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A B S T R A C T

In this thesis we present the first measurement of the polarization amplitudes for
the charmless Bs → φφ → [K+K−][K+K−] decay of the Bs meson. The result is
achieved using an unbinned Maximum Likelihood fit to the data collected by the
Collider Detector at Fermilab (CDF) in Run II (CDFII), in a period starting from March
2001 till April 2008, which corresponds to an integrated luminosity of 2.9 fb−1. The
resulting yield consists of 300 signal events selected by the Two Track Trigger (TTT).

The three estimated polarization amplitudes are:

|A0|2 |A‖|2 |A⊥|2

0.388± 0.042 0.257± 0.041 0.355± 0.044

and the resulting polarization fractions are:

longitudinal transverse

0.388± 0.042 0.612± 0.060

Furthermore, our work puts in evidence an original topic, that was never observed
until now: an unexpected dependence of the signal acceptance on the proper decay
time (t) of the Bs mesons. This specific issue, which is most likely a general feature
induced by any signal selection based on the lifetime information, is supposed to be
related to the on-line TTT and off-line selections based on the impact parameter. The
involved fit, indeed, reproduces the biases observed in large statistics Monte Carlo
(MC) samples.

The thesis presents the same analysis performed for the B0
s → Jψφ decay as well,

which is used as a control sample. The polarizations amplitudes we find are consistent
with the published ones [1]; this result contributes to enforce the reliability of the
analysis.

This work is considered ready to begin the procedure for official approval by the
CDF collaboration pending the finalization of the systematic uncertainty which has not
yet been fully completed.

S O M M A R I O

In questa tesi viene presentata la misura delle ampiezze di polarizzazione del decadi-
mento Bs → φφ → [K+K−][K+K−]. Essa è la prima effettuata per questo tipo di
decadimento ed è stata ottenuta dal un fit di tipo unbinned Maximum Likelihood a un
campione di dati raccolti dal Collider Detector at Fermilab (CDF), a partire da marzo
del 2001 fino ad aprile del 2008, e correspondenti a una luminosità integrata di 2.9 fb−1.
In questo campione sono stati selezionati 300 eventi di segnale nei dati acquisiti con
l’utilizzo del Two Track Trigger (TTT).

Le tre ampiezze di polarizzazione misurate sono:
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|A0|2 |A‖|2 |A⊥|2

0.388± 0.042 0.257± 0.041 0.355± 0.044

dalle quali si ottengono le seguenti frazioni di polarizzazione:

longitudinale trasversa

0.388± 0.042 0.612± 0.060

Inoltre nel lavoro di tesi si è messo in luce un inastteso aspetto: la dipendenza
dell’accettanza del segnale dal tempo proprio di decadimento del mesone Bs. Questo
effetto, mai osservato nelle precedenti analisi di questo genere svolte a CDF, si pre-
sume essere dovuto alle selezioni sulla base del parametro d’impatto, effettuate sia
on-line dal TTT sia a livello off-line. L’ interesse sucitato da questo effetto è di carat-
tere generale, in quanto può riguardare qualsiasi analisi che basi la propria selezione
degli eventi sulle peculiarità della lunga vita media del mesone Bs. Nel fit finale si è
pertanto sviluppato un metodo che consideri la nuova dipendenza osservata.

La tesi presenta la stessa analisi svolta anche per il decadimento B0
s → Jψφ: esso è

utilizzato come campione di test. I valori di polarizzazione trovati per questo decadi-
mento sono consistenti con i risultati noti in letteratura [1]; questo convalida la consis-
tenza e la correttezza dell’analisi sviluppata per il decadimento Bs → φφ.

In questa tesi si riporta infine il metodo per la valutazione delle incertezze sistem-
atiche, ultimo tassello mancante per poter sottoporre l’analisi all’approvazione uffi-
ciale da parte della collaborazione di CDF.
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1 I N T R O D U C T I O N A N D M OT I VAT I O N S

The Standard Model (SM) is the theoretical framework that describes the known
elementary particles and their interactions. Over the past decades it has been

greatly tested experimentally, proving itself very successful. Its predictions involv-
ing the fundamental building blocks of matter, the quarks, the leptons and the vector
bosons, have been confirmed. In this picture, the physics of the b quark represents
one of the most active research areas in high energy physics to challenge the SM pre-
dictions. In particular, the rich phenomenology of non-leptonic b-meson decays offers
a great opportunity to search for CP violations, both direct and mixing-induced, and
to explore the phase structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2].

Charmless hadronic b-meson decays proceed through an unique interplay of elec-
troweak and low-energy strong interactions. The latter represents also the most chal-
lenging issue in the theoretical description of a large part of b-meson decay rates, since
the predicted amplitudes are affected by significant uncertainties coming from the
presence of strong interactions in non-perturbative regime. Several phenomenological
models have been built, none of them properly accounting for all observed decay-
rates and their CP asymmetry. Thus, the interpretation of experimental observations
becomes complicated: any discrepancy between predictions and measurements may
be ascribed either to improper treatment of hadronic uncertainties, or to contributions
not expected in the SM. Accumulating further experimental information (for example
in the B0

s field) is important in order to verify the theoretical calculations and arrive at
more precise predictions.

One class of B decays which is particularly intriguing involves processes whose
principal contribution comes from b̄ → s̄ penguin amplitudes. The reason is that
there are already several results in these processes conflicting with the current SM
expectations. These effects, conversely, could be taken into account by the presence of
new physics. First, the CP asymmetry in B0

d → J/ψKS should be approximately equal
to that in penguin-dominated b̄→ s̄qq̄ transitions (q = u, d, s) within the SM; however,
on average, these latter measurements yield a smaller value [3, 4, 5, 6]. Second, within
the SM, one expects no triple-product asymmetries in B→ φK? [7].1 Nonetheless, both
BaBar and Belle have measured such effects, albeit at low statistical significance [8, 9].
Third, the data on B → πK branching ratios and CP asymmetries [10, 11, 12, 13, 14]
appear to be inconsistent with a SM fit [15, 16].

In the same scenario, another powerful challenge occurs in B→ V1V2 decays, where
the Vi are light vector mesons. Such systems have the peculiar nature that the decay
rate can be explained by the definition of three specific decay amplitudes: these cor-
respond to the three possible relative angular momenta L between the vector mesons.
In fact, for two spin 1 particles, L can be equal to 0, 1, or 2 to obtain the spin 0 initial
state. Different formalisms could be involved in this description; the most suitable
one makes use of three polarization amplitudes (one longitudinal and two transverse).
Since these are observable quantities, they can be measured from an angular analysis
of the decay products: the emission angles of the final states particles (i. e., the prod-
ucts from the Vi mesons decays) have to be studied in a proper reference frame to

1 The triple-product for a B meson decay to two vector mesons takes the form ~q · (~ε1 × ~ε2), where ~q is the
momentum of one of the vector mesons; ~ε1 and ~ε2 are the polarizations of the two vector mesons.
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2 INTRODUCTION AND MOTIVATIONS

separate the three decay amplitudes.2 If the final-state is a CP-eigenstate, this disen-
tanglement allows one to investigate the B system CP-properties.

Within the SM, the expectation is that these amplitudes result in a dominant longitu-
dinal polarization, with the transversely-polarized amplitudes suppressed by a factor
mV/mB. While this is experimentally confirmed for B → ρρ decays, which receive
b̄ → d̄ penguin contributions, in B → φK?, a b̄ → s̄ penguin decay, it has been mea-
sured that the transverse polarization is about equal to the longitudinal one [17, 18, 19].
This surprising result is known as “Polarization Puzzle”. This phenomenon could be
more evident in the B meson decays involving penguin diagram, like the B0

s → φφ.
New physics [20, 21], and SM [22, 23] explanations have been proposed.

The work presented here draws motivation from the above intriguing puzzles re-
lated to b̄ → s̄ penguin processes. The thesis describes the study of B0

s → φφ decay.
This is governed by the b̄→ s̄ transition and it is a pseudoscalar to vector-vector decay:
it includes all the characteristics described above. Thus, it is an appealing candidates
whose experimental analysis could bring more comprehension in the polarization puz-
zle as well as a better understanding of the low-energy strong interactions. Moreover,
since each φ decay into two charged K mesons, the final state is a CP-eigenstate: this
also offers the possibility to look for CP violations. Actually, this is an attractive topic
because the first measurements of CP violation made at Tevatron for the B0

s mesons (in
the B0

s → J/ψφ decay) seems not to be in agreement with the SM predictions [24, 25].
In addition, in the SM, the mixing-induced CP asymmetries in the dominant B0

s decay
modes practically vanish: new physics is needed to change this prediction.While such
new contributions are likely to affect also B0

d–B̄0
d mixing, they appear in the B0

d system
as a correction to a non-zero SM prediction for the mixing-induced CP asymmetry. In
the B0

s system, however, the new physics contribution is a correction to essentially
zero [26]. Thus, they could be easily tested: a non-zero measured asymmetry is an
unequivocal new physics proof. Obviously, measurements of both direct and mixing-
induced CP asymmetries require high statistics data sample. Indeed, these represent
a very prominent goal of the b-physics program at the forthcoming experiments [27].
The polarization analysis, discussed in this thesis, is an intermediate and obliged step
toward the achievement of that goal and can potentially already reveal the presence
of new physics.

The aim of the analysis presented here is the first measurement of B0
s → φφ polariza-

tion amplitudes. It is the natural evolution of the first branching ratio measurement
of this decay in 2005, with 180 pb−1 of data collected by the CDF experiment at the
Tevatron pp̄ collider [28]. The latter was recently updated [29] with 2.9 fb−1 of data:
this update represents the starting point of the present analysis. This work has been
presented regularly at the CDF B-physics group meetings at various stages of its devel-
opment. It is considered ready to begin the procedure for official approval by the CDF
collaboration pending the finalization of the systematic uncertainty which has not yet
been fully completed.

The thesis is organized as follows:

CHAPTER 2 provides a concise description of the theoretical background needed to
interpret the measurements. It is a non-exhaustive discussion, aiming at the
introduction of the necessary tools and definitions, in particular, the differential
decay rates as function of time and final state emission angles. The first chapter
contains also the description of the analysis strategy.

CHAPTER 3 describes the experimental apparatus. It contains a general description
of the accelerator and of the CDFII detector. The sub-detectors that reconstruct

2 This quantities are complex number. Then, experimentally on can extract their moduli and relative phases.
The three amplitudes satisfy a unitarity relation: the sum of the three squared moduli is equal to 1. Thus,
they are usual expressed as percentages or fractions of total polarization.



INTRODUCTION AND MOTIVATIONS 3

charged-particle trajectories and the trigger are described in greater detail, being
the aspects of the detector more specific to the present analysis.

CHAPTER 4 explains the data samples collected with the detector. The TTT data-set is
described in detail along with the different trigger paths (on-line selections) it
is composed. The off-line selections for B0

s → φφ and B0
s → J/ψφ events are

also discussed, and comparison of significant distributions between data and MC
simulations are presented. Finally the B0

s → φφ and B0
s → J/ψφ event yields are

shown and the main sources of background are discussed.

CHAPTER 5 contains the first step of our work: the time-integrated analysis. The
fitting technique is introduced and it consists in an unbinned maximum likeli-
hood fit of the reconstructed B candidates mass and the three helicity angles
distributions of the B decay products. It is designed for the estimation of the
polarization amplitudes. At this stage, the angular acceptance of the detector is
assumed unrelated to the proper decay time of the B meson. It is determined
with the MC described in the previous chapter. The fitter framework is checked
by three tests: the pseudo-experiments pulls distributions, the fit of B0

s → J/ψφ
decay as a control sample, and the fit on realistic MC data. The latter one reveals
the correlation of the angular acceptance with the B meson proper decay time.
Because of this complication, the analysis must switch to the next stage, which
is the argument of the next chapter.

CHAPTER 6 details the time-dependent analysis. Here the general problem of dealing
with a time-dependent angular acceptance is worked out. A solution is proposed
and the new likelihood, which contains also the B proper decay time as input
variable, is then built on this basis. This new fitter is subject to the pulls distribu-
tions test. Then, the improvements achieved is shown, looking at the fit on the
realistic MC. Finally, the fit projections on real data distribution are shown, and
a list of the main systematic uncertainties is also reported.

CHAPTER 7 provides the conclusions and the future perspectives.

As mentioned before, the thesis presents the same analysis performed for the B0
s →

Jψφ as well: because its properties are well known, this decay is a powerful control
sample. Since, it represents one of the fitter tests, the details of this analysis is reported
in the Appendix B.





2 T H E B s → φ φ D E C AY: T H E O R E T I C A L C O N -
S I D E R AT I O N S

This chapter provides some of the theoretical background needed to understand
and to interpret the measurements studied in this thesis. This deals with the

decay of B0
s , a b-flavored meson. The theory of this decay requires some informations

on how the b quark is bound into hadrons, some elementary concepts on symmetries
and mixing, and some knowledge of the standard electroweak theory. They are briefly
reminded here, but a background of the SM and of the Quantum Fields Theory (QFT)
is assumed.

2.1 THEORETICAL TOOLS: INTRODUCTION
The main aim of B physics is to learn about the short distance dynamics of na-
ture. Short distance physics couples to b quarks, while experiments detect b-flavored
hadrons. One therefore needs to connect the properties of these hadrons in terms
of the underlying b quark dynamics. Except for a few special cases, this requires an
understanding of the long distance, non-perturbative properties of QCD. It is then use-
ful to separate long distance physics from short distance using an Operator Product
Expansion (OPE) or an effective field theory [30]. The basic idea is that interactions
at higher scales give rise to local operators at lower scales. This allows us to think
about the short distance phenomena responsible for the flavor structure in nature in-
dependent of the complications due to hadronic physics, which can then be attacked
separately. This strategy can lead to very practical results: the hadronic part of an in-
teresting process may be related by exact or approximate symmetries to the hadronic
part of a measured process.

In the description of B decays several short distances arise. Charge-Parity (CP)
and flavor violation stem from the weak scale and, probably, even shorter distances.
The processes at these scales are separated from the ones at B mass scale with an
OPE, leading to an effective Hamiltonian for flavor changing processes. This is what
happens in the description of a penguin dominated decay, like the Bs → φφ.

Some useful definitions are:

• αs(µ2) is the coupling constant of the strong interactions at the scale µ2;

• GF is the coupling constant of the Fermi theory of electro-weak interactions. It’s
value is1 GF/(}c)3 = 1.166 37(1)× 10−5 GeV−2.

• P is the operator that produces the spatial inversion of coordinates (i. e., the
discrete parity transformation):

Pψ(~r) = ψ( ~−r) (2.1)

P is hermitian (P = P†) and idempotent (P2 = 1). The only two eigenvalues of
P are ±1. If Pψ(~r) = ψ( ~−r) = ψ(~r), ψ is called a symmetric state; if Pψ(~r) =

1 } is the reduced Planck constant h/2π, c is the speed of light

5



6 THEORETICAL CONSIDERATIONS

ψ( ~−r) = −ψ(~r), ψ is an antisymmetric state. The intrinsic parity of a system of
two particles α and β is

P |αβ〉 = ξαξβ(−1)L |αβ〉 (2.2)

where ξα and ξβ are the intrinsic parity quantum numbers of the two particles,
and L is the relative angular momentum between them.

• C is the operator of the charge conjugation that transforms all particles internal
quantum numbers in those of the corresponding antiparticles, leaving all other
coordinates unchanged. For example, C |e−〉 = |e+〉. C is hermitian (C = C†) and
idempotent (C2 = 1).

• V is the CKM matrix which relates the mass quarks eigenstates d, s, and b, to the
flavor eigenstates, d′, s′, and b′:d′

s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d
s
b

 ; (2.3)

In the SM, the unitarity of the CKM matrix must hold:

3

∑
i=1

VijV?
ik =

3

∑
i=1

VjiV?
ki = δij (2.4)

Expanding this equation for any j, k yields nine equations, of which the six equa-
tions involving the off-diagonal elements of δij describe triangles in the complex
plane. These six triangles fall into two groups of three, differing only by their
orientation in the complex plane: these are the so-called unitarity triangles. The
angles of the first triangle (see fig. 2.1) are given by

α = arg
(
−

VtdV?
tb

VudV?
ub

)
β = arg

(
−

VcdV?
cb

VtdV?
tb

)
γ = arg

(
−

VudV?
ub

VcdV?
cb

) (2.5)

All unitarity triangles have the same area, commonly denoted by J/2. If CP is
violated, J is different from zero.

VtdVtb*

VcdVcb*

!="2 #="1

$="3

VudVub*

Figure 2.1: Graphical representation of the unitarity constraint as a triangle in the complex
plane.
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2.2 THE B MESONS
B mesons are composed of a bottom antiquark and either an up (B+), down (B0),
strange (B0

s ) or charm (B+
c ) quark.2 Obviously, each B meson has a corresponding

antiparticle, that is composed of a bottom quark and an up (B−), down (B̄0), strange
(B̄0

s ) or charm (B−c ) antiquark respectively. Table 1 presents the main characteristics of
the B mesons.

Particle Quark content Isospin Mass (MeV/c2) Mean Lifetime (ps)

B+ ub̄ 1/2 5279.15± 0.31 1.638± 0.011
B0 db̄ 1/2 5279.53± 0.33 1.530± 0.009
B0

s sb̄ 0 5366.3± 0.6 1.470+0.026
−0.027

B+
c cb̄ 0 6276± 4 0.46± 0.07

Table 1: Main characteristics of B mesons. All B mesons have the same spin and parity JP = 0−.

As we can see, the constituents of the Bs mesons is one heavy quark (the b) and one
light quark (the s). Remind that, in the static quark model, the rest mass of the b is
4.20+0.17

−0.07 GeV/c2; whereas the one of s quark is only 104+26
−34 MeV/c2. Mesons consisting

of one heavy (mass M) and one light (mass m) quark have some aspects in common
with a hydrogen atom, where the most of the mass is in the nucleus, i. e., the proton
(the analogue of the heavy quark) to which is bound the much lighter electron (the ana-
logue of the light quark) [31]. Quantitatively, the atomic wave-function is, to first or-
der, independent of the nuclear mass; correction are of order (electron mass)/(nucleus
mass) or (atomic binding energy)/(nucleus mass). Similarly, in a heavy-light quarks
system, the effect of the heavy quark on the energy levels is of the order ΛQCD/M,
where ΛQCD ' 0.2 GeV is the strong-interaction scale parameter, representing the light
quark mass and the gluon binding potential.

Consequently, in the limit M � ΛQCD, the heavy quark acts approximately as a
static color-triplet source, and its spin and flavor do not affect the light degrees of
freedom. This is analogous to atomic physics, where isotopes with different nuclei
have nearly the same properties. Thus, the properties of heavy-light hadrons are
related by a symmetry, called heavy quark symmetry (HQS) [30].3

2.2.1 Production

The production of a b-meson requires the presence of a b quark, so two different
processes have to take place: the first one is the production of the b quark, and the
second one is its fragmentation into the meson.

Quarks Production

There are two main ways for the b-quark production, which are different for the kind
of accelerator involved: the first method makes use of e+e− collider (e. g., the B facto-
ries at SLAC and KEK); in the second one, hadron collider are used (like the Tevatron,
where p and p̄ collide). In both cases, the origin is a point-like interaction that results

2 The combination of a bottom antiquark and a top quark is not possible because of the top quark’s short
lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather “bottomo-
nium”. In this document the notation Bs has the same meaning of B0

s , and Bd has the same meaning of
B0.

3 The heavy quark spin-flavor symmetries are helpful for understanding many aspects of the spectroscopy
and decays of heavy hadrons from first principles. For example, in the infinite mass limit, mass splittings
between b-flavored hadrons can be related to those between charmed hadrons.
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in a b-b̄ pair. The main difference of the two types of production is that in the e+e−

machines the energy of the b quark generated is well known and it is the same for
each event. In fact, since e+ and e− are elementary particles, the beam energy is very
close to the energy of b quarks produced. Instead, in hadron colliders the point-like
interaction occurs between quarks and gluons, i. e., the elementary constituents of the
hadrons: their energies span a continuum spectrum, because they are fractions of the
energy of the colliding particles.

