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1. Introduction

We have developed an analytical method for
investigating the nonlinear effects on the dynami­
cal systems such as circular accelerators includ­
ing the perturbation of tune; emittance growth;
Hamiltonian resonance strength; generating func­
tion resonance strengths; fixed points; Chirikov
criteria; island width, etc. We have incorporated
some of our results [1-3J into an algorithm which
we used to study the structure resonances in the
Booster [2J, RHIC, and the SSC [3J. A brief theor­
etical discussion is given in Section II. In Sec­
tion III, using program NONLIN the structure reson­
ances of the SSC CDR clustered lattice is analyzed
and some of the results are tabulated. Using the
alternate program HARMON we obtained some of the
results for the SSC (given in [4J). Comparison of
the ~esults obtained from the programs NONLIN and
HARMON is given in Reference [5J.

where a(s), b(s), c(s), ••• are the stabilizing
coefficients given in Reference [1J. From this
Hamiltonian perturbation to the betatron tunes can
be found as

Vx = va + 2axxKx + 2axzKz + ••••
x

(4)
Vz" va + 2axzKx + 2azzKz + ••••

z

Where va and va are the unperturnbed tunes and
x z

2Kx ' 2Kz are equal to the beam emittance divided
by ,.. just before the beam enters the accelerator.

Additionally, we find the emittance growth to
be

II. Theory

These estimate the upper limit that emittance grow
to as long as the tunes are far from any reson­
ances.

(5)

To stUdy the nonlinear effects when near a
resonance we isolate the resonance as we find the
fixed points of the dynamical system [that is, the
distance from resonance at which there is no
motion in a special reference frame where the
Hamiltonian is an invariant,] by defining the band­
width o-nxvx + nzvz-P that determines how far the
tunes Vx and Vz are from the resonance (defined by
the integers nx ' nz and P). Then the system will
be on a fixed point if

o .. ± 1 [Oh{KXfKz) + Oh{Kx,Kz)]
2,.. h{Kx,Kz ) nx oKx nz oKz

at actions equal to Kx and Kz , where h{Kx,Kz ) is
the Hamiltonian resonance strength.

Finally, we can determine whether a nearby
resonance Is important to the dynamics of the
system if we are on a resonance (e.g. Chirikov
Criterion). That is if the bandwidth 0 of a near­
by resonance satisfies

o»~ 12,..{n oT{~.Ki)+ nz oT{Kx.Kz)h{K K)
C V x oKx oKz x' Z

Jz DO~ and F the generating func­
a<l>z

eq. (2)), the transformed Hamilton-

Where Rk (Kx ' Kz , s) are the generating function
resresonant strengths whose magnitude shown to
what extent J x and J z deviate from the invariants
of the motion. The nand n are integers (defining

xk zk
a given resonant); Kx and Kz are the new action var­
iables and ~k is the phase.

of
With Jx DT<I>x '

tion (given by
ian become:

A circular accelerator can be described by
the following Hamiltonian (in terms of the action
angle variables):

H1 .. dx + .:!:z.. + V (Jx , Jz, <l>x' <l>z, s) (1 )
f3 x Bz

where J x ' J z are the actions; <l>x' <l>z are the
angles; Bx ' f3 z are the betatron functions and s
the length particle travels, is the "time" vari­
able of the Hamiltonian. The nonlinear effects
such as those from sextupoles, octupoles, etc. are
included in V{Jx ' Jz, <l>x' <l>z, s) of Eq. (1).

In order to study the Hamiltonian in equation
(1) we seek a canonical transformation with gener­
ating function (F) that eliminates the nonlinear
terms in V (Jx ' Jz, <l>x' <l>z, s)

1".. R
k Sin ,..

for example:

H2 D ~ +~ + a(s) Ki + b{s) KxKz + c{s) K~ + .•• (3)
Bx Bz

* Work performed under the auspices of the United
States Dept. of Energy.

(where T is the term in the Hamiltonian that
causes the perturbation of tune) then this reson­
ance can be neglected. Otherwise, to describe the
behavior of the system properly the resonance (can
not be neglected and) must be included. Detailed
treatment of the stopbandwidth [1,6J and island
widths are given in Reference [1].
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IV. sse eDR eLUSTER LATTICE

The sse has one superperiod with an operating
point (0) at Vx - 78.265 and Vz - 78.280. This
operating point is near at least 4 resonances of
up to the 4th order (see Fig. 1 and Tables);

plus Vx + 3vz = 313 and 3vx + Vz - 313 (due to
Skew terms). In addition to these resonances (2A,
7B, 9A, 13A calculated using NONLIN) there are
higher order resonances that may be important
(some of which we have deduced and can analyze
using other methods such as KAM theorem [8J and
are shown in Figs. (2-4). For example, 11th order
resonance 5 Vx + 6vz=861 (shown in Fig. 2), 12th
order resonance 8vx - 4vz=313 (shown 1n Fig. 3),
etc.

To study these resonances we have used the
sse eDR cluster lattice with only chromaticity
sextupoles [9J. We calculated the resonance
strengths; the fixed points; stop bandwidths;
island widths and Chirikov criterion. The
perturbation to tune and the emittance growth are
also calculated. Some of our results are shown in
the following Tables.

