
national accelerator laboratory 

TURTLE 

NAL-64 
2041.000 

(Trace Unlimited Rays Through Lumped Elements) 

A Computer Program For Simulating Charged 
Particle Beam Transport Systems 

David c. Carey 

December, 1971 

§ Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 



I. 

II. 

III. 

TURTLE 
(Trace Unlimited Rays Through Lumped Elements) 

A Computer Program For Simulating Charged 
Particle Beam Transport Systems 

TABLE OF CONTENTS 

Introduction • • . . . . • . • . . . . 
General Theory • . . . . . . . . . 
A. Uses and Limitations of the Matrix Approach 

B. Ray Tracing Methods . . • . . . . . • . . 

. . 

. . 
c. Theory of Ray Tracing Through Lumped Elements. 

Use of TURTLE . . . . . . . . . . . . . . . . 
A. Structure of the Deck . . . . . . . . . . . . 
B. Type Codes . . . . . . . . . . . . • . 

1 

2 

2 

6 

6 

12 

13 

15 



TURTLE 

NAL-64 
2041.000 

(Trace Unlimited Rays Through Lumped Elements) 

A Computer Program For Simulating Charged 
Particle Beam Transport Systems 

David C. Carey 

December, 1971 

ABSTRACT 

TURTLE is a computer program designed to simulate 

charged particle beam transport systems. It allows 

evaluation of the effect of aberrations which exist in 

beams with small phase space volume. These include higher 

order chromatic aberrations, effects of non-linearities 

in magnetic fields, and higher order geometric aberra-

tions due to the accumulation of second order effects. 

The beam at any point in the system may be represented by 

one and two-dimensional histograms. 
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I • INTRODUCTION 
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TURTLE is a computer program useful for determining 

many characteristics of a particle beam once an initial 

design has been achieved. Charged particle beams are 

usually designed by adjusting various beam line parameters 

to obtain desired values of certain elements of a transfer 

or beam matrix. Such beam line parameters may describe 

certain magnetic fields and their gradients, lengths 

and shapes of magnets, spacings between magnetic elements, 

or the initial beam accepted into the system. For such 

a purpose one typically employs a matrix multiplication 

and fitting program such as TRANSPORT. 1 TURTLE isc 

designed to be used after TRANSPORT. For convenience 

of the user their input formats have been made compatible. 

The use of TURTLE should be restricted to beams with 

small phase space. The lumped element approximation, 

described below, precludes the inclusion of the effect of 

conventional local geometric aberrations {due to large 

phase space) of third and higher order. A reading of the 

discussion below will indicate more clearly the exact 

uses and limitations of the approach taken in TURTLE. 
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II. GENERAL THEORY 
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A. Uses and Limitations of the Matrix Approach 

We can·represent the position and direction of travel 

of a particle entering a beam line via a vector with six 

d . 2,3 coor 1nates 

xj~ 
I!/ 

(l} 

\01 
The coordinates x and y represent respectively the 

horizontal and vertical displacements at the position of 

the particle, 8 and ~' the angles with the axis of the 

beam line in the same planes. The quantity·~ represents 

the longitudinal position of the particle relative to 

a particle traveling on the magnetic axis of the system 

with the central momentum designed for the system. The 

remaining quantity o = 6P gives the fractional deviation 
p 

of the momentum. of the particle from the central design 

momentum of the system. 

The effect of the passage of a particle across a 

magnetic element or a drift space may be represented to 

first orde~ by a transfer matrix R. The coordinates x{l) 

of the particle at the end of the element are then given 

in terms of those at the beginning x{O) as 

x(l) = Rx(O). {2) 
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The effect of successive elements, each with its own 

R matrix· may be given by a total R matrix R(t) which is 

equal to the product of the individual R matrices. 

R(t) = RnRn-1····R2R1 

The first columns of such a matrix are obtained by 

solving a differential equation of the form 

g I I + k2 g = Q 

(3) 

(4) 

with appropriate boundary conditions, and taking either the 

value or the derivative of the solution. The differentiation 

is with respect to distance along the beam line and k 2 is 

a function only of that quantity·. The last two columns 

are obtained by solving the equation 

g' I + k2 g = f 

where f is a driving term given in terms of quantities 

(5) 

which depend only on the position along the beam line and 

single factors of solutions to either equation (4) or (5). 

Equation (5) may be solved by a Green's function by 

writing 

g ( t) = f t G ( t , T ) f ( T ) dT • 

0 

(6) 

If we treat equation (2) as the first term of a power 

series expansion of x(l) in terms of x(O) we may write 

further terms as follows: 

x. (t) = i: R .. x. (0) + E T .. kx. (O)xk(O). (7) 
1 j 1J J j,k 1J J 
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Here our definition of the T matrix differs from Brown•s 2 

in that ours is rectangular while Brown's is triangular. 

