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and

Considering the motion over l revolutions of the particle, we
now have

w = Wo + l'" dT~2Pn (T) w(n+1)!2 (T)

X [cos</>(r)tsin</>(r). (7)

In this paper we shall fix our attention on the particle action,
Eq. (7), and treat it to first order in the perturbing functions
Pn · Accordingly the angle variable in the integral becomes the­
unperturbed phase and the action becomes the unperturbed
action. Consequently we can write for the fractional change in
the action
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Introduction

The motion of a particle in the linear lattice of the SSC is
stable, that is, the Courant-Synder!l] invariant (Wo) remains
exactly constant and the betatron phase (,p) increase by (211"1.1)
for every revolution around the circumference. However, when
magnetic field perturbations are present around the ring, this
mode of describing the motion is no longer valid. One can then
still speak of action-angle variables (W, </» which in the limit of
zero perturbation reduce to the linear betatron invariant and
the betatron phase. The change in phase (</> - ,p) is then di­
rectly related to the perturbed betatron tune, while the change
in action (W - Wo) is closely related to the idea of "smear"
or "change in the linear invariant", as employed by the Central
Design Group.l2,3] In this paper, consistent with these concepts,
we develop the theory of particle motion for field perturbations
around the machine. We confine ourselves to motion in one
plane only and treat the field perturbations to first order in
their strength. Based on the assumed random multipoles in the
sse dipole magnets, we then obtain an estimate of the "linear
aperture" of the machine.

Theory of Perturbed Motion

The Hamiltonian for the perturbed motion of a particle is

AW (21rr.d.-m- = LWJn-l)/2Jo dr2Pn (r) (cos rt sin r,
o n=l 0

(9)

H (W, </» = W + L ::n
1

w(n+l)/2 (cos </>t+ l , (1)
n=l

where the perturbation function Pn around the ring is described
as a function of the magnetic multipole normal coefficient bn ,

the unperturbed machine beta function f3, and the radius of
curvature p. Thus for the location specified by the unperturbed
phase tP, we have

or alternatively

AW l (2nvi
~ = LWJn-l)/2

LJ2
. dr x 2Pn (r) (cosrtsinr.

o n=l i=1 2nv(3- l )
(10)

Since the perturbation functions Pn (r) are periodic with pe­
riod (211"1.1), one can, after some manipulation, express this last
relationship as

Applying Hamilton's equations

8H .
8W = </>,

yields the equations of motion

8H .
-=-W
8</> '

(2)

(3)

(4)

AW L WJn-l)/2 Ln n sin (n + 1 - 2k) 1I"1.I1-- = Ck -.......;:...-----'-:----
Wo 2n- l sin (n + 1 - 2k) 11"1.1n=l k=O

X fa2WV dTPn (T) sin [In + 1 - 2k) (T - 1rV + 1rvi)] ~1l)

Here nCk is the binomial expansion coefficient.

Equation (11) is the central result of this paper. It shows
the dependence of the change in action over l revolutions on the
tune 1.1 and on the driving terms of the perturbations. These
latter are the integrals:

and
w= dW = L2Pnw(n+l)/2 (cos </>r sin</>. (5)

d,p n=l

We note, as emphasized in Eqs. (4) and (5), that the inde­
pendent variable is the betatron phase ,p of the unperturbed and
motion. The solutions of these last equations can now be put
in integral form

1> = '" +1'"dT LPn (T) w(n-')!2 (T) [cos</> (T)t+' ,
o ".=1

(6)
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Sn (n + 1- 2k) = l2wVdTPn (T)

X sin [(n + 1- 2k) (r - 11"1.1)1, (12a)

en (n + 1- 2k) = l2wV dTPn (T)

X cos [(n + 1- 2k) (r - 11"1.1)1. (12b)



Effect of Multipoles

Equation (11) is exact to first-order in the strength of the
lagnetic multipoles and it exhibits their combined effect on
le action variable. H we consider the term for n = 1, we see
le contribution of a quadrupole distribution. Thus

lor critical tune values (II values for which the denominators of
:q. (11) vanish), the fractional change in action is linear with
~volution number l, and the rate of this linear change depends
n the initial action Wo as well as on the driving terms. We
ave described such a behavior in Ref. [4]. Away from the
resonances", the action variable oscillates up and down with
~volution number and has a variation which depends on the
riving integrals, 8n and Cn.
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In the interest of simplifying the writing, we have assumed
that the perturbing quadrupole only has a "sine" distribution,
8 1 (2), though, according to Eq. (11), both sine and cosine
distributions must, in general, be taken into account. Similarly
for the sextupole term (n = 2), we write