In this case, the cross section for the production of a b quark is calculable in pertur-
bative QCD as much as the heavy quark mass, m, is larger than ΛQCD [32]. The cross
section in the QCD improved parton model as a function of the center of mass energy
squared s is

σ(s) = ∑
i,j

∫ dx1

x1

dx2

x2
σ̂ij(ŝ, m2, µ2)Fi(x1, µ2)Fj(x2, µ2) , (2.6)

where the Fi are the momentum densities of the partons in the incoming hadrons,
and ŝ = x1x2s is the parton total center-of-mass energy squared (xi are the partons
momentum fractions)[30]. The quantity σ̂ij is the short distance cross section

σ̂ij(ŝ, m2, µ2) = σ0cij(ρ̂, µ2) , (2.7)

where σ0 = α2
s (µ2)/m2 and ρ̂ = 4m2/ŝ. The function cij has a perturbative expansion,

which terms are known, either analytically or as a numerical fit. The lowest order
short distance cross section is calculated from the diagrams in fig. 2.2. The top graphs

  

Figure 2.2: Diagrams for b quark production at lowest order.

are the lowest order contributions of the so called "flavor creation", where only a
quarks and an antiquark or two gluons interact. Other two processes allow for the
creation of a b-b̄ pair: the "flavor excitation" and the "gluon splitting". Their lowest
order diagrams are represented in fig. 2.2. In the flavor excitation a b from the sea
quark of one of the interacting particles is scattered out in the strong interaction with
a parton of the other hadron. The gluon splitting takes place when a gluon produced
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in the hadron collision results in a b-b̄ pair in the fragmentation process. All the three
mechanisms of productions end in b-b̄ pairs which differ for their resulting angular
distribution in the laboratory frame: in the flavor creation the two particle is back-to-
back; in the gluon splitting the azimuthal angles of the two particles are very close,
and the flavor excitation presents the intermediate configurations between the two
previous situations.

The cross section of pp̄→ b̄X at the Tevatron, where
√

s = 1.96 TeV, is

σ(pp̄→ b̄X,
√

s = 1.96 TeV, |Yb| < 1) = 29.4+6.2
−5.4 µb (2.8)

where Yb is the b quark rapidity (see Sect. 3.2.1) [30]. In spite of the high b-b̄ cross
section, about a hundred times greater than the e+e− collider one, in hadron colliders
it is a small percentage of the total cross section, which is of the order σT ' 70 mb.
This implies the need of an appropriate trigger selection to discriminate b-flavored
events from the huge background. Typical trigger selection requires a lepton from
semileptonic b-decays, a dimuon signal from b → J/ψ decays, and a signature based
on the long lifetime of b-hadrons as in the case discussed in this thesis.

Fragmentation

Once the b (b̄) is produced, the scale µ drops: at this point starts the fragmentation
process. In fact, the fragmentation of quarks and gluons into hadrons involves con-
finement dynamics, and occurs at time scales that are long compared to those of the
hard scattering that produced the quarks and gluons.

In single-particle inclusive hard-scattering processes, the fragmentation is factorized
in perturbative QCD (see [33] and references therein) from the hard interaction and
summarized in a non-perturbative fragmentation function (FF) DH

i (x, µ). DH
i (x, µ) is

the probability density of a hadron H to form from parton i with momentum fraction
x at factorization scale µ. Though non-perturbative, these FFs are universal and so,
they may be determined for each hadron H in a few calibration experiments at some
fixed scale µ0, for subsequent use in other experiments and at other values of µ (see
for example [34, 35]).

The fragmentation of heavy quarks is somewhat different.4 When the heavy quark
is produced with an energy not much larger than its mass, the fragmentation process
consists mainly of the non-perturbative transition of the heavy quark to the hadron
H, which one assumes can be described by a non-perturbative FF. One may make a
general ansatz for the functional form of this FF, whose parameters are to be fixed by
fitting to experimental data. A heavy flavored meson should retain a large fraction of
the momentum of the primordial heavy quark, and therefore its FF should be much
harder than that of a light hadron. In the limit of a very heavy quark, one expects
the FF for a heavy quark to go into any heavy hadron to be peaked near 1. This
effect can be seen in fig. 2.3 for the FF of a b quark in a B meson and it is used in the
experimental identification of the heavy-flavored hadron.

The results of the fragmentation is to bind the quarks and gluons in colorless clus-
ters of low relative momenta. They group in jets of hadrons, which flight in approx-
imately the same directions of the quarks produced in the hard scattering. If one of
the original quarks is a b, at least one of the jet’s particles is a B meson or a b-flavored
barion (e. g., Λb). This is the main difference between the heavy and light quarks
fragmentation: a b-flavored hadron can be experimentally identified under certain
conditions.

4 By heavy quarks we mean charm and bottom quarks. Remember that the top quark decays by the weak
interaction before it has time to hadronize.
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Figure 2.3: Measured e+e− fragmentation function of b quarks into B hadrons at
√

s ' 91 GeV
[36].

The most part of b-hadrons produced in the hadronization are excited states (e. g., B?

and B??): they decay by electromagnetic and strong interactions into other b-mesons
(or barions), and pions, kaons and photons. The time scale of these processes are so
short that is not possible to distinguish them from the primary interaction. In fig. 2.4
a sketch of the entire process is represented.

  

p

p

Figure 2.4: Sketch of fragmentation process.

2.2.2 Electro-Weak Decay: Effective Hamiltonian

To predict the decay rate of a B meson into some final state f, one must calculate the
transition amplitudeM for B→ f. In general there are many contributions toM, each
of which is, at the quark level, pictorially represented by Feynman diagrams such as
those in fig. 2.5.

Quark diagrams are a poor description for the decay amplitude of a B meson. The
quarks feel the strong interaction, whose nature changes drastically over the distances
at which it is probed: at short distances, much smaller than 1/ΛQCD, the strong in-
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d or s
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Figure 2.5: Tree exchange diagram, t f (a), and penguin diagram, p f (b).

teraction can be described perturbatively by dressing the lowest order diagrams in
fig. 2.5 with gluons.

When traveling over a distance of order 1/ΛQCD, however, quarks and gluons
hadronize and QCD becomes non-perturbative. Therefore the physics from different
length scales, or, equivalently, from different energy scales must be treated differently.
One theoretical tool for this is the OPE [30]. Schematically the decay amplitude M is
expressed as

M = −4GF√
2

V ∑
j

Cj(µ) 〈f|Oj(µ) |B〉
[

1 +O
(

m2
b

M2
W

)]
, (2.9)

where µ is a renormalization scale. Physics from distances shorter than µ−1 is con-
tained in the Wilson coefficients Cj , and physics from distances longer than µ−1 is
accounted for by the hadronic matrix elements 〈f|Oj(µ) |B〉 of the local operators Oj.
In principle, there are infinitely many terms in the OPE, but higher dimension opera-
tors yield contributions suppressed by powers of m2

b/M2
W .

All dependence on heavy masses M � µ such as mt, MW or the masses of new
undiscovered heavy particles is contained in Cj . By convention one factors out
4GF/

√
2 and the CKM factors, which are denoted by V in eq. 2.9. On the other hand,

the matrix element 〈f|Oj(µ) |B〉 contains information from scales, such as ΛQCD, that
are below µ. Therefore, they can only be evaluated using non-perturbative methods
such as lattice calculations, QCD sum rules, or by using related processes to obtain
them from experimental data.

An important feature of the OPE in eq. 2.9 is the universality of the coefficients Cj;
they are independent of the external states, i. e., their numerical value is the same for
all final states f. Therefore one can view the Cj ’s as effective coupling constants and
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the Oj ’s as the corresponding interaction vertexes. Thus one can introduce the effective
Hamiltonian that changes the bottom quantum number B by one unit:

H|∆B|=1 =
4GF√

2
V ∑

j
CjOj + h.c. (2.10)

An amplitude calculated from H|∆B|=1 defined at a scale of order mb, reproduces the
corresponding SM result up to corrections of order m2

b/M2
W as indicated in eq. 2.9.

Hard QCD effects can be included perturbatively in the Wilson coefficients, i. e., by
calculating Feynman diagrams with quarks and gluons.

The set of operators Oj needed in eq. 2.10 depends on the flavor structure of the
physical process under consideration. Pictorially the operators are obtained by con-
tracting the lines corresponding to heavy particles in the Feynman diagrams to a point.
E. g., the tree level diagram involving the W boson in fig. 2.5 generates the operator
Oc

2 shown in fig. 2.6. The Hamiltonian for ∆B = 1 and ∆C = ∆S = 0 transitions

  

Figure 2.6: Effective operators of eq. 2.11. There are two types of fermion-gluon couplings
associated with the chromomagnetic operator O8.
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must also accommodate for the so-called penguin diagram, shown in fig. 2.5.5 The
corresponding operator basis for a Bs decay reads:

Ou
1 = s̄α

Lγµuβ
Lūβ

Lγµbα
L,

Ou
2 = s̄α

Lγµuα
Lūβ

Lγµbβ
L,

Oc
1 = s̄α

Lγµcβ
L c̄β

Lγµbα
L,

Oc
2 = s̄α

Lγµcα
L c̄β

Lγµbβ
L,

O3 = ∑
q=u,d,s,c,b

s̄α
Lγµbα

Lq̄β
Lγµqβ

L,

O4 = ∑
q=u,d,s,c,b

s̄α
Lγµbβ

Lq̄β
Lγµqα

L,

O5 = ∑
q=u,d,s,c,b

s̄α
Lγµbα

Lq̄β
Rγµqβ

R,

O6 = ∑
q=u,d,s,c,b

s̄α
Lγµbβ

Lq̄β
Rγµqα

R,

O8 = − g
16π2 mb s̄α

LσµνGa
µνTabR,

(2.11)

These operators are also depicted in fig. 2.6. In O8, Ga
µν is the chromomagnetic field

strength tensor. The operators are grouped into classes, based on their origin: O1
and O2 are called current-current operators, O3 through O6 are called four-quark penguin
operators, and O8 is called the chromomagnetic penguin operator.

The operators in eq. 2.11 arise from the lowest order in the electroweak interaction,
i. e., diagrams involving a single W bosons plus QCD corrections to it. In some cases,
especially when isospin breaking plays a role, one also needs to consider penguin
diagrams which are of higher order in the electroweak fine structure constant αew.
They give rise to the electroweak penguin operators:

O7 = − e
16π2 mb s̄α

LσµνFµνbα
R,

Oew
7 =

3
2 ∑

q=u,d,s,c,b
eq s̄α

Lγµbα
Lq̄β

Rγµqβ
R,

Oew
8 =

3
2 ∑

q=u,d,s,c,b
eq s̄α

Lγµbβ
Lq̄β

Rγµqα
R,

Oew
9 =

3
2 ∑

q=u,d,s,c,b
eq s̄α

Lγµbα
Lq̄β

Lγµqβ
L,

Oew
10 =

3
2 ∑

q=u,d,s,c,b
eq s̄α

Lγµbβ
Lq̄β

Lγµqα
L,

(2.12)

Here Fµν is the electromagnetic field strength tensor, and eq denotes the charge of
quark q.

Hence the ∆B = 1 and ∆C = ∆S = 0 Hamiltonian reads:

H|∆B|=1 =
4GF√

2

[
2

∑
j=1

Cj
(
ξuOu

j + ξcOc
j
)
− ξt

8

∑
j=3

CjOj − ξt

10

∑
j=7

Cew
j Oj

]
+ h.c., (2.13)

where
ξq = V?

qbVqs (2.14)

5 C and S are the charmness and the strangeness quantum number, respectively.



14 THEORETICAL CONSIDERATIONS

Note that ξu + ξc + ξt = 0 by unitarity of the CKM matrix.
The operators introduced above are sufficient to describe non-leptonic transitions

in the SM to order GF. In extensions of the SM, on the other hand, the short distance
structure can be very different. Additional operators with new Dirac structures, whose
standard Wilson coefficients vanish, could enter the effective Hamiltonian. A list of
these operators can be found in [37].

2.3 MIXING AND CP VIOLATION IN NEUTRAL B MESONS
The neutral B mesons, Bd and Bs, spontaneously transform into their own antiparticles
and back. This phenomenon is called mixing (or flavor oscillation). The oscillation
frequency has been measured in the B0-B̄0 system to be about 0.507(5) ps−1 [36] and
in the Bs-B̄s system to be 17.77(10)stat(07)syst ps−1 [38]. The formalism that we are
going to present for the mixing description can be applied both to the Bd-B̄d and to
the Bs-B̄s system. Thus, first, we choose to use the notation Bq, where q = d or s,
properly pointing out the differences of the parameters, where necessary.

In the SM Bq-B̄q mixing is caused by the fourth order flavor-changing weak interac-
tion described by the box diagrams in fig. 2.7. Such transitions are called |∆B| = 2
transitions, because they change the bottom quantum number B by two units. In the
SM |∆B| = 2 transition amplitudes are small, so measurements involving Bq-B̄q mixing
could easily be sensitive to new physics.

q

b
_

t t

W +

W !

q
_

b q

b
_

W W

t
_

t

q
_

b

Figure 2.7: Dominant box diagrams for the B0
q → B̄0

q transitions (q = d or s). Similar diagrams
exist where one or both t quarks are replaced with c or u quarks.

An initially produced Bq (or B̄q) evolves in time into a superposition of Bq and
B̄q. Let |Bq(t)〉 denote the state of a meson produced as a Bq at time t = 0, with an
analogous definition for |B̄q(t)〉. The time evolution of these states is governed by the
Schrödinger equation:

i
d
dt

(
|Bq(t)〉
|B̄q(t)〉

)
=

(
M− i

Γ
2

)(
|Bq(t)〉
|B̄q(t)〉

)
(2.15)

with the mass matrix M = M† and the decay matrix Γ = Γ†. 6 They are 2 × 2
time-independent matrices, whose off-diagonal elements, M12 = M?

21 and Γ12 = Γ?
21,

correspond to Bq-B̄q mixing. CPT invariance implies that M11 = M22 and Γ11 = Γ22.
The mass eigenstates at time t = 0, |BL〉 and |BH〉, are linear combinations of |Bq〉

and |B̄q〉:

lighter eigenstate: |BL〉 = p |Bq〉+ q |B̄q〉 , (2.16a)

heavier eigenstate: |BH〉 = p |Bq〉 − q |B̄q〉 , (2.16b)

6 The Schrödinger equation is not exactly valid, but the result of the so-called Wigner-Weisskopf approxima-
tion to the decay problem. In general, there are tiny corrections to the exponential decay laws at very short
and very large times. These corrections are irrelevant for the mixing and CP studies at Run II, but they
must be taken into account in high precision searches for CPT violation [30].
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with |p|2 + |q|2 = 1. We denote the masses and widths of the two eigenstates with
MH,L and ΓH,L and define

∆m = MH −ML , (2.17a)

Γ =
1
τB

=
ΓL + ΓH

2
, (2.17b)

∆Γ = ΓL − ΓH. (2.17c)

While ∆m > 0 by definition, ∆Γ can have either sign. Our sign convention is such that
∆Γ > 0 in the SM.

The SM predicts that for the Bd-B̄d system ∆Γd/Γd is very small (below 1%), and
for the Bs-B̄s system ∆Γs/Γs is considerably larger (order of 10%). These width differ-
ences are caused by the existence of final states to which both the B0

q and B̄0
q mesons

can decay. Such decays involve b → cc̄q quark-level transitions, which are Cabibbo
suppressed if q = d and Cabibbo-allowed if q = s. Direct time-dependent stud-
ies published by Delphi [39] and BaBar [40] can be combined to yield |∆Γd/Γd| =
0.010± 0.037 [36]. Thus, in all formulae, terms containing ∆Γd can be neglected for
the Bd-B̄d system, but not for the Bs-B̄s. For these reason, in the following we prefer to
refer to Bs mesons only, putting q = s everywhere.

The last update results [36] for Bs meson are:

∆Γs = 0.062+0.034
−0.037 ps−1 (2.18a)

∆Γs

Γs
= 0.092+0.051

−0.054 (2.18b)

τL =
1

ΓL
= 1.408+0.033

−0.030 ps (2.18c)

τH =
1

ΓH
= 1.543+0.058

−0.060 ps (2.18d)

The time evolution of the mass eigenstates is governed by the two eigenvalues
ML,H − iΓL,H, i. e.,

|BL,H(t)〉 = e−(iML,H−ΓL,H/2)t |BL,H〉 (2.19)

where |BL,H〉 = |BL,H(t = 0)〉. Now we can easily find the time evolution of |Bs(t)〉
and |B̄s(t)〉, using eq. 2.16 and eq. 2.19:

|Bs(t)〉 = g+(t) |Bs〉+
q
p

g−(t) |B̄s〉 (2.20a)

|B̄s(t)〉 =
p
q

g−(t) |Bs〉+ g+(t) |B̄s〉 , (2.20b)

where

g+(t) = e−imte−Γt/2

[
cosh

∆Γt
4

cos
∆mt

2
− i sinh

∆Γt
4

sin
∆mt

2

]
(2.21a)

g−(t) = e−imte−Γt/2

[
− sinh

∆Γt
4

cos
∆mt

2
+ i cosh

∆Γt
4

sin
∆mt

2

]
. (2.21b)

Note that the coefficient g+(t) has no zeros, and g−(t) vanishes only at t = 0. Hence
an initially produced Bs will never turn into a pure B̄s or back into a pure Bs. The
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coefficients in eq. 2.21 will enter the formulae for the decay asymmetries in the combi-
nations

|g±(t)|2 =
e−Γt

2

[
cosh

∆Γt
2
± cos ∆mt

]
(2.22a)

g?
+(t)g−(t) =

e−Γt

2

[
− sinh

∆Γt
2

+ i sin ∆mt

]
(2.22b)

By examining the eigenvalue problem of eq. 2.15 one finds that the experimental in-
formation model-independently implies |Γ12| � |M12|. By expanding the eigenvalues
and q/p in Γ12/M12, one finds

∆m = 2|M12| , (2.23)

∆Γ = 2|Γ12| cos φV , (2.24)

q
p

= −e−iφM
[
1− a

2

]
. (2.25)

Here the phase φV is defined as

M12

Γ12
= −

∣∣∣∣∣M12

Γ12

∣∣∣∣∣eiφV (2.26)

and the mixing phase φM is
φM = arg M12 (2.27)

In eq. 2.25 we have kept a correction in the small parameter

a =

∣∣∣∣∣ Γ12

M12

∣∣∣∣∣ sin φV (2.28)

but neglected all terms of order Γ2
12/M2

12. The phase φV is physical and convention-
independent; if φV = 0, CP violation in mixing vanishes. Γ12 is dominated by the
real b → cc̄s transition, which is a CKM-favoured tree-level decays: it is practically
insensitive to new physics. On the other hand, M12 is almost completely induced by
short-distance physics. Within the SM the top quarks give the dominant contribution
to Bs-B̄s mixing. This contribution is suppressed by four powers of the weak coupling
constant and two powers of |Vts| ' 0.04. Hence new physics can easily compete with
the SM and possibly even dominate M12. If the non-standard contributions to M12
are unrelated to the CKM mechanism of the three-generation SM, they will affect the
mixing phase φM.

The SM prediction is φM = arg(VtbV?
ts)

2 [41]. For the Bd-B̄d system the large value
of φM = arg(VtbV?

td)
2 allows for the observation of the indirect CP-violation, with the

measurement of the quantity sin 2β = 0.681± 0.025 [36].