The use of a rectangular matrix is more easily extended 

to the study of higher order effects. The difference 

between the two matrices is that the off diagonal elements 

of the rectangular matrix are exactly half those of the 

triangular matrix. 

As in the case of the R matrix, the T matrix, for a 

succession of elements may be written in terms of the R 

and T matrices of the individual elements via a product. 

The T matrix T(t) for a succession of two el~ents is 

written in terms of the individual R and T matrices as 

follows: 

T ( t) · · k = ~ R ( 
2

) T ( 
1 

) + ~ T ~ 2
) R ( ~ ) R ( .

1 
) 

iJ i it iik im iim 1J -"ffik 
(8) 

Notice that at no point in the evaluation of a T 

matrix for a beam line are two individual T matrices 

multiplied together. Such a multiplication would yield 

terms of order higher than second. Since in a matrix 

approach one characterizes the effects of the beam line 

according to order, and we are here expanding to second 

order, we must consistently truncate our results to second 

order. 

In a matrix approach the beam itself may also be 

represented by a matrix a. The phase space occupied by the 

beam is taken to be an ellipsoid in six dimensions. 

Usually this matrix is initially taken to be diagonal 
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with the square roots of the diagonal elements being 

equal to the semi-major axes of the ellipsoid. The 

beam ellipsoid at a later point is obtained, using the R 

matrix, as 

rT = R a RT vl 0 ° 

The diagonal elements are now the squares of half the 

maximum extent of the ellipsoid in a given dimension. 

The off diagonal elements give the correlation between 

the coordinates, as for a tilted ellipse. A phase space 

envelope which is initially ellipsoidal continues to be 

so only when we limit our consideration to first order 

effects. When higher orders are considered the elements 

of the beam matrix may be taken as second moments of 

a distribution,' but give us no information as to the 

actual shape of the phase space envelope. 

The matrix method is indispensible for fitting and 

is the only reasonable way to obtain an.initial design 

(9) 

of a beam. It is also unsurpassed as a tool to determine 

individual second order influences on particle trajectories 

and minimizing such aberrations. Its limitations are in 

the representation of the beam phase space and the fact 

that the results are limited by the order of the Taylor's 

series expansion. 
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B. Ray Tracing Methods 
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A true ray tracing program computes the trajectory 

of a particle through a magnetic field directly. It, 

therefore, does not distinguish among different order 

effects on a ray, but represents all orders to the accuracy 

of the numerical integration of the equations of motion. 

Such an approach is also useful for determining individual 

contributions to aberrations. If, however, one wishes 

to represent the phase space occupied by the beam, it is 

necessary to run large numbers of rays through the 

system to obtain a reasonable population. For a compli-

cated system this approach can prove time consuming. In 

addition it is often unnecessary, as in. the case of 

beams possessing a small phase space volume. 

c. Theory of Ray Tracing Through Lumped Elements 

In order to describe the procedure employed in TURTLE, 

we must explain what is meant by the distinction between 

local and global classification of aberrations according 

to order. If we once again let x be a vector giving the 

coordinates and direction of a particle (henceforth 

referred to as a ray) , and expand the differential 

equation of motion of a particle passing through a 

magnetic field in powers of x, we obtain, deleting sub-

scripts, 

2 3 Dx +Ex + Fx + •.• = O. (10) 
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The coefficients D, E, and F are matrices, with the 

diagonal terms of D being differential operators 

2 
DX = (~ + k2 )x. 

dt2 

The first order transfer matrix R is obtained by solving 

the differential equation to first order, i.e., 

DX = 0 

The second order transfer matrix T is now obtained from 

(11) 

(12) 

the second order coefficients in the differential equation 

via a Green's function 

T ( t , 0 ) = J t G ( t , T ) E (T ) x2 ( T ) dr ( 13 ) 

0 

where x (t). is obtained from the first order transformation 

x(t) = R(t,o)x(O). (14) 

We see that to second order, the coefficients of a 

given order in the differential equation of motion give 

rise to transfer matrices of the same.order. If, however, 

we wish to go further and ask for third order transfer 

matrices uijki' then we find that 

U = J t G(t,T) F (T) x 3 (T)dr 

0 

J
t 

+ G(t,T1)E(T1)X(Ti) 

0 

dT 
2 I 

+ J t G(t,T,)E(T,) 

0 

G {Ti ,i: 0 E (T. 0 x2 
(i: 0 ch 2 x (Ti) dT 1 • 
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The first term contains the third order coefficients in 

the differential equation while the second and third 

contain the second order coefficients. Elements of 

transfer matrices beyond second order therefore involve 

not only coefficients of the differential equation of the 

same order, but also accumulations of lower order terms. 

