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Abstract

This dissertation describes a search for the Standard Model Higgs boson produced in

association with the Z boson via Higgs-strahlung at the CDF II detector at the Tevatron.

At a Higgs boson mass between 100 GeV /c2 and 135 GeV /c2, the primary Higgs decay

mode is to a pair of b quarks. The associated Z boson can decay to a pair of electrons

or muons, allowing detection of a final event signature of two visible leptons and two

b quarks. This final state allows reduction of large QCD backgrounds compared to a

hadronic Z boson decay, leading to a more sensitive search. To increase sensitivity, stan-

dard model matrix element probabilities for ZH signal and the dominant backgrounds

are used as components to a likelihood fit in signal fraction.

In 2.7 fb−1 of CDF II data, we see no evidence of production of a Higgs boson with

a mass between 100 GeV c2 and 150 GeV /c2. Using the Feldman-Cousins technique

to set a limit, at 95% coverage and a Higgs boson mass of 115 GeV /c2, the median

expected limit was 12.1 × σSM and a limit of 8.2 × σSM was observed, where σSM is

the NNLO theoretical cross section of p p̄→ ZH → l+ l−b b̄ at
p

s=1.96 T eV . Cross

section limits are computed at a range of Higgs boson mass values between 100 GeV /c2

and 150 GeV /c2.
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1

Introduction

Over a century ago, future Nobel Laureate Albert A. Michelson wrote the famous words

[1]

The more important fundamental laws and facts of physical science have all

been discovered, and these are now so firmly established that the possibility of

their ever being supplanted is exceedingly remote [. . . ] our future discoveries

must be looked for in the sixth place of decimals.

At the end of the 19th century, physics seemed like a complete, self-consistent theory.

All of known physics could be predicted by the classical theories of mechanics, fields,

electromagnetism and thermodynamics. Nature was predicted so well that it led many,

including Michelson and Lord Kelvin to believe there was nothing more to discover.

Yet two problems lingered. The æther could not be detected in an experimental

setting, despite ever increasing sensitivity of measurements. And blackbody radiation of

resonant cavities could not be explained without an ultraviolet divergence. The solution

to the two problems came from Special Relativity and Quantum Mechanics respectively.

In the 1940s these two ideas were integrated into Quantum Electrodynamics, an extremely
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accurate, predictive theory of the interaction of light and matter. Shortly thereafter, large

numbers of new particles were observed at particle accelerators leading to the coining of

the term the particle zoo. There were many competing theories to explain the particle

zoo, and eventually one was selected by a combination of experiment and theoretical

progress. That theory is now called the standard model of particle physics (SM).

The SM was developed with knowledge of a significant part of the particle zoo, so it

fit the known particles quite well. It predicted several new particles which had not yet

been observed, including what came to be known as the W and Z bosons, the gluon, and

the bottom and top quarks. Each of these particles has been experimentally observed

between the mid 1970s and 2000, making the SM one of the most successful and longest

lasting theories of Modern Physics.

But the SM had one flaw; it required all fundamental particles to be massless. Because

we know this to be empirically false, there must be a mechanism through which otherwise

massless fundamental particles acquire mass. In 1964, Peter Higgs, along with five others

proposed [2] that there is a field (now known as the Higgs Field) that permeates the

universe and has a nonzero vacuum expectation value (vev). This nonzero vev imparts

mass to all particles with electroweak charge. The particles behave as if they are swimming

through the thick, viscous Higgs field. This viscous field coupling produces terms in

equations which are indistinguishable from inertial mass. This idea came to be known

as the Higgs Mechanism and was incorporated into the SM, albeit with the drawback

that each fundamental particle’s coupling to the Higgs field is a free parameter in the SM.

More on the Higgs and how it relates to the SM is presented in chapter 2.

It is interesting to consider the parallels between now and a century ago. Currently,

the SM seems predictive of all of particle physics (with the possible exception of massive

neutrino, see [3]). The only unobserved particle from the minimal, self-consistent SM

is the Higgs boson. In both cases there seems to be a framework for understanding and

predicting large parts of the physical world. Only a small piece of the puzzle is missing.
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Discovery of this piece would be another success to an amazingly successful theory. On

the other hand, discovery of a null result would force a change in the SM and potentially

open the door to significant new Physics. Regardless of the outcome, there is a gain in

understanding of the universe. This makes the Higgs boson worth searching for.

This dissertation presents a search for the Higgs Boson produced in conjunction with

the Z boson via Higgs-strahlung at the Collider Detector located at the Tevatron at Fermi

National Accelerator Laboratory (CDF at FNAL), located outside Chicago, Illinois. The

salient points of the detector apparatus and software is presented in chapter 3. Radiative

corrections to other parameters in the SM such as the W boson mas and the top quark

mass predict a Higgs boson with a mass between 50 and 200 GeV /c2. The ZH associated

production search presented in this dissertation has good sensitivity from 100 to 130

GeV /c2, and is considered a ‘low mass’ Higgs search.

For Higgs boson masses between 100 and 135 GeV /c2, the Higgs primarily decays

to a pair of b quarks, b b̄ . The associated Z boson decays to e or µ approximately 7% of

the time. The event signature to look for is a pair of b quark jets and a pair of opposite

sign (e±, µ±) leptons. The dilepton requirement in this event signature allows reduction

of large QCD backgrounds compared to Z → hadrons (See chapter 4). However, this

requirement is not so tight as to allow a simple counting experiment to be used; advanced

analysis techniques are still required to maximize sensitivity.

The advanced analysis technique used is a likelihood fitter with the signal and back-

ground matrix element probabilities for each event. Matrix elements, presented in chapter

5, present a way of analyzing events somewhat independent from standard collaboration

analysis tools, potentially allowing for semi-independent confirmation of results. The

likelihood fitting technique used is presented in chapter 6. Finally, the results from this

search are presented in chapter 7.
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2

Motivation and Theory

We currently believe there are four fundamental forces in the universe, given in Table 2.

The two nuclear forces have a characteristic scale The SM attempts to predict the strong,

Force Theory Strength Scale
Strong Nuclear Chromodynamics ∼ 10 10−15 m
Electromagnetic Electrodynamics ∼ 10−2 ∞
Weak Nuclear Flavordynamics ∼ 10−13 10−18 m
Gravity Geometrodynamics ∼ 10−42 ∞

Table 2.1: Fundamental Forces in the Universe [4]

weak and electromagnetic forces, as gravity is currently not entirely reconciled with

Quantum Mechanics. One of the key findings is that above a certain energy (ΛEW ∼ 100

GeV ), the weak and electromagnetic forces unify into the electroweak force. Based

on what are called Grand Unified Theories (GUTs), we believe at still higher energies

(ΛGUT ∼ 1015 GeV ), the electromagnetic, strong and weak nuclear forces will merge into

a single force.

We believe the Higgs boson to be on the same scale as ΛEW ∼ 100 GeV , and therefore

given the center of mass energy of 1.96 T eV at the Tevatron, we can reasonably search
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for the Higgs.

2.1 Standard Model

The major theoretical underpinnings of the Standard Model (SM) have been largely

unchanged for almost forty years (with the significant exception of nonzero neutrino

mass, see [3]). By the late 1970s, the Lagrangian for the Standard Model had been written

down in its current form. Figure 2.1 summarizes the fundamental particles along with

their crucial properties like mass, charge, and spin. With the exception of the Higgs,

hereafter abbreviated as H , all of the particles predicted have been discovered.
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2.1.1 Fundamental Particles

Particles can be classified according to the spin they have, either integer spin (0, 1, 2, . . . ),

or half-integer spin ( 1
2 , 3

2 , . . .). Particles with integer spin are bosons and particles with half

integer spin are fermions. Bosonic fields and fermionic fields transform differently under

Lorentz Transforms, and have opposite symmetrization requirements for systems of

identical particles. All particles that make up matter are fermions, whereas the particles

that carry forces are bosons.

Looking at Figure 2.1, it is apparent that there is a left to right symmetry in the

fermions. Each column is a generation, and each successive generation has particles with

higher masses. The number of generations is not set by the SM, but all indications are

that there are only three generations of matter. This symmetry between generations is

called flavor symmetry and is broken by the fact that the particles have masses. Of course,

in the high mass limit, flavor symmetry is regained between generations, which is often a

useful fact when calculating cross sections and branching ratios.

Fermions

There are two classes of fermions, quarks and leptons. As seen in Figure 2.1, there are six

quarks and six leptons, as well as corresponding antiparticles.

The six quarks are: up (u), down (d ), charm (c ), strange (s ), top (t ), and bottom (b ), and

their oppositely charged antiparticles form the hadronic sector of the SM. Quarks couple

to all four force carrying bosons (because they carry both color and electroweak charge)

and occur in isospin doublets for each generation. Interestingly, the quark eigenstates that

interact with the W and Z are linear combinations of the mass eigenstates that interact

with the gluon. The eigenstates are related by the CKM Matrix [6]. Because of the nature

of the color charge gluon interaction, free quarks are not observed in nature, existing

only in bound states of two (mesons) or three (baryons) quarks.

The six leptons are νe , νµ, ντ, e , µ, and τ, and they come in isospin doublets like the
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quarks. The first three are neutral neutrinos and the others are charged leptons. Unlike

quarks, leptons do not carry color charge, only electroweak charge. Consequently, they

can exist as free particles. The neutrinos are believed to be left handed particles and

therefore only couple to left handed W and Z bosons. The charged leptons couple to

both left and right handed W , Z and γ bosons. More information on the SM predicted

couplings is given in Figure 2.2.

Bosons

Bosons are the force carriers and have integer spin. The photon, γ is the most well known

and is the massless force carrier for the electromagnetic force. The Z boson, a carrier of

the weak force, has no electric charge and behaves much like a very massive γ , with a

mass of 91.2 GeV /c2. Both are their own antiparticles, unlike the W , also a carrier of the

weak force, which comes in two forms, W + and W −. Unlike the γ , Z and the W interact

with each other, making the weak force non-abelian. Finally, the gluon is the carrier of

the strong force, and is a massless bi-colored boson. Because it carries color charge, it can

interact with other gluons, thus making the strong force non-abelian as well. The Higgs

boson, still theoretical, is the quantum of the scalar Higgs field. It couples to itself, and to

all massive particles. Couplings can be seen in Figure 2.2.

2.1.2 Standard Model Symmetries

The Standard Model is formulated as a gauge theory. Gauge theories are elegant because

once the gauge fields have been postulated, the interactions between the fields are a

property of the gauge symmetry group. The SM is a

SU(3)C × SU(2)L×U(1)Y (2.1)

theory. The SU(3) has a subscript C to indicate it represents the Quantum Chromody-

namics (QCD) sector of the SM. This sector is also known as the colored sector because

of the analogous relationship between the three colors of quarks and the three different
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W/Z γ g

H
ℓ q

FIGURE 2.2: Tree level interactions in the Standard Model. Noticeably the H , W , and g
all have self-couplings, making the fields non-abelian.

additive components of white light: red, green and blue. The SU(2) group forms the

weak sector and has the subscript L to indicate that the group contains left-handed weak

isospin doublets. The U(1) forms the electromagnetic sector and has the subscript Y to

indicate the group forms right-handed hypercharge singlets. The combined SU(2)×U(1)

groups form the electroweak force.

From the gauge group, tree level interactions can be easily predicted. More detail for

each sector will be given individually, but the tree level interactions between particles in

the SM are given in Figure 2.2. The diagram can be summarized as

• The W /Z , and g bosons have self coupling, indicating that the associated fields are

non-abelian.

• Both quarks and leptons interact with the electroweak and Higgs sectors, coupling

to Z , W , γ , and H bosons.

• Gluons only couple to quarks and other gluons.

• The W and Z couple to the H , giving them mass, but the γ and g are massless.
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2.2 Quantum Chromodynamics

Quantum Chromodynamics is the study of the strong force between quarks and gluons.

The vertices of QCD are given in Figure 2.3. Gluons are the massless force carrying

bosons, and are bicolored, whereas quarks carry a single color charge. The coupling of

particles via the strong force is given by [7]

αs (q
2) =

12π

(33− 2n f ) log (q2/Λ2
qcd )

(2.2)

where Λqcd ∼ 200 M eV and n f is the number of quark flavors.

The most unusual thing about the strong force is that as distance between the particles

�
q

q̄

g�
g

g

g�
g

g

g

g

FIGURE 2.3: The vertices of QCD show quark-gluon and gluon-gluon coupling.

increases, the force between them also increases. This leads to the twin phenomena of

confinement and asymptotic freedom. Confinement requires that free quarks do not exist;

only quark bound states can exist. Asymptotic freedom states that in the limit of high

energies (or alternatively small distances), quarks propagate as free particles, which is

the logical extension of a force that increases with distance. This allows perturbation

theory to be used for high center of mass energy scattering, like what is observed at the

Tevatron. Figure 2.4 gives a rough schematic description of the QCD color states. Each

of the three basis states can be added with complex coefficients, which is not shown on

9



r

r g

g

b b

FIGURE 2.4: A schematic diagram of the colors in QCD SU(3) group

the diagram. However, from the figure, it is evident that there is more than one way to

achieve a colorless (white) state.

Confinement requires colored gluons and colorless quark bound states. The three

basis states can be combined into nine independent states. There are eight colored octet

states (equation 2.3) and a colorless singlet state (r r̄ + b b̄ + g ḡ )/
p

3. The colorless state

is not an allowed gluon state, so there are eight distinct allowed gluons. One convention

defines the gluons as

(r b̄ + b r̄ )/
p

2 − i(r b̄ − b r̄ )/
p

2

(r ḡ + g r̄ )/
p

2 − i(r ḡ − g r̄ )/
p

2

(b ḡ + g b̄ )/
p

2 − i(b ḡ − g b̄ )/
p

2 (2.3)

(r r̄ + b b̄ )/
p

2 (r r̄ + b b̄ − 2g ḡ )/
p

6

Correspondingly, there are two ways for quark bound states to achieve a colorless final

state. The first is a meson (Figure 2.5), which is a combination of a color and the

corresponding anti-color, such as r r̄ . The second is a baryon (Figure 2.6), which is an

equal combination of the three colors (or anti-colors) like r g b . The QCD Lagrangian is
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FIGURE 2.5: A possible meson color
configuration

r

g

b

FIGURE 2.6: A possible baryon color
configuration

given by [8]

Lqcd =−
1

4
F µν

a Faµν + ψ̄ j

�

iγµDµ

j k
−M jδ j k

�

ψk (2.4)

where the covariant derivative is

Dµ

j k
= δ j k∂

µ+ i g (Ta) j kGµ
a (2.5)

and F µν
a is the ath field strength tensor, M is the quark mass matrix, g is the strong

coupling constant, and T is the SU(3) generator matrices.