Decay Rate

The time-dependent decay rate of an initially tagged Bs into some final state f is de-
fined as

Λ(Bs(t)→ f) =
1

NB

dN(Bs(t)→ f)
dt

(2.29)

where dN(Bs(t) → f) denotes the number of decays of a Bs meson at time t into
the final state f occurring within the time interval between t and t + dt. NB is the



2.3 MIXING AND CP VIOLATION IN NEUTRAL B MESONS 17

total number of Bs’s produced at time t = 0. An analogous definition holds for
dN(B̄s(t)→ f) of an initially tagged B̄s into the same previous final state f. One has

Λ(Bs(t)→ f) = Nf
∣∣ 〈f|Bs(t)〉

∣∣2 and Λ(B̄s(t)→ f) = Nf
∣∣ 〈f|B̄s(t)〉

∣∣2 (2.30)

Here Nf is a time-independent normalization factor. To calculate dN(Bs(t) → f) we
introduce the two decay amplitudes

Af = 〈f|Bs〉 and Āf = 〈f|B̄s〉 (2.31)

and the key quantity for CP violation

λf =
q
p

Āf
Af
' −e−iφM

Āf
Af

[
1− a

2

]
(2.32)

We will see in the following sections that λf plays the pivotal role in CP asymmetries
and other observables in B mixing. Finally with eq. 2.20, eq. 2.22 and |p/q|2 = (1 + a)
we find the desired formulae for the decay rates:

Λ(Bs(t)→ f) =Nf|Af|2e−Γt[
1 + |λf|2

2
cosh

∆Γt
2

+
1− |λf|2

2
cos(∆mt)−

−<λf sinh
∆Γt

2
−=λf sin(∆mt)

]
Λ(B̄s(t)→ f) =Nf|Af|2e−Γt(1 + a)[

1 + |λf|2
2

cosh
∆Γt

2
− 1− |λf|2

2
cos(∆mt)−

−<λf sinh
∆Γt

2
+=λf sin(∆mt)

]
.

(2.33)

Since Bs’s and B̄s’s are produced in equal numbers at the Tevatron, the untagged
decay rate for the decay B→ f reads

Λ[f, t] = Λ(Bs(t)→ f) + Λ(B̄s(t)→ f) =

= Nf|Af|2(1 + |λf|2)e−Γt

[
cosh

∆Γt
2

+ A∆Γ sinh
∆Γt

2

]
+O(a)

(2.34)

with
A∆Γ = − 2<λf

1 + |λf|2
(2.35)

From this equation one can see that untagged samples are interesting for the determi-
nation of |∆Γ|. Once |∆Γ| is known, eq. 2.34 allows for the measurement of <λf. More-
over, for decays whose final states are two vector mesons (see next section), eq. 2.34

provides =λf from the interference of CP-even and CP-odd terms. Finally we write
down a more intuitive expression for Λ[f, t]. From eq. 2.30 and eq. 2.20 one immedi-
ately finds

Λ[f, t] = Nf

[
e−ΓLt| 〈f|BL〉 |2 + e−ΓHt| 〈f|BH〉 |2

]
+O(a) (2.36)
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With eq. 2.16 one recovers eq. 2.36 from eq. 2.34. Now eq. 2.36 nicely shows that the
decay of the untagged sample into some final state f is governed by two exponentials.
If Bs mixing is correctly described by the SM, the mass eigenstates are to a high preci-
sion also CP eigenstates and eq. 2.36 proves useful for the description of decays into
CP eigenstates.

CP Violation

For decays of Bs to a CP eigenstate, new physics can manifest itself in CP violation
arising from the interference between decay amplitudes with and without mixing,
which can be probed by measuring the time-dependent CP asymmetry

aCP(t) =
Λ(Bs(t)→ f)−Λ(B̄s(t)→ f)
Λ(Bs(t)→ f) + Λ(B̄s(t)→ f)

=
Adir cos(∆mt) + Amix sin(∆mt)

cosh ∆Γt
2 − A∆Γ sinh ∆Γt

2
(2.37)

The CP asymmetries are:

Adir
CP =

1− |λf|2
1 + |λf|2

(2.38a)

Amix
CP = − 2=λf

1 + |λf|2
(2.38b)

A∆Γ defined in eq. 2.35 (2.38c)

which obey the relation

|Adir
CP|

2 + |Amix
CP |

2 + |A∆Γ|2 = 1. (2.39)

If f is a CP eigenstate, CP |f〉 = ± |f〉, then Adir
CP 6= 0 or Amix

CP 6= 0 signals CP violation:

• a non-vanishing Adir
CP implies Af 6= Āf, meaning direct CP violation;

• Amix
CP measures mixing-induced CP violation in the interference of Bs → f and

B̄s → f;

• A∆Γ plays a role, if ∆Γ is sizable, as we saw in eq. 2.34.

The interesting quantity is the aCP of eq. 2.37. However, in practical terms experi-
ments are always limited by statistics for the study of intrinsically rare processes. A
pragmatic estimate of CP violation is actually the “number of B mesons needed”, NB,
to measure a particular CP-violating rate asymmetry. Given the branching ratio (R)
for the process of interest, the number of events N is clearly N = NBR.7 To discern an
asymmetry aCP at the σ significance level with only statistical errors, one defines that
the number of B mesons needed to demonstrate the asymmetry is [42]

NB '
σ2

Rεa2
CP

(2.40)

where ε is the experimental efficiency (of the trigger and the reconstruction). In the
ideal situation of ε = 1, with R . 10−5 for Bs, if you want aCP with a relative errors
of about 1%, you need NB & 104 recontructed mesons. Note that if one goes to larger
asymmetries, one usually suffers a loss in R (rarer modes) and vice versa.

7 R is the branching ratio of the entire decay chain; for example for the decay Bs → J/ψφ → [µ+µ−][K+K−]
one have to consider R = R(Bs → J/ψφ)R(J/ψφ→ µ+µ−)R(φ→ K+K−).
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SM Expectation and New Physics

In the SM, the phase can be expressed in terms of the CKM matrix elements that con-
tribute to the respective mixing and decay diagrams:

φV = φM − φΓ =

= arg(VtbV?
ts)

2 − arg(−Γ12) ' arg(VtbV?
ts)

2 − arg(VcbV?
cs)

2 (2.41)

Because arg(VtbV?
ts) ' arg(VcbV?

cs) and the remaining corrections to arg(−Γ12) involv-
ing VubV?

us are small because suppressed by a factor m2
c /m2

b, φSM
V is predicted to be

very small [8]:
φSM

V = 0.0041± 0.0008. (2.42)

Traditionally, the phase βs, defined as the phase of λf in the b → cc̄s transition,is
associated with CP violation in the Bs system, as it is the angle arg(−VcdV?

cb/V?
tbVts)

of the Bs unitarity triangle. The phase βs is predicted by the SM to be equal to βSM
s =

0.04± 0.01 [43]. In the hypothesis of the presence of new physics we can relate βs and
φV in the following manner. First, we define SM and new physics (NP) contributions
to φV. With the phase conventions we have chosen, the NP contribution to φV and βs
is:

φV = φSM
V + φNP

V and 2βs = 2βSM
s − φNP

V (2.43)

Since both βSM
s and φSM

V are expected to be negligibly small, in the presence of new
physics, we neglect the SM contribution, and use the shorthand

2βs ' −φNP
V , φV ' φNP

V (2.44)

2.4 THE P → V V DECAY: ANGULAR DISTRIBUTIONS
The nomenclature P→ VV stands for the class of the decays of a Pseudoscalar meson
(with JP = 0−), like the B, into two Vector mesons (J 6= 0). The angular distribution
of the B meson decay to two mesons with non-zero spin is of special interest because
it is sensitive to quark-spin alignment in decay transition, and reflects both weak- and
strong-interaction dynamics.

Most B-decay polarization analyses are limited to the case when the spin of the B-
meson daughters is 1. In that case, there are only three independent amplitudes a, b
and c, corresponding to the probability that the Bs meson decays in a state with one
of the three possible relative angular momenta: if L is the relative angular momentum
of the two vector mesons, with two spin 1 particles one can have L = 0, 1, 2 to obtain
the spin 0 of the initial state.

The overall decay amplitude would involve three complex terms proportional to
the above amplitude. The exact angular dependence would depend on the quantum
numbers of the B-meson daughters and of their decay products. The most general
covariant amplitude for a B meson with four-momentum p decaying into a pair of
vector mesons V1 and V2 (with four-momentum k and q respectively) takes the form

Λ(Bs → V1(k)V2(q)) = λ
?µ
1 λ?ν

2

(
agµν +

b
m1m2

pµ pν + i
c

m1m2
εµναβkαqβ

)
(2.45)

where, λ1, λ2 and m1, m2 represent the polarization vectors and masses of the vector
mesons, respectively. Now we have to understand how these invariant amplitudes a,
b, and c are related with the observables that we can measure. Some calculations are
necessary: they are described in the following.
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The starting point to obtain our observables is the definition of an appropriate ref-
erence frame. In this frame the variables necessary to the description of the process
are identified as the kinematics degrees of freedom of the system. Let’s refer to the B
meson as the parent (or as the initial state) and to the two vector mesons as daughter
particles (V1 and V2), and to their decay products as final state particles (P1, P2 from
V1, and P3, P4 from V2).8

Each of the four final state particles has four kinematic degrees of freedom (the
four components of the particle four-momentum). There are seven particles of well
defined mass in the decay, which provide seven constraints from the relation between
the four momentum and the invariant mass. In addition, since the entire system is
translation and rotation invariant, the vector momentum of the parent B meson is
irrelevant to the decay process, as well as the orientation of the decay with respect
to the laboratory frame is. The former removes three degrees of freedom in the form
of the vector momentum components of the B meson, while the latter removes three
more in the form of Euler rotation angles of the decay frame with respect to the
laboratory one. This leaves us with 16− 7− 3− 3 = 3 degrees of freedom in the decay.
These remaining degrees of freedom are the angles at which the final state particles
are produced. There are two standard choices we can make to define the three decay
angles we wish to measure: the helicity and the transversity formalisms.9 They are
described in the following subsections.

2.4.1 Helicity Basis

In the helicity basis, the three decay angles form the vector 10

~ω = (ϑ1, ϑ2, Φ). (2.46)

We define ϑ1 (ϑ2) and Φ1 (Φ2) as the polar and azimuthal angles of the P1(P3) three-
momentum vector defined in the rest frame of their mother V1(V2); the z′(z”) axis is
defined as the direction of the V1(V2) momentum in the rest frame of the Bs; the x′(x”)
axis is an arbitrarily chosen direction in the plane normal to the z′(z”) axis and the
and x′(x”) axes are defined to be opposite in direction to each other; then the y′ and
y” axes are fixed uniquely. The Φ angle is the angle between the decay planes of the
two daughter particles, given by Φ = Φ1 + Φ2. These angles are shown in fig. 2.8.

With these definitions, it is customary to express the angular distributions in terms
of the helicity amplitudes

Hλ = 〈V1(λ)V2(λ)| Heff |Bs〉 (2.47)

for λ = 0, ±1 (in the B rest frame λ1 = λ2 = λ). Note that |H0|2 + |H+|2 + |H−|2 = 1.
The relations between the helicity and the invariant amplitudes are

H0 = −au− b(u2 − 1) (2.48a)

H± = −a±
√

u2 − 1c (2.48b)

where u = p1 p2/m1m2.

8 Fix the following convention: if the final states are charged particles, P1 and P3 are the positive charged
ones.

9 There is also a third formalism, using partial wave definition as in the atomic spectroscopy; it is not pre-
sented here because we don’t use it.

10 ω is not a vector in the proper sense: it is a convenient shorthand for an object with three components.
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x”

x'

Figure 2.8: Definitions of the helicity angles ~ω = (ϑ1, ϑ2, Φ) for a general P → V1V2 decay. We
identify Bs → φφ→ [K+K−][K+K−] with P→ V1V2 → [P1P2][Q1Q2].

In general, the explicit form of the angular distribution depends on the spin of the
decay products of the two vector mesons. If the decay has pseudoscalar mesons in the
final state, the normalized angular distribution is:

1
Γ

d3Λ
d~ω

=
9

8π

[
1
4

ΓT

Γ
sin2 ϑ1 sin2 ϑ2 +

ΓL

Γ
cos2 ϑ1 cos2 ϑ2+

+
1
4

sin 2ϑ1 sin 2ϑ2(α1 cos Φ− β1 sin Φ)+

+
1
2

sin2 ϑ1 sin2 ϑ2(α2 cos 2Φ− β2 sin 2Φ)

] (2.49)

where

ΓT

Γ
=

|H+|2 + |H−|2
|H0|2 + |H+|2 + |H−|2

ΓL

Γ
=

|H0|2
|H0|2 + |H+|2 + |H−|2

α1 =
<(H+H?

o + H−H?
0 )

|H0|2 + |H+|2 + |H−|2

β1 =
=(H+H?

o + H−H?
0 )

|H0|2 + |H+|2 + |H−|2

α2 =
<(H+H?

−)
|H0|2 + |H+|2 + |H−|2

β2 =
=(H+H?

−)
|H0|2 + |H+|2 + |H−|2

(2.50)
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2.4.2 Transversity Basis

To obtain the advantage of more easily extracting the CP-odd and CP-even compo-
nents, the angular distribution is often written in the linear polarization basis, which is
defined in the following form

Λ(Bs → V1V2) = A0
λ?L

1 λ?L
2

u
− A‖

λ?T
1 · λ?T

2√
2

− iA⊥
(λ?

1 × λ?
2) · p̂2√
2

(2.51)

where u has been previously defined and p̂2 is the unit vector along the V2 motion
direction in the V1 rest frame. The symbols λL

i represent the longitudinal components
of the polarization vectors (λL

1 = λ1 ·~k/|~k|, λL
2 = λ2 ·~q/|~q|), while λT

i are the transverse
component, λT

i = λi − λL
i . The transversity amplitudes A0, A‖ and A⊥ are related to

the helicity ones by

A0 = H0, (2.52a)

A‖ =
H+ + H−√

2
(2.52b)

A⊥ =
H+ − H−√

2
(2.52c)

and the unitarity relation |A0|2 + |A‖|2 + |A⊥|2 = 1 is still valid. These amplitudes
are often referred to as polarization amplitudes.

In the rest frame of V1, V2 moves in the x direction, and the z axis is perpendicular
to the decay plane of V2 → P3P4 and we assume that the y-component of the P3 three-
momentum is non-negative. (Θ, Φ) are the angular coordinates of P1 and Ψ is that of
P2, both in the rest frame of V1 (see fig. 2.9 ). Then, the three transversity angles form
the angles vector:

~Ω = (Θ, Ψ, Φ). (2.53)

  

Figure 2.9: Definitions of the transversity angles.
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The normalized differential decay rate in terms of the transversity amplitudes is
given by

1
Γ

d3Λ
d~Ω

=
9

8π

[
ΓL

Γ
cos2 Ψ sin2 Θ cos2 Φ +

Γ⊥
2Γ

sin2 Ψ sin2 Θ sin2 Φ+

+
Γ‖
2Γ

sin2 Ψ sin2 Θ− ζ

2
√

2
sin 2Ψ sin2 Θ sin 2Φ−

− ξ1

2
sin2 Ψ sin 2Θ sin Φ +

ξ2

2
√

2
sin 2Ψ sin 2Θ cos Φ

]
,

(2.54)

where

ΓL

Γ
=

|A0|2
|A0|2 + |A‖|2 + |A⊥|2

Γ⊥
Γ

=
|A⊥|2

|A0|2 + |A‖|2 + |A⊥|2

Γ‖
Γ

=
|A‖|2

|A0|2 + |A‖|2 + |A⊥|2

ζ =
<(A‖A?

0)
|A0|2 + |A‖|2 + |A⊥|2

ξ1 =
=(A⊥A?

‖)

|A0|2 + |A‖|2 + |A⊥|2

ξ2 =
=(A⊥A?

0)
|A0|2 + |A‖|2 + |A⊥|2

(2.55)

2.4.3 Bs → φφ

We are ready to give the differential angular decay rate in a proper basis for the two
specific decays that we are going to study, Bs → φφ and Bs → J/ψφ. Both are P→ VV
decays: remind that

JP[Bs] = 0− , JPC[φ] = 1−− and JPC[J/ψ] = 1−− (2.56)

Let start with the main one: Bs → φφ. The daughters state is made of two particles
that are identical bosons: we need to choose a basis in which the two K+K− pairs from
the two φ’s are treated symmetrically, in order to obey Bose statistics. The natural
basis that satisfy this requirement comes from the helicity formalism. Then, we treat
the Bs → φφ decay using the three angles defined in eq. 2.46, ~ω = (ϑ1, ϑ2, Φ).

We mentioned before that the transversity basis has the advantage of a more easily
treatment of the system CP properties. Since the final state in Bs → φφ is an admixture
of CP-even and CP-odd eigenstates, we can use eq. 2.52a to obtain the polarization
amplitudes. The resulting differential angular decay rate can be written as

d4Λ(~ω, t)
dtd~ω

=
9

32π

6

∑
i=1

Ki(t) fi(~ω) (2.57)
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where the angular functions fi(~ω) are given by

f1(~ω) = 4 cos2 ϑ1 cos2 ϑ2

f2(~ω) = sin2 ϑ1 sin2 ϑ2(1 + cos 2Φ)

f3(~ω) = sin2 ϑ1 sin2 ϑ2(1− cos 2Φ)

f4(~ω) = −2 sin2 ϑ1 sin2 ϑ2 sin 2Φ

f5(~ω) =
√

2 sin 2ϑ1 sin 2ϑ2 cos Φ

f6(~ω) = −
√

2 sin 2ϑ1 sin 2ϑ2 sin Φ

(2.58)

while the time-dependent functions Ki(t) are defined as

K1(t) =
1
2
|A0|2

[
(1 + cosφV)e−ΓLt + (1− cosφV)e−ΓHt + 2e−Γt sin(∆mt) sin φV

]

K2(t) =
1
2
|A‖|2

[
(1 + cosφV)e−ΓLt + (1− cosφV)e−ΓHt + 2e−Γt sin(∆mt) sin φV

]

K3(t) =
1
2
|A⊥|2

[
(1− cosφV)e−ΓLt + (1 + cosφV)e−ΓHt − 2e−Γt sin(∆mt) sin φV

]

K4(t) =|A‖||A⊥|
[

e−Γt
(

sin δ1 cos(∆mt)− cos δ1 sin(∆mt) cos φV

)
−

− 1
2

(
e−ΓHt − e−ΓLt

)
cos δ1 sin φV

]

K5(t) =
1
2
|A0||A‖| cos(δ2 − δ1)[
(1 + cosφV)e−ΓLt + (1− cosφV)e−ΓHt + 2e−Γt sin(∆mt) sin φV

]

K6(t) =|A0||A‖|
[

e−Γt
(

sin δ2 cos(∆mt)− cos δ2 sin(∆mt) cos φV

)
−

− 1
2

(
e−ΓHt − e−ΓLt

)
cos δ2 sin φV

]

(2.59)

The time-dependent angular distribution for a B̄s meson can be obtained by revers-
ing the sign of the terms proportional to sin(∆mt) or cos(∆mt) in the Ki(t) functions.

Assuming that:

• we are not able to distinguish a Bs meson from a B̄s meson and thus we have to
sum over the Bs and B̄s terms of distribution11;

• we are not interested in measuring φV and we assume its value in the SM. We
then fix φV = 0 in the Ki(t) functions;

then the differential angular decay rate of eq. 2.57 becomes

d4Λ(~ω, t)
dtd~ω

=
9

32π

[
Fe(~ω)KL(t) +Fo(~ω)KH(t)

]
(2.60)

11 We are supposing that Bs and B̄s are produced in equal numbers at the Tevatron.
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where we distinct two time-dependent and two angular-dependent terms:

Fe(~ω) = |A0|2 f1(~ω) + |A‖|2 f2(~ω) + |A0||A‖| cos δ f5(~ω) (2.61a)

Fo(~ω) = |A⊥|2 f3(~ω) (2.61b)

KL(t) = 2e−ΓLt (2.61c)

KH(t) = 2e−ΓHt (2.61d)

A nice comment on eq. 2.60: if you compare this expression with eq. 2.36, you can find
that

• Fe(~ω) ∼ | 〈f|BL〉 |2 represents the probability to find the |φφ〉 state with L = 0
or L = 2 (S- or D-wave): CP |φφ〉 = (−1)L |φφ〉 = |φφ〉, then CP |BL〉 = |BL〉; the
light mass (short-lived) eigenstate is also a CP-even eigenstate.