We accordingly, call a classification by order of 

aberrations according to their appearance in the equation 

of motion as a local classification. A classification 

of terms by appearance in a transfer matrix will be 

called global. 

A matrix approach as defined in part (A) classifies 

aberrations by order both locally and globally. Such 

an approach is necessary for any order if one is 

interested in correcting aberrations of that order. A 

true ray tracing program as explained in B need not 

classify aberrations by order of all. 

In the lumped element approach to ray tracing, we 

classify aberrations by order locally but not globally. 

The passage of a ray across an individual element is 

given by a transformation which yields the output ray 

directly from the input ray. A large number of rays can 

then be passed through a system in a short time. The 

coordinates of the rays can then be collected at any 

point in the beam line and histograms can be generated. 
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We can then exhibit the phase space occupied by the beam 

explicitly, and do not have to depend on an ellipsoid 

formalism. 

The use of the lumped element approach permits the 

inclusion of many sorts of aberrations, but effectively 

precludes the use of others. To understand how TURTLE 

works we must examine the different types of local 

aberrations. We characterize local aberrations into four 

types: chromatic effects, geometric effects, magnetic 

field effects, and mixtures of any of the first three types. 

Chromatic effects are due to a deviation of the 

momentum of a ray from the central momentum of the beam 

line. An example would be the chromatic aberration of 

a quadrupole, where the focussing strength depends on the 

momentum of the particle. Geometric effects are associated 

with the phase space accepted by the beam line. A trajec-

tory entering a bending magnet at an angle to the central 

trajectory traverses a different path length in the field 

and is therefore bent through a different angle than 

is the central trajectory. This effect gives rise to 

second and higher order geometric aberrations for bending 

magnets. Another example occurs in the normal treatment 

of quadrupoles. The harmonic oscillator approximation 

for the motion of a charged particle in a quadrupole 

is based on a small angle approximation. Corrections for 

this approximation involve geometric aberrations of third 
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and higher order. Magnetic field effects are due to non

linearities appearing in the expansion of the magnetic 

field in terms of the transverse coordinates of the beam 

line. An example is the effect of a sextupole for on-

momentum rays. Mixed effects represent combinations 

of the above effects. One example might be the momentum 

dependence of the effect of a sextupole. 

The intent of creating TURTLE was to examine 

chromatic aberrations and the effect of non-linearities 

. in magnetic fields .to all orders, and to evaluate the 

effect of slits and apertures and to represent the beam 

phase space distribution, including effects 0£ second 

and higher orders. Geometric effects are considered 

locally only to second order, but higher order global 

effects will appear due to the accumulation of second 

order effects. It was not possible to achieve this goal 

rigorously so we explain below what was done in each 

case, and why the approximations used should be valid 

for beams possessing a small monoenergetic phase space 

volume. 

Transfer matrix elements for quadrupoles and sextu-

poles are evaluated directly for each ray from the actual 

momentum of the ray, and are, therefore, exact to all 

orders in chromatic effects. However, in bending magnets, 

chromatic effects are evaluated only to second order. 
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But in high energy separated function beams the net 

focussing effects of bending magnets are small compared 

to quadrupole contributions, so it is usually sufficient 

to include only second order chromatic corrections for 

bending magnets. 

Because of the small phase space volume occupied by 

typical high energy beams, the third and higher order 

geometric effects of a given element will be small. 

However, higher order global terms may occur due to 

cumulative effects of second order terms. The large'~ 

lever arms for aberrations in beams at high energies 

will enhance the importance of such' cumulative effects 

relative to local higher order geometric effects. 

The inclusion of apertures and slits and the re-

presentation of the beam phase space with histograms 

allow a further step in the realistic representation of 

a beam. 

Below we explain how to use the program and further 

describe each element available. 
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III. USE OF TURTLE 
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TURTLE is designed to be run using the same deck of 

data cards as was used for TRANSPORT. Typically one will 

start with a deck of cards containing approximate values 

of the final parameters to use in obtaining a fit to the 

desired constraints. Once the final set of parameters is 

known, one alters this deck to include them for purposes 

of studying second order aberrations and misalignments. 

With a few changes this deck may be used as input for 

TURTLE. The data format is free field and the deck 

structure is the same. Below we discuss the deck structure 

and each of the type codes. For completeness v;e include 

many things that are unchanged from TRANSPORT. 



-13-

A. Structure of· the Deck 

1. Title Card 

NAL-64 
2041.000 

The first card of the deck contains the title of the 

run enclosed in single quotes. No other item should 

appear on this card. 

2. Number of Rays 

The second card in a TRANSPORT deck contains an 

integer which serves as an indicator. When using TURTLE 

this card contains an integer indicating how many rays one 

wishes to run through the system. Naturally one will want 

to choose this number sufficiently high to obtain good 

statistics. A number of rays equal-to several thousand 

should be quite reasonable for any beam. The only 

limitation on the number of rays that can be run will be 

the use of computer time. The user will eventually wish 

to select this number on the basis of his own experience. 