2.3 Electroweak Interactions

The electroweak interaction has the symmetry group SU(2)L ×U(1)Y . Weak Isospin (TL)

and hypercharge (Y ) are the generators of the transformations. They relate to normal

electromagnetic charge through the relation

Q = T3+
1

2
Y (2.6)

where T3 is the third component of weak isospin. The electroweak Lagrangian is

Le w =−
1

4
W µνWµν −BµνBµν + ψ̄iγµDµψ (2.7)
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with the covariant derivative

Dµ = ∂µ+ i gWµT +
1

2
i g ′BµY (2.8)

where Bµν = ∂µBν − ∂νBµ, like the Maxwell field tensor. The B field represents the gauge

field corresponding to the U(1)Y . The SU(2) corresponding gauge field is Wµν , defined as

Wµν = ∂µWν − ∂νWµ− gWµ×Wν (2.9)

The W and B fields mix (see section 2.3.2) through a mixing angle θW (also known as the

Weinberg angle). The third component of weak isospin mixes with B as

�

Zµ
Aµ

�

=
�

cosθW − sinθW
sinθW cosθW

�
�

W 3
µ

Bµ

�

(2.10)

creating the familiar Maxwell field Aµ and the Z boson field. Choosing g ′ = g tanθW

and e = g sinθW , the observable W is related to the ladder operators in SU(2), leading to

a complete definition of all four fields as equations 2.11 - 2.13

W ±
µ
=

1
p

2

�

W 1
µ
∓ iW 2

µ

�

(2.11)

Zµ =
−g ′Bµ+ gW 3

µ
Æ

g 2+ g ′2
(2.12)

Aµ =
gBµ+ g ′W 3

µ
Æ

g 2+ g ′2
(2.13)

2.3.1 Goldstone Model

Before attacking the full complexities of the SM, it is useful to consider a simplified case of

symmetry breaking from a nonzero vacuum expectation value. Following the treatment

of Goldstone [9], let us posit the existence of a complex scalar field φ̂.

φ̂=
1
p

2
(φ̂1− iφ̂2) φ̂† =

1
p

2
(φ̂1+ iφ̂2) (2.14)
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with the Lagrangian density

L̂G = (∂µφ̂
†) (∂ µφ̂)− V̂ (φ̂) (2.15)

Now we consider two cases, V̂s (φ̂), V̂s b (φ̂)

V̂s =
1

4
λ (φ̂†φ̂)2+µ2φ̂†φ̂ V̂s b =

1

4
λ (φ̂†φ̂)2−µ2φ̂†φ̂ (2.16)

Clearly the Lagrangian is invariant under transforms in U(1), e−iα. And as shown in

Figure 2.7, the symmetric potential Vs has a minimum at (φ̂†φ̂)min = 0. In a perturbative

situation, there will be a Taylor expansion in |φ̂| about the minimum. Because the

minimum is zero, the classical average value of the (φ̂†φ̂) field is zero as well. The

ϕ

V

Vs

Vsb

FIGURE 2.7: Vs and Vs b potentials
FIGURE 2.8: Goldstone Symmetry
Breaking Potential

symmetry breaking potential Vs b only changes the sign of the second term. This causes a

qualitative change in behavior. We follow the same strategy as Vs , doing a taylor expansion

about the minimum, (φ†φ)min = 2µ2/λ which can be rearranged into v = 2|µ|/λ1/2,

where v is the vacuum expectation value (vev). A plot of the symmetry breaking potential

in the φ̂1, φ̂2 plane is Figure 2.8. Expanding about the minimum makes two modes

immediately apparent, a θ mode with no restoring potential, and a radial mode with

approximately parabolic restoring potential. Because the radial component will be
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expanded about v, we posit the following form of φ(x)

φ̂(x) =
v + ĥ(x)
p

2
exp(i θ̂(x)/v) (2.17)

which leads to the Lagrangian density (up to second order)

L̂G =
1

2
∂µ ĥ∂ µ ĥ −µ2 ĥ2+

1

2
∂µθ̂∂

µθ̂+µ4/λ+O(θ̂3, ĥ3) (2.18)

The µ2 ĥ2 term indicates that the ĥ mode has a mass
p

2µ. Yet the θ̂ mode has no

corresponding mass term, indicating it is a massless boson, known as the Goldstone

boson. This is logical considering that there is no restoring force in the θ direction.

This shows how the addition of a complex scalar field φ with nonzero vev breaks

an internal symmetry, giving itself mass. Goldstone’s Theorem [8] requires there be a

massless mode as well. We now go on to the SU(2) ×U(1) symmetry of the SM.

2.3.2 Higgs Mechanism

Following the same prescription as the Goldstone case, we introduce a complex scalar

field isospin doublet

φ=
�

φ+

φ0

�

(2.19)

the electroweak sector Lagrangian excluding fermions is therefore

Lφ = (Dµφ)
†(Dµφ)+µ2(φ†φ)−

λ

4
(φ†φ)2

−
1

4
WµνW

µν −BµνB
µν (2.20)

Again, the minimum is at (φ̂†φ̂) =−µ2/2λ, and we expand about the minimum, using

the same form as before, adjusted for SU(2) symmetry

φ(x) = exp

�

iξ (x) ·τ
2v

��

0
(v +H (x))/

p
2

�

(2.21)
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The fact that the SU(2) is a local symmetry allows us to gauge transform such that the

ξ (x) fields vanish (unitary gauge). Thus the φ(x) field is

φ(x) =
�

0
(v +H (x))/

p
2

�

(2.22)

Substituting φ into 2.20 [8] as

Lφ =
1

2
(∂µH∂ µH )−µ2H 2

−
1

4
(∂µW1ν − ∂νW1µ)(∂

µW ν
1 − ∂

νW µ
1 )+

1

8
g 2v2W1µW µ

1

−
1

4
(∂µW2ν − ∂νW2µ)(∂

µW ν
2 − ∂

νW µ
2 )+

1

8
g 2v2W2µW µ

2

−
1

4
(∂µW3ν − ∂νW3µ)(∂

µW ν
3 − ∂

νW µ
3 )−

1

4
BµνB

µν

+
1

8
v2(gW3µ− g ′Bµ)(gW µ

3 − g ′Bµ)+ · · · (2.23)

including only terms to second order in fields, which excludes W W H , W W W and other

known SM interactions.

The first two components of the W field have quadratic terms. This indicates the

fields are massive with mass MW = g v/2. The third component of the W field mixes

with the B field. We can choose an orthogonal combination that mixes the two by an

angle θW as in equation 2.10. Combined with the ladder W operators instead of isospin
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components 1 and 2, and equations 2.11-2.13, we get

Lφ =
1

2
(∂µH∂ µH )−µ2H 2

−
1

4
(∂µW +

ν
− ∂νW

+
µ
)(∂ µW +ν − ∂ νW +µ)+

1

8
g 2v2W +

µ
W +µ

−
1

4
(∂µW −

ν
− ∂νW

−
µ
)(∂ µW −ν − ∂ νW −µ)+

1

8
g 2v2W −

µ
W −µ

−
1

4
(∂µZν − ∂νZµ)(∂

µZ ν − ∂ νZµ)+
1

8
(g 2+ g ′2)v2ZµZµ

−
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂ νAµ)+ · · · (2.24)

which is the electroweak lagrangian without any fermion terms. In this case, it is apparent

that there are four gauge bosons, three of which have mass, H , W ±, Z , and one which

is massless. The addition of the Higgs field also introduces mass terms for the fermions

in the SM. That derivation will not be discussed here, in favor of deferring to a lucid

explanation in Chapter 22 of [8] .

2.4 Higgs Phenomenology

The previous section focused on the tree level Standard Model theory. Now we must

explore the specifics of higher order corrections as it applies to the search for the Higgs

boson at the Tevatron.

2.4.1 Indirect Constraints

Partial wave scattering amplitudes for gauge boson pairs in the SM violate unitarity if the

Higgs Boson mass exceeds 1 T eV /c2 [10, 11]. There is also a vacuum stability constraint

[12] requiring the Higgs boson mass to be greater than 4 GeV /c2. Together these two

constraints set a lower and upper bound on the Higgs boson mass within the confines of

the SM. The constraints are believed to be related to the level of the ΛGUT, where the SM
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Figure 6: Summary of the uncertainties connected to the bounds on MH . The up-

per solid area indicates the sum of theoretical uncertainties in the MH upper bound

when keeping mt = 175 GeV fixed. The cross-hatched area shows the additional

uncertainty when varying mt from 150 to 200 GeV. The upper edge corresponds to

Higgs masses for which the SM Higgs sector ceases to be meaningful at scale Λ (see

text), and the lower edge indicates a value of MH for which perturbation theory is

certainly expected to be reliable at scale Λ. The lower solid area represents the the-

oretical uncertaintites in the MH lower bounds derived from stability requirements

[30, 31, 32] using mt = 175 GeV and αs = 0.118.

20

FIGURE 2.9: Theoretical Constraints on Higgs Mass [12] [13]

breaks down and we expect new physics. Figure 2.9 relates the two constraints and ΛGUT.

The SM also provides constraints on the Higgs boson mass from the measured top

quark and W boson masses. The current world average of the W Boson mass is 80.398±

0.025 GeV /c2 [6]. The top quark mass average is 173.1± 1.6 GeV /c2 [14].

Figure 2.12 and Figure 2.13 show that all the measured SM parameters combined

with the direct exclusion from LEP favor a Higgs boson between 114 GeV /c2 and 140

GeV /c2. This happens to be the region where the ZH associated production process is

the most sensitive.

2.4.2 Tevatron Higgs Production

Figure 2.14 summarizes the cross sections for different production mechanisms at
p

s =

1.96 T eV at the Tevatron.

The four dominant production processes are given in Figure 2.14, and the Higgs
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FIGURE 2.10: MW combination [6]

branching ratios are given as a function of mass in Figure 2.16. The production of Higgs

through gluon-gluon fusion is predicted to have the largest cross section, but with a final

state of two quarks (most likely b b̄ ) at lower Higgs masses, it is completely swamped by

QCD background. The next largest cross section is associated W H production, which is

the subject of other searches at the Tevatron. This dissertation focuses on associated ZH
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FIGURE 2.11: mtop combination [14]
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FIGURE 2.14: p p̄→ ZH Production Cross Section [17]

production via Higgs-strahlung, as shown in the third diagram of Figure 2.15.

The ZH state consists of two heavy bosons. Since both couple to quarks and to

leptons, they can both decay hadronically or leptonically. Higgs decays to a particle

are proportional to the coupling between H and the particle. As the heaviest particle

accessible for Higgs boson masses below twice the W boson mass, the H preferentially

decays to b b̄ , as in Figure 2.16. The Z predominately decays hadronically, but does

decay to e+e− and µ+µ− a total of 7% of the time. The diagram is Figure 2.17. The

p p̄ → ZH → l l̄ b b̄ process has a low cross section, but the requirement of a dilepton

signature from the Z greatly reduces QCD background.
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3

Experimental Apparatus

Since the 1940s, the study of particle physics has required collisions at higher and higher

particle energies. The latest operational particle accelerator is the Tevatron, located at

Fermi National Accelerator Lab (FNAL) in Batavia, Illinois. Originally constructed in

the 1980s, the Tevatron was upgraded in 1999 to achieve a center of mass collision energy

of
p

s = 1.96 T eV . This makes the Tevatron the highest energy hadron collider currently

operational. The colliding particles are protons (p) and anti-protons ( p̄), and through

a multi-stage process, the Tevatron accelerates them to a speed of β= 0.999999, or one

part per million away from the speed of light.

The Large Hadron Collider (LHC) is due to come online in late 2009. Instead of

a p, p̄ collider like the Tevatron, the LHC is a p, p collider. It has a higher energy

(
p

s = 14T eV ), but the Higgs production mechanism is expected to be dominated by

gluon-gluon fusion, which favors high mass (150 GeV /c2 < mH < 190GeV /c2) Higgs

searches.
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3.1 Tevatron

The Tevatron is a 6.3 km circumference circular accelerator that collides p and p̄, shown

in Figure 3.1. Hydrogen gas is separated into constituent atoms, which are then ionized

into H−. These ions enter a Crockcroft-Walton pre-accelerator [19], which applies an

electric field to the ions and accelerates them to 750 keV . The ions then enter the linear

accelerator (Linac), which uses RF waves to further increase the energy to 400 M eV . The

electrons are stripped from the H− ions, leaving protons, which are injected into the

booster. The booster is a synchrotron with a 0.5 km circumference, and it accelerates

the protons to 8 GeV . These protons are then injected into Main Injector, a larger

synchrotron 3 k m in circumferance.

FIGURE 3.1: Tevatron Complex [19]
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The main injector performs several functions, although not concurrently. First, it

accelerates the protons from the booster to 150 GeV , and injects them into the Tevatron.

Second, for p̄ production, it accelerates protons to 120 GeV , which are then directed into

a nickel target, which produces a large number of particles, including the constituents

for p̄, which are directed toward the anti-proton source. Third, it is used to collect

p̄ produced by the anti-proton source, and accelerating them to 150 GeV as well, for

injection into the Tevatron.

Many different types of particles are produced when the nickel target is struck by 120

GeV protons. The anti-protons are separated out by magnetic spectroscopy, and are then

moved to the Debuncher. Since the anti-protons have a very large spread in momentum,

the Debuncher reduces the momentum spread. The anti-protons are then moved to the

Accumulator, which stores anti-protons until they are ready for injection, at which time

they are moved to the main injector, accelerated to 150 GeV and then injected into the

Tevatron. Producing anti-protons in this manner is difficult, and is the limiting factor in

instantaneous luminosity at the Tevatron.

The Recycler, which shares a tunnel with the Main Injector, was originally conceived

to store anti-protons between physics runs. This proved unfeasible, but the Recycler

turned out to be useful as an additional place to store anti-protons besides the Accumulator.

This greatly increases the anti-protons available during a physics run, and consequently

greatly increases the instantaneous luminosity of the Tevatron.

The main Tevatron ring accepts protons and anti-protons at an energy of 150 GeV

from the Main Injector. They are accelerated using superconducting 4.2 T magnets in

the 6.3 k m circumference ring to 0.98 T eV , making the center of mass energy
p

s = 1.96

T eV . The p and p̄ beams travel in opposite directions around the ring, and cross at the

two detectors, the Collider Detector at Fermilab (CDF) and DØ detectors.