• Fo(~ω) ∼ | 〈f|BH〉 |2 represents the probability to find the |φφ〉 state with L = 1:
CP |φφ〉 = (−1)L |φφ〉 = − |φφ〉, then CP |BH〉 = − |BH〉; the heavy mass (long-
lived) eigenstate is also a CP-odd eigenstate.

2.4.4 Bs → J/ψφ

The customary choice for the Bs → J/ψφ angular analysis is the transversity basis. The
differential angular decay rate has the same form of eq. 2.57, with the fi(~Ω) functions
defined by:

f1(~Ω) = 4 cos2 Ψ(1− sin2 Θ cos2 Φ)

f2(~Ω) = sin2 Ψ(1− sin2 Θ sin2 Φ)

f3(~Ω) = sin2 Ψ sin2 Θ

f4(~Ω) = sin2 Ψ sin 2Θ sin Φ

f5(~Ω) = − 1√
2

sin 2Ψ sin2 Θ sin 2Φ

f6(~Ω) =
1√
2

sin 2Ψ sin 2Θ cos Φ

(2.62)

and replacing φV with 2βs in the Ki(t) terms.
As for Bs → φφ, if we sum over Bs and B̄s terms and assume for βs the SM value

(βs ' 0), we get the analogous distribution for Bs → J/ψφ as the one described by
eq. 2.60.

2.5 ANALYSIS PURPOSE AND STRATEGY
2.5.1 Purpose and Current Experimental Status

The purpose of this thesis is the first measurements of the polarization amplitudes
|A0|2, |A‖|2 and |A⊥|2 for the Bs → φφ decay. Their theoretical predictions, coming
from the explicit calculation of the operators in eq. 2.12, can be done only with ap-
proximate methods: there are different approaches, all affected by large uncertainties.
We summarize the predicted values in tab. 2.

These polarization measurements are of particular interest because they can help
to understand the so-called “polarization puzzles”, described below, related to b̄ → s̄
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ΓL/Γ [%] (Γ⊥ + Γ‖)/Γ [%] Comments

QCD factorization 1.a 43+0+61
−0−34 57+0+61

−0−34
QCD factorization 1.b 48+0+26

−0−27 52+0+26
−0−27 WA from data

QCD factorization 2 86.6 13.4 see erratum
Naive factorization 88.3 11.7 see erratum

NLO EWP 1 86.3 13.7 T and P
NLO EWP 2 86.3 13.7 T, P and EWP

perturbative QCD 61.9+3.6
−3.2

+2.5
−3.3

+0.0
−0.0 38.1+3.6

−3.2
+2.5
−3.3

+0.0
−0.0

Table 2: Bs → φφ polarization amplitudes: theoretical predictions. ΓL/Γ and (Γ⊥ + Γ‖)/Γ are
the fraction of longitudinal and transverse polarisation, respectively. WA stands for
“Weak Annihilation”; T, P and EWP stand for “Tree”, “Penguin” and “Electroweak
Penguin”, respectively. The references are: [22] for QCD factorization 1.a and 1.b, [44]
for QCD factorization 2 and Naive factorization, [45] for NLO EWP 1 and 2, [46] for
perturbative QCD.

penguin processes. The interest in the polarization and CP-asymmetry measurements
in penguin transition, such as b → s decays B → φK?, ρK?, ωK?, and b → d decay
B → K?K̄?, is mainly motivated by their potential sensitivity to physics beyond the
SM.

The amplitude hierarchy |H0| � |H‖| � |H⊥| was expected in the B decays to light
vector particles in both the penguin transition [47] and the tree-level transition [48].
There is confirmation by BaBar and Belle experiments of predominantly longitudinal
polarization in the tree-level b→ u transition, such as B0 → ρ+ρ− [49, 50], B+ → ρ0ρ+

[51], and B+ → ωρ+ [52], which is consistent with the analysis of the quark helicity
conservation [48]. Because the longitudinal amplitude dominates the decay, a detailed
amplitude analysis is not possible with current B samples, and limits on the transverse
amplitude fraction are obtained. Only limits have been set on the B0 → ωρ0, ωω [52]
and evidence found for B0 → ρ0ρ0 [53] decays, still indicating that b → d penguin
pollution is small in the charmless, strangeless vector-vector B decays.

On the other hand, the decay amplitudes for B → φK? have been measured by the
BaBar and Belle experiments [17, 54, 55] and the fractions of longitudinal polarization
fL = 0.50 ± 0.05 for the B+ → φK?+ decay, and fL = 0.484 ± 0.033 for the B0 →
φK?0 decay, indicate significant departure from the naive expectation of predominant
longitudinal polarization. These suggest other contributions to the decay amplitude,
previously neglected, either within the SM, such as penguin annihilation [56] or QCD
rescattering [57], or from physics beyond the SM [58].

The search for vector-tensor B→ φK?
J decays with J = 2, 3, 4 revealed a large fraction

of longitudinal polarization in the decay B→ φK?
2(1430) with fL = 0.85± 0.08 [17, 59].

Like B → φK?, the decays B → ρK? and B → ωK? may be sensitive to new physics.
Measurements of the longitudinal polarization fraction in B+ → ρ0K?0 and B+ →
ρ+K?0 [60, 18] reveal a polarization anomaly similar to B → φK?. At the same time,
first measurement of the polarization in the b → d penguin decay B0 → K?0K̄?0

indicates a large fraction of longitudinal polarization fL = 0.81+0.12
−0.13 [61].

The measurement of polarization in the penguin dominated Bs decay could chal-
lenge the SM explanation of the polarization puzzle or at least can offer the opportu-
nity to further constrain theoretical parameters thus improving the predictive power
of current theoretical tools.
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2.5.2 Strategy

From March 2001 till April 2008, we have selected a sample of about 300 Bs → φφ
events in about 2.9 fb−1 of data collected with CDFII [29]. Comparing with the angular
analysis of the topological similar decay Bd → φK0? performed at CDFII [62], we can
estimate the statistical precision that we should get from our data sample. In tab. 3

the Bd → φK0? decay results are summarized: we have an yield of 60 events and the
statistical uncertainty on the polarization amplitudes is of the order of 10%. In our
Bs → φφ samples we have about a factor 4 in the events number, then we expect a
factor 1/2 in the amplitude statistical uncertainties: they should be about 5%. The
precision is thus sufficient to discriminate between various QCD predictions, provided
the systematic uncertainty is kept at the same level.

Bd → φK0?

Yield 59± 9
|A0|2 0.571± 0.097± 0.050
|A⊥|2 0.206± 0.089± 0.045
|A‖|2 0.223± 0.077± 0.054

Table 3: Bd → φK0? polarization amplitudes measured at CDFII with 360 pb−1 [62].

We proceed in two steps to reach our purpose:

TIME-INTEGRATED ANALYSIS We perform an unbinned Maximum Likelihood fit, us-
ing as probability density function (pdf) the distribution of eq. 2.60 integrated
in time. Since eq. 2.60 doesn’t present a function whose the time and the an-
gular terms factorize, the time integration introduces a bias in the estimating
parameters. Our hypothesis is that the statistics uncertainty is bigger than the
systematic induced by the time integration. The latter should not be greater than
∆Γ/Γ ∼ 10%. This analysis is described in Chapter 5.

TIME-DEPENDENT ANALYSIS This must be done if our hypothesis is not correct, or
if non-trivial complications due to the time evolutions are found. In this case,
eq. 2.60 is used, and the proper time of the particles enters the fit as input vari-
able, like the basis angles. This is described in Chapter 6.

When performing any analysis, procedure and samples for the validation of the
analysis itself is an important component. While studying the unknown properties
of a specific decay mode, a general way to achieve such validation is to apply the
developed framework on a kinematically equivalent decay mode, which properties
are, on the other hand, very well known. Thus, an experimentalist can compare the
results of what it is called control sample with the ones obtained independently from
other experiments, which may have even a better statistical accuracy. Therefore, the
control sample serves the purpose of improving the reliability of the main analysis. In
this analysis, the Bs → Jψφ serves as control sample. For its intrinsic nature of control
sample, many of the technical aspects are in common with the main analysis (e. g., the
same trigger selection) and, whenever possible, useless repetitions will be avoided.





3 T H E U P G R A D E D C O L L I D E R D E T E C TO R
AT T H E F E R M I L A B T E VAT R O N

The B meson studied in this thesis are produced as a result of the head-on proton-
antiproton collisions at a center of mass energy of 1.96 TeV. The resulting products

and their properties are inferred from the kinematics of the “stable” particles that at
the end interact with the detector instrumentation.1

This chapter provides a concise description of the complex infrastructure, accelera-
tor and detector, involved in producing our data sample. A more detailed description
of the tracking and the trigger systems is given, for the crucial role they have in the
present analysis.

3.1 THE FERMILAB TEVATRON COLLIDER
The Tevatron collider is an accelerator that provides collisions of antiprotons with pro-
tons at a center-of-mass energy of 1.96 TeV. The Tevatron is an underground circular
proton synchrotron, 1 km in radius, the last stage of a system of accelerators, storage
rings, and transfer lines located at the Fermi National Accelerator Laboratory (FNAL),
or Fermilab, about 50 km west from Chicago, Illinois, United States. While the ma-
chine operates in collider mode, “bunches” of protons, circulating clockwise as seen
from above and spaced by 396 ns, collide against a similar beam of antiprotons ac-
celerated counter-clockwise, both at energies of 980 GeV. A bunch is a collection of
particles contained within one radio-frequency “bucket” (defined below).

The Tevatron was commissioned in 1983 as the first large-scale superconducting
synchrotron in the world and, since then, various periods of operations occurred. Each
period of Tevatron collider operations is conventionally identified as a Run.2 Table 4

contains a summary of the Tevatron operations and performance since its construction.
The present analysis uses the data collected in Run II.

The performance of the Tevatron collider is evaluated in terms of two key param-
eters: the available center-of-mass energy,

√
s, and the instantaneous luminosity, L .

The former defines the accessible phase-space for the production of resonances in the
final states. The latter is the coefficient of proportionality between the rate of a given
process and its cross-section σ:

rate [events s−1] = L [cm−2 s−1]× σ [cm2] . (3.1)

The time-integral of the eq. (3.1) is therefore a measure of the expected number of
events n, produced in a finite time T:

n(T) =
∫ T

0
L σ dt , (3.2)

1 Stable in this context is relative to the size of the detector and the energy of the interactions. Muons, kaons
and pions are not stable: they decay with mean life-times of the order of 10−6 s to 10−8 s. However, at
energies of a few GeV and above, they are nearly stable as observed in the detector.

2 The Run is not to be confused with the run, defined in CDF as a continuous period of data-taking in
approximately constant detector and beam conditions.

29
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Date
√

s [TeV] L [cm−2 s−1]
∫

L dt [pb−1]

Mar 1983 End of the construction − − −
Jul 1983 Proton energy: 512 GeV − − −
Oct 1983 Fixed-target program − − −
Feb 1984 Proton energy: 800 GeV − − −
Oct 1985 First pp̄ collisions 1.6 1024 −
Oct 1986 Proton energy 900 GeV − − −

Jun 1988–May 1989 Run 0 1.8 2× 1030 ' 4.5
Aug 1992–Feb 1996 Run I 1.8/0.63 28× 1030 ' 180

Aug 2000 Beam energy: 980 GeV − − −
Mar 2001 Run II start 1.96 5× 1030 −
Sep 2009 Best performances 1.96 3.6× 1032 ' 6.9

Table 4: Chronological overview of the Tevatron operation and performance. The fourth col-
umn reports the peak luminosity. The fifth column reports the delivered integrated
luminosity. The last row shows the best performances as of this writing.

while the time-integral of the luminosity is the integrated luminosity:

Lint =
∫ T

0
L dt . (3.3)

Assuming an ideal head-on pp̄ collision with no crossing angle between the beams,
the instantaneous luminosity is defined as

L = 10−5 NpNp̄B f βγ

2πβ?
√

(εp + εp̄)x(εp + εp̄)y

H(σ/β?) [1030 cm−2 s−1] . (3.4)

It depends on the following Tevatron parameters: the number of circulating bunches
in the ring (B = 36), the revolution frequency ( f = 47.713 kHz), the Lorentz rel-
ativistic factor (boost, βγ = 1045.8 at 980 GeV), the average numbers of protons
(Np ≈ 250× 109) and antiprotons (Np̄ ≈ 109) in a bunch, an empiric “hourglass” factor
(H = 0.6-–0.7), which is a function of the ratio between the longitudinal r.m.s. width
of the bunch (σz ≈ 60 cm) and the “beta function” calculated at the interaction point
(β? ≈ 31 cm), and the 95% normalized emittances of the beams (εp ≈ 18π mm mrad
and εp̄ ≈ 13π mm mrad after injection).3 The dominant limiting factor of the luminos-
ity is the availability of monochromatic antiprotons that can be efficiently transferred
through the accelerator chain for final collisions.

The Tevatron is an approximately circular synchrotron employing 772 dipole, 2 half-
dipole, and 204 quadrupole superconducting magnets. Each is approximately 6 m
long, 4 tons in mass, and is made of NbTi alloy filaments embedded in copper, kept
at 4.3 K temperature by a large cryogenic system. A 4400 A current flows through
each magnet to produce the 4.2 T magnetic field necessary to keep the particles on
their orbit, while they are accelerated by eight radio-frequency (RF) cavities driven
at approximately 53.105 Hz. Motions or friction by the approximately 4000 N cm−1

of outward pressure are avoided by epoxy-covered steel collars bound around the
magnets.

3 The hourglass factor is a parameterization of the longitudinal profile of the beams in the collision region,
which assumes the shape of an horizontal hourglass centered in the interaction region. The beta function
is a parameter convenient for solving the equation of motion of a particle through an arbitrary beam
transport system. The emittance ε measures the phase-space occupied by the particles of the beam. Three
independent two-dimensional emittances are defined. The quantity

√
βε is proportional to the r.m.s. width

of the beam in the corresponding phase plane.
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The particles are accelerated through the RF buckets. A bucket is one interval of the
longitudinal restoring force provided by the RF cavities that results in a stable phase-
space where a bunch may be captured and accelerated. In the following, we describe
the procedure for obtaining a continuous period of collider operation using the same
collection of protons and antiprotons, called a store. Further details can be found in
[63].
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Figure 3.1: Illustration of the Fermilab Tevatron collider.

3.1.1 Proton production

Hot hydrogen gas is passed through a magnetron, which extracts a 50-55 mA current
of 15–22 keV H− ions, subsequently accelerated every 66 ms to 750 keV by a three-
staged diode-capacitor voltage multiplier (Cockroft-Walton) accelerator. The proton
beam, segmented into bunches, is then injected into a two-staged 150 m long linear
accelerator (Linac, see fig. 3.1). First, a drift tube accelerator resonating at 201.249 MHz
accelerates bunches of protons up to 116 MeV; then, a side-coupled cavity accelerator
at 804.996 MHz increases their energy to 401.5 MeV before injection into the Booster.

The Booster (see fig. 3.1) is an alternating gradient synchrotron (orbit radius of
75.5 m) that accelerates protons to 8 GeV in 33 ms, sweeping from 38 to 53.105 MHz.
At injection, a thin carbon foil is used to strip the electrons from the H− ions to
obtain protons. Injecting H− ions rather than protons into the Booster allows the
injection to proceed over multiple revolutions of the beam around the Booster Ring
(usually 10–12).4 There are two basic modes during collider operations: antiproton
accumulation and injection.

4 If protons were instead injected, the magnetic field used to inject new protons onto orbit in the Booster
would also deflect the already revolving protons out of orbit.
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3.1.2 Antiproton production and accumulation

In accumulation mode, one set of 84 proton bunches (approximately 8× 1012 p in
total) is extracted from the Booster at 8 GeV and injected into the Main Injector every
2.2 s. The Main Injector (see fig. 3.1) is a 53.105 MHz circular synchrotron (528.5 m
in radius), with 18 accelerating cavities and conventional magnets. The protons are
accelerated to 120 GeV, and then extracted and directed to the antiproton production
station, a rotating 7 cm-thick target made of nickel alloys containing chromium, iron
and other metals.

The particles produced in the interaction are spatially wide-spread. They are col-
lected and focused with a cylindrical lithium lens (760 T m−1).5 Eight GeV/c negatively-
charged secondaries are momentum-selected by a 1.5 T pulsed dipole magnet. Typi-
cally, 21 antiprotons are collected for each 106 protons on target, resulting in a stacking
rate of approximately 10–20 mA h−1. The emerging antiprotons have a bunch struc-
ture similar to the one of the incident protons and are delivered to the Debuncher
storage ring (see fig. 3.1).

This rounded triangular synchrotron, 90 m of mean radius, transforms the antipro-
ton pulses in a continuous beam of monochromatic antiprotons. Stochastic cooling
and bunch rotation are applied during many cycles.6 From the Debuncher, 8.000± 0018) GeV
antiprotons are transferred with 60%–70% efficiency into the Accumulator, a concen-
tric storage ring 75 m in mean radius (see fig. 3.1), where they are stacked and cooled
with a variety of systems until the maximum antiproton intensity is reached. Since
2004, optimized antiproton accumulation is achieved using the Recycler Ring (see
fig. 3.1). This is a constant 8 GeV energy storage-ring placed in the Main Injector enclo-
sure, that uses permanent magnets. It is used to gather antiprotons that are periodi-
cally transferred from the Accumulator (95% transfer efficiency) thus maintaining it at
its optimum intensity regime. Recently, relativistic electron cooling was successfully
implemented in the Recycler, further enhancing the Tevatron performance [65].7

3.1.3 Injection and collisions

Every 10–20 h, antiproton accumulation is stopped in preparation for injection. A set
of seven proton bunches is extracted from the Booster, injected into the Main Injector,
accelerated to 150 GeV, coalesced with ≈ 90% efficiency into a single bunch of ≈
300× 109 p, and then injected into the Tevatron.8 This process is repeated every 12.5 s,
until 36 proton bunches, separated by 396 ns, are loaded into the Tevatron central
orbit. Typically, 65% of the protons in the Main Injector are successfully transferred
to the Tevatron. The electrostatics separators (about 30 pairs of metal plates) are then
activated in the Tevatron, in preparation for antiproton injection.

Four sets of 7–11 p̄ bunches are extracted from the Accumulator (or from the Recy-
cler) to the Main Injector, accelerated to 150 GeV, coalesced with ≈ 80% efficiency into
four ≈ 30× 109 p̄ bunches separated by 396 ns, and then injected into the Tevatron,
where protons are counter-rotating. Protons and antiprotons circulate in the same

5 Lithium is used to minimize beam loss from multiple-scattering.
6 Stochastic cooling is a technique used to reduce the transverse and energy spread of a particle beam without

any accompanying beam-loss. This is achieved by applying iteratively a feedback mechanism that senses
with extreme sensitivity the beam deviation from the ideal orbit with electrostatic plates, processes and
amplifies it, and transmits an adequately-sized synchronized correction pulse to another set of plates down-
stream [64]. Bunch rotation is an RF manipulation technique that, using adequate phasing, transforms a
beam with a large time spread and a small energy spread in a beam with a large energy spread and a small
time spread, or vice versa.

7 Electron cooling is a method of damping through the interaction between the antiproton beam and an
electron beam propagating together at the same average velocity.