3. Data 

The elements with their type codes and appropriate 

parameters and labels are entered in sequence just as 

in TRANSPORT. Each element must be followed by a semicolon. 

The labels are not used by TURTLE but may be retained and 

will appear in the output. This will enable the user to 

compare his output from TURTLE with that from TRANSPORT. 

There are additional type codes indicating the creation 

of histograms. All type codes, including those for 

histograms, will be explained below. 
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4. Comments 
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Comments may be placed in the data deck before type 

code entry. 'l'hey are indicated by enclosing in parentheses. 

5. Sentinel 

The input data is terminated with a SEN~INEL card. 

The program, after reading and initially processing the 

data, runs the specified number of rays through the beam 

line and collects and plots histograms. 



-15-

B. Type Codes 

BEAM - Type Code 1. 
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Type code 1. can be used either to represent the 

initial phase space of the beam or an RMS addition to 

the beam. There are either eight or nine parameters on 

the beam card, as follows: 

1. Type code 1.0 

2. One half the horizontal extent x of the beam (cm 

in standard units) 

3. One half the horizontal angular divergence x' 

(mr in standard units) 

4. One half the vertical extent y of the beam (cm 

in standard units) 

5. One half the vertical angular divergence y' (mr 

in standard units) 

6. One half the longitudinal extent of the beam. This 

parameter is not used by TURTLE but is included in 

the input for consistency with TRANSPORT 

7. One half the momentum spread (o) of the beam (in 

units of percent ~p/p) 

8. The central design momentum of the beam (GeV/c in 

standard units) 

9. The code digit 0.0 indicating an RMS addition to 

the beam. If one is specifying the initial phase 

space this entry must be absent. 
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Each ray is chosen at random with its coordinates 

constrained to lie within the limits specifie~ on the 

beam card. In addition, the x and y coordinates are con-

strained to lie within an upright ellipse whose semi-axes 

are the quantities given on the beam card. The angular 

coordinates x' and y' are also constrained to lie within 

a similar ellipse. This prevents the implicit representation 

of a pref erred direction in space by the choice of 

coordinates. In other words, targets may be circular and 

scattering is isotropic. Further restrictions on the 

phase space, such as the use of a multi-dimensional 

ellipsoid were felt not .to be physically realistid. This 

is illustrated by the fact that the target is the same 

size for particles of different momentum. 

If we let x
0

, x
0
', y

0
, y 0 ', i

0 
and o

0 
represent the 

maximum extents of the beam envelop in each coordinate, 

then the additional restriction imposed by TURTLE is 

equivalent to the two equations 

(~0)2 + (~)2 < 1, 

(~r + (~~r < 1. 

The hypervolume of this four dimensional region is equal 

2 
to~ xx 'y y '. By contrast the hypervolume of the 

0 0 0 0 

region specified by the single ellipsoidal condition 
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(~o) 2 +(~~·) 2 +(t12+((12~1 
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is equal to (n 2/2) x x 'y y 1 or exactly one half that 0 0 0 0 , 

of the region specified by the first set of conditions. 

This additional volume occurs near the boundaries of 

the region specified in two ellipse condition. When 

the multi-dimensional distribution is projected onto one 

or two dimensions the ellipsoidal condition yields a 

distribution wh.ich is very sparse near the edges. The two 

ellipse condition yields a projection where the edges 

of .the distribution are much more sharply defined and is 

thus much better suited to beam line studies. 

For an RMS addition to the beam, the coQrdinates are 

chosen in the same manner, but are then added to the 

coordinates of the ray at the point where the RMS addition 

is made. Because of the random selection of both the 

original ray and the addition to it the effective widths 

of the distributions in any coordinate will add in an 

RMS fashion. It should be remembered that the parameters 

on the card indicating the RMS addition specify the maximum 

amplitude of the scattering. If the element immediately 

proceeding an RMS addition is a slit (type code 6.0) the 

RMS addition will be made only if the ray hits the slit. 

If the ray passes through the slit its coordinates will be 

unchanged and it will continue unperturbed. 
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FRINGING FIELDS AND POLE FACE ROTATIONS 
FOR BENDING MAGNETS - Type Code 2. 
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Type code 2.0 specifies the pole fact rotation of 

a bending magnet and causes the effect of the fringing 

fields to be calculated. It should immediately precede 

or follow a type code 4.0 representing a bending magnet. 

There are two parameters. 