If the p and p̄ were equally distributed throughout the ring, the chance of a collision at

any given time would be very low because of a lack of sufficient densities. To remedy this,
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the particles are distributed into bunches, about 50 c m long, containing approximately

1011 p and 1010 p̄. There are 36 bunches of both p and p̄ located around the ring, and

they cross every 396 ns [6]. Bunching greatly increases instantaneous luminosity, which

is given by the formula

L =
NBNpN p̄ f

2πσpσ p̄

(3.1)

where NB is the number of bunches in the ring, Np (N p̄ ) are the number of protons (anti-

protons) per bunch, f is the bunch revolution frequency, and σp (σ p̄ ) is the effective width

of the proton (anti-proton) bunches. The integrated luminosity (in units of pb−1), when

combined with the cross section (in pb) gives the number of collisions that occurred.

Since the beginning of Run II in March 2001, the integrated luminosity is shown in

Figure 3.2. This analysis uses 2.7 fb−1 of CDF II data, through period 17.
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FIGURE 3.2: Integrated luminosity at CDF II
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3.2 CDF II Detector

The CDF detector is a general purpose, azimuthally and forward-backward symmetric

detector at the Tevatron. The z axis is taken to be along the proton beam direction, and

the φ is defined with respect to the outward direction on the Tevatron ring. Because the

cylindrical coordinate is not invariant under Lorentz transforms, the pseudo-rapidity is

used, defined as η=− ln tan(θ/2), which is additive under Lorentz boosts in the beam

direction in the massless approximation. Together, z ,φ, and η form the coordinate system

for the CDF detector. Distance between two objects is defined as∆R=
Æ

(∆φ)2+(∆η)2

A schematic of the detector is shown in Figure 3.3 [20, 21].

Figure 3.3: A cross-sectional view of the CDF detector [19].

of particles as a function of angle will depend on the initial velocities of the constituent

particles. The rapidity, defined as:

ζ ≡ 1

2
ln

E + pz

E − pz

(3.2)

is invariant under boosts along the z-axis. For the massless case (p # m), the rapidity

can be approximated as the pseudo-rapidity, defined as:

η ≡ − ln tan
θ

2
. (3.3)

This coordinate is invariant under Lorentz transformation and is used as the third coor-

dinate in the CDF coordinate system.

The basic structure of the CDF detector can be subdivided from the inside (starting

19

FIGURE 3.3: CDF detector schematic [20, 21]
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In order of inward to outward from the beam pipe, the CDF detector has the following

parts:

• Cerenkov Luminosity Counter (CLC) that measures instantaneous luminosity.

• Silicon Vertex Detector (SVX) that provides tracking of charged particles near the

interaction point.

• Central Outer Tracker (COT) drift chamber consisting of drift wires in a strong

(1.4 T ) magnetic field to measure momenta and charge.

• Electromagnetic calorimeter to measure energy deposition from objects like elec-

trons and photons.

• Hadronic calorimeter to measure energy deposition from protons, pions and other

hadrons.

• Muon detector measures muons, which are assumed to pass through the other

detectors essentially unaffected.

All parts that make up the tracking volume are shown in Figure 3.4.

3.2.1 Cerenkov Luminosity Counter

The Cerenkov Luminosity Counter is used to measure instantaneous luminosity. It is

placed very close to the beam line, at 3.7< |η|< 4.7 [20, 22, 23]. Since deceleration of

charged particles in matter produces Cerenkov radiation, the CLC measures the amount

of Cerenkov radiation produced, thereby measuring the number of p and p̄ in every

bunch. The relation used is

µ fBC = σinelasticL (3.2)

where µ is the average number of p, p̄ interactions per bunch crossing, fBC is the bunch

crossing rate, and σinelastic is the inelastic cross section of the beam. Knowing the other

three variables allows us to solve forL , the instantaneous luminosity.
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Figure 3.3: Longitudinal view of the CDF II tracking volume and plug calorimeter.
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FIGURE 3.4: CDF Tracking Volume

3.2.2 Silicon Tracking

The silicon tracking system [24, 25] is located closest to the beam pipe and provides high

precision measurement of position for particles from the collision. In the case of the ZH

analysis, the b quarks from the Higgs boson are measured using the silicon detector.

A voltage is applied across the silicon detector to strip out the excess electrons. When

an ionizing particle from a collision passes through the silicon, it ionizes the silicon,

causing a buildup of charge at the terminal, which is then measured. The position of the

silicon sensor that generated the current allows the location of the particle to be inferred

and the location of successive hits allows a path to be reconstructed for the particle.

The silicon detector is broken into the Silicon Vertex (SVXII) detector and the

intermediate silicon layers (ISL). The SVXII detector has five concentric barrels, each

of which has silicon sensors on the inner surface. Additionally, there is a silicon strip

mounted directly on the beampipe, which is called Layer 00 (L00). Outside the SVXII,
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the ISL is another cylindrical detector that extends silicon coverage to |η|= 2.0, as shown

in Figure 3.4. The barrel structure of the SVX detector is shown in Figure 3.5. The total

SVX detector has 722,432 channels.

Chapter 2: Detector 78

Silicon Vertex Detector II (SVXII)

The Silicon Vertex Detector II ([24]) is the primary detector of the silicon sub-

systems. It is comprised of 5 layers of double sided silicon strip detectors. In all five

layers, there is an R − φ strip, in three layers there are 90◦ strips, and the other two

have 1.25◦ strips. The R − φ strips are situated lengthwise on the p-n junction of

the detector, and both the 90◦ and 1.25◦ strips are located on the n-side. The strips

are situated in three cylindrical barrels, each 30 cm long. There are 360 “ladders”

(four sensors connected by wire bonds) in 12 x 30◦ φ-slices. The radii of the layers

are between 2.5 cm and 10.6 cm. Figure 2.13 shows the barrel structure of the SVXII

detector.

Table 2.2 compares the technical specifications of the Run I and Run II detectors.

Figure 2.13: SVXII barrel structure.

Figure 3.5: The SVX barrel structure [19].

double-sided silicon, depending on the polar angle, at radii from 20 cm to 28 cm. The

ISL serves to extend silicon tracking coverage up to |η| < 2. Combined, the CDF silicon

detector has a total of 722,432 channels.

COT

The Central Outer Tracker (COT) [23], a large open-cell drift chamber, is positioned

outside the silicon detector from radii of 0.43 m to 1.32 m. The COT contains 8 “su-

perlayers” each containing 12 wire layers for a total of 96 layers. Four of the superlayers

provide R− φ measurements (axial superlayers) while the other four provide 2◦ measure-

ments (stereo superlayers). The drift chambers are filled with a 1:1 mixture of argon and

ethane. This mixture provides for a maximum drift time of 177 ns with a drift velocity

of 100 µm/ns, which prevents pileup of events in the drift chamber from previous events.

The resulting transverse momentum resolution of the COT is σpT
/pT ≈ 0.15%× pT .

22

FIGURE 3.5: Silicon detector barrel structure

3.2.3 Central Outer Tracker

The Central Outer Tracker [26] (COT) is another, much larger tracking volume that

extends from 0.43 m to 1.32 m radially and from −1.5 m to +1.5 m along the beam

direction. The chamber is filled with a low pressure mixture of argon and ethane and

contains 8 “superlayers”, each of which contains 12 wire layers for a total of 96 layers.

When a particle goes through the chamber, it ionizes the gas, leading to free electrons being

attracted to the sensing wires which are then measured. The superlayers alternate as axial

superlayers (measure φ) and stereo superlayers (measure z). The fine resolution of the

wires in the drift chamber allow a transverse momentum resolution of 0.15%× pT /GeV .

Combined with silicon, the resolution is 0.07%× pT /GeV . In order to measure the the

charge of a particle, the solenoid around the COT applies a 1.4 T magnetic field, which

causes the path of the particle to curl into a helix, allowing the charge and momentum to

be inferred.
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3.2.4 Calorimeters

The electromagnetic and hadronic calorimeters sit outside the solenoid. They are divided

into central (|η| < 1.1) [27, 28] and plug ( 1.1 < |η| < 3.6) [29]. The EM calorimeter

absorbs energy from electrons and photons, whereas the hadronic calorimeter absorbs

energy from particles not absorbed in the EM calorimeter (not including muons).

The calorimeters are composed of alternating layers of scintillator and metal. Particles

passing through the calorimeter interact with the dense materials and produce a shower

of particles which are detected in the photomultiplier tubes. The em calorimeter metal

is lead and the hadronic calorimeter metal is iron. The towers are segmented into 15

degree wedges in φ and 0.1 in η. In the plug region, φ segmentation is 7.5 degree wedges

until η= 2.11, after which again the wedges in φ are 15 degrees. Together the scintillator

and metal in the calorimeters form six interaction lengths of material, which would be

expected to trap 99.8% of the energy of interacting particles passing through on average.

3.2.5 Muon Detectors

The muon detectors are located outside all other detectors because the muons are long

lived and and do not strongly interact with the calorimeter. The detectors are single wire

drift chambers, and cover most of the space where |η|< 1.0. There are three parts to the

muon detectors, the central muon detector (CMU), the central muon upgrade (CMP),

and the central muon extension (CMX). The CMP is an additional layer of drift chamber

outside the CMU. The coverage is shown in Figure 3.6.
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FIGURE 3.6: Muon detector coverage

3.3 CDF Software

The CDF detector is an amazingly complex machine, with many different interoperating

systems. To extract maximum sensitivity for a physics analysis, all the components must

function as a whole to reconstruct particles and trajectories from hits on wires. This

requires a combination of hardware and software to isolate interesting events for analysis

and reconstruct the particle content of the events.

3.3.1 Event Triggers

Collisions occur at a rate of approximately 2.5 M H z . Storing all the hits and raw detector

level information for an event is approximately 200 KB . That translates to a raw data

rate of nearly 500 GB/s , which was well beyond the reach of computing when the CDF
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detector was constructed and upgraded. Coupled with the fact that most p p̄ collisions

result in some sort of soft scattering, which are not terribly interesting from a physics

perspective, we know events must be discarded.

The system for deciding what events to keep is called triggering. At CDF, there are

three levels of event triggers. Each one successively applies more stringent criteria. If an

event passes all three triggers, it is recorded to a permanent storage medium.

The Level 1 trigger (L1) is purely hardware based and it uses calorimeter information,

tracks reconstructed in the COT with the eXtremely Fast Tracker (XFT)[30] algorithm,

and muon chamber stubs to make a decision. The specialized hardware nature of the

trigger and simplistic algorithm ensures fast rejection, allowing the event rate to be

reduced from approximately 2.5 M H z to 20 kH z.

The Level 2 trigger (L2) has better (but slower) resolution and identification algo-

rithms. It also considers tracking information from silicon, allowing better rejection of

unwanted events. It reduces the event rate from 20 kH z to 300 H z.

The Level 3 trigger (L3) is entirely in software and is performed by a computing cluster.

It takes raw detector output, reconstructs higher level objects, clustered calorimeter

energies, and sophisticated reconstructed tracking from both COT and silicon as inputs.

It reduces the event rate from 300 H z to 75 H z, after which the events are written to

permanent storage.

3.3.2 Lepton Identification

The ZH analysis depends on accurate measurement of charged leptons, e ,µ (τ does not

have sufficient acceptance to contribute to the result at this luminosity). These two

charged leptons are relatively easy to measure in the CDF detector, as they leave tracks in

the COT and do not shower like gluons and quarks. The following quantities are used in

selection of electrons and muons (see chapter 4).
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Electron Quantities

• ET - Transverse energy – the energy deposited in the calorimeters. For electrons, at

most two towers (neighboring in η) are allowed.

• pT - Transverse momentum – the momentum of the electron as measured in the

COT tracking detector.

• H ad/EM - The ratio of energy deposited in the hadronic to the energy deposited

in the EM calorimeters. Electrons mostly deposit in the EM calorimeter, so this

should be low (< 10%).

• Ls h r - This indicates the agreement of the electron with the expected lateral shower

profile.

• |∆x| and |∆z | - Separation between COT track position and EM shower position.

• E/P - Ratio of calorimeter energy to momentum from the COT. May deviate from

unity because of bremsstrahlung.

• Isolation - Ratio of energy deposited outside the center of an electron cluster to

the total energy inside a∆R= 0.4 cone, excluding the electron. Electrons from a

Z boson are isolated from jets and other leptons, so this quantity should be small

[31].

• χ 2
strip - Comparison of shower profile to expected profile.

Muon Quantities

• pT - Transverse momentum – the momentum of the muon as measured in the COT

tracking detector.

• |∆x| and |∆z | - Separation between COT track position and the stub seen in the

muon chambers.
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• Eem,hadronic must be low for a muon as they do not deposit much energy in the

calorimeters.

• Isolation - Muon COT track must be relatively isolated from other tracks within

a ∆R = 0.4 cone. Muons from a Z boson decay are isolated from jets and other

leptons.

3.3.3 Jet Modeling and Reconstruction

By the principle of confinement, QCD requires that objects with nonzero color charge

cannot exist outside of a bound state. This means that in high energy collisions, any

high pT quarks or gluons (which carry color charge) must hadronize, or turn into a set of

hadrons that are colorless. To do this, the energy of the original quark or gluon causes

pair production of new quark antiquark pairs from the vacuum. This process repeats

until the newly produced items can form colorless bound states. Typically, a high energy

quark hadronizes into a stream of 10-30 particles, collectively referred to as a jet.

In the CDF detector reconstruction, jets are found by the JetCLU [32] algorithm,

which operates by iteratively calculating the centroid of energy deposition in the calorime-

ter towers until the centroid no longer changes. These raw jet energies are corrected to

account for

• Nonuniform calorimeter response as a function of jet energy.

• η corrections to account for gaps in the detector

• Multiple p, p̄ interactions at a single bunch crossing, which can happen at high

luminosities.

These lead to significant scale corrections for the measured jet energy, given in Figure 3.7.

The uncertainty on the jet energy scale is given in Figure 3.8. Since the systematic on
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FIGURE 3.7: Jet energy scale

the jet energy scale will affect different processes differently, this systematic must be

propagated forward in the analysis. This is examined in chapter 6.
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3.3.4 SecVtx Tagging

b quarks decay through the weak force, which requires they have long lifetimes compared

to particles that decay through the strong force. The high resolution particle tracking

available from the silicon vertex (SVX) detector allows detection of production of the

b quark at the primary interaction vertex, a short decay distance (∼ O (1 mm)) and a

secondary decay vertex to other particles. The SECVTX (Secondary Vertex) algorithm

looks for a decay vertex displaced from the collision vertex using the silicon detector.

