSIS. ORDER OF RESONANCE = 4

odieity 1. S =,
COSINE SINE MODULLS RANDOM DE(S)
The results of HARMON are given in the following SF 8D
Tables. For B* = 0.5 and B* = 6, Tables I and III ~2.B860E~04 ~4.8607E-05 2.9266E-04 1.6180E+01 2.9053E-09
CE(R) DQ(S) DQ(R) DQ20(S) DQ20(R)
give the orbit parameters for the SSC as we’l'l as the 1.6062E-04 7.2633E-10 4.0155E-05 1.0508E-09 5.8093E-05
sextupole strengths (SF and SD which is = B"%/Bp,
where Bp is the magnetic rigidity, % is the length of 20X + 202 = 313.
the sextupole and B" is the second derivative of the ——
field). The stop bandwidths for the resonances in the S?SD;?) SINE MODULUS RANDOM DE(S)
SSC are given in Tables II and IV for g* = 0.5 and g* ~8.6381E~04 ~7.1929E-04 1.1241E-03 6.4319E+01 5.5795E-09
= 6 respectively. Note, the columns labeled "MODULUS" DE(R) DQ(S) DQ(R) X)20(S) DQ20(R)
give the resonance strengths whereas columns labeled 3.1925E~04 1.9726E-09 1.1287E-04 2.8539E-09 1.6330E-04
as DE(S) give the stop bandwidth over the full inter=~ Q7 = 313.
val about a given resonance.
COSINE SINE MODULUS RANDOM DE(S)
These and higher order resonances are discussed in SF  SD
~1.8434E-04 -2.7677E-04 3.3254E-04 2.5612E+01 3.3012E-09
References [1 and 6] since HARMON is limited to the DE(R) DO(S) Do) DA20(8) DO20(R)
calculation of fourth order resonances. 2.5425E-04 8.2530E-10 6.3564E-05 1.1940E~09 9.1960E-05
Notation: 20X - 2% = 0.
COSINE SINE MODULUS RANDOM
HARMON symbol for tune is Q (®v), where "S" means SF  SD
systematic and "R" means random in the following -1.8668E+02 0.0000E+00 1.8668E+02 6.4319E+01
Tables.
TABLE I TABLE III
HARMON - CDR IATTICE FOR SSC WITH BETA*=6, HARMON —~ CDR IATTICE FOR SSC WITH BETA*=0.5
[INITIAL EMITTANCE: EXO= E20 = 2.5700E-07] [INITIAL EMITTANCE: EXO= EZ0 = 2.5700E-07]
TOTAL IENGTH = 82944. NSUP = 1 TOTAL LENGTH = 82944. NSUP = 1
X = 7.82650E+01 QZ = 7.82800E+01 ox = 7,82650E+01 Q2 = 7.82800E+01
BETAX. = 1.11371E+02 BETAZ = 3,31656E+02 BETAX = 1.11371E+02 BETAZ = 3.31656E+02
ETAX = 2.36230E+00 ETAX = 2.36230E+00
NORMALIZED STRENGTHS NORMALIZED STRENGTHS
i) STRENGTH o] STRENGTH
SF 5.12380E-03 SF 9. 87283E-0;
sD -8.25720E-03 sD ~-1.59109E-02
FOURTH ORDER EFFECTS OF SEXTUPOIES FOURTH ORDER EFFECTS OF SEXTUPOLES
Q SHIFT EFFECTS Q SHIFT EFFECTS
G22000 DOXDEX 190) 4 G22000 DQXDEX DX
-3.58180E+02 2.14884E~12 -7.16360E+02 -1.84105E~04 ~1.32967E4+03 1.77976E-11 -2.65934E+03 —6.83449E~04
600220 DQZDEZ 0z G00220 DQZDEZ DQZ
—-2.38812E+02 1.29191E~12 ~4.77625E+02 -1.22750E~04 ~8.86800E+02 3.88949E-11 -1.77360E+03 -4.55815E~04
G11110 DOXDEZ DQZDEX G11110 DQXDEZ DQZDEX
-2.44556E+03 1.02414E~11 -2.44556E+03 -2.44556E+03 -9.08039E+03 9,.78699E-11 -9.08039E+03 -9,08039E+03
DOX 0QZ DQX DQZ
~6.28510E-04 —6.28510E-04 -2.33366E-03 -2.33366E~03
RESONANCE EFFECTS RESONANCE EFFECTS
[G's are the 2nd order coefs.] [G's are the 2nd order coefs.]
cos SIN DE oS SIN DE
G4000,313 2,5856E-04 ~1.0971E-04 1.1549E-09 64000, 313 -2.8384E-04 -6.7087E-05 1.1993E-09
DQ DQ(20) DQ DQ(20)
6.9707E-10 1,0085E~09 7.2385E-10 1.0472E-09
cos SIN DE oS SIN DE
G0040,313 1.7267E-05 ~1.5545E-04 6.4316E-10 G0040,313 1.5723E-04 2.0873E-04 1.0745E-09
DQ DQ(20) Q DQ(20)
3.8818E-10 5.6159E-10 6.4854E-10 9.3827E-10
cos SIN DE s SIN DE
G2020,313 -2.9871E~-04 ~5.5839E-04 1.3020E-09 G2020,313 5.5679E-04 6.4937E-04 1.7587E-09
DQ DQ(20) Do DQ(20)
1.1113E~09 1.6Q78E-09 1.5011E-09 2.1717E-09
cos SIN MODULUS s SIN MODULLS
G2002, © 6.0136E+02 1.1105E+02 6,1153E+02 G2002, 0 2.2334E+03 4.1045E+02 2.2708E+03
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HARMON - CDR IATTICE FOR SSC WITH BETA*=0.5
[INITIAL EMITTANCE:

EXO= EZ0 = 2.5700E-07]

FOURTER ANALYSIS. ORDER OF RESONANCE = 4

40X = 313.
QOSINE SINE MODULUS RANDOM DE(S)
SF 8D

1.8933E-04 4.3472E-05 1.9426E-04 3.1176E+01 1.9284E-09
3.0949E-04 4.8211E-10 7.7372E-05 6.9748E-10 1.1194E-04
20X + 2QZ = 313.

DE(R) DQ(s) DQ(R) DQ20(S) DQ20(R)

COSINE

SINE MODULUS RANDOM DE(S)
5.0792E-04 3.7613E-04 6.3203E-04 1.2394E+02 3.1371E-09
DE(R) DQ(s) DQ(R) DQ20(S) DQ20(R)
6.1517E-04 1.1091E-09 2.1750E~04 1.6046E-09 3.1466E-04

407 = 313.
COSINE SINE MODULUS RANDOM DE(S)
SF SD
1.2588E-04 1.1795E-04 1.7250E-04 4.9352E+01 1.7125E-09
DE(R) DQ(s) DQ(R) DQ20(S) DQ20(R)
4.8993E~04 4.2812E~10 1.2248E-04 6.1938E-10 1.7720E-04
20X - 2QZ = O.
COSINE SINE MODULDS RANDOM
SF SD
-3.5974E+02 0.0000E+00 3.5974E+02 1.2394E+02
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