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I. Introduction 

The possibility of computing the angular and phase acceptance of a long 

beam transport channel will be of importance in the 200 GeV accelerator project 

where a 5 km transport line is considered· between the extraction point and the 

boundary site. 1 

We attempt to derive here general and simple formulae for computing the 

angular and phase acceptances of a multiplet;, composed of an arbitrary number 

of arbitrary quadrupoles. Applications are then.made to .particular structures. 

This paper is based on a revised version of the CERN internal report 

MPS/ Int. DL/ B67-4. 

II. Notations 

Consider a multiplet comprising n AG quadrupoles. Let 

_1_ sin ej 
k· 1 (1) 
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be the transfer matrix of the jth quadrupole in its focusing plane and 

che. 
- J Qd . -

J J 
kjshej 

1 
k. 

J 

she. 
J (2) 

ch9. 
J 

the corresponding transfer matrix for the defocusing plane. 

In these relations we have put 

( 3) 

(4) 

Gj being the magnetic gradient in the jth quadrupole of the array, P the particle momentum, 

Q its charge and sj the length of the jth quadrupole. We assume in all cases ej < ;IL. 
2 

The subscripts 1, 2, 3, ... j, ... n will be used to specify the quadrupoles in the 

direction of the propagation of the beam. The drift lengths will be denoted by L with 

the corresponding subscripts and the useful aperture of the quadrupoles will be denoted 

by R; we assume that R has the same value for all quadrupoles. The object distance or 

distance of the source point from the entrance of the first quadrupole will be called p, 

the corresponding image distance q. 

III. Angular Acceptance of a General Multiplet 

Consider a point source placed on the axis of the multiplet and emitting a beam 

of half-angular divergence x~ in the cdcd , .. plane of the multiplet (i.e. the plane where 

the multiplet starts with a focusing quadrupole). 

The beam envelope can have a maximum only in a focusing lens. Let then j 

be a quadrupole where a maximum takes place and 
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( 5) 

the transfer matrix of the incomplete multiplet which extends from the entrance of the 

multiplet to the transverse plane where the beam grazes the aperture. This situation 

is described by the matrix relation 

(:)0 A! B! 1 p (:J . J J x (6) 
1 I 

C· n. 0 1 . J J 

or more explicitely by means of the two equations 

R =(A1
• p + B'-) x' J J 0 

(7) 

I I 

and O = C· p + D· J J 
(8) 

Taking into account the unimodularity condition, we can replace this system 

of equations by the equivalent system 

Cj p + Dj = 0 (9) 

x' =-RC~ 
0 J 

(10) 

which involves only the two matrix elements Cj and nj. I 
Let now sj be the distance from 

the entrance of the jth quadrupole to the transverse plane where the maximum excursion 

occurs. If we write 

e~=k-s'. 
J J J 

we can calculate the matrix M '. by means of the relation 
J 

cos (e. - e'.) 1 sin (e. - e'.) 
J J - J J k. x M~ = M. 

J J J 

•-k. sin (eJ. - e'.) 
J J 

(11) 

(12) 



where 

M· = J 
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(13) 

is the transfer matrix of the complete multiplet which starts at the entrance of the 

first lens and stops at the exit of the jth lens (i.e. the lens where the maximum beam 

deviation is supposed to occur). 

From Eq. (12) we find 

C! = A·k· sin (S· - S') + C· cos (S· - S~) J JJ J J J J J 

n', =Bk. sin (S. - s'.) + n. cos (S. - s'.) 
J JJ J J J J J 

Replacing these expressions in Eq. (9) and solving for S. - S ~, we find 
J J 

. A·p + B· 
cot (SJ· - SJ;) = - k· 1 1 

J Cj p + Dj 

where 

A· p + B· q. = - J J 
J Cj p + Dj 

is simply the image point produced by the first j lenses of the multiplet. 

Finally, Eq. (1 O) gives 

I R 
Xoj =r=====================:=:. 

J(A·p + B-)2 
J J 

(14) 

(15) 

(16) 

(1 7) 

(18) 
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Here we have written x0j instead of x0 to indicate that it corresponds to a situation 

where the beam grazes the limiting aperture in the jth lens. 