Tracks where this displacement is found are then matched with jets within a∆R= 0.4

cone, allowing a jet to be tagged as coming from a b quark. Two different sets of

criteria (loose and tight) are possible, and both are used in the ZH analysis (see chapter

4). Approximately 45% of b quarks meet loose criteria and 35% of b quarks meet tight

criteria at a jet ET of 30 GeV .
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4

Event Selection

We select qq̄→ ZH → l+ l−b b̄ candidates by requiring (i) high- pT lepton trigger, (ii) two

leptons each with pT > 20 GeV /c and a dilepton invariant mass in the Z mass window,

76 GeV /c2 < M l l < 106 GeV /c2 (iii) two cone-0.4 jets with ET > 15 GeV , one of which

has ET > 25 GeV /c2, and (iv) 2 loose SECVTX b -tags or exclusively 1 tight SECVTX

b -tag. These requirements are summarized in Table 4.1.

This selection was designed for the ZH → l+ l−b b̄ neural network analysis at CDF.

Results with 1 fb−1 of data using the same selection are published in [33]. A description

of selection and trigger requirements follows.

A central lepton trigger
One high ET central lepton with ‘tight’ requirements

A second high ET lepton of the same flavor with the opposite sign
Z boson mass window of 76 GeV /c2 to 106 GeV /c2

Two or more jets with ET > 15 GeV and |η|< 2
One or more jets with ET > 25 GeV

Either: 2 ‘loose’ b -tags or 1 ‘tight’ b -tag
Table 4.1: Summary of Event Criteria
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4.1 Event Criteria

In p p̄ collisions, the interacting particles are the quarks and gluons that compose the

protons. Since the coupling of quarks to the strong force is much higher than the coupling

to the electroweak force, the dominant product of interaction is hadronic. Since we seek

to reduce this large hadronic background, we search for a high pT lepton using the CDF

central high pT lepton trigger [34]. These are summarized in Tables 4.2 and 4.3.

Trigger Central Electron
Level 1 Central Calorimeter ET ≥ 8 GeV

XFT pT ≥ 8.34 GeV /c
Had/EM < 0.125

Level 2 L2 ET ≥ 16 GeV
L2 Had/EM ≤ 0.125
|η| < 1.317

Level 3 Central ET > 18 GeV
Central Had/EM < 0.125

Central∆z ≤ 2 cm
Track pT > 9 GeV /c

Table 4.2: Central electron trigger path

Trigger CMUP CMX
Level 1 CMU stub pT ≥ 6 GeV /c CMX stub pT ≥ 6 GeV /c

XFT pT ≥ 4.09 GeV /c XFT pT ≥ 8.34 GeV /c
CMP Stub

Level 2 XFT pT ≥ 14.77 GeV /c XFT pT ≥ 14.77 GeV /c
Level 3 pT ≥ 18.0 GeV /c pT ≥ 18.0 GeV /c

CMP∆x < 20 CMX∆x < 10
CMU∆x < 10

Table 4.3: Central muon trigger paths

The central electron trigger looks for energy in an EM calorimeter tower with a

corresponding XFT track. At level 2, there must be a EM tower with ET > 8 GeV and

nearby towers must sum up to ET > 16 GeV . At level 3, there must be a corresponding

track with pT > 9 GeV /c and ∆z ≤ 2 c m. The minimum ET is 18 GeV , but because of

trigger turn on effects, we only consider electrons above 20 GeV .
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Muons have two triggers, CMUP and CMX, corresponding to the parts of the muon

detector. The CMUP trigger requires aligned muon hits in CMU and CMP, whereas the

CMX trigger only requires hits in the CMX. A corresponding XFT track is also required.

Lepton η and φ also affect the trigger efficiency. For ZH → l+ l−b b̄ , 60% of events

where the Z decays to electrons are triggered by CEM, and 50% of events where the Z

decays to muons are triggered by the CMUP and CMX triggers combined [31].

Since this is a search, it is critical to maximize acceptance for ZH signal. To that effect,

we use a lepton selection looser than the standard CDF selection [34] [35]. At least one

of the two leptons must meet the tight lepton requirements, however the other can meet

the looser requirements defined below in table 4.4 for electrons and Table 4.5 for muons.

Together the two leptons must have an invariant mass between 76 and 106 GeV /c2.

A natural quesiton to ask is why Z→ τ+τ− are not considered. Decays to τ+τ− are

complicated by the additional decay of the τ to hadrons or charged leptons and neutrinos.

In cases where the τ secondarily decays to hadrons, the event cannot match the two e

or µ requirement. If the selection were modified to allow τ hadronic decays, large new

QCD backgrounds would be introduced. The case where both τ decay leptonically to

an opposite sign pair is very rare (6%), and even then there would be four neutrinos

present in the event, leading to high missing transverse energy, making it unsuitable for

our selection.

4.1.1 Jets

Figure 2.16 tells us that a low mass Higgs boson decays to b b̄ most of the time. QCD

requires the b quarks hadronize into jets, which are then measured in the calorimeter.

Kinematics favor b quarks with high transverse momentum because the Higgs is so

massive compared to the b quark. Figure 4.1 shows that the leading b quark almost

always has pT over 25 GeV /c and the second b quark almost always has pT over 15

GeV /c . Setting the jet cuts at those values reduces a significant amount of background
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Tight Electron Selection Loose Electron Selection
ET > 18 GeV ET > 10 GeV (central)
pT > 9 GeV /c ET > 18 GeV (plug)

Had/Em < 0.055+ 0.0004·E Had/Em < 0.055+ 0.00045·E
E/P < 2.5+ 0.015ET Isolation ·E raw

T /E corr
T < 0.1

|Zvertex|< 60 cm pT > 5 GeV /c (if central)
|η|< 1 |Zvertex|< 60 cm

Lshr < 0.2 Fiducial
Isolation ·E raw

T /E corr
T < 0.1

−3.0<Q · |∆x|< 1.5
χ 2

strip < 25.0
|Zelectron−Zvertex|< 3 cm

2 stereo and 2 axial super-layer segments
Table 4.4: Electron requirements

Tight Muon Selection Loose Muon Selection Loose Muon Selection
( pT > 20 GeV /c ) ( pT ≤ 20 GeV /c ) ( pT > 20 GeV /c )

Had Energy < 6 GeV Had Energy < 6 GeV Had Energy < 12 GeV
Em Energy < 2 GeV Em Energy < 2 GeV Em Energy < 4 GeV

Isolation < 0.1 Isolation < 0.1 Isolation < 0.1
d0 < 0.2 (w/o silicon hits) d0 < 0.2 (w/o silicon hits)
d0 < 0.02 (w/ silicon hits) d0 < 0.02 (w/ silicon hits)
≥ 3 stereo segments ≥ 1 COT segment ≥ 1 COT segment
≥ 3 axial segments

Tight CMUP requirements
|∆x|C M U < 3.0 cm
|∆x|C M P < 5.0 cm

Tight CMX requirements
|∆x|C M X < 6.0 cm

ρ> 140 cm
Table 4.5: Muon requirements. Any of the three sets of criteria can be satisfied. Loose
muons are not required to have muon detector stubs. ρ is the COT exit radius.

while maintaining most of the signal.

We choose to use∆R= 0.4 cone jets, meaning the distance in the η, φ plane (∆R=
Æ

∆φ2+∆η2) is 0.4. This is used when finding the bounds of the jet in the reconstruction

software. Larger cones allow capture of more of the partons that make up a jet at the

expense of more noise.
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4.1.2 b -Tagging

Higgs events are sometimes hard to separate from Drell-Yan events based on kinematics

alone. However, the Higgs boson strongly favors decay to b b̄ over other hadronic decays.

By searching for this b quark signature, we greatly enhance sensitivity to signal. We use

the SECVTX b -tagging algorithm [36], which uses the Silicon detector to look for a

secondary vertex in the event since b quarks have such a short lifetime.

We separate events into two categories, those with two ‘loose’ b -tags, and those with

one or more b -tags, preferring to classify an event as two loose if both criteria are satisfied.

The signal and background partition into the two categories differently, leading to a

higher signal to background ratio in the two loose tag channel. This fact is later used to

enhance sensitivity (see chapter 6).

b -tags are very good at reducing Drell-Yan + jets background. Requiring a b -tag cuts

∼ 98% of light flavor (u, d , s quark) jet events and ∼ 80% of heavy flavor (c , b ) jet events.

Fakes, which are similar to Drell-Yan + jets kinematically, are events where a lepton is

reconstructed as a jet. Fakes achieve similar reduction factors. In contrast, ZH is reduced
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by only 35% by the b -tag requirement, dramatically improving the signal to background

ratio.

4.2 Backgrounds

The selection must be balanced between cutting out background while maintaining

sufficient signal acceptance. This leads to three large backgrounds to be accounted for:

Drell-Yan (Z + jets), t t̄ pair production, and diboson (W Z/ZZ) production, shown in

Figure 4.2 and Figure 4.3.

	Z∗/γ

q

q̄

l+

l−

g

g



q

q̄

t

t̄

FIGURE 4.2: Tree level diagrams for the Drell-Yan + jets and t t̄ background processes

The Drell-Yan background events typically have two jets that come from initial state

radiation. This produces the requisite two jet, two lepton signature that passes our

selection. The t t̄ pair production has a ∼ 100% branching ratio to W W b b̄ . Both W

bosons can decay hadronically or leptonically. In the case where both decay leptonically,

the final state is l+ l−νν̄b b̄ . Since the neutrinos are invisible to the detector, the observed

state is the same as our selection, except with high missing transverse energy.

Diboson production results in W Z/ZZ . W W is also produced, but is entirely

eliminated by kinematic selection. W Z also has very low acceptance for kinematic

reasons, so we only expect 1.0 event. However ZZ can have one Z decay hadronically to

b b̄ and the other to l+ l−. Kinematically, ZZ is very similar to ZH with the exception

of the reconstructed dijet mass distribution. This makes it difficult to separate from
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FIGURE 4.3: Tree level diagrams for the diboson W W /W Z/ZZ processes

ZH and consequently significant amounts of ZZ are allowed into the selection. The

W W /W Z/ZZ category in Tables 4.9-4.8 is 92% ZZ and 8% W Z after tag requirements.

4.3 Signal Acceptance

Figure 2.14 gives ZH production cross sections at the Tevatron, and Figure 2.16 gives

Higgs boson branching ratios. The Feynman diagram for the production process is shown

as Figure 4.4. With 2.7 fb−1 of collected data, based on ALPGEN [37]Monte Carlo and

the effects of trigger and selection efficiencies we expect events as shown in table 4.6.


Z
Z
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q

q̄

e−,µ−

e+,µ+

b
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FIGURE 4.4: ZH → l+ l−b b̄ production mechanism
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MH σ (fb) BR(H → b b̄ ) Pretag 1 Tight 2 Loose
100 169.0 0.803 4.52 1.97 0.96
105 145.0 0.785 4.12 1.81 0.93
110 125.0 0.758 3.23 1.41 0.71
115 107.9 0.716 2.88 1.25 0.65
120 93.7 0.659 2.60 1.13 0.58
125 81.6 0.587 1.79 0.79 0.42
130 71.2 0.502 1.31 0.57 0.31
135 62.4 0.410 0.93 0.45 0.25
140 54.8 0.319 0.68 0.31 0.17
145 48.2 0.235 0.44 0.21 0.12
150 37.6 0.160 0.28 0.12 0.07

Table 4.6: Expected number of ZH → l+ l−b b̄ events for Higgs masses between 100
and 150 GeV /c2 in the two loose b -tag and one tight b -tag channels. Pretag indicates all
selection requirements except b -tagging.

4.4 Event Totals

4.4.1 Pretag

Source ee mm l l
Z→ ee 3768.54± 986.85 0.00± 0.00 3768.54± 986.85
Z→ ee +hf 391.71± 68.15 0.00± 0.00 391.71± 68.15
Z→µµ 0.04± 0.01 2685.53± 681.26 2685.57± 681.26
Z→µµ+hf 0.00± 0.00 263.07± 45.68 263.07± 45.68
Z→ ττ 3.07± 0.63 0.66± 0.13 3.73± 0.65
Z→ ττ+hf 0.15± 0.04 0.01± 0.00 0.16± 0.04
W W ,W Z ,ZZ 91.76± 12.73 65.87± 9.16 157.62± 15.69
Fakes 640.28± 111.30 35.80± 13.61 676.08± 112.12
t t 19.13± 3.83 14.86± 2.97 33.99± 4.85
Total 4916.33± 995.44 3067.02± 683.00 7986.35± 1207.22
Data 4297 2960 7257

Table 4.7: Pretag background expectation
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FIGURE 4.5: Pretag channel kinematics

4.4.2 Double Loose b -Tag

Source ee µµ l l
Z→ ee 2.93± 0.73 0.00± 0.00 2.93± 0.73
Z→ ee +hf 11.39± 2.76 0.00± 0.00 11.39± 2.76
Z→µµ 0.00± 0.00 2.55± 0.61 2.55± 0.61
Z→µµ+hf 0.00± 0.00 8.12± 1.93 8.12± 1.93
Z→ ττ 0.00± 0.00 0.00± 0.00 0.00± 0.00
Z→ ττ+hf 0.00± 0.00 0.00± 0.00 0.00± 0.00
W Z ,ZZ 1.69± 0.33 1.24± 0.24 2.94± 0.41
Fakes 0.03± 0.01 0.02± 0.01 0.04± 0.01
t t̄ 4.38± 0.88 3.29± 0.66 7.66± 1.09
Total 20.42± 3.01 15.21± 2.14 35.63± 3.69
Data 16 16 32

Table 4.8: Double b -tag background expectation
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FIGURE 4.6: Double b -tag channel kinematics

4.4.3 Single Tight b -tag

Source ee µµ l l
Z→ ee 70.67± 18.84 0.00± 0.00 70.67± 18.84
Z→ ee +hf 63.03± 11.43 0.00± 0.00 63.03± 11.43
Z→µµ 0.00± 0.00 58.89± 14.89 58.89± 14.89
Z→µµ+hf 0.00± 0.00 44.21± 8.14 44.21± 8.14
Z→ ττ 0.05± 0.02 0.02± 0.01 0.07± 0.02
Z→ ττ+hf 0.04± 0.01 0.01± 0.00 0.04± 0.01
W Z ,ZZ 6.64± 1.04 4.97± 0.79 11.61± 1.30
Fakes 12.80± 6.40 3.09± 1.55 15.89± 6.58
t t̄ 7.71± 1.54 6.15± 1.23 13.86± 1.97
Total 160.94± 23.15 117.34± 17.10 278.28± 28.78
Data 152 106 258

Table 4.9: Single b -tag background expectation

47



)2 (GeV/cbbm
0 20 40 60 80 100 120 140 160 180 200

Ev
en

ts

-110

1

10

210

310

1-tag

Data
 ee!Z
 ee+bb,cc!Z
µµ !Z

+bb,ccµµ !Z
"" !Z

+hf"" !Z

WW,WZ,ZZ

Fakes

tt

 10 ×=115 GeV) HZH(m

)-1CDF Run II Preliminary (2.7 fb
1-tag

 (GeV/c)TLepton p
0 20 40 60 80 100 120 140 160 180 200

Ev
en

ts

-110

1

10

210

310

1-tag

Data
 ee!Z
 ee+bb,cc!Z
µµ !Z

+bb,ccµµ !Z
"" !Z

+hf"" !Z

WW,WZ,ZZ

Fakes

tt

 10 ×=115 GeV) HZH(m

)-1CDF Run II Preliminary (2.7 fb
1-tag

 (GeV)TMissing E
0 20 40 60 80 100 120 140 160 180 200

Ev
en

ts

-110

1

10

210

310

1-tag

Data
 ee!Z
 ee+bb,cc!Z
µµ !Z

+bb,ccµµ !Z
"" !Z

+hf"" !Z

WW,WZ,ZZ

Fakes

tt

 10 ×=115 GeV) HZH(m

)-1CDF Run II Preliminary (2.7 fb
1-tag

Number of jets
0 1 2 3 4 5 6 7 8 9

Ev
en

ts

-110

1

10

210

310

1-tag

Data
 ee!Z
 ee+bb,cc!Z
µµ !Z

+bb,ccµµ !Z
"" !Z

+hf"" !Z

WW,WZ,ZZ

Fakes

tt

 10 ×=115 GeV) HZH(m

)-1CDF Run II Preliminary (2.7 fb
1-tag

FIGURE 4.7: Single b -tag channel kinematics
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5

Matrix Elements

Perturbation theory allows calculation of transition probabilities between quantum states.