8 Coalescing is the process of compacting into one dense bunch many smaller bunches.
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enclosure, sharing magnet and vacuum systems. The separators minimize the beam-
beam interactions, by keeping the proton and the antiproton beams, each about half a
millimeter thick, into two non-intersecting closed helical orbits separated by approx-
imately five millimeters (3σ–5σ) as they revolve in opposite directions. This allows
controlling each beam nearly independently. The injection process is repeated nine
times until 36 antiproton bunches circulate in the Tevatron.

Sweeping the Tevatron RF by ≈ 1 kHz, the beam is then accelerated in about a
minute from 150 to 980 GeV, at which energy one particle completes the full revo-
lution of the Tevatron circumference in 21 µs at 0.999 999 6 c. The beams are finally
brought into collision at the two instrumented interaction-points located along two
straight sections of the Tevatron: DØ and BØ, where the DØ and CDFII detectors,
respectively, are located. Although the power produced in the collision is only 1–2 W,
the stored energy of the beam is about 1.7 MJ, corresponding, approximately, to the
kinetic energy of a 4.5 t truck moving at 100 km h−1.

Special high-power quadrupole magnets (“low-β squeezers”), installed on the beam
pipe at either side of the detectors, reduce the transverse spatial spread of the beams to
maximize the collision rate in the interaction regions. The resulting transverse spatial
distribution of the luminous region is approximately a two-dimensional Gaussian,
with σT ≈ 30 µm. The typical longitudinal dimension of a bunch is 60–70 cm. The
interaction regions have a roughly Gaussian distribution along the beam direction,
with r.m.s. width σz ≈ 28 cm. The center of the luminous region is shifted toward the
nominal interaction point by fine tuning of the squeezers. The 36 bunches of protons
(antiprotons) are distributed among the 1113 buckets in three equispaced “trains” of
12 bunches each. The inter-bunch spacing is 396 ns (21 buckets) within a train, while
a 2.6 µs spacing (139 buckets, “abort gap”) is kept between trains. The need for the
abort gap is two-fold: it allows antiprotons injection (in coincidence with the proton
abort gap) without perturbing the already revolving protons with the injecting magnet.
Furthermore, when beam abortion is needed, the abort gap allows ramping-up the
deflecting magnets without interfering with the beam during the transient, possibly
damaging the detectors. As a consequence of this bunch distribution, the average
bunch-crossing rate is 1.7 MHz, resulting from a 2.53 MHz rate, when the proton and
antiproton trains are crossing, and zero rate in correspondence of the abort gaps.

The transverse profile of the beam is shaped to its optimized configuration to avoid
detector damage from the tails of the p (p̄) distributions interacting with the beam
pipe: retractable collimators (iron plates) are moved perpendicularly toward the beam
and trim-off the residual halo. When the beam profile is narrow enough and the
conditions are safely stable, the detector is powered and the data-taking starts.

The number of overlapping inelastic interactions N for each bunch crossing is a
Poisson-distributed variable that depends on the instantaneous luminosity. The ob-
served distribution of the multiplicity of interaction vertexes yields N̄ ≈ 0.2, 1.0, 2.0,
and 6.0 for respectively, L ≈ 1× 1031, 5× 1031, 10× 1031, and 30× 1031 luminosities
[66]. The luminosity decreases as a function of time during the store because of the
interactions of the beam with residual molecules of gas that escaped the vacuum of
the beam pipe, beam-halo interactions, and p̄ depletion due to the collisions. Dur-
ing the 10–20 h of a store, the luminosity decreases by a factor of 2.5–5, the majority
of data being collected at L ≈ L0/2. Just after the final injection, a new antipro-
ton accumulation cycle is started. When the antiproton stack is sufficiently large and
the colliding beams are degraded, the detector high-voltages are switched-off and the
store is dumped. The beam is extracted via a switch-yard and sent to an absorption
zone.

Beam abortion can occur also accidentally when a superconducting magnet rises its
temperature above the critical value (i. e., the magnet “quenches”), destroying the orbit
of the beams. The time between the end of a store and the beginning of collisions of
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the next one is typically 2 h, during which time calibrations of the sub-detectors and
cosmic rays tests are usually performed.

3.1.4 Tevatron performance

Since the beginning of Run II the Tevatron performance has been steadily increasing.
Currently (as of 2009), the Tevatron is running at a center-of-mass energy of 1.96 TeV
with an inter bunch-crossing time of 396 ns.

The Tevatron set the world record of highest peak luminosity for a hadron collider of
3.6× 1032 cm−2/s. As of October 2009, physics quality data corresponding to 6.9 fb−1

are stored. The plot in fig. 3.2 shows the integrated luminosity since the beginning of
run II.

  

Year

Figure 3.2: Integrated Luminosity since the beginning of run II.

3.2 THE CDF II DETECTOR
The CDFII detector is a large multi-purpose solenoidal magnetic spectrometer sur-
rounded by 4π fast, projective calorimeters and fine-grained muon detectors. It is
installed at the BØ interaction point of the Tevatron (see fig. 3.3) to determine energy,
momentum and, whenever possible, the identity of a broad range of particles pro-
duced in 1.96 TeV pp̄ collisions. It was designed, built, and operated by a team of
physicists, technicians, and engineers that, as of this writing, spans 60 institutions of
13 countries. Several upgrades modified the design of the original facility commis-
sioned in 1985.9 The most extensive upgrade started in 1995 and led to the current
detector whose operation is generally referred to as CDFII.

3.2.1 Coordinates and notation

CDFII employs a right-handed Cartesian coordinate system with origin in the BØ inter-
action point, assumed coincident with the center of the drift chamber (see sec. 3.3.5).

9 Originally, the CDF acronym was meant for Collider Detector Facility.
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The positive z-axis lies along the nominal beam-line pointing toward the proton direc-
tion (east). The (x, y) plane is therefore perpendicular to either beams, with positive
y-axis pointing vertically upward and positive x-axis in the horizontal plane of the
Tevatron, pointing radially outward with respect to the center of the ring.

Since the colliding beams of the Tevatron are unpolarized, the resulting physical ob-
servations are invariant under rotations around the beam line axis. Thus, a cylindrical
(r, ϕ, z) coordinate system is particularly convenient to describe the detector geometry.
Throughout this , longitudinal means parallel to the proton beam direction (i. e., to the
z-axis), and transverse means perpendicular to the proton beam direction, i. e., in the
(x, y) ≡ (r, ϕ) plane.

In hadron-collisions environments, it is customary to use a variable invariant under
ẑ boosts as an unit of relativistic phase-space, instead of the polar angle θ. This variable
is the rapidity defined as

Y =
1
2

ln
[

E + p cos(θ)
E− p cos(θ)

]
, (3.5)

where (E,~p) is the energy-momentum four-vector of the particle. However, a mea-
surement of rapidity still requires a detector with accurate particle identification ca-
pabilities because of the mass term entering E. Thus, for practical reasons, it is often
preferred to substitute Y with its approximate expression η in the ultra-relativistic
limit, usually valid for products of high-energy collisions:

Y
p�m−→ η +O(m2/p2), (3.6)

where the pseudo-rapidity η ≡ − ln [tan(θ/2)] is only function of the momenta. As the
event-by-event longitudinal position of the actual interaction is distributed around the
nominal interaction point with 30 cm r.m.s. width, it is useful to distinguish detector
pseudo-rapidity, ηdet, measured with respect to the (0, 0, 0) nominal interaction point,
from particle pseudo-rapidity, η, which is measured with respect to the z0 position of
the real vertex where the particle originated.10

Mapping the solid angle in terms of (pseudo)-rapidity and azimuthal angle is also
convenient because the density of final-state particles in energetic hadronic collisions
is approximately flat in the (Y, ϕ) space. The (pseudo)-rapidity dependence was ob-
served experimentally, the azimuthal dependence derives from the fact that beams
are unpolarized. Other convenient variables are the transverse component of the mo-
mentum with respect to the beam axis (pT), the “transverse energy” (ET), and the
approximately Lorentz-invariant angular distance ∆R, defined as

~pT ≡ (px, py)→ pT ≡ p sin(θ), ET ≡ E sin(θ), and ∆R ≡
√

η2 + φ2. (3.7)

Throughout this , the magnitude of the vector ~pT (and of any vector ~v) is indicated as
pT (v) , instead of |~pT| (|~v|), for a simpler notation.

3.2.2 Overview

CDFII (see fig. 3.3) is a 5000 t assembly of sub-detectors, ≈ 16 m in length by ≈ 12 m in
diameter, which can be moved from its garaged position, in the CDF assembly build-
ing, to its operation position on the Tevatron beam line. The 31.4 m move takes one
day. The CDFII detector was designed and constructed with an approximately cylindri-
cally symmetric layout both in the azimuthal plane and in the “forward” (z > 0, east)
“backward” (z < 0, west) directions with spatial segmentation of its sub-components

10 An idea of the difference is given by considering that ηdet ≈ η± 0.2 if the particle was produced at z = 60 cm
from the nominal interaction point.
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Figure 3.3: Elevation view of one half of the CDFII detector.

roughly uniform in pseudo-rapidity and azimuth. CDFII is composed of several special-
ized subsystems, each one designed to perform a different task, arranged in a standard
layout for multipurpose detectors; starting from the interaction point, particles emit-
ted within the acceptance region encounter in sequence: a thin wall beryllium vacuum
pipe, a high-precision tracking system composed by an inner silicon system and an
outer drift-chamber, a time-of-flight detector, a solenoidal magnet and its return steel
yoke, finely segmented sampling calorimeters, and muon detectors.

Its main features are an excellent tracking performance, which provides high mass
resolution and precisely reconstructed decay-vertexes, good electron and muon iden-
tification capabilities combined with charged-hadron identification, and an advanced
trigger system that fully exploits the high event-rates. A detailed description of the
CDFII detector can be found elsewhere [67] and in specific references cited for each
sub-detector. In the following, we emphasize the tracking and the trigger systems,
which are the aspects of the detector more specific to this analysis.

3.3 THE TRACKING SYSTEM
Three-dimensional charged particle tracking is achieved through an integrated system
consisting of three silicon inner sub-detectors and a large outer drift-chamber, all con-
tained in a superconducting solenoid (see fig. 3.4). The 1.41 T magnetic field and the
130 cm total lever arm provide excellent tracking performances.

In the central region (|ηdet| . 1), 7 silicon samplings (one in the (r, ϕ) view plus six
in the (r, ϕ, z) view), and 96 chamber samplings (48 (r, ϕ) plus 48 (r, z)) are available
between 1.6 and 132 cm. In the forward and backward regions (1 . |ηdet| . 2), 8
silicon samplings (one in the (r, φ) view plus seven in the (r, φ, z) view) are available
between 1.6 and 29 cm, along with partial information from the chamber.
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Figure 3.4: Elevation view of one quadrant of the inner portion of the CDFII detector showing
the tracking volume surrounded by the solenoid and the forward calorimeters.

The high number of samplings over the 88 cm lever arm of the chamber ensure
precise determination of curvature, azimuth, and pseudo-rapidity of the tracks in
the central region. The chamber provides also track seeds for pattern-recognition in
silicon.

The core of the silicon detector is the Silicon VerteX (SVXII) detector. It provides
five three-dimensional measurements that extend the lever arm by 41.5 cm toward the
beam thus allowing more precise determination of the trajectories and identification of
decay-vertexes displaced from the beam-line. The SVXII has an outer and an inner ex-
tension. The outer extension, i. e., the Intermediate Silicon Layers (ISL), provides a sin-
gle (double) three-dimensional silicon measurement in the central (forward-backward)
region, at intermediate radial distance from the chamber. The ISL allows efficient link-
ing between tracks reconstructed in the chamber and hits detected in the SVXII, and
extends the track finding at pseudo-rapidities 1 . |ηdet| . 2, where the chamber cov-
erage is marginal. The inner extension, the Layer 00 (L00), is a light-weight silicon layer
placed on the beam-pipe. It recovers the degradation in resolution of the reconstructed
vertex position due to multiple scattering on the SVXII read-out electronics and cool-
ing system, installed within the tracking volume. In addition, the L00, being made of
state-of-the-art radiation-tolerant sensors, will extend the lifetime of the whole system
when the effects of radiation damage will degrade the performance of the inner SVXII
layers. The integrated design of the tracking system allowed commonality of compo-
nents among sub-detectors (read-out chip, support structures, etc.) thus simplifying
the construction and the operation.

All 722 432 channels from the ≈ 7.0 m2 silicon active-surface employ 5644 radiation-
tolerant, custom integrated read-out chips of the same type. This chip allows in-
dependent cycles of digitization of data and analog processing of subsequent data.
The discriminated differential pulse from each channel is preamplified, digitized and
propagated to the downstream data-acquisition. The ISL and the SVXII, whose mass is
approximately 128 kg, share the carbon-fiber supporting structure.

The total amount of material in the silicon system, averaged over ϕ and z, varies
roughly as 0.1X0

sin(θ) in the |ηdet| . 1 region, and roughly doubles in 1 . |ηdet| . 2
because of the presence of cables, cooling bulk-heads, and portions of the support
frame.11 The average amount of energy loss for a charged particle is roughly 9 MeV.

11 The symbol X0 indicates the radiation length.
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The total heat load of the silicon system is approximately 4 kW. To prevent thermal
expansion, relative detector motion, increased leakage-current, and chip failure due
to thermal heating, the silicon detectors and the associated front-end electronics are
held at roughly constant temperature ranging from −6 °C to −10 °C for L00 and SVXII,
and around 10 °C for ISL, by an under-pressurized water and ethylene-glycol coolant
flowing in aluminum pipes integrated in the supporting structures.

3.3.1 The magnet

A 1.4116 T solenoidal magnetic field is maintained in the region r . 150 cm |z| .
250 cm by circulating a 4650 A current (current density 1150 A m−1) through 1164 turns
of an aluminum-stabilized NbTi/Cu super-conducting coil. The field is oriented along
the positive ẑ (proton) direction and is uniform to within 0.1% in the |z| . 150 cm vol-
ume, where tracking measurements are made (see fig. 3.4). The tiny non-uniformities,
mapped out during detector construction, are treated as small perturbations in the
track-fitting algorithms. During data-taking, the field is continuously monitored by
nuclear magnetic resonance probes with 0.01% accuracy. Any deviation from the
mapped values is applied as a correction to the measured track parameters. The
threshold to radially escape the magnetic field for a particle is pT & 0.3 GeV/c while
the trajectory of a particle with pT = 30 GeV/c deviates only 1.6 cm from a straight path
of 150 cm. The solenoid is 4.8 m in length, 1.5 m in radius, 0.85X0 in radial thickness
(for normally incident particles.), and is cooled by forced flow of two-phase helium.
Outside the coil, the return of the field flux is a box-shaped steel yoke, 9.4 m high
by 7.6 m wide by 7.3 m long. It avoids interference between the field and the proper
operations of the photo-multiplier tubes (PMT) used in the calorimeters.

3.3.2 Layer 00

The L00 is the innermost layer of the silicon detector [?]. It consist of a single, castel-
lated layer of single-sided, AC-coupled silicon sensors mounted directly on the beam
pipe at radii, alternating in ϕ, of 1.35 or 1.62 cm from the beam. It provides full
azimuthal and |z| . 47 cm longitudinal coverage. Longitudinally adjacent sensors
(0.84 (or 1.46) cm× 7.84 cm) are ganged in modules of 15.7 cm active-length arranged
into twelve partially-overlapping ϕ sectors, and six longitudinal barrels. These radiation-
tolerant sensors are biased to O(500 V), which allows full depletion after O(5 Mrad)
integrated radiation doses. The strips are parallel to the beam axis allowing sampling
of tracks in the (r, ϕ) plane. The inter-strip implant pitch of 25 µm with floating alter-
nate strips results in 50 µm read-out pitch. The analog signals of the 13 824 channels
are fed via fine-pitch cables, up ≈ 50 cm long, to the front-end electronics outside the
tracking volume.

3.3.3 Silicon VerteX detector II

The SVXII is a fine resolution silicon micro-strip vertex detector which provides five
three-dimensional samplings of tracks at 2.45 (3.0), 4.1 (4.6), 6.5 (7.0), 8.2 (8.7), and
10.1 (10.6) cm of radial distance from the beam with full pseudo-rapidity coverage in
the |ηdet| . 2 region (see fig. 3.4 and fig. 3.5(a)) [68]. This corresponds to a length of
|z| . 96 cm along the beam-line, sufficient to cover the σz ≈ 28 cm longitudinal spread
of the luminous region. The SVXII has a cylindrical geometry coaxial with the beam,
and its mechanical layout is segmented in three 32 cm axial sections (“barrels”) times
twelve 30◦ azimuthal sectors (“wedges”) times five equally-spaced radial layers. A
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small overlap between the edges of adjacent azimuthal sectors helps wedge-to-wedge
alignment (see fig. 3.5(b)).

(a) (b)

Figure 3.5: Schematic illustration of the three instrumented mechanical barrels of SVXII (a) and
of the cross-section of a SVXII barrel in the (r, ϕ) plane (b).

Sensors in a single layer are arranged into independent longitudinal read-out units,
called “ladders”. Each ladder comprises two, double-sided sensors and a multi-layer
electronic board, all glued on a carbon-fiber support. Front-end electronics, biasing
circuits, and fan-out are located on the board that serves the pair of sensors whose
strips are wire-bonded together resulting in a 15 cm active length. At a given radial
layer and azimuth, each barrel contains pairs of ladders stacked length-wise head-to-
head to keep the read-out electronic at the two outside extremities of the barrel (see
fig. 3.5(a)). The active surface consists of double-sided, AC-coupled, 7.5 cm × 1.5–
5.8 cm silicon sensors with micro-strips implanted on a 300 µm thick, high resistivity
bulk. Bias is applied through integrated poly-silicon resistors. On one side, all sen-
sors have axial strips (i. e., parallel to the beam direction) spaced by approximately
60–65 µm, for a precise reconstruction of the ϕ coordinate. On the reverse side, the
following combination of read-out pitch (strip orientations with respect to the beam)
is used: 141 µm (90◦), 125.5 µm (90◦), 60 µm (−1.2◦), 141 µm (90◦), 65 µm (1.2◦), from
the innermost to the outermost layer for reconstructing the z coordinate. A total of
405 504 electronics channels are used for SVXII.

3.3.4 Intermediate Silicon Layers

The ISL is a silicon tracker placed at intermediate radial distance between the SVXII and
the drift chamber (see fig. 3.4), and covering the |ηdet| . 2 pseudo-rapidity range for
a total length of 174 cm along z [69]. At |ηdet| . 1 a single layer of silicon sensors
is mounted on a cylindrical barrel at radius of 22.6 (or 23.1 cm). At 1 . |ηdet| . 2
two layers of silicon sensors are arranged into two pairs of concentric barrels (inner
and outer). In the inner (outer) barrel, staggered ladders alternate at radii of 19.7
and 20.2 cm (28.6 and 29.0 cm). One pair of barrels is installed in the forward region,
the other one in the backward region. Each barrel is azimuthally divided into a 30◦

structure matching the SVXII segmentation. The basic read-out unit consists of an
electronic board and three sensors ganged together resulting in a total active length of
25 cm. ISL employs 888 5.7 cm × 7.5 (6.7) cm double-sided, AC-coupled, 300 µm-thick
sensors. Each sensor has axial strips spaced by 112 µm on one side, and 1.2◦-angled
strips spaced 112–146 µm on the reverse, for 303 104 total channels.
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3.3.5 Central Outer Tracker

A multi-wire, open-cell drift chamber provides charged particle tracking at large radii
in the central pseudo-rapidity region (|ηdet| . 1, see fig. 3.4) [70]. The Central Outer
Tracker (COT) has an hollow-cylindrical geometry, its active volume spans from 43.4
to 132.3 cm in radius and |z| . 155 cm in the axial direction. Arranged radially into
eight “super-layers”, it contains 96 planes of wires that run the length of the cham-
ber between two end-plates (see fig. 3.6(a)). Each super-layer is divided into ϕ cells;
within a cell, the trajectory of a charged particle is sampled at 12 radii (spaced 0.583 cm
apart) where sense wires (anodes) are strung. Four super-layers employ sense-wires
parallel to the beam axis, for the measurement of the hit coordinates in the (r, ϕ)
plane. These are radially interleaved with four stereo super-layers whose wires are
alternately canted at angles of +2◦ and −2◦ with respect to the beam-line. Com-
bined read-out of stereo and axial super-layers allows the measurement of the (r, z)
hit coordinates. Each super-layer is azimuthally segmented into open drift-cells. The
drift cell layout (see fig. 3.6(b)) consists of a wire plane closed azimuthally by cathode
sheets spaced approximately 2 cm apart. The wire plane contains sense wires alter-
nating with field-shaping wires, which control the gain on the sense wires optimizing
the electric field intensity. The cathode is a 6.35 µm-thick Mylar sheet with vapor-
deposited gold shared with the neighboring cell.12 Innermost and outermost radial
extremities of a cell (i. e., the boundaries between super-layers) are closed both me-
chanically and electrostatically by Mylar strips with an additional field-shaping wire
attached, the shaper wire.