In writing Eq. (18) we assume that the images produced by the multiplet are 

real, i.e., 

To a positive displacement corresponds then a negative slope at the exit of the 

multiplet and vice versa. The stronger condition 

(A· p + B·) (C· p + D·) ( 0 J J J J 

is however not necessary; it simply means that there is no maximum in the jth 

quadrupole if Eq. (20) is not satisfied. 

Eq. (18) is a convenient formula for computing acceptances because in 

designing the multiplet one would have to compute anyway the matrix elements 

Aj, Bj, Cj, Dj with j going from 1 to n. At each other step (every other lens is 

defocusing) one can then compute xj 0 from (18) and take the minimum value 

j = 1, 3, 5, ... 

(19) 

(20) 

(21) 

In the perpendicular plane where the succession of lenses follows the pattern 

dcdc ... the same formula holds except that we now take 

Y~ = Min (y~j) j = 2, 4, 6, ... 

The total angular acceptance of the multiplet can then be defined as 

..n_ = 4 X' Y' 
0 0 

and expressed in steradians. 

(22) 

(2 3) 
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We now consider a beam of radial extension 2x
0 

emitting rays parallel to the 

axis in the cdcd ... plane. As before, the beam envelope can have a maximum only 

in a focusing lens and if j is a quadrupole where the beam grazes the limiting aperture, 

the situation is described by 

or more explicitely by 

R =A~ x J 0 

cj = o 

From Eq .. (12) we have 

B1· 
J 

D~ 
J 

c. 
A' = Aj cos (Sj - Sj1) - d sin (Sj - ej) 

J 

so that Eq. (26) leads to 
..--,-~~~~~~~~~ 

I 
cot (9· - 8·) 

J J 

where 

A· 
q. = - J 

J c. 
J 

(24) 

(2 5) 

(2 6) 

(27) 

(28) 

(29) 

(30) 

is simply the position of the image focal plane of the first j lenses of the multiplet. 

On the other hand, Eq. (25) gives for the maximum accepted excursion of a 

ray grazing the aperture in the jth quadrupole 



R 
XO j = -;::::=:;;:==========--

/ 2 1 2 
VA· +~ Cj J k. 
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( 31) 

Here ag~in we have written x
0

j instead of x
0 

to indicate that it corresponds 

to a situation where the beam grazes the limiting aperture in the jth lens. 

In fact, Eqs. (29) and (30) can be obtained respectively from Eqs. (16) and 

(17) by letting p --+ ~ whereas Eq. (31) can be obtained from Eq. (18) by letting 

p go to infinity, x' . to zero, and px' . to x .. 
OJ OJ OJ 

Eq. (31) is a convenient formula for computing radial acceptances of a general 

multiplet. As in the case of angular acceptance, one can calculate the matrix elements 

Aj, Bj with j going from 1 to n and at each other step one can determine x 0 j from 

Eq. (31). The minimum value 

j = 1, 3, 5, (32) 

represents the radial acceptance in the cdcd ... plane. In the perpendicular plane 

where the succession of lenses follows the pattern dcdc ... we take 

Y 0 = Min (x0 j) j = 2, 4, 6, ... (3 3) 

to obtain the radial acceptance. 

V. Phase Acceptance of a General Multiplet 

It follows from the formulae given above that in the cdcd . . . plane the phase 

acceptance can be defined as 

(34) 

whereas in the dcdc ... plane the phase acceptance is given by 

A__= 7rY Y' y 0 0 
(35) 



The total phase volume is therefore 

A= ~XoYoX0Yo; 

it can be expressed in m 2 steradians. 

VI. Some Properties of Invariance 
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(36) 

In the preceding theory Aj, Bj, Cj, Dj represent the matrix elements of the 

multiplet at the exit of the jth lens, which is supposed to be focusing. For calculating 

the acceptances one may however just as well use the matrix elements at the entrance 

of the jth lens i.e. at the end of the drift space which follows the (j-l)th defocusing 

lens without having to change anything in the formulae expressing the acceptances. 