Since the standard model is a perturbative theory, in an ideal world, the probability of a

transition between the initial state p p̄ and the final measured partons would be calculable.

In the real world, many specifics about the initial and final states are unknowable. But,

by integrating over unknown quantities and making a few assumptions, an analogous

probability can be obtained. If we call the complete set of measured event kinematics x,

and the set of physics parameters (particle masses, SM couplings, etc.) used to perform

the calculation Θ, the probability density function P j of the j th process is proportional

to the differential cross section in equation 5.1.

P j (x|Θ) =
1

σ(Θ)
dσ(Θ)

dx
(5.1)

5.1 Matrix Element Approximations

Without any approximations, if the initial and final states could be known exactly (in-

cluding quantum numbers that are unknowable like color), the differential cross section

would simply be the integrated matrix element transition probability calculated using
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perturbation theory. Since there is a great deal we do not know about the initial and final

states of the we must make the following approximations

5.1.1 Initial State

Since protons and anti-protons are composite particles, the actual interaction occurs

between the constituents of the protons, the quarks and gluons. Unfortunately we do not

know the exact kinematics of the quarks and gluons. We also do not know color and spin

configurations of the colliding particles. We do not even know if the interacting particles

were quarks or if they were gluons; we only know that we collided p with p̄.

To account for this broad lack of knowledge of the initial state, we use a parton density

function (PDF) from the CTEQ group [38], version 6.1, which is a parametrization

of the momenta of the components of a proton. We integrate over the parton density

functions for both the p and p̄, leading to

dσ(Θ)
d p f

=
∫

dΦ
�

�

�M j (pi , p f |Θ)
�

�

�

2
fPDF(pi , p1) f̄PDF(pi , p2) (5.2)

where fPDF is the parton density function for the proton and f̄PDF is the parton density

function for the anti-proton. Because the PDF returns a probability of measuring a

momenta (given some collider and theory parameters), it allows integration over all

accessible regions of the 4-momentum for initial state particles. Usually initial state

particles are not virtual, which reduces the dimension of integration by one.

5.1.2 Final State

QCD confinement makes it impossible to measure color, spin, or momentum of the

actual final state quarks. The quarks hadronize into jets which loosely resemble the

original quark. In the case of backgrounds, there can be jets from gluons which hadronize

as well. Additionally all of the final state partons’ measured variables are affected by

limited detector resolution and granularity.
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To account for this we introduce the transfer functions W (p f ,x). Each transfer

function links a final state parton to the corresponding measured reconstructed object.

Since there are a range of parton momenta that can result in the measured value, this

implies an integration over final parton momenta. Changing variables for the differential

cross section and including the additional integrations in dΦ, equation 5.2 becomes

dσ(Θ)
dx

=
∫

dΦ
�

�

�M j (pi , p f |Θ)
�

�

�

2�∏
W (p f ,x)

�

fPDF(pi , p1) f̄PDF(pi , p2) (5.3)

We make a few simplifying assumptions about the process and detector to reduce the

necessary integrations.

• Leptons are measured perfectly. This is equivalent to the lepton transfer function

being a three dimensional delta function.

• Jet angles are measured perfectly, and jet energies are parametric functions of parton

energy. The jet transfer functions can be expressed as

δ(θjet−θparton)δ(φjet−φparton)W (Eparton, Ejet)

where W (Ep , E j ) is the parametrized relationship between parton energy and jet

energy.

• Incoming partons are massless (good approximation for light quarks), and have no

transverse momentum.

• The two leading jets are b quark jets.

• Final state leptons are massless, and final state b quarks have an invariant mass of

4.7 GeV /c2.

Additionally, each production process has multiple Feynman diagrams, which requires

�

�

�M j (pi , p f |Θ)
�

�

�

2
→
∑

a

�

�

�M (a)
j (pi , p f |Θ)

�

�

�

2
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where the index a runs over the different Feynman diagrams available to a production

process. At minimum, the number of incoming quark flavors and colors must be summed

over. This makes the general form of the differential cross section

dσ(Θ)
dx

=
∫

dΦ
�

∑

a

�

�

�M (a)
j (pi , p f |Θ)

�

�

�

2
�

�∏

W (p f ,x)
�

fPDF(pi , p1) f̄PDF(pi , p2) (5.4)

5.2 Jet Transfer Function

As mentioned in the simplifications, the W (Eparton, Ejet) function links the measured jet

energy to a possible parton energy Eparton with some probability. By integrating over all

parton energies, this allows removal of the unknown parton energy from the differential

cross section.

To get this transfer function we start with a Monte Carlo sample of ZH → l+ l−b b̄

events. We eliminate jets in the final state that can be traced to initial state radiation (ISR)

quarks or gluons. For b quark jets (matched to partons within a ∆R = 0.4 cone), we

find the parton energy Eparton and the Level 5 corrected ([32]) jet energy Ejet. We then

perform a fit of δ = Ep − E j with our functional form, which we take to be a double

Gaussian, defined as equation 5.5 [39].

W j (δ) =
1

p
2π(p2+ p3 p5)



exp

 

−(δ − p1)
2

2 p 2
2

!

+ p3 exp

 

−(δ − p4)
2

2 p 2
5

!

 (5.5)

where each pi depends linearly on Ep :

pi = ai + bi Ep (5.6)

The fitted transfer function, has constants given in Table 5.1 and Figure 5.1-5.2.
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pi ai bi
p1 −3.99± 0.15 −0.035± 0.002
p2 2.66± 0.13 0.072± 0.001
p3 0.652± 0.020 0.00± 0.000
p4 0.374± 0.23 −0.274± 0.005
p5 7.82± 0.20 0.092± 0.003

Table 5.1: Constants for the W (Eparton, Ejet) transfer function.

FIGURE 5.1: The parton-jet transfer function contours are shown. As expected, at low
transverse energies, the jet and parton energies match to within an offset and smearing.
The smearing increases as E j and Ep increase.
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FIGURE 5.2: Fitted parton and jet spectra. The first plot shows Ep − E j , which is the
fitted distribution. The second shows the E j distribution given the Ep distribution as
the input distribution in the third plot. All plots are from Monte Carlo with MH = 120
GeV /c2
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5.3 Processes

All four matrix elements we use for the ZH search integrate over the following variables:

• Lepton momenta (x2)

• Initial parton momenta (x2)

• Final state quark momenta (x2)

• x and y components of system momenta (recoil)

To perform the integration, we use the Monte Carlo importance sampling technique

VEGAS from the GNU Scientific Library (GSL) version 1.9. Although a full description

of VEGAS is best left to [40], the key feature is a multi-pass iterative buildup of a sampling

distribution for the integrand. Moreover, the sampling distribution is adaptive to the

integrand, being determined to higher precision in regions of higher contribution to the

integral. Since the sampling distribution closely follows the integrand, the variance of

the points chosen by VEGAS is lower than the variance of points from a more naive

approach.

A more in depth explanation of the matrix elements is presented in [39], including the

variables of integration, changes of variables required and the corresponding Jacobians.

5.3.1 ZH → l+ l−b b̄ and ZZ

Here we use Monte Carlo for FeMtobarn processes (MCFM) [41, 42] to calculate

∑

a

�

�

�M (a)
j (pi , p f |Θ)

�

�

�

2
(5.7)

In addition to the integration needed for all matrix elements, there is an additional

integration over the unknown intermediate Z and H bosons (see Figure 2.17). We use the
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known Z boson mass and width and the theoretical H pole mass parameters to reduce

the dimensionality of the integration.

The ZZ → l+ l−b b̄ matrix element only differs from the ZH → l+ l−b b̄ in terms

of the kinematic distributions of the hadronic decay. The dijet mass for ZZ events will

reconstruct to the Z boson pole mass instead of the Higgs boson pole mass.

5.3.2 Z+jets

We use MadEvent/MadGraph [43] to calculate |M |2 in the case of Z + jets. Unlike the

other processes, there are many different mechanisms of Z + jets event production. At

least 65 distinct Feynman diagrams result in a final state of two leptons and two jets.

In order to carry out the integration over all the 8 specified variables for a given event,

a great many evaluations (O (100,000)) of |M |2 are required. Although each diagram can

be evaluated fairly quickly (milliseconds), in order to achieve higher speed, MadGraph

does statistical sampling of possible diagrams, choosing to weight dominant processes

more heavily (several orders of magnitude faster). Unlike other processes we have matrix

elements for, there is no integration over intermediate particles in the event.

5.3.3 t t̄

We expect two neutrinos in t t̄ events. Since they are invisible and have three degrees of

freedom in the massless approximation, together they introduce six degrees of freedom

that must be integrated over. The momenta of the intermediate particles, t t̄ ,W ± must

also be integrated over.

The |M |2 for t t̄ can be analytically derived, as in [44, 45], reproduced here

|M |2 =
g 4

s

9
F F̄ ((2−β2 s 2

q t )−Xs c ) (5.8)

whereβ is the top quark velocity in the qq̄ rest frame, Xs c contains terms describing spin

correlations between top quarks, gs is the strong coupling constant, sq t is the sine of the
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angle between the incoming parton and the top quark, and F (F̄ ) are the top (anti-top)

quark propagators respectively.
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6

Analysis Technique

The sensitivity of a search can be estimated from the empirical measure of

signal/
Æ

background

The combination of SM prediction and detector effects like selection and tagging produces

a S/
p

B ∼ O (10−1). This is insufficient to do any kind of pure counting experiment,

so advanced analysis techniques are required. Likelihood fitting allows extraction of

the maximum amount of information from each event. We use the matrix elements as

described in chapter 5 to form a likelihood function.

6.1 Likelihood Fitting — 1

Likelihood functions in a parameter need not be unique [46]. We use the matrix elements

described in the previous chapter to form a likelihood function for each event. Each

event has a signal and background probability based on matrix elements, Ps and a Pb

respectively. The expression

L(S,x|Θ) = SPS(x|Θ)+ (1− S)Pb (x|Θ) (6.1)
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is a per event likelihood in S given event kinematics x and theory parameters Θ. Notice

that this function is linear in the S parameter, with the slope of the line indicating

if the event is more signal-like or background-like. This definition of L possesses

the normalization condition
∫

L = 1 given
∫

Ps dx =
∫

Pb dx = 1, allowing L to be

interpreted as the probability density function of the data.

The standard prescription for a likelihood fit on a set of data events is to take the

product of the individual likelihood curves. Therefore equation 6.1 becomes

L (S) =
∏

i

L(S,xi ) =
∏

i

S
�

Ps (xi |Θ)+ (1− S)Pb (xi |Θ)
�

(6.2)

where i is the index over events in the sample. As a matter of computability, we choose

to instead maximize the log-likelihood

logL (S) =
∑

i

log L(S,xi ) =
∑

i

�

log
�

SPs (xi |Θ)+ (1− S)Pb (xi |Θ)
��

(6.3)

In the combined likelihood S means signal fraction, Ns/N for the sample under consid-

eration. One of crucial properties of likelihood fitting is that the maximum likelihood

estimator is normally distributed [6, 46].

6.2 Resampling

When considering events to fit, there are two complications. First, due to the slow speed

of Monte Carlo generation and matrix element calculation, the statistics of events are

limited. Secondly, the events that are generated by the slow Monte Carlo have weights

based on factors like trigger efficiencies.

Resampling techniques allow the extraction of more information from a limited set

of events. The technique we use is called bootstrapping, which involves taking random

subsamples from the large pool of events. A cursory overview of bootstrapping can be

found in [47] and detailed information in [48]. Barlow [49] states the estimation of an
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error allows (N /n)2 subsamples in the bootstrap, whereN is the number of events in

the pool, and n is the number of events in the subsample. Since we are estimating the

spread of a likelihood fit, the Barlow limit applies.

Bootstrapping allows us to form subsets of events similar to what we would expect

from the CDF detector based on theory predictions. The theory predictions are given

by Table 4.9 and Table 4.8. The subsets of events assembled are called pseudo-experiments

(PEs). Because the events are sampled from a large pool of events, it allows weighted

sampling, as more heavily weighted events are part of the subsamples more often.

6.3 Normalization

To ensure normalization of the matrix elements described in chapter 5, we perform an

ad-hoc two component normalization using the likelihood fitter. Correctly normalized

density functions are required for any likelihood fitting technique.

The four matrix elements, ZH , ZJ J , t t̄ , and ZZ are indexed by j . In principle, each

should integrate to unity over the allowable phase space.