In contrast to the quadrupole term which, as expected, is in­
dependent of the initial action variable, the sextupole (n = 2)
contribution depends on the 1/2 power of the initial action.
In addition there are now two driving integrals, depending on
the third harmonic and on the fundamental of the sextupole
distribution around the ring. For the sake of completeness we
present the general contributions for the other multipoles. For
n = 3,5, ... (odd), we have

(
DoW) _ WJn-l)/2 {Sin (n + 1) 21rlll (n~/2 n n sin (n + 1- 2k) 21rlll }
Wo n - 2n sin (n + 1) 1r1l 8n (n + 1) + ~ (Ck - Cn+1-k) sin (n + 1 _ 2k) 1r1l 8n (n + 1 - 2k) j

hile for n = 2,4,6, ... (even), we have

(
AW) W(n-1)/2 { . () n/2 ._~_ _ 0 sm n + 1 21rlll n n sm (n + 1 - 2k) 21rlll
Wo n - 2n sin (n + 1) .." Sn (n + 1) + t; (c. - Cn+l-') sin (n + 1- 2k) .." Sn (n +1- 2k) }.

(15)

(16)

(17)

Effect of Random Multipoles

We shall employ the previous development to estimate the
~ect of the random multipoles present in the SSC dipole mag­
:ts. In this case the rms driving term takes the form

(8) _ 21
/
21r (n+l}/2

n rm, - M 1/2 (bn)rm, f3AV ,
D

lere MD is the number of dipoles in the ring, f3AV is the
'erage betatron function at the operating tune and (b) is, n rm,
e expected random multipole coefficient. To obtain an upper
lund to the change in the action, we have set the value of the
ine factor" involving the number of particle turns (l) to be
ual to one. Equation (13) then yields for the effect of the
.adrupole random perturbation

3840, II = 78.27, f3AV = 168.66m, and the random errors as
given in Ref. [5]. The last column, marked amax (0.1), is
the initial amplitude of a particle (amax = VWof3max) which
results in a fractional change in the action (DoW/Wo)rm, equal
to 10%. In this calculation the maximum beta function is 332
m. It is to be noted that the "linear aperture" , defined by this
initial amplitude, is dominated by the sextupole random error.
Actually when the effects of all the random multipole errors
are considered in unison, the aperture only changes from 9.7
mm to 9.6 mm. Any attempt at increasing the aperture by
modifying the driving integrals with correction coils around the
ring would therefore initially concentrate on the third and first
harmonics of thesextupole distribution. However, the overall
success of this approach would then be limited by the other
higher magnetic multipoles.

r the higher multipoles, one can use Eqs. (15) and (16) to
rive analogous expressions.

Table I is a summary of our numerical results. To calculate
~ third column we have chosen the SSC parameters: Mv =

the case of a random sextupole distribution, Eq. (14) yields

(
DoW) _ W~/21r 3/2
Wo - 23/2 M 1/ 2 (b2 )rm, f3AV

2rm, D

X { (Sin ~..J 2 + (Sin
1
.."rt 2

(19)

(
DoW) 1r 1 (b )
~ 21/2MDI/2 Isin 21r1l1 1 rm, !JAV.o lrm,
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Ta.ble 1. Aperture for 10 '0 Change in Action

Random

(:)n
Initial

Multipole Multipole Amplitude
n (bn)rm.; [m-n] ama:l: (0.1); (m)

Quad 1 0.72 x 10-2 0.044 -

Sex 2 2.15 W~/2 (187.66) 9.7 x 10-3

Oct 3 30 Wo (34.40 X 103) 30.6 X 10-3

Dec 4 7000 W;/2 (70.35 X 106) 20.5 X 10-3

12 pole 5 105 Wt (24.21 X 109) 26.0 X 10-3

14 pole 6 2 X 107 W;/2 (25.78 X 1012) 23.9 X 10-3

16 pole 7 2 X 104 W5 (52.97 x 1015
) 20.6 X 10-3

18 pole 8 1 x 1011 W;/2 (20.90 X 1018) 22.8 X 10-3
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