1. Type code 2.0 

2. The pole face rotation angle (in degrees) 

Even if the pole face rotation angle is zero, it is 

necessary to insert a 2.0 card to take the fringe field 

into account. When the program is run the effects of 

the fringe field and the bending magnet are included 

in a single transfer matrix for the entire magnet. It 

is therefore not possible to insert a histogram between 

a 2.0 and a 4.0 element. More information about the 

transfer matrix will be found in the description of the 

4.0 type code. 
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DRIFT SPACE---Type Code 3.0 
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A drift space is a region containing no magnetic 

elements. Two parameters are required. 

1. Type code 3.0 

2. Length (normal unit is meters) 
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SECTOR BENDING MAGNET -- Type Code 4.0 
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For a sector bending magnet the entrance and exit 

faces of the magnet are straight and perpendicular to 

the central axis of the beam. Other types of magnets 

may be represented by using a type code 2.0 and any of 

the bending magnet parameters included under type code 

16.0. A type code 4.0 requires four parameters. 

1. Type code 4.0 

2. The effective length of the central trajectory 

through the magnetic field (normal unit is 

meters) 

3. The field strength B along the central 
0 

4. 

where p = 

and q the 

trajectory (normal unit is kilogauss) 

The field gradient n in dimensionless units. 

_ -p aB 
n - Bo ax (x,o,t) 

p 
0 
~- with P

0 
the central momentum at the beam 

qB ' 
0 

charge of the particle, p is the radius of 

curvature of the trajectory. 

If second order (see type code 17.0) is not specified, 

a ray with the beam central momentum is transformed through 

the magnet using the first order transfer matrix R so 

that x(l) = Rx(O). If the ray does not have the central 

momentum we use an off momentum R matrix which is obtained 

from the ordinary first order matrix R0 and the chromatic 

elements of the second order matrix T via the equation 
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o aP 
Rij = Rij + Tij6 -p 
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h aP · h d · · f h t 1 w ere -p 1s t e percentage ev1at1on rom t e cen ra 

momentum. If a type code 17.0 card is included in the 

deck, second order geometric effects will be included. 

These correspond to the matrix elements T. 'k' where j 
1) 

and k are both equal to or less than four. 

To include the effect of fringing fields, it is 

necessary to include 2.0 type cards before and/or after 

the 4.0 card. When the program is run it assembles a 

single transfer matrix for each bending magnet including 

the fringe fields. It then transforms each ray using 

this assembled ·transformation matrix. _ 
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QUADRUPOLE - Type Code s.o 
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A quadrupole requires four parameters for its 

specification. 

1. Type code 5.0 

2. The effective length of the quadrupole field. 

(normal unit is meters) 

3. The pole tip field, B0 , a positive field 

indicating a horizontally focusing quad. 

(normal unit is kilogauss) 

4. Pole tip half aperture a. The gradient is 

obtained by dividing the pole tip field by 

this aperture. 

For a perfect quadrupole the first four components 

of the ray vector x = (x,x 1 ,y,y 1 ,t,o) are carried through 

the quad via the transformation matrix. 

I cos kR. 1 sin k.Q. 0 0 

\ k 
-k sin kR. cos kR. 0 0 

\ 
I 

0 0 co sh kt 1 sinh kt! 
K' 

0 0 k sinh k.Q. cosh kR. 

where k2 = qBo, p is the actual momentmn of the ray, 
ap 

and q is the charge of the particle. This matrix is for 

a horizontally focussing quadrupole. A matrix for a verti-

cally focussing quadrupole is obtained by exchanging the 

two submatrices occurring on the diagonal. Since this 

matrix is evaluated from each ray using the actual momentmn 

of the ray it is good to all orders in chromatic effects. 

i 
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Higher order multipole effects for a realistic 

quadrupole may also be included via a 16.0 type code entry. 

Multipoles up to and including a 40-pole may be included. 

The multipole aberrations are taken to be lumped at the 

longitudinal midpoint of the quadrupole. The ray is 

transformed halfway through the quad, perturbed by the 

multipole aberrations, then transformed through the 

remainder of the quad. If no multipole aberrations are 

included the ray passes through the quad in a single step. 

The multipole component strengths are norm.alized to unit 

gradient ahd need be entered only once for. similar but 

differently excited quads. The effect of the.multipoles 

is also calculated from the actual momentum of the ray, 

making this effect correct to all orders chromatically. 
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SLIT -- Type Code 6.0 

A slit requires three parameters 

1. Type Code 6.0 
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2. The coordinate in which the slit appears. 

(e.g. 1. for a horizontal slit) 

3. The half opening of the slit. (in the units 

for the appropriate coordinate) 

If a ray comes to a horizontal slit and the absolute 

value of its x coordinate exceeds the half aperture of 

the slit, the ray will be stopped and the program will 

proceed to the next ray. If an RMS addition to the 

beam is specifieq immediately after the slit, the ray 

will not be.stopped but its coordinates will be changed 

by an.amount within the range specified on the RMS 

addition. See type code 1.0 for further details. 