∫

dx P j (x|Θ) =
1

σ(Θ)

∫

dx
dσ(Θ)

dx
= 1 (6.4)

Practically, we obtain this instead because the matrix elements were all coded indepen-

dently by different people without paying attention to absolute cross section, only the

shape of the probability density function.

∫

dx P j (x|Θ) =
∫

dx
dσ(Θ)

dx
= σ(Θ) (6.5)

In the likelihood fit, Ps and Pb must have a correct relative normalization. Since there

are four matrix elements, and relative normalizations must commute, that leaves three

independent normalization constants to find. We find the three normalization constants

by choosing one matrix element as a basis and calibrating the other three using a two
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component likelihood fit. We choose to normalize the other matrix elements against the

t t̄ matrix element with a subsample size of 500 events. We choose 500 event subsamples

because we wanted sufficient Monte Carlo statistics in the smallest sample to perform

a sufficient number of resamples in the Barlow limit. We choose the t t̄ process as

the reference point to normalize other matrix elements against because it is strongly

distinguishable from each of the others which enhances the statistical power of the fit.

To normalize, we let Ps → Pt t̄ and Pb → P{ZH ,ZJ J ,ZZ}. Then we run the likelihood
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FIGURE 6.1: A single log likelihood curve, with the most likely value of S marked as Sm

fitter on sets of events that are 50% t t̄ and 50% of {ZH ,ZJ J ,ZZ}. One sample log

likelihood curve is shown as Figure 6.1. The central limit theorem causes the polynomial

expression for likelihood to become normally distributed, or correspondingly parabolic

in log-likelihood space.

The bootstrap resampling technique introduces significant variation between subsam-

ples. Each subsample produces a curve like the one in Figure 6.1, and each curve has a

most likely value, Sm (short for Smeasured). Individual Sm values are histogrammed for each
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FIGURE 6.2: The aggregate histogram of most likely values (Sm) for normalization sets
of events at mH = 115 GeV /c2. Each of the matrix elements were multiplied by the
appropriate constant (Table 6.1) such that the histogram is centered at 0.5

of the three cases ZH ,ZJ J ,ZZ , and the Pb values are multiplied by normalization con-

stants which are adjusted until the mean of the histogram occurs at 0.5. The histograms

for background and signal at mH = 115 GeV /c2 are in Figure 6.2. Other Higgs mass

points produce very similar histograms. The properties of maximum likelihood fitting

ensure the distribution of most likely values is Gaussian [46]. The subsample size of 500

does not affect the mean of the Sm distribution, and so does not affect the normalization

constant obtained.
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Matrix Element Normalization ( σt t̄/σ(Θ))
t t̄ 1

ZJ J 1.90× 10−2

ZZ 8.90× 10−4

ZH100 1.77× 103

ZH105 2.01× 103

ZH110 2.15× 103

ZH115 2.35× 103

ZH120 2.50× 103

ZH125 2.65× 103

ZH130 2.85× 103

ZH135 3.05× 103

ZH140 3.35× 103

ZH145 3.65× 103

ZH150 4.00× 103

Table 6.1: Normalization constants for the matrix elements. t t̄ was chosen as the basis
for the normalization, and thus has a normalization of 1

6.4 Pseudo-Experiments

As described in section 6.2, pseudo-experiments are bootstrapped sets of events that follow

the distributions we expect from theory (Tables 4.9 and 4.8). Because the theory predicts

a constant rate of production for any given process, the number of events of events for

that process must follow a Poisson distribution. The means of the Poisson distributions

for each process are given in Table 4.9 and 4.8.

The SM predicts a signal/
p

background ratio of∼O (0.1) (see Table 6.2). Put another

way, at mH = 115 GeV /c2 and integrated luminosity of 2.7/fb, there is a background

expectation of ∼ 300±
p

300 = 300± 17 (stat) events and a signal expectation of ∼

1.9± 1.4 (stat) events. The background fluctuations due to Poisson statistics completely

overwhelm any signal that may be present.

Consider a toy example where we are fitting a one dimensional kinematic distribution

with two shapes, a signal shape and a background shape. In the case of these pseudo-

experiments, there would be large fluctuations in the total integrated area between
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MH Pretag 1 Tight 2 Loose
100 0.051 0.118 0.161
105 0.046 0.109 0.156
110 0.036 0.085 0.119
115 0.032 0.075 0.109
120 0.029 0.068 0.097
125 0.020 0.047 0.070
130 0.015 0.034 0.052
135 0.010 0.027 0.042
140 0.008 0.019 0.028
145 0.005 0.013 0.020
150 0.003 0.007 0.012

Table 6.2: Expected Signal/
p

Background Table

pseudo-experiments. Since the signal and background shapes are fixed, there would be a

large spread in the fitted parameter purely due to Poisson fluctuations.

Since the desirable outcome is to reduce the spread in the fitted parameter, we instead

choose to normalize the distributions to some constant before performing the fit. This

forces the fit to be based purely on shapes, and eliminates a large source of variation be-

tween pseudo-experiments. The same principle applies to the complex multidimensional

fit done in this analysis.

We choose to only consider pseudo-experiments where NPE = Ndata, where Ndata

is the number of events observed at the CDF detector, in this case 290 events. This

eliminates spread in the fitted parameter Sm caused by fluctuations in pseudo-experiment

size, making the analysis a pure shape fit. It also has a nice interpretation that can be

thought of as a Bayesian prior, that we only consider pseudo-experiments that might be

what we observed at the real experiment.

As described in Chapter 4, SECVTX b tagging allows us to distinguish b quark jets

from other jets by looking for a secondary vertex in the silicon detector. The selection

requires at least one b tag, but there are kinematic differences between single b tagged

and double b tagged events. To ensure that pseudo-experiments accurately represent the
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distributions we expect from theory, it is important to make sure the correct numbers of

single b tagged and double b tagged events from each process are present. We define the

ζ factors as

ζ ( j )1tag =N ( j )1tag/N ( j ) (6.6)

ζ ( j )2tag =N ( j )2tag/N ( j ) (6.7)

where the index j runs over the four different matrix elements (and corresponding Monte

Carlo event pools), {ZH ,ZJ J , t t̄ ,ZZ}. ζ factors are the probability of an event from a

certain category being single or double tagged. Table 6.3 and 6.4 give single and double

tag rates for each of the four matrix elements.

ZJ J t t̄ ZZ
ζ1tag 0.91 0.74 0.80 ζ B

1tag = 0.89
ζ2tag 0.09 0.26 0.20 ζ B

2tag = 0.11

Table 6.3: Tagging rates for the backgrounds. The total ζ B
k−tag are obtained by

N k−tag
back

/(N 1tag
back
+N 2tag

back
) where N k−tag

back
are the total background predictions from Table 4.9

and 4.8 and k is 1 or 2.

ZH (mH ) 100 105 110 115 120 125 130 135 140 145 150
ζ1tag 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.64 0.64 0.64 0.63
ζ2tag 0.33 0.33 0.34 0.34 0.34 0.35 0.35 0.36 0.36 0.36 0.37

Table 6.4: Tagging rates for the signal at all Higgs masses between 100 and 150 GeV /c2.

In addition to Poisson variability, each process has an associated rate systematic

uncertainty from things like k-factor, b tagging uncertainties, and luminosity. Each rate

systematic uncertainty is independent from other rate systematics, but is correlated across

production processes. So for each production process, we add the different systematics

in quadrature (because they are independent) and correlate the same systematic across

processes. Therefore, all of the rate systematics can be reduced to a single distribution

that is scaled according to the process. We believe the distribution to be Gaussian with a
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mean of zero and width (σ ) as given in Table 6.5. A detailed examination of factors that

compose the systematic are in section 6.7.

Process Scale Factor
Z→ l+ l−+ u ū, d d̄ , s s̄ 0.425
Z→ l+ l−+ c c̄ , b b̄ 0.435
W Z , ZZ 0.246
QCD 0.500
t t̄ → l l̄ νν̄b b̄ 0.224
Table 6.5: Rate Systematic scale factor

Since we are searching for ZH signal in a shape fit, the amount of ZH in the pseudo-

experiment must be a parameter of construction. This parameter is called Strue = St =

NZH/NPE and represents the (known) fraction of ZH signal in the pseudo-experiment,

where NZH is the poisson mean. Now we are ready to follow the pseudo-experiment

procedure.

Pseudo-experiment Procedure

To understand the systematics, please see section 6.7.

1. Calculate the number of signal and background events expected given St .

Ns = St Ndata Nb =Ndata−Ns

2. Calculate the breakdown of signal and background events into 1-tag and 2-tag

channels

N (1tag)
s = ζ (ZH )

1tag Ns N (2tag)
s = ζ (ZH )

2tag Ns

N (1tag)
b
= ζ B

1tagNb N (2tag)
b
= ζ B

2tagNb
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3. Calculate event 1 tag and 2 tag probabilities and signal fractions

P1tag = (N
(1tag)
s +N (1tag)

b
)/Ndata

P2tag = (N
(2tag)
s +N (2tag)

b
)/Ndata

S (1tag)
t =N (1tag)

s /(N (1tag)
s +N (1tag)

b
)

S (2tag)
t =N (2tag)

s /(N (2tag)
s +N (2tag)

b
)

4. Generate a Binomial variate with p = P1tag, q = P2tag, and N = Ndata = 290. This

will give the single tagged PE size and the double tagged PE size by subtraction from

Ndata. This gives N (1tag)
constraint

and N (2tag)
constraint

respectively. Clearly Nconstraint fluctuates

across different PEs.

5. Generate a Gaussian (µ= 0, σ = 1) variate for rate scaling. For each process, scale

this variate by the quadrature sum of all rate systematics (dominated by the k-factor,

see Table 6.5). Scale all background poisson means from Table 4.9 and 4.8 by the

scaled Gaussian variate.

6. Generate Poisson variates per process based on the scaled poisson means in the 1

tag and 2 tag channel separately. Independently check that the number of events

in the 1 tag channel = N (1tag)
constraint

and the number of events in the 2 tag channel

=N (2tag)
constraint

. If the constraint is not met for the 1 tag or 2 tag channel, generate a new

set of Poisson variates for all processes within the tag channel. This is equivalent to

discarding PEs where N ̸=Nconstraint. Because Ndata is the sum of the two Nconstraint,

this implies PEs where N ̸=Ndata are discarded.

7. Some Gaussian variates are heavily suppressed, (with a k-factor of 0.4, if we fluctuate

2.5σ low, the poisson mean is zero), so we limit the number of sets of Poisson

variates for a given Gaussian variate to 1000. The limit changes by a maximum of
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0.5% as the number of Poisson sets per Gaussian variate varies from 1 to 106, which

is significantly less than the statistical error on the limit.

8. At this point there is a list of channels and processes (9 background and 1 signal

process, 2 tag channels)=20 with a number of events to draw from each. We go to

the pools of events (which have weights from trigger efficiencies and cross section),

and using rejection based Monte Carlo, we draw the appropriate number of events

from each category. These events form a pseudo-experiment, which is then fit using

the likelihood fitter.

All tagging rates and ζ factors are based on Monte Carlo, not observed fluctuations in

the data. This makes the analysis ‘blind’ to the observed number of 1 tag and 2 tag events.

This is desirable as poisson b tagging fluctuations would propagate to a better or worse

limit otherwise, amplifying b tagging uncertainty in the process.

6.5 Likelihood Fitting — 2

From Table 6.2, it is clear that the S/
p

B is significantly higher in the 2 tag channel than

in the 1 tag channel. We seek to take advantage of this to improve sensitivity by separating

the two tag channels. However, for illustrative purposes, first consider the simpler case

presented in section 6.1 (Combined tags).

6.5.1 Combined Tag Channels

We reproduce equation 6.2 here

L (S) =
∏

i

L(S,xi ) =
∏

i

S
�

Ps (xi |Θ)+ (1− S)Pb (xi |Θ)
�

(6.8)

To account for multiple backgrounds we replace Pb with a correctly weighted sum of the

matrix element density functions for the backgrounds, namely

Pb (xi |Θ)→ λ1Pb1(xi |Θ)+λ2Pb2(xi |Θ)+λ3Pb3(xi |Θ)+ . . . (6.9)
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where λ j is the background fraction of the j th background as defined by λ j =N ( j )
b
/Nb .

Therefore,
∑

j λ j = 1. This constraint on λ j and the S, (1− S) construction in the

likelihood ensure that normalization ofL is maintained at all S, an essential condition

for likelihood fitting. With the three backgrounds, the likelihood expression becomes.

L (S) =
∏

i

�

(SPZH (xi |MH )+ (1− S)
�

λZJ J PZJ J (xi )+λZZ PZZ(xi )+λt t̄ Pt t̄ (xi )
��

(6.10)

Like the normalization case, pseudo-experiments produce a Gaussian curve in S, much

like Figure 6.1. And like the normalization case, we make a histogram of most likely

values of the signal fraction (Sm).

6.5.2 Separated Tag Channels

We know that a ZH signal event has a higher probability than background of being double

tagged. We seek to enhance sensitivity by using this fact; we make an approximation that

the tagging probability is independent of event kinematics (a reasonable approximation).

Then we reweight matrix element probabilities by the tagging probability for that process.

P j (x|Θ)→ P (x|Θ)P j (k) (6.11)

where k is the number of tags for the event. Since P j (k) is exactly equivalent to the ζ j

factors defined earlier (equation 6.6 and 6.7), we substitute. Effectively this adds another

dimension to the P j , leading to the new matrix element expression P j (x, k|Θ). This makes

equation 6.10 into

L (S) =
∏

i



(SPZH (xi , ki |MH )

+ (1− S)
�

λZJ J PZJ J (xi , ki )+λZZ PZZ(xi , ki )+λt t̄ Pt t̄ (xi , ki )
�



 (6.12)
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λZJ J 0.8852
λZZ 0.0463
λt t̄ 0.0685

Table 6.6: λ background fractions are based on theory predictions, as given in Tables 4.9
and 4.8

which coupled with tables 6.3, 6.4, and 6.6, completely defines the likelihood fitter.

To allow for statistical fluctuations in the fitted signal fraction we scan outside the

physical [0,1] region. This occasionally leads to difficulties in finding the likelihood peak

in an automated way in the analysis software.

log L (S) =
∑

i

log



(SPZH (xi , ki |MH )

+ (1− S)
�

λZJ J PZJ J (xi , ki )+λZZ PZZ(xi , ki )+λt t̄ Pt t̄ (xi , ki )
�



 (6.13)

When fitting the peak, we use the log likelihood, as in equation 6.13. Reliably finding

the peak is not always trivial, so we use the well known and efficient Nelder-Mead

[50, 51] maximization algorithm. Nelder-Mead, also known as the amoeba method, is

preferred over other methods as it does not require the calculation of derivatives and

minimizes computationally expensive function evaluations of likelihood. The specific

implementation used is from the Apache Java Commons Math 2.0 Snapshot.