This is due to the following invariance property: 

For any matrix 

the quantities 

and 

k2p2 + J2 

k2.r4 + ;rS 

remain invariant under the effect of a premultiplication by a focusing matrix; in 

other words, if 

a b cos e 1 sin e "' /5 
= k x 

c d -k sine cos e Q' J 

then 

(37) 

(38) 
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2 2 2 2..,2 2 
k b + d = kp +J (39) 

(40) 

These properties are readily checked by a straigb;t forward calculation and using 

them in Eqs. (18) and (31) one can immediately show that for calculating the 

acceptances it does not matter whether one uses the matrix elements at the 

entrance or at the exit of the jth lens. In some cases it will be simpler to use the 

entrance matrix, in some other cases the reverse may be true. For example, in 

the case of a symmetric triplet a complete cdc matrix is symmetric and shows 

transparent properties whereas a cd matrix followed by a drift space is a dead end, 

if not conveniently rearranged. 

We may notice a similar invariance property which applies to defocusing 

conditions: 

For any matrix 

~ ,,.61 

the quantities 

remain invariant under the effect of a premultiplication by a defocusing matrix. 

Finally for any matrix 



the quantities 

~2 ±. k~2 

;r 2 ±. k2J'2 

2 
ti.' y ±. k "',P J 
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remain invariant under the effect of a postmultiplication by a focusing (defocusing) 

matrix. 

We shall not have the opportunity to use the last relations, we conclude 

however with a remark which follows directly from the preceding considerations: if 

the channel acceptance is limited by the jth lens, the length of this lens does not 

enter the acceptance formulae but only its focusing strength kj. 

VII. Application to the Doublet 

To calculate the angular and radial acceptance in the cd plane, we can use, 

according to the general theory, the entrance elements of the matrix Mj with j = 1, i.e. 

1 0 

Mi = 
0 1 !r 

Putting 

we then have from Eq. (18) 

whereas Eq. (31) yields, as expected, 

X = R 0 

In the cd plane the phase acceptance is therefore 

(41) 

( 42) 

(43) 

(44) 

(45) 
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To calculate the acceptances in the de plane, we use the entrance matrix Mj with 

j = 2, i.e. 

1 L ch el 1 sh e 1 kl M2 = x 
0 1 ki sh e 1 ch e 1 

Putting 

k 1L + coth e 1 = Al (47) 

klp + coth el = TT 1 (48) 

we find, performing the calculations as indicated in Eq. (18) 

(49) 

On the other hand, Eq. (31) gives for the radial acceptance 

R 
yo = _s_h_e_l __ ;r:=A=1::;:;2;:=+=(::;::k;:::k 2=1 );:=-2 (50) 

The phase acceptance in the de plane is therefore 

G(A Tf 1 ) 
2 

LI 1 1 - sh2e 

(51) 

From these relations the angular and radial acceptances, the phase acceptance 

as well as the total angular acceptance 

n= (52) 
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can be plotted against whatever parameter is considered to be variable. 

Simpler formulae can be obtained in two cases of practical importance: 

i. Low Energy Doublet 

If one works with low energies, k is high and one has frequently a situation 

where 

(53) 

k
1 

L )) cot h9 1 (54) 

Assuming moreover that ki is of the same order of magnitude as k2, i.e., 

(this would be strictly true for an equigradient doublet) one finds for the partial 

acceptances 

x' = R 
0 p 

X =R 0 

y' = R __ 1 __ _ 
o p kL sh 9 1 

y = R 1 
o kL sh 91 

(56) 

(57) 

(58) 

(59) 

Eq. (54) shows that the acceptances are much smaller in the de plane than in the 

cd plane. 

ii. High Energy Doublet 

In high energy work k is small and one might have a situation where 

(60) 

(61) 

(62) 
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Assuming again that k 1 is of the same order of magnitude as k2, we find 

for the partial acceptances 

Xb = kR 

X = R 0 

I 

Y = kR 0 

(63) 

(64) 

(6 5) 

(66) 

If the conditions (60)-(62) are satisfied, the acceptances of the doublet are substantially 

independent of the source position and the drift length between the quadrupoles. More-

over ch e1 beiing close to unity, the acceptances are essentially the same in the two 

basic planes, contrary to what happens in low energy work. The explanation of 

this behavior lies in the fact that a very high energy doublet may work as an extremely 

weak lens. 

In intermediate cases when the conditions (53), (54) or (60)-(62) are not satisfied, 

one would obviously have to revert to the more accurate formulae given above. 