If the absolute value of the x coordinate of the ray 

is within the half aperture of the slit, the ray will 

pass undeflected in all cases. This description applies 

similarly for a slit in any other coordinate. 
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SHIFT IN THE BEAM -- Type Code 7.0 
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The coordinates of a ray may all be shifted by a 

constant (independent of the ray) amount at a given 

point in the beam. Seven parameters are needed. 

1. Type code 7.0 

2-7. The amount of the shift in each coordinate. Units 

are the units used for that coordinate. Coordinate 

No. 5 is not used but included for compatability 

with TRANSPORT. 

There are no phase space requirements associated with 

l 

the use of this element. A known misalignment may be 

simulated by sandwiching an element between, two 7. O cards., 
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REPEAT -- Type Code 9.0 
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A section of the beam may be repeated as many times 

as desired by sandwiching that section between two repeat 

cards. The two parameters needed are: 

1. Type code 9.0 

2. No.-of-times section is repeated. Equal to 

zero for end of a repeated section. 

Repeats may be nested four deep. Care should be 

taken to insure that for each card beginning a repeated 

section there is, one terminating that section. 
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Example of Nesting: 

9. 2. • , 

3. 10. . , 

9. 3 • ; 

3 I 20. ; 

9. 4. ; Next 
Inner Inner 

3. so. . , ..... Block - Block 

9. o. ; 

9. o. ; 

3. 1. s ; 

9. o. ; 

The total length of this sequence Is: 

2•(10. + 3•(20 + 4• 50) + 1.5) • 1343. 

-

NAL-64 
2041. 000 

Outer 
Block 
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APERTURE CONSTRAINTS - Type Code 13. 
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The insertion of a 13. 10. card causes all specified 

apertures to be taken into account. If a ray passes 

outside a given aperture it is terminated and a new ray 

is initiated at the beginning of the system. The quadru-

pole half aperture is normally taken to be circular and 

equal to the fourth entry on the type code 5.0 card. One 

can specify a different aperture for quads, and make it 

elliptical through the use of a 16. 100. element. The 

apertures for bending magnets are given by the 16. 4. 

and 16. s. elements. All aperture constraints are 

applied both at the beginning and the end of the element 

to which they apply. See the section describing the 

use of the 16~ element for further details on aperture 

specification. 
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ARBITRARY TRANSFORMATION MATRIX -- Type Code 14. 

An arbitrary first order 6 x 6 matrix transformation 

may be introduced. There are eight parameters. 

1. Type code 14. 

2-7. The elements of the given row of the transfer matrix. 

The units of these numbers must be chosen to be 

consistent with the units for the coordinates. 

8. The number of the row. 

A matrix must be read in one row at a time. An 

uninterrupted sequence of 14. type cards is taken as 

providing entries to the same matrix.'. Any unspecified 

row is taken to be that of the identi,ty matrix. If 

two successive sets of 14. cards are to provide elements 

of successive matrices, they must be separated by a 

different element. An example of an element having no 

other effect should be a (3. O. ;), a drift space of 

zero length. 

Second order terms may be introduced by including 

the 22 additional numbers. 

9. Continuation code O. 

10-30. The 21 second order matrix elements 

T(ill) T(il2) T(il3) T(il4) T(il5) T(il6) T(i22) 

T(i23) T(i24) T(i25) T(i26) T(i33) T(i34) T(i35) 

T(i36) T(i44) T(i45) T(i55} T(i56) T(i66) 
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in the order given. The letter 11 i" indicates the row 

number, and specifies the coordinate to which these matrix 

elements contribute. 

Each set of second-order coefficients accompanies 

the row of the first order matrix which contributes to 

the same coordinate. Once again successive 14. elements are 

taken as giving entries into the same Rand T matrices. 

Any unspecified row is taken as being the same as the 

identity transformation. This means that the R matrix 

elements are given by the kronecker delta and the T 

matrix elements are all zero. 
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Units may be changed to any desired. A specification 

of units change should appear before any other type code 

in the deck. All subsequent input data should then be 

consistent with the units used. There are four entries 

on a 15. card. 

1. Type code 15. 

2. A code digit indicating which unit is to be 

changed. 

3. The name of the new unit. This should be 

enclosed in single quotes and can be at most 

four characters long. 

4. The size of the unit being introduced in terms 

of the normal unit otherwise used by the program. 
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Below is a table of the code digits for the units, 

the quantity to which they apply, and the standard unit 

used. 

Code 
Digit Quantity 

Standard 
Reference Unit 

1. 

2. 