(a) SL2
52 54 56 58 60 62 64 66
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Potential wires

Sense wires

Shaper wires

Bare Mylar

Gold on Mylar (Field Panel)

R (cm)(b)

Figure 3.6: A 1/6 section of the COT end-plate (a). For each super-layer the total number of
cells, the wire orientation (axial or stereo), and the average radius [cm] are given.
The enlargement shows in details the slot were wire planes (sense) and field sheet
(field) are installed. Sketch of an axial cross-section of three cells in super-layer 2,
(b). The arrow shows the radial direction.

Both the field sheet and wire plane have a center (z ≈ 0.0 cm) support rod that limits
motion due to electrostatic forces. Each wire plane contains 12 sense, 13 field-shaping,
and 4 shaper wires, all made of 40 µm-diameter gold-plated tungsten. Wire planes are
not aligned with the chamber radius: a ζ = 35◦ azimuthal tilt (see fig. 3.6(b)) partially
compensates for the Lorentz angle of the drifting electrons in the magnetic field.13

The tilted-cell geometry helps in the drift-velocity calibration, since every high-pT

12 Gold, used also for the wires, was chosen because of its good conductivity, high work function, resistance
to etching by positive ions, and low chemical reactivity.

13 In the presence of crossed electric (~E) and magnetic (~B) fields, electrons drifting in a gas move at an angle

ζ with respect to the electric field direction, given by ζ ≈ arctan
(

v(E,B=0)B
kE

)
, where v(E, B = 0) is the drift

velocity without a magnetic field, and k is a O(1) empirical parameter that depends on the gas and on the
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(radial) track samples the full range of drift distances within each super-layer. Further
benefit of the tilt is that the left-right ambiguity is resolved for particles coming from
the z-axis since the ghost track in each super-layer appears azimuthally rotated by
arctan[2 tan(ζ)] ≈ 54◦, simplifying the pattern recognition problem.

A 50 : 50 gas admixture of argon and ethane bubbled through isopropyl alcohol
(1.7%) flows at 9.45 L min−1 in the active volume of the chamber with its pressure be-
ing continuously monitored by four probes. Since 2003, the flux has been increased
by a factor of ten to contrast the adverse effect of wire aging. High voltage is applied
to the sense and field-shaping wires to generate a 1.9 kV cm−1 drift electric-field. This
value, combined with the drift gas, results in a maximum drift-time of about 177 ns
along a maximum drift-distance of 0.88 cm, allowing for read-out and processing of
the COT data between two consecutive bunch-crossings. The average 180 kV cm−1 field
present at the surface of the sense wire produces typical gains of 2× 104. The 30 240
sense wires are read-out by the front-end chip, which provides input protection, ampli-
fication, shaping, baseline restoration, discrimination, and charge measurement. The
input-charge information is encoded (logarithmically) in the signal width for dE/dx
sampling, and is fed to a time-to-digital converter that records leading and trailing-
edge times of signal in 1 ns bins. Hit times are later processed by the pattern recog-
nition software to reconstruct trajectories. The material of the COT corresponds to an
average 0.017X0 for tracks at normal incidence.

3.3.6 Tracking performance

Within an uniform axial magnetic field in vacuum, the trajectory of a charged par-
ticle produced with non-zero initial velocity in the bending plane of the magnet is
described by an helix. The arc of an helix described by a particle of charge q in the
magnetic volume of CDF is parameterized using three transverse, and two longitudinal
parameters:

C – signed helix (half)-curvature, defined as C ≡ q
2R , where R is the radius of the

helix. This is directly related to the transverse momentum: pT = cB
2|C| ;

ϕ0 – ϕ direction of the particle at the point of closest approach to the z-axis;

d0 – signed impact parameter, i. e., the distance of closest approach to the z-axis,
defined as d0 ≡ q(

√
x2

c + y2
c − R), where (xc, yc) are the coordinates of the center-

guide;

λ – the helix pitch, i. e., cot(θ), where θ is the polar direction of the particle at
the point of its closest approach to the z-axis. This is directly related to the
longitudinal component of the momentum: pz = pT cot(θ);

z0 – the z coordinate of the point of closest approach to the z-axis.

The trajectory of a charged particle satisfies the following equations [71]:

x = r sin(ϕ)− (r + d0) sin(ϕ0) (3.8a)
y = −r cos(ϕ) + (r + d0) cos(ϕ0) (3.8b)
z = z0 + sλ, (3.8c)

where s is the projected length along the track, r = 1/2C, and ϕ = 2Cs + ϕ0. The
reconstruction of a charged-particle trajectory consists in determining the above pa-
rameters through an helical fit of a set of spatial measurements (“hits”) reconstructed

electric field. A common solution for this problem consists in using tilted cells (i. e., tilted drift electric field)
that compensate the Lorentz angle linearizing the time-to-distance relation.
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in the tracking detectors by clustering and pattern-recognition algorithms. The helical
fit takes into account field non-uniformities and scattering in the detector material. A
concise overview of the tracking algorithms is given in the following, see [72, 73] for
more details.

Tracking in the COT

The COT efficiency for tracks is typically 99%. The single-hit resolution is 140 µm, in-
cluding a 75 µm contribution from the ≈ 0.5 ns spread in the measurement of the time
of the interaction. Internal alignments of the COT cells are maintained within 10 µm
using cosmic rays. Curvatures effects from gravitational and electrostatic sagging are
under control within 0.5% by equalizing the difference of E/p between electrons and
positrons as a function of cot(θ). The typical resolutions on track parameters are the
following: σpT /p2

T ≈ 0.0015 (GeV/c)−1, σϕ0 ≈ 0.035◦, σd0 ≈ 250 µm, σθ ≈ 0.17◦, and
σz0 ≈ 0.3 cm for tracks fit with no silicon information or beam constraint.

Tracking in the silicon detector

Two unexpected phenomena, occurred at the beginning of Run II, were the dominant
causes of the current inefficiency [74]. The first contribution is related to two beam
incidents: in March 2002, the failure of multiple Tevatron RF cavities debunched the
beam, causing high losses and consequent quenching of the magnets. The beam was
aborted with an uncontrolled deflection that exposed the CDFII detector to a flux of
more than 107 minimum ionizing particles per cm2 in less than 150 ns; in November
2002, a failure on the deflecting magnets induced an incidental Tevatron abort in which
some bunches were deflected into CDFII. Addition of faster interlock systems and more
collimators prevented further occurrence of such incidents.

The second phenomenon was the break-up of wire-bonds oriented orthogonally
to the magnetic field, due to resonant Lorentz forces occurring in read-out tests at
16 kHz frequency. A temporary inefficiency was induced by 35% of ISL cooling-lines
being blocked by epoxy, after installation. This prevented a large portion of ISL from
being active, until all the lines were cleared with a laser (in January 2003).

The signal-to-noise ratio ranges from 14 : 1 for the (r, ϕ) layers of the SVXII to 10 : 1
for the L00. The best (r, ϕ) position resolution achieved is 9 µm, using two-strip clusters
in SVXII. The z0 resolution is typically 70 µm. An active real-time optical survey keeps
the SVXII axis parallel to the beam within 20 µm along the SVXII length. Tight assem-
bling tolerances (10 µm in ϕ and 40 µm in r) combined with a set of off-line algorithms
provide internal and global L00, SVXII, and ISL alignment accurate within 20 µm, and
constantly monitored in time. The excellent overall accuracy of the silicon alignment
is confirmed by the fluctuations of the measured impact parameters of prompt parti-
cles as a function of z and ϕ, which do not exceed 2 µm. This can be compared with
a typical impact parameter resolution of a few tenths of microns. The average offline
tracking efficiency is 94%. In the 1 . |η| . 2 region, where no COT coverage is present,
seeding the silicon-only track with calorimeter information provides efficiencies over
70%, with minimal fake rates.

The silicon information improves the impact parameter resolution of tracks which,
depending on the number (and radial distance) of the silicon hits, may reach σd0 ≈
20 µm (not including the transverse beam size). This value, combined with the σT ≈
30 µm transverse beam size, is sufficiently small with respect to the typical transverse
decay-lengths of heavy flavors (a few hundred microns) to allow separation of their
decay-vertexes from production vertexes. The silicon tracker improves also the stereo
resolutions up to σθ ≈ 0.06◦, and σz0 ≈ 70 µm, while the transverse momentum and
the azimuthal resolutions remain approximately the same of COT-only tracks.
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3.4 OTHER DETECTORS
In this we briefly describe the sub-detectors not used in this analysis.

3.4.1 Time of Flight detector

The Time Of Flight detector (TOF) is a cylindrical array made of 216 scintillating bars
[75] and it is located between the external surface of the COT and the cryostat con-
taining the superconducting solenoid. Bars are 280 cm long and oriented along the
beam axis all around the inner cryostat surface at an average radial distance of 138 cm.
Both longitudinal sides of the bars collect the light pulse into photomultiplier and
measure accurately the timing of the two pulses. The time between the bunch cross-
ing and the scintillation signal in these bars defines the β of the charged particle
while the momentum is provided by the tracking system. Particle Identification (PID)
information is available through the combination of TOF information and tracking
measurements. The measured mean time resolution is now 110 ps. This guarantees
a separation between charged pions and kaons with pT . 1.6 GeV/c equivalent to
2σ, assuming Gaussian distributions. Unfortunately, in high luminosity conditions
(L & 5× 1031 cm−2 s−1) the occupancy of the single bars determines a degradation in
efficiency, which is about 60% per track.

3.4.2 Calorimeters

Outside the solenoid, scintillator-based calorimetry covers the region ηdet ≤ 3.6, and
is devoted to the measurement of the energy deposition of photons, electrons and
hadrons using the shower sampling technique.

The basic structure consists of alternating layers of passive absorber and plastic scin-
tillator. Neutral particles and charged particles with a transverse momentum greater
than about 350 MeV/c are likely to escape the solenoid’s magnetic field and pene-
trate into the CDFII calorimeters.These are finely segmented in solid angle around the
nominal collision point, and coarsely segmented radially outward from the collision
point (in-depth segmentation.) Angular segmentation is organized in projective tow-
ers. Each tower has a truncated-pyramidal architecture having the imaginary vertex
pointing to the nominal interaction point and the base is a rectangular cell in the
(ηdet, ϕ) space. Radial segmentation of each tower instead consists of two compart-
ments, the inner (closer to the beam) devoted to the measure of the electromagnetic
component of the shower, and the outer devoted to the measure of the hadronic frac-
tion of energy. These two compartments are read independently through separated
electronics channels.

A different fraction of energy release in the two compartments distinguishes pho-
tons and electrons from hadronic particles. CDFII calorimetry is divided in several
independent subsystems presented in the following subsections.

Central region: CEM, CHA, WHA

The radial extension of the calorimeters in the central region is 1.73 m < r < 3.5 m. The
Central ElectroMagnetic Calorimeter (CEM) [76, 77] is constructed as four azimuthal
arches (NE, NW, SE, SW) each of which subtends 180° and is divided into twelve
15° wedges. A wedge consists of 31 layers of 5 mm thick polystyrene scintillator in-
terleaved with 30 aluminum-clad lead 3.2 mm thick sheets, divided along ηdet into
ten towers (δηdet ≈ 0.11 per tower). To maintain a constant thickness in X0, com-
pensating the sin(θ) variation between towers, some lead layers are replaced with
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increasing amounts of acrylic as a function of ηdet
14. Light from each tower is col-

lected by sheets of acrylic wavelength shifter at both azimuthal tower boundaries and
guided to two phototubes per tower. The spatial resolution of the CEM is about 2 mm.
The outer two towers in one wedge (known as chimney towers) are missing to allow
solenoid access, for a resulting total number of 478 instrumented towers. At a radial
depth of 5.9X0, which is approximately the depth corresponding to the peak of shower
development, the CEntral Strip multi-wire proportional chambers (CES) measure the
transverse shower shape with ≈1.5 cm segmentation. A further set of multi-wire pro-
portional chambers, the Central Pre-Radiator (CPR) [78] is located in the gap between
the outer surface of the solenoid and the CEM. It monitors photon conversions started
before the first CEM layer. Phototube gains are calibrated once per store using an
automated system of Xenon or LED light flashers.

The hadronic compartment is the combination of two sub-systems: the Central
HAdronic (CHA) and Wall HAdronic (WHA) [79] calorimeters. Analogously as in the
CEM, in both systems four “C”-shaped arches contain 48 wedges. Each CHA wedge is
segmented into 9 ηdet towers matching in size and position the CEM towers. The WHA
wedge instead consists of 6 towers of which three are matching CHA towers. Radially a
CHA tower is constructed of 32 layers of 2.5 thick steel absorber alternating with 1.0 cm
thick acrylic scintillator. WHA towers structure is similar but there are only 15 layers
of 5.1 cm thick absorber.

The total thickness of the electromagnetic section corresponds to approximately
19X0 (1λint, where λint is the pion nuclear absorption length in units of g cm−2), for
a relative energy resolution σE/E = 13.5%/

√
E sin(θ)⊕ 2%.15 The total thickness of

the hadronic section corresponds to approximately 4.5λint, for an energy resolution of
σE/E = 50%/

√
E sin(θ)⊕ 3% for the central, and σE/E = 75%/

√
E sin(θ)⊕ 4% for

the end-wall.
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Figure 3.7: Schematic illustration of an azimuthal sector of the central electromagnetic calorime-
ter (a). Elevation view of one quarter of the plug calorimeter (b).

Forward region: PEM, PHA

The coverage of the 1.1 ≤ |ηdet| ≤ 3.6 region relies on the scintillating tile Plug
calorimeter [80, 81, 82] which is composed of two identical devices, one installed

14 The number of lead layers varies from 30 in the innermost (|ηdet| ≈ 0.06) tower to 20 in the outermost
(|ηdet| ≈ 1.0).

15 The first term is called the “stochastic” term and derives from the intrinsic fluctuations of the shower
sampling process and of the PMT photo-electron yield. The second term, added in quadrature, depends on
the calorimeter non-uniformities and on the uncertainty on the calibrations. All energies are in GeV.
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in ηdet > 0 region and the other in the ηdet < 0. Each of these two halves has
electromagnetic and hadronic compartments (see fig. 3.7(b)).

In each half, the absorber of the Plug ElectroMagnetic calorimeter (PEM) consists of
23 “doughnuts”- shaped lead plates, 2.77 m in outer diameter, which have a central
hole where the beam pipe is located. Each plate is made out of 4.5 mm thick calcium-
tin-lead sandwiched between two 0.5 mm thick stainless-steel sheets. Between the
absorber plates are inserted the 4 mm thick scintillator tiles organized azimuthally in
15° triangularly-shaped wedges. The signal of each tile is collected independently
by embedded wavelength-shifter fibers which guide it to the photomultipliers. A
preshower detector consist of a thicker (10 mm) amount of scintillator installed in the
first layer of PEM, while shower maximum sampling is performed at radial depth of
≈ 6X0 by two tilted layers of scintillator strips (pitch 5 mm).

Each half of the hadronic compartment, Plug HAdronic calorimeter (PHA), is az-
imuthally subdivided in 12 wedge-shaped modules each subtending 30°. In depth
each module consists of 23 layers of 5 cm thick iron absorber alternated with 6 mm
scintillator layers. Within each sampling layer the scintillator is arranged in tiles simi-
lar to those used in the PEM.

The total thickness of the electromagnetic section corresponds to approximately
21X0 (1λint), for an energy resolution of σE/E = 16%/

√
E sin(θ) ⊕ 1%. The total

thickness of the hadronic section corresponds to approximately 7λint, for an energy
resolution of σE/E = 74%/

√
E sin(θ)⊕ 4%.

3.4.3 Muon systems

CDFII is equipped with scintillating counters and drift tubes [83, 84] installed at various
radial distances from the beam to detect muons and shielded by the iron structure of
the inner detector. Scintillators serve as trigger and vetoes while the drift chambers
measure the ϕ coordinate using the absolute difference of drift electrons arrival time
between two cells, and the z coordinate by charge division. These systems cover the
whole range of pseudorapidity |ηdet| < 2 and are used only to identify the penetrating
muon reconstructing a small segment of their path (stub) sampled by the chambers.
The momentum measurement is performed by pointing back the stub to the corre-
sponding track in the COT. The shield is constituted by the iron of the calorimeter,
the return yoke and further steel walls intended to filter out the punch-through of
hadrons. Different muon sub-systems cover different geometrical regions. In the
|ηdet| < 0.6 region moving outward from the beam we encounter the inner Central
MUon detector (CMU) chambers at radial distance of 3.5 m. Approximately 5.4λint(π)
of material separate the luminous region from the CMU resulting in about 1/220 high
energy hadrons traversing the calorimeter and reaching the muon detectors.16 In or-
der to recognize and discard them, the Central Muon uPgrade (CMP) chambers lie in
the same ηdet region separated radially from the CMU by a 60 cm thick wall of steel
achieving a rejection of 95% of the fake muons.

The muon coverage in the 0.6 < |ηdet| < 1.0 volume is ensured by the Central Muon
eXtension (CMX) chambers, embedded in scintillator counters and placed at radius of
3.5 m. The Intermediate MUon detectors (IMU) are instead drift tubes covering the
pseudorapidity range of 1.0 < |ηdet| < 2.0. CDFII triggers on muons only emerging
at |ηdet| < 1.5 where the muon coverage is segmented with sufficient granularity to
survive high occupancies. The granularity of muon devices in the forward regions is
less fine and not adequate for triggering, but sufficient for offline muon assignment to
high pT tracks going through that region.

16 This defines also a pTthreshold for muons reaching the CMU which is approximately 1.4 GeV/c.
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3.4.4 Cherenkov Luminosity Counters

The luminosity (L ) is inferred from the average number of inelastic interactions per
bunch crossing (N) according to N× fb.c. = σpp̄−in.× ε×L , where the bunch-crossing
frequency ( fb.c.) is precisely known from the Tevatron RF, σpp̄−in. = 59.3± 2.3 mb is
the inelastic pp̄ cross-section resulting from the averaged CDF and E811 luminosity-
independent measurements at

√
s = 1.8 TeV [85], and extrapolated to

√
s = 1.96 TeV,

and ε is the efficiency for detecting an inelastic scattering.
The Cherenkov Luminosity Counters (CLC) are two separate modules, covering the

3.7 . |ηdet| . 4.7 range symmetrically in the forward and backward regions [86].
Each module consists of 48 thin, 110–180 cm long, conical, isobutane-filled Cherenkov
counters. They are arranged around the beam-pipe in three concentric layers and
point to the nominal interaction region. The base of each cone, 6–8 cm in diameter
and located at the furthest extremity from the interaction region, contains a conical
mirror that collects the light into a PMT, partially shielded from the solenoidal mag-
netic field. Isobutane guarantees high refraction index and good transparency for
ultraviolet photons. With a Cherenkov angle θC = 3.4°, the momentum thresholds for
light emission are 9.3 MeV/c for electrons and 2.6 GeV/c for charged pions. Prompt
charged particles from the pp̄ interaction are likely to traverse the full counter length,
thus generating large signals and allowing discrimination from the smaller signals of
angled particles due to the beam halo or to secondary interactions. In addition, the
signal amplitude distribution shows distinct peaks for different particle multiplicities
entering the counters. This allow a measurement of N with 4.4% relative uncertainty
in the luminosity range 1031 . L . 1032 cm−2 s−1. This accuracy, combined with the
4% relative uncertainty on the inelastic pp̄ cross-section, results in an instantaneous
luminosity measured with 5.9% relative uncertainty.