VIII. Application to the Symmetric Triplet 

We call a triplet symmetric if 

(67) 

(68) 

and consequently 

e2 = 8· 
l' 

(69) 

o standing for outer and i for inner. We assume moreover 

Liz = Lz3 = L (70) 
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In the dcd plane the acceptance can be written without any calculation because 

in this plane the acceptance of the triplet is that of the doublet made of the first two 

quadrupoles. Putting, in analogy with the preceding notation, 

k 0 L + coth 00 = A 0 

k0 p + coth 00 = Tr0 

we can write from Eqs. (49) and (50) for the partial acceptances 

and 

y' = k R 
0 J sh e . (.A TT - 1

2 
·.~ + (. ~ ff o) 2 

y = 
0 

o o o sh e0 J ki 

R 

sh 80 j A~~+(~) 2 

0 k­
l 

and the remarks made in connection with the doublet hold good. 

(71) 

(72) 

(73) 

(7 4) 

The real character of the triplet is revealed in its cdc plane where the beam 

envelope can graze the quadrupole aperture either in the first lens or in the third lens, 

or in both. For an envelope grazing the aperture in the first lens one has 

(7 5) 

and 

(76) 

[obviously, the grazing of the aperture does not occur at the same location in the 

two uses represented by Eqs. (75) and (76L] . For a contact between beam envelope and 

limiting aperture located in the third lens one has, according to Eqs. (18) and (31) 

respectively 
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(77) 

(78) 

where Aede' Bede and Cede are the elements of the transfer matrix of the complete 

triplet in its cdc plane. 

By means of some slight algebraic manipulations Eqs. (77) and (78) can be 

written in the form 

x' = o3 
koR 

(7 9) 

R (80) 
2 

(ko Bede + Cede> 

which makes them more suitable for comparison with Eqs. (7 5) and (76) respectively. 

It can easily be shown that in the case of a symmetric triplet one always has 

2 
ko Bede + C cdc > O (81) 

The limiting equation for the radial acceptance is therefore 

cede = 0 (82) 

which simply represents the afocality condition in the cdc plane. For Cede> O one has 

whereas for Cede < O the radial acceptance is 

x = x 1 
0 0 

(84) 
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( Eq. (78) shows that the quantity under the root in Eq. (80) can never become negative.] 

For Cede = 0 one has 

(85) 

and the beam envelope grazes the quadrupole aperture at the entrance of the first 

lens and at the exit of the third lens. 

Comparing next Eqs. (75) and (79) one notices that for CcdcP2 + 2Acdc + Bede > 0 

one has 

whereas for CcdcP 2 + 2AcdcP + Bede < 0 the angular acceptance is 

X' = x' o ol 

(86) 

(8 7) 

[ 
, 

Eq. (77) shows that the quantity under the root in Eq. (79) can never become negative:.§ 

The limiting equation for the angular acceptance is therefore 

CcdcP
2 + 2AcdcP + Bede = 0 (88) 

which is also, as one would expect, the equation for having the object distance equal to 

the image distance (p = q), i.e.; complete symmetry. If Eq. (88) is satisfied one has 

and the beam envelope grazes the aperture both in the first and in the third lens. 

The solutions of Eq. (88) are 

P(-tl) <=· Hcdc = 1; :-cdc (90) 
c c 

corresponding to plus unit magnification or to the position of the principal plane, and 

1 + Acdc 
P(-1) = Hcdc = - Cede (91) 
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corresponding to minus unit magnification or to the position of the antiprincipal plane. 

In the case of unit magnification in the C(:k plane of the triplet, the beam excursion 

has therefore a double maximum in this plane, the first occurring in the first lens and 

the second in the last lens. 

In the case of degeneracy, Cede = 0, the angular acceptance is governed by the 

first lens or the third lens according to whether 2AcdcP + Bede is negative or positive. 

The limiting equation reduces here to 

(92) 

and can be satisfied only if Acdc = -1. 

A more specific discussion of the acceptances in the cdc plane in terms of the 

focusing parameters of the triplet rather than in terms of the general and formal 

matrix elements will be given in a separate paper devoted to the theory of the symmetric 

triplet. 

IX. Conclusions 

The formulae given above allow us to calO.Ulate the angular and phase acceptance 

of any channel composed of any number of arbitrary quadrupoles if the lens parameters 

and the drift lengths are given. Conversely, for given (horizontal and vertical) emittances 

of the beam they allow us to calculate the aperture of the beam channel which will accept 

the beam emittances. Optimization with respect to the lens parameters is therefore 

possible by means of a straight forward numerical program. 
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