Table I gives the emittance growth and the
perturbation to the betatron tune at the operating
point of the SSC. These values were calculated
for the average beam emittance of Eo=2.49xl07~
m-rad, (corresponding to the expected beam size of
9.1 mm), which is larger than the expected beam
emittance of 9.37xl0l0~ m-rad [that we obtained

EO - ~ from the normalized emittance, EN=106~

m-rad, at injection given in SSC-Design ManualJ.
This value of initial emittance was chosen because
it was close to the estimated value of dynamic
aperture given in the SSC-Design Manual.
Additionally, the bandwidths from these resonances
(e) are calculated and some are given in Table
III.

Due to the space limitation the full result
for this lattice (e*·.5) as well as the result
obtained for the SSC-CDR clustered lattice e*-6 is
given in Reference [3].

Perturbation of tunes

9. SSC SYNCH input file; VAX Version. A. Garren.
COG; CDC version, E. D. Courant. BNL.

Table I

CDR Lattice for SSC B* - .5
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whe~e the unperturbed betatron tunes are
vxO = 78.26497 and vzO = 78.27995 with circumfer
ence = 82944.00 and periodicity = 1

Given a beam with emittances Ex = 2.4939999E-D7
and Ez = 2.4939999E-07 (~ m-rad).
the perturbed tunes become

Vx = 78.26204 and Vz = 78.27724
the emittance can grow to
Exmax = 3.5259643E-07 at the 331th element and
Ezmax = 3.4869160E-D7 at the 331th element.

The resonances are numbered as follows:

No. Resonance Strength Stop Bandwidtt:
Fix pts. Width Chirikov cr.

2A 0 vx+4 vz-313 1.7570E-14 1.1272E-Q6
5.9411E-D7 3.9343E-10 6.7660E-09

7B 2 vx-2 vz= 0 3. 3390E-l 0 5.3553E-Q3
4.8323E-Q3 7.7979E-Q8 1.2975E-Q6

9A 2 vx+2 vz=313 2.6094E-14 8.3701 E-Q7
8.3701 E-07 5.3733E-10 1.4715E-D8

13A 4 vx+O vz=3 13 1.1546E-14 7.4075E-Q7
6.2142E-Q7 2.6046E-l0 6.7162E-Q9
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Table II

Table III

CDR Lattlce ror ::;::;L; IS- •• ~
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Fig. 2 SSC-CDR Clustered Lattice 0(78.265, 78.280)

8. 28 -!-,-,'--,---;--..,....---t'---,---'-.--""-T-L--+--..l.r---l

8.28 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29 8.38
Qx

8.23

8,24

&.21

8.22

IUB

8.27

8.29

~~ SSC-CDR Clustered Lattice 0(78.265, 78.280)
All resuno nee! f rom order 12 to 12

8.26
Qy

8.25

All resonances from order 11 to 11
8. 38 --"';~------oo::""'--""""""::--~~-"--.r<r----'---'

3
1.94224E-09

6
1.43731 E-11

9
3.12842E-12

12
2.51736E-1~

15
1.69158E-H

e

0.11996
-0.03006
0.0899
0.05984

-0.00028

Resonance Numbers
2

4.83069E-12
5

4. 99578E-1 0
8

5.07310E-ll
11

1•90890E-1 0
14

5.30889E-12

Resonance

2A 4vz·313.11996
78 2vx-2vz·-o.03006
9A 2vx+2vz·313.0899

13A 4vx·313.05984
* 8vx-4vz·312.99972

1
331 2.59284E-11

4
5.27804E-09

7
4.16080E-09

10
8.33345E-10

13
1.36763E-12

Elements

The generating function resonance strength for
the resonances:

** The resonance numbers in the above Table cor
respond to the resonance numbers given in the
Hamiltonian Table (Table I).

The effect of 8vx-4vz·313 resonance also should
be considered although (since it is a differencE
resonance) its effect may not lead to instabil­
ity.

~ SSC-CDR Lattice 0(78.265, 78.280)

The resonance lines closest to the operating
tunes (see Fig. 1).

All resonances from order 4 to 4

8.38 Jr·,,,-- \\ ~I'
, C-I i

8,29 J ".''-" ~\ ~ I I 0 .~...... I
6.28 I' .'" "\ 11 I l .. ·0'9 i

, "",,\ _~ .. ·Cl I

8.27~""" :\~ I' .~~~ I

6. 26 ll--'--'~~-"""'-~- '-'.'.".,.~\ ,I ~+;~ I
Qy ---.--.. '-,.,\ . n,; I

IUS ! -~'':::~rc--. 4\)z = 313 (2A) i
I \~~~~!

8. 24 1 \. ''-, -._.~~:t_~ 3 ~'
I ,\\ ' '.

B.23 '1 "-', -~ I
, \ '-

6.22 i \ ",,", I
. \ ,-'
J 'I" :B.21 i "', I' " ...,I .,', I

8.28 !. I ! ~ i 'i
B.28 8.21 B,22 B.23 8.24 8.25 8.26 8.27 8.28 8.29 8.38

Qx
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