3.5 TRIGGER AND DATA ACQUISITION SYSTEM

From the rule of thumb 1 µb = 1 Hz at L = 1030 cm−2 s−1, we obtain that, at a typ-
ical Tevatron instantaneous luminosity L ≈ 4× 1032 cm−2 s−1, and with an inelastic
pp̄ cross-section of σpp̄−in. ≈ 60 mb, approximately 2.5× 107 inelastic collisions per
second occur, corresponding to one inelastic pp̄ interaction per bunch crossing on av-
erage.17 Since the read-out of the entire detector needs about 2 ms on average, after
the acquisition of one event, another approximately 5000 interactions would occur and
remain unrecorded. The percentage of events which are rejected because the trigger is
busy processing previous events is referred to as trigger deadtime.

On the other hand, the average size of the information associated to each event from
the O(106) total CDFII channels is 140 kB. Even in case of deadtime-less read-out of
the detector, in order to record all events, an approximate throughput and storage rate
of 350 GB s−1 would be needed, largely beyond the possibilities of currently available
technology.

Since the cross-sections of most interesting processes are 103–1012 times smaller
than the inelastic pp̄ cross-section, the above problems may be overcome with an on-
line preselection of the most interesting events. This is the task of the trigger system,
which evaluates the partial information provided by the detector and discards the
uninteresting events on-line.

The CDFII trigger is a three-level system that selectively reduces the acquisition rate,
with virtually no deadtime, i. e., keeping each event in the trigger memory a time
sufficient to allow for a trigger decision without inhibiting acquisition of the following

17 Abort gaps can be neglected for this estimate.
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events (see fig. 3.8). Each level receives the accepted event from the previous one and,
provided with detector information of increasing complexity and with more time for
processing, applies a logical “OR” of several set of programmable selection criteria to
make its decision.

Prior to any trigger level, the bunched structure of the beams is exploited to reject
cosmic-ray events by gating the front-end electronics of all sub-detectors in correspon-
dence of the bunch crossing. The front-end electronics of each sub-detector, packaged
in Versa Module Eurocard modules hosted in about 120 crates, has a 42-cells deep
pipeline synchronized with the Tevatron clock-cycle (i. e., 132 ns).

The Tevatron clock picks-up a timing marker from the synchrotron RF and forwards
this bunch-crossing signal to the trigger and to the front-end electronics. Since the
inter-bunch time is 396 ns, the pipeline collects data corresponding to a maximum of
42× 132/396 = 14 bunch crossings, automatically rejecting 2/3 of cycles correspond-
ing to the crossing of empty buckets. For each crossing, data enter the pipeline for
read-out and eventual use at Level-2, and a Level-1 decision on a preceding crossing
is made before the corresponding data reach the end of the pipeline. The Level-1 has
132 ns× 42 ' 5.5 µs to make its decision before the contents of the buffer is deleted.
On a Level-1 accept, the data from the Level-1 buffer are passed to the four-cell Level-
2 buffer integrated in the front-end electronics of each sub-detector, and the event is
queued for a Level-2 decision. While data in a Level-2 buffer are being processed, they
cannot be overwritten by incoming data corresponding to a subsequent Level-1 accept.
If a Level-1 accept occurs while all four Level-2 buffers are occupied, trigger deadtime
is incurred. The 5.5 µs× 4 ' 20 µs latency of the Level-2 decision is less than approx-
imately 80% of the average time between Level-1 accepts, to minimize deadtime. On
a Level-2 accept, the entire detector is read-out, thereby emptying a cell in all detector
buffers for the next event; the event is queued for read-out in Level-3 and for eventual
storage to permanent memory.

The following description emphasizes the aspects of the trigger specific to this anal-
ysis: particular detail is devoted to the devices dedicated to the identification of tracks
produced in decays displaced from the hard pp̄ interaction vertex. These tracks popu-
late events enriched in long-lived heavy-flavor decays, including the Bs → φφ decays
we wish to reconstruct.

3.5.1 Level-1

At Level-1, a synchronous system of custom-designed hardware processes a simplified
subset of data in three parallel streams to reconstruct coarse information from the
calorimeters (total energy and presence of single towers over threshold), the COT (two-
dimensional tracks in the transverse plane), and the muon system (muon stubs in the
CMU, CMX, and CMP chambers). A decision stage combines the information from these
low-resolution physics objects, called “primitives”, into more sophisticated objects,
e. g., track primitives are matched with muon stubs, or tower primitives, to form
muon, electron, or jet objects, which then undergo some basic selections.18

Drift chamber track-processor

The eXtremely Fast Tracker (XFT) is a custom processor that identifies two-dimensional
tracks in the (r, ϕ) view of the COT (transverse plane) in time with the Level-1 decision.
It uses pattern matching to first identify short segments of tracks and then to link them
into full-length tracks [87]. After classifying the hits of the four axial COT super-layers

18 A particle jet is a flow of observable secondary particles produced in a spatially collimated form, as a
consequence of the hadronization of partons produced in the hard collision.
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Figure 3.8: Functional block diagram of the CDFII trigger and data acquisition system.

in “prompt” (0–66 ns) or “delayed” hits (67–220 ns), depending upon the observed
drift-time within the cell, track segments are reconstructed in each axial super-layer.
A pattern-matching algorithm searches for coincidences between the observed combi-
nations of hits in each super-layer — a minimum of 11 (out of 12) hits is required —
and a set of predetermined patterns. If a coincidence between segments crossing four
super-layers is found, two-dimensional XFT-tracks are reconstructed by linking the seg-
ments. The segments are compared with a set of about 2400 predetermined patterns
corresponding to all tracks with pT & 1.5 GeV/c originating from the beam line. The
comparison proceeds in parallel in each of the 288 azimuthal 1.25°-sectors in which
XFT logically divides the chamber. If no track is found using all four super-layers, then
the best track found in the innermost three super-layers is output. The track-finding
efficiency and the fake-rate with respect to the off-line tracks depend on the instanta-
neous luminosity, and were measured to be ε ≈ 96%, and 3%, respectively, for tracks
with pT & 1.5 GeV/c at L ' 1031 cm−2 s−1. The observed momentum resolution is
σpT /p2

T ≈ 0.017 (GeV/c)−1, and the azimuthal resolution is σϕ6 ≈ 0.3°, where ϕ6 is the
azimuthal angle of the track measured at the sixth COT super-layer, located at 106 cm
radius from the beam line.

3.5.2 Level-2

At Level-2, an asynchronous system of custom-designed hardware processes the time-
ordered events accepted by the Level-1. Additional information from the shower-
maximum strip chambers in the central calorimeter and the axial hits in the SVXII
is combined with Level-1 primitives to produce Level-2 primitives. A crude energy-
clustering is done in the calorimeters by merging the energies in adjacent towers to the
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energy of a seed tower above threshold. Level-1 track primitives matched with consis-
tent shower-maximum clusters provide refined electron candidates whose azimuthal
position is known with 2° accuracy. Information from the (r, ϕ) sides of the SVXII is
combined with Level-1 tracks primitives to form two-dimensional tracks with resolu-
tion similar to the off-line one. Finally, an array of programmable processors makes
the trigger decision, while the Level-2 objects relative to the following event accepted
at Level-1 are already being reconstructed.

Silicon Vertex Trigger

Reconstructing decay vertexes on-line is technically challenging and requires con-
strained geometrical fitting of (previously reconstructed) high-resolution tracks at
high event-rates. The Silicon Vertex Trigger (SVT) computes instead the impact pa-
rameters of the charged particles, which is faster than fully reconstructing their decay
vertexes, but still provides information on the lifetime of the decaying particle [88, 89].
The full spatial resolution of silicon detectors is needed to discriminate O(100 µm) im-
pact parameters from the O(10 µm) beam spot. Thus the SVT requires the coincidence
of hits in four axial SVXII layers with a XFT track. Since the silicon signals are digitized
only after the Level-1 accept decision, the SVT is used at Level-2, whose average la-
tency is around 20 µs. Within this time, the SVT reconstructs two-dimensional tracks
in the bending plane of the spectrometer with off-line resolution, a task that typically
needs thousands of milliseconds to be accomplished by the off-line CPUs. SVT speed
is largely due to a highly-parallelized structure and to the implementation of novel
techniques both in pattern recognition and in track fitting.

The SVT receives in input the XFT tracks and the digitized pulse-heights from the
SVXII layers. It first finds charge clusters in silicon, by converting a list of channel num-
bers and pulse heights into charge-weighed hit centroids. At this point the pattern
recognition is separated in two stages. First, a low-resolution stage is implemented
by grouping together adjacent detector channels into “super-bins”. Their width in
the azimuthal direction is programmable, with 250–700 µm typical values. A set con-
taining about 95% of all super-bin combinations compatible with the trajectory of a
charged particle with pT & 2 GeV/c originated from the beam line (“patterns”) is calcu-
lated in advance from simulation and stored in a special design memories (Associative
Memories [88, 89]) . For each azimuthal sector, the 32 768 most probable patterns are
stored. On-line, an algorithm detects low-resolution candidate tracks called “roads”
by matching super-bins containing hits with the stored patterns. A road is a combi-
nation four excited super-bins in different SVXII layers plus the XFT track parameters,
which are logically treated as additional hits (see fig. 3.9(a)). In the Associative Mem-
ories system, maximum parallelism is exploited to speed-up the processing, using a
working principle similar to the one of the bingo game: while the silicon hits are be-
ing read out, each “player” marks the matching super-bins on his “score-card”; each
“bingo” corresponds to a road and is retained for further processing. A maximum of
64 roads per event, each one having a maximum of 8 hits per super-bin, is output.
At this stage, pattern recognition is done during detector read-out with no additional
processing time. The resolution is coarse enough to reduce the fraction of accidental
combinations, but fine enough to separate most tracks. Once a track is confined to a
road, most of the pattern recognition is done, leaving the remaining ambiguities, as
multiple hits in the same super-bin, to the stage of track fitting.

In principle, no exact linear relation exists between the transverse parameters C,
ϕ0, and d0 of a track in a solenoidal field, and the coordinates at which the track
intersects a radial set of flat detector planes. But for pT & 2 GeV/c, |d0| . 1 mm
and |∆ϕ0| . 15°, a linear fit biases the reconstructed d0 by at most a few percent.
The track-fitting process exploits this feature by expanding the non-linear constraints
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Figure 3.9: Schematic illustration of combinations of super-bins (in the transverse plane) corre-
sponding to the passage of charged particles in four radial silicon layers (a). Impact
parameter distribution as measured by the SVT (b).

and the parameters of the real track to first order with respect to the reference track
associated to each road. A linear expansion in the hit positions of both the track
parameters and the χ2 is used. The fit process is thus reduced to computing a few
scalar products, which is done within 250 ns per track. The needed constants, which
depend on detector geometry and alignments, are evaluated in advance and stored in
an internal memory. The output of the SVT are the reconstructed parameters of the
two-dimensional track in the transverse plane: ϕ0, pT, and the impact parameter, d0.
The list of parameters for all found tracks is sent to Level-2 for trigger decision.

The SVT measures the impact parameter with a r.m.s. width σd0,SVT ≈ 35 µm, with an
average latency of 24 µs, 9 µs of which being spent waiting for the start of the read-out
of silicon data. This resolution is comparable with the off-line one for tracks not using
L00 hits, and yields a distribution of impact parameter of prompt tracks with respect
to the z axis with σd0 ≈ 47 µm (see fig. 3.9(b)) when combined with the transverse
beam-spot size.19 The SVT efficiency is higher than 85%. This efficiency is defined
as the ratio between the number of tracks reconstructed by SVT and all XFT-matched
off-line silicon tracks that are of physics analysis quality.

The impact parameter is a quantity measured with respect to the beam. If the ac-
tual beam position in the transverse plane is shifted by an amount dbeam with respect
to the origin of the SVT reference frame, all prompt tracks appear to SVT as having
O(dbeam) impact parameters. This is relevant since the beam is usually displaced
from its nominal (0, 0, z) position. Between Tevatron stores, O(500 µm) displacements
in the transverse plane and O(100 µrad) slopes with respect to the detector axis may
occur. In addition, the beam can drift by O(10 µm) in the transverse plane even during
a single store. However, a simple geometric relation prescribes that the impact param-
eter of a track (d0), calculated with respect to a point displaced from its production
vertex, is a sinusoidal function of its azimuthal coordinate (ϕ0):

d0 = yv cos(ϕ0)− xv sin(ϕ0), (3.9)

where ~xv = (xv, yv) are the coordinates of the production vertex.
Using eq. (3.9), the SVT measures the actual coordinates of the beam position with

respect to the detector system and subtracts them from the measured impact parame-
ters, in order to provide physical impact parameters. Using about 105 tracks every 30

19 Prompt tracks are those associated to particles produced in the hard pp̄ interaction.
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seconds, six transverse beam positions (one for each SVXII semi-barrel) are determined
on-line. The six samplings (one for each SVXII barrel) along the ẑ direction provide a
measurement of the slope of the beam with respect to the nominal z-axis.

For the proper measurement of impact parameters, the beam slope is more harmful
than the transverse drift, because it breaks the cylindrical symmetry of the system.
The SVT does not have access to the z0 coordinate of tracks. For each track, only the
longitudinal coordinate of the SVXII half-barrel that detected the track is known. But
half-barrels are too long (16 cm) to allow for a reliable correction of the beam slope.
When significant slopes are observed, the Tevatron beam division is alerted, and they
apply a corrective action on the magnets.

Beam mis-alignments affect also the SVT efficiency. Owing to its modular structure
and to the limited size of the pattern bank, the SVT can not identify charged particles
that cross adjacent SVXII wedges. In normal conditions, these are only a small fraction
of pT > 2 GeV/c particles, typically due to the bending trajectory and of the finite
beam-spot size. However, in presence of beam offset from the nominal position, this
fraction significantly increases, thus inducing SVT inefficiency.

3.5.3 Level-3

The digitized output relative to the Level-2-accepted event reaches Level-3 via optical
fibers and it is fragmented in all sub-detectors. It is collected by a custom hardware
switch that arranges it in the proper order and transfers it to commercial computers,
running linux and organized in a modular and parallelized structure of 16 subsys-
tems [90]. The ordered fragments are assembled in the event record, a block of data
that univocally corresponds to a bunch crossing and is ready for the analysis of the
Level-3 software. The event reconstruction benefits from full detector information
and improved resolution with respect to the preceding trigger levels, including three-
dimensional track reconstruction, tight matching between tracks and calorimeter or
muon information, and calibration information. If an event satisfies the Level-3 re-
quirements, the corresponding event record is transferred to mass storage at a maxi-
mum rate of 20 MB s−1. A fraction of the output is monitored in real time to search
for detector malfunctions, to derive calibrations constants and to graphically display
events. The Level-3 decision is made after the full reconstruction of the event is com-
pleted and the integrity of its data is checked, a process that takes a few milliseconds.

3.6 OPERATIONS AND DATA QUALITY
The proper operation of the detector and the quality of the on-line data-taking is
continuously ensured by “crews” of five collaborators plus one technician which al-
ternate on duty with eight-hours shifts, plus several sub-detector experts available on
request. The on-line crew, in communication with the Tevatron crew, ensures smooth
data-acquisition, monitors the crucial parameters of all sub-detectors, and intervenes
in case of malfunctions. The average data-taking efficiency is 85%. The inefficiency
is approximately equally shared in a 5% arising at the beginning of the store, when
the detector is not powered while waiting for stable beam conditions, a 5% due to
trigger deadtime, and a 5% due to unexpected detector or Data AcQuisition (DAQ)
problems. When no beam is present, cosmic-rays runs are taken, or calibrations of the
sub-detector are done. During the Tevatron shut-down periods, the crew coordinates
and helps the work of experts that directly access the detector.

Each time that at least one of the trigger paths fires, an “event” is labeled with a
progressive number. Events are grouped into runs, i. e., periods of continuous data-
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taking in constant configurations of trigger table, set of active sub-detectors and so
forth.20 Several parameters of the operations (e. g., beam-line position and slope, set
of calibrations, etc.) are stored in the database on a run-averaged format.

All data manipulations occurring some time after the data are written to permanent
memories are referred to as off-line processes, as opposed to the on-line operations that
take place in real time, during the data-taking. The most important off-line operation
is the processing with a centralized production analysis that generates collections of
high-level physics objects suitable for analysis, such as tracks, vertexes, muons, elec-
trons, jets, etc. from low-level information such as hits in the tracking sub-detectors,
muon stubs, fired calorimeter towers, etc. [91]. During the production, more precise in-
formation about the detector conditions (e. g., calibrations, beam-line positions, align-
ment constants, masks of malfunctioning detector-channels, etc.) and more sophisti-
cated algorithms are used than those ones available at the Level-3 of the trigger. The
production may be repeated when improved detector information or reconstruction
algorithms become available: this typically occurs once or twice every year. The re-
processing uses large farms of commercial processors that reconstruct approximately
107 events per day employing approximately 2–5 s per event with 1 GHz CPU.21 The
added information increases the event size by typically 20% after production.

To ensure homogeneous data-taking conditions, each run undergoes a quality in-
spection. On-line shift operators, off-line production operators, and sub-detector
experts certify in what fraction of data the running conditions for all relevant sub-
detectors are compliant to physics-quality standards.

When detectable problems of the detector occur, the data-taking is quickly stopped,
so very short runs are likely to contain corrupted data. Runs with fewer than 108 live
Tevatron clock-cycles, or fewer than 104 (103) Level-1 (Level-2) accepts, or containing
data corresponding to an integrated luminosity

∫
L dt < 1 nb−1 are excluded from

physics analysis. On-line shift operators further exclude the runs in which temporary
or test trigger tables were used.22 Runs whose data underwent problems or software
crashes during the production are excluded off-line.

Accurate integrated luminosity measurements are ensured in physics-quality data
by requiring the CLC to be operative during the data-taking and by verifying that a
set of luminosity and beam-monitor probe quantities are within the expected ranges.
Shift operators ensure that Level-1 and Level-2 trigger operate correctly and that the
rate of SVXII data corruption errors is smaller than 1%.23 SVT experts verify that the
on-line fit and subtraction of the beam position is done correctly and that the SVT
occupancy is within the expected limits. In addition, higher level quantities, such as
event yields of J/ψ → µ+µ−, D0 → K−π+, and D?+ → D0π+ decays are monitored
on-line and are required to be within the expected ranges. For analyses that use COT
information, the minimum integrated luminosity required is 10 nb−1 and the fraction
of noisy COT channels is required to be smaller than 1%.

20 The data acquisition might need to be interrupted and recovered for several motivations, including the need
for enabling or disabling a sub-detector, the need for a change in the trigger table, a problem in the DAQ
chain and so forth.

21 The event size, and the processing-time increase roughly linearly with the instantaneous luminosity.
22 It is sometimes necessary to test new configurations of the trigger selections in a real data-taking condition

to monitor trigger rates, performance and so on.
23 The read-out of the silicon detector and the proper integration of the information in the on-line infras-

tructure is a complex operation which, occasionally, leads to a certain fraction of data to be improperly
processed.
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3.7 MONTE CARLO SIMULATION OF DETECTOR AND TRIG-
GER

Estimation of the fraction of events of a certain type that escape the detector accep-
tance, or detailed studies of the expected response of the detector to the passage of
particles is a common need in many analyses. Usually, complex detector geometries
and the numerous effects that need to be accounted for in predicting their response
make it the analytical derivation of the relevant distributions impractical or impossible.
MC techniques are an useful and widely-used tool to solve this problem. We provide
here a short overview of the standard CDFII simulation. Further details can be found
in [92].