3. 

horizontal and vertical transverse 

dimensions 

horizontal and vertical angles 

vertical ray coordinate (only) 

vertical ray angle (only) 

momentum spread 

cm 

mr 

cm 

mr 

% (PC) 

4. 

6. 

8. length (longitudinal) meters (M) 

9. magnetic fields kg 

11. momentum GeV/c 

In certain cases the conversion factor may be omitted 

and the program will make the required units change by 

recognizing the symbol used to represent the unit. 

The automatic units changes available are the same as 

those in TRANSPORT and the reader is referred to the 

TRANSPORT manual for a complete listing of them. 
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MULTIPOLE ABERRATIONS IN QUADRUPOLES AND OTHER 
SPECIAL PARAMETERS -- Type Code 16.0 

A nwnber of parameters other than those described 

so far may be used to give further information about quad-

rupoles and bending magnets. A parameter introduced on 

a 16. card applies to all succeeding elements. It may 

be changed or reset to zero by introducing another 16. 

type card. Four parameters may be supplied. 

1. Type code 16.0. 

2. Code digit indicating nature of parameter(s). 

3. First special parameter. 

4. Second special parameter (if neecied). 

Below we describe each of the special parameters 

available. Some of them are the same as those available 

in the TRANSPORT program and we refer the reader to that 

manual for further discussion. 

Code digit. 

-N. A negative code digit indicates a multipole 

aberration in a quadrupole. Code digit -N 

indicates a 2N pole. Multipoles up to and 

including a 40 pole may be included. The 

N-1 first special parameter is equal to BN/ga , 

where BN is the pole tip field due to the 2N

pole, a is the half aperture, and g is the 

unaberrated gradient of the quadrupole. The 

second special parameter is the phase angle 
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a of the multipole. The spatial dependence 
N 

of the magnetic potential giving rise to a 
4 N · 

multipole is then given by r .sin (N8-aN). 

Since the multipole is normalized to the gradient 

it may be introduced once and allowed to apply 

to all succeeding quadrupoles, independent of 

excitation. 

1. E(l) - A measure of the second order variation 

with x of the magnetic field of a bending 

magnet. It is equal to the error in field due 

to this component evaluated at one horizontal 

unit from the beam axis, divided by the central 

field value, or 6B2/B
0 

at x = 1. Normally this 

parameter is set equal to zero. In order for it 

to produce an effect, a second order calculation 

must be specified by a 17.0 card. Otherwise, it 

will be taken to be equal to zero even if a non-

zero value is specified. 

4-5. w/2 and g/2 - The horizontal and vertical apertures 

respectively of a bending magnet. Both are used 

in calculating the effect of a fringing field 

of a bending magnet, but only the vertical gap 

has an effe.ct in first order. Normally they are 

taken equal to zero. If either is inserted and 
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a 13. 10. card is also inserted, they will 

act as an aperture stop. A ray will be stopped 

if it does not go through the aperture specified. 

7-8. k
1 

and k 2 - Values of dimensionless integrals 

describing the fringing field behavior. Normally 

k 1 , indicated by index code 7, is taken to be 

0.5, and has a first order effect. The quantity 

k 2 , indicated by index code 8, is normally zero, 

and is felt only in second order. 

12-13. l/Rl and l/R2 - The reciprocals of the radii of 

curvature of the entrance and exit faces res-

pectively of a bending magnet. A positive value 

indicates the curvature is convex. Normally 

they are taken to be zero, meaning that the 

faces of the magnet are flat. They have an 

effect only if a second order card, 17.0, is 

inserted. 

100. Allows specification of a quadrupole aperture 

other than that specified on the 5. type code 

card. This aperture may be made elliptical. 

The two parameters give the horizontal and 

vertical semi-major axes of this ellipse on 

the appropriate units. If a circular aperture 

is desired both quantities must be inserted 

but are set equal. All quadrupoles before the 

first 16. 100. card have their apertures taken 
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from the quadrupole card. All those after 

any 16. 100. card take their apertures from 

the last 16. 100. card preceeding the quadrupole 

card. This aperture is observed only if a 13. 

10. card is inserted in the deck. The gradient 

of a quadrupole is always computed from the 

aperture given on the S. code card. 
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SECOND ORDER GEOMETRIC AND MAGNETIC EFFECTS -
Type Code 17.0 

The insertion of a type code 17.0 indicates 

that second order geometric and magnetic field effects 

are taken into consideration. All ·chromatic effects 

discussed are taken into account whenever ~p/p is not 

zero. Also, all quadrupole multipole moments are effective 

whenever specified. A 17. card is necessary to cause 

second order geometric transfer matrix elements or second 

order field variations in a bending magnet to have an 

effect. It is also necessary in order for the magnetic 

field of a sextupole to have an effect. Without a 17. 

card a sextupole is taken to be a drift space. 
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A sextupole may be inserted for correction of second 

order aberrations. Unless a 17. card is included it acts 

like a drift space. Four parameters are needed. 