6.6 Feldman-Cousins Method

The likelihood fitter produces a likelihood curve for each constructed pseudo-experiment.

Examples for pseudo-experiment likelihood and log-likelihood curves are shown as

Figures 6.3 and 6.4.

The most likely value is the Smeasured, the measured signal fraction, for a given Strue,

the true signal fraction the pseudo-experiment was constructed with. We map the

correspondence between the true signal fraction and the measured signal fraction, and
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FIGURE 6.3: Pseudo-experiment Likeli-
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FIGURE 6.4: Pseudo-experiment Log-
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the mapping allows us to adjust for any biases in the estimator.

The Feldman-Cousins method [52] provides a prescription for performing this map-

ping and setting a confidence interval. It requires scanning in the theory parameter, and

forming a distribution of the measured parameter on simulated pseudo-experiments. The

relationship can be inverted to obtain the distribution in the theory parameter given the

measured parameter. The most likely theory parameter for any given Smeasured is Sbest
true .

R=
H (Sm|St )

H (Sm|Sbest
t )

(6.14)

The ratio R gives the relative likelihood of two hypotheses, one with a theory parameter

of St and the other with a theory parameter of Sbest
t . Obviously when St = Sbest

t , R= 1,

otherwise R< 1. R(St |Sm) can be be thought of as the probability density function in St

for a given Sm.

The ratio of the relative likelihoods (not the same likelihood as the matrix element

likelihood) is something known as a likelihood ratio test, which is equivalent to more

well known statistical hypothesis tests like a t -test. Choosing a value of the ratio R is

equivalent to choosing a statistical significance confidence level.

The ratio R is used as the test statistic in the Feldman-Cousins procedure, and the

frequentist Neyman construction is used to form confidence bands. This ensures statistical
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FIGURE 6.5: Measured Signal Fraction Peak Histograms. The legend indicates St .

coverage by construction and allows a self-consistent way of setting a two sided or one

sided coverage interval.

We follow the Feldman-Cousins procedure for this analysis. Figure 6.5 shows the

histogramsH (Sm|St ) for selected St values in the scan. From the properties of likelihood

fitting [46], we know that Sm has a Gaussian distribution as long as the Ps (x) and Pb (x)

have compact support. We fit Gaussians to the histograms and use the fitted Gaussians

(shown) as the distribution of Sm, denoted byH (Sm|St ).

Noticeably, the width of the fitted Gaussians increase as the amount of average signal

fraction present in pseudo-experiments (St ) increases. This is exactly what we expect if

we think of the likelihood fit as a two component signal-background fit, because the size

of the Poisson fluctuations on signal increase as St increases. We gain a better sense of

what the histograms look like in two dimensions (Figure 6.6). The figure indicates that

the mean and spread ofH (Sm) can be modeled as a function of St . We fit an ad-hoc cubic

polynomial for the mean and width ofH .
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The polynomial fit for the mean and width of H (Sm) gives an analytic model of

H (Sm|St ). We then take the ratio R as defined in equation 6.14 and normalize the

ratio distribution for each St . In the Sm, St plane, this leads to adjusted distribution of

Figure 6.7.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Smeas

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
tr

u
e

FIGURE 6.6: Measured Signal Fraction 2D Map. Warmer colors indicate higher probabili-
ties of measurement.

For a given St and coverage threshold, we select the central interval in R such that

the integrated area is equal to the coverage threshold. We do this at all St to get the

boundaries at the specified coverage interval. This sets the coverage bands over the Sm, St

plane which is all that is necessary for setting a one-sided or two-sided interval using the

Feldman-Cousins construction. The results are presented in chapter 7.
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FIGURE 6.7: Feldman-Cousins Ratio

6.7 Systematics

There are several systematic effects that must be accounted for when performing the

analysis. They can broadly be broken up into two categories, rate systematics and shape

systematics. Rate systematics reflect an uncertainty in the number of events of a particular

process in relation to other processes or total. Shape systematics affect the shape of the

kinematic distributions.

The rate systematics are k-factor uncertainty, luminosity uncertainty, and b -Tagging

uncertainty. The k-factor is defined as the ratio of the true cross section of a process to

the leading order cross section, k = σ/σLO . Since the luminosity needs to be measured,

there is an experimental uncertainty from the CDF luminosity detector. The b -tagging

uncertainty indicates that the simulated tagging rate might not match the actual tagging

rate. b -tagging uncertainty varies for the different quarks in the final state, namely that a

light flavor or c quark is tagged differently from an actual b quark.
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Uncertainty Value
k-factor (ZJ J ) 40%
k-factor (W Z/ZZ , t t̄ ) 20%
Luminosity 6%
Tagging (u ū, d d̄ , s s̄ ) 13%
Tagging (c c̄ ) 12.4%
Tagging (b b̄ ) 5.6%

Table 6.7: Rate Uncertainties. Each of the three uncertainties (k-factor, Luminosity,
b -Tagging) is believed to be independent of the others. Tagging uncertainty is applied
once per tag.

Since the three rate uncertainties are independent of each other, the total uncertainty

is the quadrature sum of the three uncertainties. Because each of the uncertainties is corre-

lated across samples, the rates of all samples must be scaled simultaneously. This explains

the drawing of the Gaussian variate as outlined in the pseudo-experiment construction

procedure in section 6.4

The k-factor uncertainty dominates the rate uncertainties because of the quadrature

sum. However, Table 4.8 and 4.9 show that the total number of events predicted agrees

with the observed number to within 1 σ . Entirely separate from the rate systematics,

there are poisson fluctuations for each process. Because the analysis is a pure shape fit, the

data effectively constrained the rate systematic distribution.

There are also the shape systematic uncertainties, which are Initial State Radiation

(ISR), Final State Radiation (FSR), and Jet Energy Scale ( JES). ISR introduces an extra

parton in the initial state, leading to an extra jet in the event, (qq̄ g → ZH g → l+ l−b b̄ g ).

FSR introduces an extra jet in the event as well, but in the final state (qq̄ → ZH →

l+ l−b b̄ g ). Jet Energy Scale uncertainty arises from the difficulty in calibrating the

energy measured in the calorimeter with the true energy of the jet.

Shape uncertainties can be accounted for by adjusting the shape ofH (Sm|St ). For

each shape systematic, we perform pseudo-experiments at ±1σ in the systematic. At

any given St , these systematically varied pseudo-experiments lead to a shift inH (Sm|St )
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FIGURE 6.8: Rms scale factor as a function of St for Sm distributions due to shape
systematics. The dominant systematic is ISR, which causes misidentification of jets when
performing the selection.

mean by δ±. We assume the shift inH (Sm|St ) to be linear in the systematic, namely

∆= δ±σsyst. Since the systematic distribution is assumed to be a Gaussian, we want to

weight the shift in the Sm histogram with a Gaussian in the systematic. BecauseH (Sm|St )

is itself Gaussian, we convolute the two Gaussians,effectively adding their variances to

form a new histogram H (Sm|St ) with the systematic included. We repeat this for all

three shape systematics, effectively increasingH (Sm|St ) variance at each St by the sum

of the variances due to the three shape systematics. The ratio of the standard deviations

with and without all systematics included is plotted in figure 6.8. It shows that over a

range of 0 to 0.4 St , standard deviation ofH (Sm|St ) is increased between 0 and 9% due to

systematics.

76



7

Results

Using 2.7 fb−1 of data (through period 17), 290 events pass the selection outlined in

chapter 4. These 290 events are fitted with the likelihood fitter from chapter 6. The

resulting likelihood curve is Figure 7.1.
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FIGURE 7.1: Data Likelihood Curve
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The data likelihood curve peaks at S (data)
meas = 0.100. Three discrete coverage levels

corresponding to 1, 2, and 3 σ are selected from Figure 6.7 and are shown as Figure 7.2.
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FIGURE 7.2: Feldman-Cousins confidence bands. The most likely S from data is indicated
as the red line. The most likely Sm (based on simulation) as a function of St is the black
median line. MH = 115 GeV /c2

The most likely S from the data is indicated as Sdata
meas, the red line. At 95 % coverage

(blue band), Sdata
meas crosses the upper blue boundary at a Strue of 0.0537, which corresponds

to a σ/σSM of 8.2 (right axis).

The expected limit is obtained by assuming that St = 0, and calculating the distribution

of limits that would be obtained by the Feldman-Cousins prescription. The distribution

for MH = 115 GeV /c2 is given in Figure 7.3.

The limits at all masses are given in Table 7.1 using the SM cross sections defined in
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FIGURE 7.3: Expected distribution of limits assuming that St = 0 and 95% coverage. The
data limit is at the 13th percentile. The median of this distribution defines the expected
limit. ±1,±2 σ limits are defined by the appropriate point on the cumulative density
function for this distribution. MH = 115 GeV /c2

Figure 2.14. The table is plotted in Figure 7.4. Noticeably, the data favors a lower limit as

compared to the expected limit at all MH considered. A full set of coverage bands for all

MH between 100 and 150 GeV /c2 is provided in appendix A
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MH −2σ −1σ median +1σ +2σ Observed
100 4.8 6.0 8.7 12.5 16.2 7.0
105 4.7 6.1 8.7 12.9 17.1 6.5
110 5.6 7.5 11.3 16.8 22.3 7.6
115 6.4 8.3 12.1 18.2 24.2 8.2
120 7.1 9.3 13.5 20.0 26.5 9.0
125 10.7 13.2 18.3 27.1 35.2 13.2
130 13.7 17.1 24.2 35.7 46.6 17.7
135 17.4 21.8 31.0 44.8 58.6 22.9
140 24.4 31.1 44.3 65.4 85.0 32.0
145 33.5 42.8 61.6 89.9 118.8 43.2
150 58.2 73.7 104.1 153.2 198.3 71.3

Table 7.1: Expected and observed limits in units of σSM , as given by Figure 2.14. Uses 2.7
fb−1 of CDF II data, through period 17.

100 105 110 115 120 125 130 135 140 145 150
M H

100

101

102

σ
/σ

S
M

CDF II Preliminary 2.7 fb−1

±2σ

±1σ

Expected

Observed

FIGURE 7.4: p p̄→ ZH → l+ l−b b̄ limits at 95% coverage.
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8

Conclusions & Future Work

It is useful to consider this ZH → l+ l−b b̄ analysis as part of the larger set of Higgs

searches. The Tevatron continues to improve on the Higgs cross section limits (see

Figure 8.1) and has even excluded a Higgs boson with a mass between 160 GeV /c2 and

170 GeV /c2 with 95% C.L. With the Large Hadron Collider due to come online in late

2009, as well as continued running of the Tevatron for lower mass Higgs searches, there

are good prospects for potential discovery of the Higgs boson.

This analysis demonstrates that the matrix elements are a simple, elegant and powerful

way to perform a search. In the future this technique can be extended to other analyses, or

possibly other channels for the Higgs boson search. With minor changes, this technique

could easily be applied to LHC data.

Currently the different Higgs search channels use neural networks with input variables

not including matrix elements. A potentially large gain from adding matrix elements as

neural network inputs is possible.

A genetic algorithm was tested as a way to cut the current set of (tagged) events down

to a smaller set of events. It found the optimal solution to be acceptance of all the events
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FIGURE 8.1: March 2009 Tevatron Higgs Combined Limits [53]. A Higgs boson with
mass below 114 GeV /c2 was excluded (95% C.L) at LEP, and masses between 160 GeV /c2

and 170 GeV /c2 have been excluded (95% C.L.) at the Tevatron.

which are tagged. This suggests the current selection is too restrictive and there is a gain if

the tagging requirements are loosened.

Unitarity of cross sections in the standard model tell us the standard model does not

extend to infinite energies. Indirect constraints suggest the first evidence of phenomena

beyond the SM will manifest at energy scales of ∼ O (1 T eV ). With the LHC parton-

parton collision energy approaching 1 T eV , we stand at the edge of the unknown. We

either discover the Higgs boson, which would be yet another resounding success for the

standard model, or discover the absence of the Higgs boson, which may be the modern

version of the ultraviolet catastrophe. Regardless, it is an exciting time to research high

energy physics.
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Appendix A

Additional Plots

We show data likelihood curves, Feldman-Cousins confidence bands, and expected limit

distributions at all MH between 100 and 150 GeV /c2.
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FIGURE A.9: MH = 140 GeV /c2

92



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
S

0.0

0.2

0.4

0.6

0.8

1.0

L(
S
)

S data
meas CDF II Preliminary 2.7 fb−1

Smeas = 0.081 Ndata = 290

−0.2 0.0 0.2 0.4 0.6 0.8
Smeas

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
tr

u
e

S data
meas

Observed Limit= 43.1 σ/σSM

CDF II Preliminary 2.7 fb−1

Expected Limit= 61.6 σ/σSM

median

99.7%

95.0%

68.0%

−0.2 0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

350

σ
/σ

S
M

0.00 0.05 0.10 0.15 0.20 0.25
Expected Limit (units of Strue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P

Data Limit

0 50 100 150 200
Limit (σSM )

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CDF II Preliminary 2.7 fb−1

Expected Limit= 61.6 σ/σSM

Observed Limit= 43.1 σ/σSM

FIGURE A.10: MH = 145 GeV /c2

93



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
S

0.0

0.2

0.4

0.6

0.8

1.0

L(
S
)

S data
meas CDF II Preliminary 2.7 fb−1

Smeas = 0.075 Ndata = 290

−0.2 0.0 0.2 0.4 0.6 0.8
Smeas

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
tr

u
e

S data
meas

Observed Limit= 71.3 σ/σSM

CDF II Preliminary 2.7 fb−1

Expected Limit= 104.1 σ/σSM

median

99.7%

95.0%

68.0%

−0.2 0.0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

σ
/σ

S
M

0.00 0.05 0.10 0.15 0.20 0.25
Expected Limit (units of Strue)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P

Data Limit

0 50 100 150 200 250 300 350
Limit (σSM )

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CDF II Preliminary 2.7 fb−1

Expected Limit= 104.1 σ/σSM

Observed Limit= 71.3 σ/σSM

FIGURE A.11: MH = 150 GeV /c2

94



Bibliography

[1] Michelson, A. Light Waves and their Uses. University of Chicago Press, Chicago,
1903.

