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Abstracl

Stability crileria are developed for the stability of moÈions of
particles in a bucket while subjected to an acceleration voltage at small
frequency difference Av. The motion is stable if Av Þ lOv" where vs is
the phase oscíllation frequency. This is essenÈially the same criterion
as that the buckets not touch.

I. InËroduction

tr'le would like to investigate the stability of particle motion in
nearly stationary rf buckets !ühen subjected to a neighboring rf frequency.
Intuitively we surmise that the particles ín a bucket are subjected to,
prirnarily, the difference frequency of the two rf systems, and Ëhat since
the perturbing voltage appears at all phases, resonances will- appear in
the phase oscillations when Av = nv", where Av is the difference frequency,
vs is the phase oscillation frequency and n = L, 2, Clearly n = 1

corresponds to the exciËation of coherent phase oscillations, n = 2 to bunch
shape type oscilLations (or half íntegral resonance), n = 3 and higher t,o
Lhe type of resonances which determíne limits of stabiliLy of motion. I'Ie

note further that the frequency of phase oscillations decreases with ampli-
tude, so that if a stability criterion is found for small amplitude motion,
larger amplitude will be more stable, for a given frequency difference. The
PurPose of this not.e j-s to estimate the stopband wídths associated with these
resonances "
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The existence of such stability can allow the simultaneous acceleration
of many adjacent ¡runstackedttbeams in an accelerating storage ring or sl-ow

cycled synchrotron. This causes an amelioratíon of the high rf power re-
quirements normally associated with such schemes. üle note in passing only
that if beams are combined before acceleration, the required voltage is pro-
portional to the squâre of the number of bunches stacked, but íf the ttadjacent

buckàttt scheme is used, the voi-tage ís proportional to t.he first power of the
number of stacks.

11. Ilamil-tonian

H = 2rE(I,I) - ry * * cos(tr@)

v/h is
* þ cos (h@ + 2nAvt + g)

The particle revolut,ion frequency ís a function of energy f (E), and
[¿nW = j i?bl is canonically conjugate to @, the angle measured in

a frame rotating with frequency v/h. V is the voltage of the rf sysLem

near the partícLe frequency, V, is the volËage of the neighboring frequency,
and $ is an arbitrary phase. l,Ie postulate no other |taccidentalT harmonic
relationships which perturb the local I,{ domain, and assume short acceleratíng
gaPs so thaË I'voltageslr, or energy gains, are índependent of frequency applied.

III. Small Amplitude Motion
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Inl" where f(I,¡s) = v/h. Then we have, dropping small- and constånt terms,

Followíng the fundamental rotkl o., t
ian for motion of particles under two rf
particles whose revolution frequency f *

f acceleraËion schemes, the Hanilton-
freguencies, v, and ul = u * Av for

' = ffi{w").
Now expanding

__*2
Ho = 2nf ,' V * * cos h@, where l,I* = I{ - W", f.

S

)(fnis can be done by a canonícaL transformation S = @(W-l{ )
Ehe cosine term we find

H -lrf.'os

K.R. Symon and A.M. Sessler.
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frequencies of small amplitude oscillation areThen the

c

Next we

angle action

lîì-

,ll
S I I^---+ t')rf thv

2n2tt{s

perform a time independent transformation2 to' essential-ly,
variables p,y

^! 
,o ^l ;çF- sin y, I'tr'. = J ,, ,r/ iÈr^' cosY' whence

H =.1O,V 2rf I hv
S P = 0" P, so thaË

IV. The Perturbation Term
V

"r=* 
cos(hO-elt+ü).

This may be expanded to yield

Vö
"r=* i S cos(&t+r¡

n=o

p = const, { =0

Under the transformation above, Ëhis becomes

n
2n.p - sin--y cos (Àt;t + r¡

*i)

æ
':-

H,E ) V-LLI
n=o

n

h'-1 l"!\ t
nl \nu / *î)

For each power of. ,fp, there is a term sinny cos (Atlt + ,l * T)
which contains terms up to sin (ny - Ar¡L - {t + f, L

plus t.erms of lower order periodiciËy in ry. The lower Ëerms correspond t.o

lower order resonances driven by new nonlinear terms. Ïüe need, at each order,
to concentrate only on the term of híghest. periodiciËy. Each new term in
the series corresponds to the introduction of higher order resonances. trle

rI zlq'

,, The reader may verify that it is canonical.
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may consíder these resonances separately, and infer the effects due to the

introduction of the higher order term. Then we can investigate the behavior

at each nel^7 resonance, whiCh appears at Al = IalJr. ConSider the resonance Of

order n. I^le can perform a canonical transformation to a system rotalj-ng al

the resonance frequency f * n.o- via

Then, keeping

K =ll +H"nol-

only

òS
-J=lo)dt ' s

the slowly varYing terms in H1,

- Asr ^ * urn' 15å o--JPr,*ñîD" \hvi Pn

n
2

Stability limits are determined when

fixed points occur, i.e., ô- = o, i.- = o.rn

sin nv'n

p. i" of sufficient magnitude that

Then

l^. nt¿
Prr=tP costYrr=o , etc.

-11 1, -1, eËc.

sinnyr, = o when

A.tl, we need to establish a practical
value for which I,I* = o and 0 = f .

nonlinear phase stabilitY, and is a

be necessary.
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To determine a useful value of
value of pn. We choose p' to be that
This is in any case the limit of the
more stringent requirement than may
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Then ô = 2E is the fractíona1- stopband width of resonance n-n
n-2 V-

6 = r-L + . For successive resonancesn zn(n-r) I v

AADD.176

ôrrr1 1lfutÐ_
L = 2(r*1)"

Then the resonances decrease in width as 1/n.

For n = 4 the stopband width becomes ô4 = 0.8 (fu]-l- width). A

further effect, which has been ignored here, ís the effect of the terms of
lower mulriplicity in y. For n > 4 these terms cause detuning of the motíon
in such a liay as to reduce Ëhe width of the resonance.''4 ,rt' facL, for n ) 4

these resonances can usually be ígnored. Then for 
^\Þ(5-10)vs'the resonant effects can be ignored.

VI. Comparison to B_ucket Ididth
IË is interesting t.o compare the Au obtained by the resonanee question

to Ëhe Av in a natural bucket. I,le choose, Ot = h then,

Avbucket = hf"tAtr'I = Bv".

Thus the separation due to resonances is simply related to bucket widths.

VII. Conclusion
The stability críterion has been found for neighboríng buckets, depending

on the frequency separation of the rf system in terms of the phase oscilLation
frequency. In a later report it wilL be seen that if phase space areas can be

preserved in the AGS as welL as they presenËly are, adjacent bucket acceleraËion
can be used in a sËorage ring to enhance the stored beam at high energies.
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