1. Type code 18. 

2. The effective length of the field (normal 

unit is meters). 

3. The pole tip field B
0 

(normal unit is kg). 

4. The pole tip half aperture a. The effective 

strength of the sextupole is gB t/a2p. 
0 

The first and second order transformation elements 

for a sextupole are given in SLAC-752 • ·In. TURTLE these 

elements are evaluated using the actual momentum of the 

ray. Therefore, TURTLE can give a very good indication 

of how effectively chromatic aberrations can be eliminated. 
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A rotation of the coordinates of a ray at a given 

point in the beam line about the beam axis may be effected 

by a 20.0 type code. Thus one can simulate a magnet 

oriented differently than is normally available, or a 

known rotational misalignment of an element about the 

beam axis. There are two parameters. 

1. Type code 20.0. 

2. The angle of rotation in degrees. 

The rotation is taken in a clockwise sense about the 

beam axis. 
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A one or two-dimensional histogram of any of the 

beam coordinates at any point in the beam. A one-dimensional 

histogram is indicated by a 50. card. The horizontal 

coordinate of a two-dimensional histogram is indicated 

by a 51. card. The vertical coordinate of a two-dimensional 

histogram is indicated by a 52. card. The histogram card 

is placed at the point in the beam line where one wishes 

to histogram the ray coordinate specified. Any of these 

three type cards requires five parameters. 

1. Type code SO., 51., or 52. indicating the 

type of histogram desired. 

2. Ray coordinate to be histogrammed, may be 1-4, 

or 6. Coordinate No. S has no significance 

in TURTLE. 

3. Lower limit of the histogram. 

4. Upper limit of the histogram. 

5. Interval of the histogram. (step size) 

A one-dimensional histogram will be created at 

any point in a beam line where a SO. type code card is 

inserted. The intervals of the histogram are arranged 

vertically and specified on the left side of the page. 

The beam intensity in a given interval is indicated by 

a horizontal row of the letter "x 11
• 
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A two-dimensional histogram is actually initiated by 

the 52. card, while the 51. card merely supplies a value 

for the horizontal coordinate. Thus the 51. card and the 

52. card for a two-dimensional histogram need not occur 

at the same location in the beam line. However, for each 

52. card there must be one 51. card somewhere in the deck 

preceeding it. Several 52. cards can use the same 51. 

card to supply the horizontal coordinate for the histogram. 

The 51. card must simply occur at some point in the deck 

earlier than the first 52. card. Whenever a 52. card 

appears, indicating a vertical coordinate and initiating 

a histogram, the horizontal coorP,inate is then from the 

51. card most recently preceeding it. 

For both one- and two-dimensional histograms the 

coordinates histogranuned with their units and position 

in the beam line are given below the histogram. For the 

two-dimensional histogram the coordinated displayed 

horizontally is given first. Examples of both one- and 

two-dimensional histograms are given below. 

For a two~dimensional histogram the number of rays 

falling in a given bin is printed directly for 1-9 rays, 

represented by a letter A-Z for 10-35 rays, and represented 

by a $ for more than 35 rays. The $ was chosen because 

it is a fairly dark symbol. Sums of the rows and columns 

are given along the edges of the histogram. The numbers 

giving the sums of columns are themselves to be read 
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vertically. Overflow in all four directions is given 

below the histogram. 

A total of 100 histograms in a given beam is allowed. 

The number of intervals allowed per histogram is limited 

directly only for the horizontal coordinate of a two-

dimensional histogram, the limit being 100. If the 

limits and interval size specified are such that more than 

100 intervals would result, the program readjusts the 

upper limit so· that the number of intervals equals 100. 

In addition, there is a limit of 10,000 total locations 

for histogram storage. If N is the number of intervals 

used in a one-dimensional histogram, the number of storage 

locations used is N + 2. If NA and ND. are, the number 

of intervals used for the horizontal and vertical 

coordinates respectively of a two-dimensional histogram, 

the number of locations used is (NA + l} (ND + l} + 5. 
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Figure 1 - Example of a one-dimensional histogram. 
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Figure 2 - Example of a two-dimensional histogram. The 

quantity ~p/p is plotted horizontally and x, the 

horizontal position of the ray is plotted verti-

cally. 
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TO: External Distribution List 

PO BOX 500 
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FROM: Publications Office, National Accelerator Laboratory 

SUBJECT: Correction for NAL external report, NAL-64 by David C. Carey 
"TURTLE" (Trace Unlimited Rays Through Lumped Elements) 
December 1971 

Page 34, line 3 should read as follows: 

"multipole is then given by
4 

rN sin (NB - aN). '' Please make the 

indicated change from cos to sin. 