[2] Higgs, P. Broken Symmetries and the Masses of Gauge Bosons. Physical Review Letters,
13(16):508–509, 1964. doi:10.1103/PhysRevLett.13.508.

[3] SuperK Collaboration. Measurements of the Solar Neutrino Flux from Super-
Kamiokande’s First 300 Days. Physical Review Letters, 81(6):1158–1162, 1998.
doi:10.1103/PhysRevLett.81.1158.

[4] Griffiths, D. Introduction to Elementary Particles. John Willey & Sons Inc, 1987.

[5] Wikimedia Commons. Creative Commons Attribution 3.0 Unported. Wikipedia,
2006. [Online; accessed 27-April-2009], URL http://commons.wikimedia.org/
wiki/File:Standard_Model_of_Elementary_Particles.svg.

[6] C. Amsler et al. (Particle Data Group). Review of Particle Physics. Physics Letters B,
667:1–6, 2008. doi:10.1016/j.physletb.2008.07.018. URL http://pdg.lbl.gov.

[7] Barger, V. and Phillips, R. Collider Physics. Westview Press, 2nd edition, 1996.

[8] Aitchison, I. and Hey, A. Gauge Theories in Particle Physics, volume 1-2. Taylor
and Francis Group, New York, 3rd edition, 2003.

[9] Goldstone, J. Field theories with Superconductor solutions. Il Nuovo Cimento
(1955-1965), 19(1):154–164, 1961.

[10] Lee, B., Quigg, C., and Thacker, H.B. Weak Interactions at Very High Energies:
The Role of the Higgs-Boson Mass. Physical Review D, 16(5):1519–1531, 1977. doi:
10.1103/PhysRevD.16.1519.

[11] Lee, B., Quigg, C., and Thacker, H.B. Strength of Weak Interactions at Very High
Energies and the Higgs Boson Mass. Physical Review Letters, 38(16):883–885, 1977.
doi:10.1103/PhysRevLett.38.883.

95

http://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
http://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
http://pdg.lbl.gov


[12] Hambye, T. and Riesselmann, K. Matching Conditions and Higgs Boson Mass Upper
Bounds Reexamined. Physical Review D, 55(11):7255–7262, 1997. doi:10.1103/
PhysRevD.55.7255.

[13] Carena, M. and Haber, H. Higgs Boson Theory and Phenomenology. Progress in
Particle and Nuclear Physics, 50(1):63–152, 2003.

[14] Tevatron Electroweak Working Group. Combination of CDF and D0 Results on
the Mass of the Top Quark. arXiv, 0903.2503, 2009. URL http://arxiv.org/abs/
0903.2503.

[15] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations et al. Precision Elec-
troweak Measurements and Constraints on the Standard Model. arXiv, 0811.4682v1,
2008. URL http://arxiv.org/abs/0811.4682v1.

[16] LEPEWWG. LEP Electroweak Working Group Report. 2009. [Online; accessed
16-May-2009], URL http://lepewwg.web.cern.ch/LEPEWWG.

[17] TeV4LHC web page, 2009. [Online; accessed 5-May-2009], URL http://maltoni.
home.cern.ch/maltoni/TeV4LHC.

[18] Hidas, D. Search for Standard Model Higgs Bosons Decaying to W-Boson Pairs in p p̄
Collisions at

p
s = 1.96 TeV. CDF Note, 9734, 2007. URL http://www-cdf.fnal.

gov/thesis/cdf9734_DeanHidasThesis_1.pdf%.

[19] Fermilab Beams Division Collaboration. Tevatron Run 2 handbook. Fermilab,
1998.

[20] CDF Collaboration. The CDF detector: an overview. Nuclear Instruments and
Methods in Physics Research A, 271:387.

[21] CDF Collaboration. Measurement of the J/ψ meson and b -hadron production cross
sections in p p̄ collisions at

p
s = 1960 GeV . Physical Review D, 71(3):032001, 2005.

doi:10.1103/PhysRevD.71.032001.

[22] CDF Collaboration. The CDF Cherenkov luminosity monitor. Nuclear Inst.
and Methods in Physics Research, A, 461(1-3):540–544, 2001. doi:10.1016/
S0168-9002(00)01294-8.

[23] CDF Collaboration. The performance of the CDF luminosity monitor. Nuclear Inst.
and Methods in Physics Research, A, 494(1-3):57–62, 2002. doi:1016/S0168-9002(02)
01445-6.

96

http://arxiv.org/abs/0903.2503
http://arxiv.org/abs/0903.2503
http://arxiv.org/abs/0811.4682v1
http://lepewwg.web.cern.ch/LEPEWWG
http://maltoni.home.cern.ch/maltoni/TeV4LHC
http://maltoni.home.cern.ch/maltoni/TeV4LHC
http://www-cdf.fnal.gov/thesis/cdf9734_DeanHidasThesis_1.pdf% 
http://www-cdf.fnal.gov/thesis/cdf9734_DeanHidasThesis_1.pdf% 


[24] CDF Collaboration. Intermediate silicon layers detector for the CDF experiment.
Nuclear Inst. and Methods in Physics Research, A, 453(1-2):84–88, 2000. doi:
10.1016/S0168-9002(00)00610-0.

[25] CDF Collaboration. CDF Run II silicon tracking projects. Nuclear Inst. and Methods
in Physics Research, A, 447(1-2):1–8, 2000. doi:10.1016/S0168-9002(00)00166-2.

[26] CDF Collaboration. CDF central outer tracker. Nuclear Inst. and Methods in
Physics Research, A, 526(3):249–299, 2004. doi:10.1016/j.nima.2004.02.020.

[27] Balka, L. et al. The CDF central electromagnetic calorimeter. Nuclear Inst. and
Methods in Physics Research, A, 267(2-3):272–279, 1988. doi:10.1016/0168-9002(88)
90474-3.

[28] CDF Collaboration. The CDF central and endwall hadron calorimeter. Nuclear
Inst. and Methods in Physics Research, A, 267(2-3):301–314, 1988. doi:10.1016/
0168-9002(88)90476-7.

[29] CDF Collaboration. The CDF calorimeter upgrade for Run IIb. Nuclear Inst. and
Methods in Physics Research, A, 518(1-2):39–41, 2004. doi:10.1016/j.nima.2003.10.
018.

[30] CDF Collaboration. Online track processor for the CDF upgrade. IEEE Transactions
on Nuclear Science, 49(3 Part 2):1063–1070, 2002. doi:10.1109/TNS.2002.1039615.

[31] Efron, J. Search for the Higgs Boson in the ZH→ llbb Channel at CDF Run II. CDF
Note, 8976, 2007. URL http://www-cdf.fnal.gov/thesis/cdf8976_ZHllbb_
JZE_Thesis%_2.ps.gz.

[32] CDF Collaboration. Determination of the jet energy scale at the Collider Detector at
Fermilab. Nuclear Inst. and Methods in Physics Research, A, 566(2):375–412, 2006.
doi:10.1016/j.nima.2006.05.269.

[33] CDF Collaboration. Search for the Higgs Boson Produced in Association with Z→
l+ l− in p p̄ Collisions at

p
s = 1.96 TeV. Physical Review Letters, 101(25):251803

(pages 7), 2008. doi:10.1103/PhysRevLett.101.251803.

[34] CDF Collaboration. First Measurements of Inclusive W and Z Cross Sections from
Run II of the Fermilab Tevatron Collider. Physical Review Letters, 94(9):091803,
2005. doi:10.1103/PhysRevLett.94.091803.

97

http://www-cdf.fnal.gov/thesis/cdf8976_ZHllbb_JZE_Thesis% _2.ps.gz
http://www-cdf.fnal.gov/thesis/cdf8976_ZHllbb_JZE_Thesis% _2.ps.gz


[35] CDF Collaboration. Measurement of the t t̄ Production Cross Section in p p̄ Collisions
at
p

s = 1.96 T eV Using Dilepton Events. Physical Review Letters, 93(14):142001,
2004. doi:10.1103/PhysRevLett.93.142001.

[36] CDF Collaboration. Measurement of the t t̄ Production Cross Section in p p̄ Collisions
at
p

s = 1.96 T eV using Lepton + Jets Events with Secondary Vertex b -tagging.
Physical Review D, 71(5):052003, 2005. doi:10.1103/PhysRevD.71.052003.

[37] Mangano, M.L. et al. ALPGEN, a Generator for Hard Multiparton Processes in
Hadronic Collisions. Journal of High Energy Physics, 07:001, 2003.

[38] Stump, D. et al. Inclusive jet production, parton distributions, and the search for new
physics. Journal of High Energy Physics, 10:046, 2003. URL http://arxiv.org/
abs/hep-ph/0303013.

[39] Jayatilaka, B. A Measurement of the Top Quark Mass in the Dilepton Decay Channel
at CDF II. CDF Note, 8481, 2006. URL http://www-cdf.fnal.gov/thesis/
cdf8481_me_dil_thesis.pdf.

[40] Lepage, G. A new algorithm for adaptive multidimensional integration. Journal of
Computational Physics, 27(2):192–203, 1978.

[41] Campbell, J., Ellis, R.K., Maltoni, F., and Willenbrock, S. Production of a Z boson
and two jets with one heavy-quark tag. Physical Review D, 73(5):054007, 2006.
doi:10.1103/PhysRevD.73.054007.

[42] Campbell, J. and Ellis, R.K. Radiative corrections to Z b b̄ production. Physical
Review D, 62(11):114012, 2000. doi:10.1103/PhysRevD.62.114012.

[43] Alwall, J. et al. MadGraph/MadEvent v4: The New Web Generation. Journal of
High Energy Physics, 09:028, 2007. 0706.2334, URL http://arxiv.org/abs/
0706.2334.

[44] Mahlon, G. and Parke, S. Maximizing spin correlations in top quark pair production
at the Tevatron. Physics Letters B, 411(1-2):173–179, 1997.

[45] Mahlon, G. and Parke, S. Improved spin basis for angular correlation studies in single
top quark production at the Tevatron. Physical Review D, 55(11):7249, 1997.

[46] Wikipedia. Maximum likelihood, 2009. [Online; accessed 16-May-
2009], URL http://en.wikipedia.org/w/index.php?title=Maximum_
likelihood&oldid=288802199.

98

http://arxiv.org/abs/hep-ph/0303013
http://arxiv.org/abs/hep-ph/0303013
http://www-cdf.fnal.gov/thesis/cdf8481_me_dil_thesis.pdf
http://www-cdf.fnal.gov/thesis/cdf8481_me_dil_thesis.pdf
0706.2334
http://arxiv.org/abs/0706.2334
http://arxiv.org/abs/0706.2334
http://en.wikipedia.org/w/index.php?title=Maximum_likelihood&oldid=288802199
http://en.wikipedia.org/w/index.php?title=Maximum_likelihood&oldid=288802199


[47] Wikipedia. Bootstrapping (statistics), 2009. [Online; accessed 12-May-
2009], URL http://en.wikipedia.org/w/index.php?title=Bootstrapping_
(statistics)&oldid=287033127.

[48] Efron, B. and Tibshirani, R.J. An Introduction to the Bootstrap. Chapman and
Hall, New York, 1993.

[49] Barlow, R. Application of the Bootstrap Resampling Technique to Particle Physics
Experiments. Technical report, MAN/HEP/99, 2000.

[50] Nelder, J. and Mead, R. A Simplex Method for Function Minimization. The Computer
Journal, 7(4):308, 1965. doi:10.1093/comjnl/7.4.308.

[51] Wikipedia. Nelder-Mead method, 2009. [Online; accessed 29-April-
2009], URL http://en.wikipedia.org/w/index.php?title=Nelder-Mead_
method&oldid=286921633.

[52] Feldman, G. and Cousins, R. Unified Approach to the Classical Statistical Analysis of
Small Signals. Physical Review D, 57(7):3873–3889, 1998. doi:10.1103/PhysRevD.
57.3873.

[53] Tevatron New Phenomena Higgs Working Group. Combined CDF and DZero
Upper Limits on Standard Model Higgs-Boson Production with up to 4.2 fb−1 of Data.
2009. URL http://arxiv.org/abs/0903.4001.

99

http://en.wikipedia.org/w/index.php?title=Bootstrapping_(statistics)&oldid=287033127
http://en.wikipedia.org/w/index.php?title=Bootstrapping_(statistics)&oldid=287033127
http://en.wikipedia.org/w/index.php?title=Nelder-Mead_method&oldid=286921633
http://en.wikipedia.org/w/index.php?title=Nelder-Mead_method&oldid=286921633
http://arxiv.org/abs/0903.4001

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1  Introduction 
	2  Motivation and Theory 
	2.1 Standard Model
	2.1.1 Fundamental Particles
	2.1.2 Standard Model Symmetries

	2.2 Quantum Chromodynamics
	2.3 Electroweak Interactions
	2.3.1 Goldstone Model
	2.3.2 Higgs Mechanism

	2.4 Higgs Phenomenology
	2.4.1 Indirect Constraints
	2.4.2 Tevatron Higgs Production


	3  Experimental Apparatus 
	3.1 Tevatron
	3.2 CDF II Detector
	3.2.1 Cerenkov Luminosity Counter
	3.2.2 Silicon Tracking
	3.2.3 Central Outer Tracker
	3.2.4 Calorimeters
	3.2.5 Muon Detectors

	3.3 CDF Software
	3.3.1 Event Triggers
	3.3.2 Lepton Identification
	3.3.3 Jet Modeling and Reconstruction
	3.3.4 SecVtx Tagging


	4  Event Selection 
	4.1 Event Criteria
	4.1.1 Jets
	4.1.2 b-Tagging

	4.2 Backgrounds
	4.3 Signal Acceptance
	4.4 Event Totals
	4.4.1 Pretag
	4.4.2 Double Loose b-Tag
	4.4.3 Single Tight b-tag


	5  Matrix Elements 
	5.1 Matrix Element Approximations
	5.1.1 Initial State
	5.1.2 Final State

	5.2 Jet Transfer Function
	5.3 Processes
	5.3.1 ZHl+l-b and ZZ
	5.3.2 Z+jets
	5.3.3 t


	6  Analysis Technique 
	6.1 Likelihood Fitting --- 1
	6.2 Resampling
	6.3 Normalization
	6.4 Pseudo-Experiments
	6.5 Likelihood Fitting --- 2
	6.5.1 Combined Tag Channels
	6.5.2 Separated Tag Channels

	6.6 Feldman-Cousins Method
	6.7 Systematics

	7  Results 
	8  Conclusions & Future Work 
	A  Additional Plots 
	Bibliography