In the standard CDFII simulation, the detector geometry and material are modelled
using the version 3 of the geant package [93] tuned to test-beam and collision data.
geant receives in input the positions, the four-momenta, and the identities of all
particles produced by the simulated collisions that have long enough lifetimes to
exit the beam pipe. It simulates their paths in the detector, modelling their inter-
actions (bremsstrahlung, multiple scattering, nuclear interactions, photon conversions,
etc.) and the consequent generation of signals on a single channel basis. Specific
packages substitute geant for some sub-detectors: the calorimeter response is simu-
lated with gflash, a faster parametric shower-simulator [94] tuned for single-particle
response and shower-shape using test-beam data (8–230 GeV electrons and charged
pions) and collision data (0.5–40 GeV/c single isolated tracks); the drift-time within
the COT is simulated using the garfield standard package [95] further tuned on data;
the charge-deposition model in the silicon uses a parametric model, tuned on data,
which accounts for restricted Landau distributions, production of δ-rays, capacitive
charge-sharing between neighboring strips, and noise [96].24 Furthermore, the actual
trigger logic is simulated. The output of the simulated data mimics the structure of
collision data, allowing their analysis with the same reconstruction programs used for
collision data.

The detector and trigger configuration undergo variations during data-taking. Mi-
nor variations may occur between runs, while larger variations occur, for instance,
after major hardware improvements, or Tevatron shut-down periods. For a more de-
tailed simulation of the actual experimental conditions, the simulation has been inter-
faced with the on-line database that reports, on a run-by-run basis, all known changes
in configuration (position and slope of the beam line, relative mis-alignments between
sub-detectors, trigger-table used, set of SVT parameters) and local or temporary ineffi-
ciencies in the silicon tracker (active coverage, noisy channels, etc.). This allows us to
simulate the detailed configuration of any set of real runs and to use it, after proper lu-
minosity reweighing, for modeling the realistic detector response in any given subset
of data.

24 The δ-rays are knock-on electrons emitted from atoms when the passage of charged particles through matter
results in transmitted energies of more than a few keV in a single collision.
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The result of any measurement is based on the amount and quality of the data
collected: this chapter describes the samples of data used to perform the analyses

reported. These data was recorded by the CDFII detector from a period starting from
March 2001 till April 2008. The sample used corresponds to an integrated luminosity
of 2.9 fb−1.

In order to get the desired information, the events of interest (referred to as “signal”)
need to be extracted from the multitude of other uninteresting events (“background”).
Since the signal selection was performed in the Bs → φφ branching ratio analysis [29],
the purpose here is to briefly summarize the two main stages of this process. The
first step is the on-line trigger selection, which collects events most likely containing
B decays. The off-line selection is the second step: it is aimed at obtaining the data
sample such that the statistical uncertainties on the quantities one wishes to measure
are minimized.

4.1 USEFUL VARIABLES
Before discussing the details of trigger and off-line selection, it is useful to define
some relevant quantities used in the analysis. All quantities are calculated in the
laboratory frame and are illustrated in fig. 4.1. All of them can be defined for each
particles of the two decays of interest (Bs → φφ→ [K+K−][K+K−] and Bs → J/ψφ→
[K+K−][µ+µ−]). They are:

TRANSVERSE MOMENTUM (~pT): the projection of the momentum vector onto the trans-
verse plane.1 Another useful quantity used in the selection is the scalar sum of
the transverse momenta of the two decay particles, ∑ pT = p(1)

T + p(2)
T .

1 The plane perpendicular to the proton beam direction, in which the profile of the interaction region is
approximately Gaussian with width σ ' 30 µm.
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Figure 4.1: Illustration of a pp̄ event containing a Bs → φφ→ [K+K−][K+K−] projected into the
transverse plane. Ellipses indicate vertexes, arrows indicate the transverse momenta
(i. e., the direction) of charged particles. Nothing is to scale.

PRIMARY VERTEX: the space-point of the reconstructed primary pp̄ interaction, where
a b-quark pair, once produced, quickly hadronizes to a b-hadron pair. An event
may contain multiple primary vertexes due to multiple hard pp̄ collisions occur-
ring in the same bunch-crossing (“pile-up” event2).

SECONDARY VERTEX: the space-point in which the decay of a long-lived particle oc-
curs. Its displacement with respect to the primary vertex in the transverse plane
are indicated by the vector

~xv = ~βTγct = (~pT/m)ct, (4.1)

for a particle of mass m and momentum p that decays at a time t after its produc-
tion. Multiple secondary vertexes may be present in the same event. They can be
due to the intersection of tracks from various sources, including the decay of the
other heavy-flavor produced in the event, the decay of additional heavy-flavors
produced in a pile-up event, fake (i. e., due to accidental combinations of noise
hits) or mis-measured (i. e., partially contaminated by noise hits) tracks.

TRANSVERSE DECAY-LENGTH (LT or Lxy): the displacement of the secondary vertex
with respect to the primary one, projected onto the transverse momentum vector
of the decaying particle:

Lxy =
~pT ·~xv

pT
(4.2)

2 When a beam of protons crosses a beam of antiprotons, multiple hard interactions may occur between
different proton-antiproton pairs. Each hard interaction contribute with an associated fragmentation process
and underlying event.
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IMPACT PARAMETER (d0): the component in the transverse plane of the distance of
closest approach between a track and the primary vertex. This is a signed quan-
tity defined as

d0 =
ẑ · (~pT ×~xv)

pT
. (4.3)

The impact parameter is typically different from zero for the decay products of
long-lived particles, while it is comparable with the convolution of its resolution
and the transverse size of the beam for particles produced in the proximity of
the primary vertex (prompt background).

AZIMUTHAL OPENING ANGLE (∆ϕ): the opening angle between the two outgoing de-
cay particles projected on the transverse plane.

PSEUDORAPIDITY OPENING “ANGLE” (∆η): the difference of the pseudorapidities of
the two outgoing decay particles.

Some variables distributions of the particles of the decays under study are shown
throughout this chapter.

4.2 ON-LINE SELECTION: THE TWO TRACK TRIGGER
Different analyses require different selection criteria. A trigger system is used to iden-
tify interesting events for a specific analysis, within the large rate of pp̄ collisions.
Over the course of a Tevatron store the luminosity decreases. In order to fully use the
available bandwidth, the trigger criteria have to vary accordingly to the luminosity.
Higher trigger rates at high luminosity arise from both an increase in the real physics
rate as well as an increase in fake triggers due to multiple interactions. As the lumi-
nosity falls, the trigger bandwidth becomes under-utilized and lower purity triggers
are thus enabled through a system that is used to automatically increase their prescale
level and to prioritize the various triggers paths.

For both Bs → φφ and Bs → J/ψφ decays we used the Two Track Trigger (TTT)
selection. With TTT it is intended a peculiar trigger system made of a collection of
trigger paths, called “scenarios”, which aim at identifying heavy flavor decays based
upon kinematics, topology and decay time information. They are all characterized by
the presence of at least a pair of displaced tracks to reconstruct a vertex.

B mesons have a relatively long lifetime because their decays are governed by weak
interactions. In fact they fly on average 0.5 mm before decaying, which is a larger
distance than the intrinsic beam size. Thus their decay products are characterized by
a non-zero impact parameter. This turns out to be very convenient for their identifi-
cation. The TTT paths use the precise information on the track hits from the silicon
vertex detector with the SVT system that looks for displaced tracks at on-line level. The
TTT is thus able to trigger on long-lived particles, collecting data samples enriched in
events containing bottom and charm hadrons: it is extremely powerful in rejecting
light flavor (u, d, s) backgrounds.

The main TTT characteristics are:

LEVEL-1 selection: a pair of XFT tracks with a lower cut on the pT of the tracks, on
the ∑ pT of the tracks, and an upper cut on ∆ϕ6, the opening angle between the
two tracks, as measured at COT super-layer 6.

LEVEL-2 selection: the XFT tracks are matched with the SVXII by SVT, which computes
track parameters: they must satisfy the criteria from Level-1 in addition to cuts
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on d0 and Lxy. These last two cuts are very efficient at rejecting the light quarks
background.

LEVEL-3 selection: approximately same cuts of Level-2 using the fit based on the full
detector information COT+SVXII. At this stage three dimensional fits are available
and it is possible to apply a cut on the distance between the closest approach to
the z axis of the tracks, ∆z0.
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Our analysis uses the data sample collected with three TTT trigger paths:

• B_CHARM_HIGHPT,

• B_CHARM_L1

• B_CHARM_LOWPT.

Their selections are reported in tab. 5. The B_CHARM_HIGHPT trigger provides a sample
with higher purity (defined as signal-to-background ratio) and lower trigger rate com-
pared to the B_CHARM_L1 and B_CHARM_LOWPT. At moderate instantaneous luminosity,
bandwidth becomes available and B_CHARM_L1 is enabled with a dynamic prescale.
Finally B_CHARM_LOWPT is active at low luminosity.

Level-1 Level-2 Level-3

XFT tracks SVT tracks COT+SVXII tracks

B_CHARM_HIGHPT opposite charge opposite charge opposite charge
pT > 2.5 GeV/c pT > 2.5 GeV/c pT > 2.5 GeV/c

∆ϕ6 < 135° 2° < ∆ϕ0 < 90° 2° < ∆ϕ0 < 90°
∑ pT > 6.5 GeV/c ∑ pT > 6.5 GeV/c ∑ pT > 6.5 GeV/c

120 µm < d0 < 1000 µm 80 µm < d0 < 1000 µm
Lxy > 200 µm Lxy > 200 µm

|∆z0| < 5 cm

B_CHARM_L1 opposite charge opposite charge opposite charge
pT > 2.0 GeV/c pT > 2.0 GeV/c pT > 2.0 GeV/c

∆ϕ6 < 135° 2° < ∆ϕ0 < 90° 2° < ∆ϕ0 < 90°
∑ pT > 5.5 GeV/c ∑ pT > 5.5 GeV/c ∑ pT > 5.5 GeV/c

120 µm < d0 < 1000 µm 120 µm < d0 < 1000 µm
Lxy > 200 µm Lxy > 200 µm

|∆z0| < 5 cm

B_CHARM_LOWPT pT > 2.0 GeV/c pT > 2.0 GeV/c pT > 2.0 GeV/c
∆ϕ6 < 90° ∆ϕ0 < 90° 2° < ∆ϕ0 < 90°

120 µm < d0 < 1000 µm 120 µm < d0 < 1000 µm
Lxy > 200 µm Lxy > 200 µm

|∆z0| < 5 cm

Table 5: B_CHARM_HIGHPT, B_CHARM_L1 and B_CHARM_LOWPT trigger paths selections.

In this work, we refer to exclusive trigger configurations. These are defined as
follow:

• HIGHPT: only B_CHARM_HIGHPT;

• ScA (Scenario A) : events selected by B_CHARM_L1 and not by B_CHARM_HIGHPT;

• LOWPT: events selected by B_CHARM_LOWPT but not by both B_CHARM_L1
and B_CHARM_HIGHPT.

Their percentages on the total sample are listed in tab. 6 for both decays. We request
the matching between at least two reconstructed tracks and the SVT tracks. The confir-
mation of the B_CHARM_LOWPT trigger selections is imposed.

4.3 OFF-LINE SELECTION
In fig. 4.2 the distribution of the K+K−K+K− invariant mass after only trigger selection
is shown: no evident mass signal is recognizable in the B mass window. Indeed,
the on-line selection is not sufficient: a further selection is needed to minimize the
background fraction and extract the signal from the data stored. This is performed by
the off-line selection.
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Trigger Paths Fractions
Bs → φφ Bs → J/ψφ

HIGHPT 0.39± 0.05 0.42± 0.02
ScA 0.38± 0.05 0.33± 0.02
LOWPT 0.22± 0.04 0.26± 0.02

Table 6: Trigger paths fractions (exclusive selection).
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Figure 4.2: Four kaons invariant mass after on-line selections. The two red dotted line represent
the region around the Bs mass.

4.3.1 Data Format

We use the BStntuple framework [97], which is an extension of the Stntuple [98]
framework developed in CDF to minimize the computation time and storage space.
The BStntuple contains structures that hold the reconstructed candidates informa-
tions, the stable and decaying objects. The format allows several potential decay can-
didates in the same event to share links to common data blocks.

In order to obtain a smaller size BStntuple, a skimming procedure was performed
on the Bs → φφ block mainly aimed to reduce the background by applying only a
loose selection criteria on the B candidates. We choose to cut on variables which have
very similar behaviour for Bs → φφ and Bs → J/ψφ decays introducing little or no
inefficiency for Bs → φφ; they are:

• LB
xy > 200 µm for the transverse decay-length of the reconstructed B;

• pB
T > 5.0 GeV/c for its transverse momentum.

For the Bs → J/ψφ reconstruction, in the BStntuple the constraint that the µ+µ−

invariant mass is equal to the Jψφ mass value reported in the Particle Data Group (PDG)
is required.

4.3.2 Selection Optimization

In the off-line selection, one has to choose the relevant variables which are able to
discriminate between the signal and the background. Then, a cut on each of this
variables must be applied. In the past [28] the cut selection was decided with the
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aim to maximize the chance of either observing for the first time the Bs → φφ or
setting a limit. In the present circumstances we are instead interested in minimizing
the statistical uncertainty in our measurements.

For any given sample, an optimization of the selection is a procedure that selects a
sub-sample that provides the smallest (expected) statistical uncertainty on the quantity
one wishes to measure. In principle, to define a correct optimization, one should try
all possible configurations of selection requirements, repeat the measurement in each
of the resulting sub-samples, and then apply the optimal selection. In practice, the
number of the possible selections is often so large that repeating the full measurement
many times may become difficult. However, a fast and reliable method to evaluate
the resolution expected from a measurement is provided by the Minimum Variance
Bound (MVB) [99, 100]. Given the data, the MVB provides an upper bound to the
precision that can be achieved on a parameter, whatever the estimation procedure
used.

In the simplified case of a counting experiment to determine the number S of signal
events within a total number of S + B events (where B is the number of background
events), the expected statistical resolution σ on the signal yield, estimated with the
MVB, obeys the following expression:

1
σ

∝
S√

S + B
(4.4)

The optimal selection would be one that maximizes eq. (4.4): this expression, which is
rigorously valid for a counting experiment, is still sufficiently accurate in the case of a
likelihood fit of a continuous distribution.

This is what was performed in the branching ratio analysis for the selection opti-
mization, both of Bs → φφ and Bs → J/ψφ decays. In this particular case only kine-
matic variables are used, since these where the most reliable ones. These variables
are:

• for the Bs → φφ decay:

– LB
xy: transverse decay length of the reconstructed B;

– dB
0 : impact parameter of the reconstructed B;

– dφ
0 max: impact parameter of the φ with higher momentum;

– pmin
T : transverse momentum of the softer kaon;

– χ2
xy: χ2 of the fit used in the reconstruction of the secondary vertex;

• for the Bs → J/ψφ decay:

– LB
xy: transverse decay length of the reconstructed B;

– dB
0 : impact parameter of the reconstructed B;

– pφ
Tmin: transverse momentum of the φ;

– pJ/ψ
T min: transverse momentum of the J/ψ;

– χ2
xy: χ2 of the fit used in the reconstruction of the secondary vertex;

The distributions of these variables are shown in fig. 4.3. Since we are using the
same data sample selected of that measurement, we address to [29] for optimization’s
details and we report here only the results. The optimized cuts for the two signals are
summarized in tab. 7.
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Variables Requirements
Bs → φφ Bs → J/ψφ

LB
xy [µm] > 330 > 290

pK
T min [GeV/c] > 0.7

pφ
Tmin [GeV/c] > 1.4

χ2
xy < 17 < 15

dB
0 [µm] < 65 < 80

dφ
0 max [µm] > 85

pJ/ψ
T min [GeV/c] > 2.0

Table 7: Optimized selections found in [29] following MVB.
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Figure 4.3: Variables used in the Bs → φφ selection: LB
xy (a), dB

0 (b), χ2
xy (c), pK

T min (d) and dφ
0 max

(e). The black points are side-bands subtracted data (see Sect. 4.5); the red line is the
reweighted MC; the blue histogram is the sidebands data distribution.
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4.4 THE FINAL DATA SAMPLE
Applying the optimized cuts the invariant mass distributions, mK+K−K+K− for the
Bs → φφ and mK+K−µ+µ− for the Bs → J/ψφ, are obtained (fig. 4.4 and fig. 4.5).
These provides us with a first insight on the background and signal composition. In
these distributions at least three components can be identified:

THE SIGNAL: from the branching ratio analysis, we have the following number of sig-
nal events:

Bs → φφ Bs → J/ψφ

Yield 295± 20 1766± 48

These yields are extract from a binned fit [29]: the fit function used is the sum
of two gaussians (having the same mean value but different resolutions) and a
decreasing exponential. They are described in the next chapter.

COMBINATORICS BACKGROUND: these are random combinations of charged tracks ac-
cidentally satisfying the selection requirements. They produce a continuous in-
variant Bs mass distribution and we expect a smooth slowing decreasing distri-
bution in the signal region. It is the more important source of background in our
analysis.

PHYSICS BACKGROUND: it is due to partially reconstructed heavy flavor decays or to
an incorrect mass assignment to the tracks of other B meson decays (they are
often referred to as reflections). We expect a distribution with a peak under the
signal:

• for the Bs → φφ: the decays that could produce reflections in the Bs mass
window are: Bd → φK? → [K+K−][K+(−)π−(+)] and Bs → K̄?K? →
[K+(−)π−(+)][K+(−)π−(+)]; these reflections occur when the K? is incor-
rectly reconstructed as a φ. The estimated number of reflection events is
[29]:

Bs → K̄?K? Bs → φK?

Events 0 8± 3
Fraction respect

to signal events [%] 10−6 3± 1

Since its tiny percentage respect to the signal events, the Bd → K̄?K? reflec-
tion is neglected.

• for the Bs → J/ψφ: the more frequent decay is the Bd → J/ψK? →
[µ+µ−][K+(−)π−(+)] decay; it occurs when in the reconstruction the daugh-
ter tracks of the K? are assumed to be two kaons and an incorrect invariant
mass is computed. The estimated number of reflection events is [29]:

Bd → J/ψK?

Events 70± 20
Fraction respect

to signal events [%] 4± 1
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Figure 4.4: Background and signal composition in the Bs → φφ decay. The blue points represent
data after the optimized selection; the red line is the total fit distribution; in black
the reflection component; in purple the combinatorial background.

Figure 4.5: Background and signal composition in the Bs → J/ψφ decay. The blue points repre-
sent the data satisfying the off-line selection; the red line is the total fit distribution;
in black the reflection component; in purple the combinatorial background.
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4.5 MONTE CARLO DATA
In this analysis, simulation of B production and decay processes and of the subsequent
detector response is used for several reasons:

• to model physics background;

• to model the acceptance of the combined detector and trigger system in the space
of helicity (transversity) angular variables;

• to get distribution of B decay time;

• to test the fitter framework.

An analytical treatment of all the interactions involved from the pp̄ collisions to
B production, decay, and the interactions with matter in the detector is simply im-
possible. Such a treatment in any case would be unnecessarily detailed for the tasks
described above. The alternative method is to use numerical simulation to carry out
these tasks. The algorithms used all involve some type of random sampling to simu-
late processes, and are collectively called Monte Carlo (MC) simulation. The simulation
is divided into several steps, which reproduce in order the main physical processes
and processing steps involved in collecting data from real pp̄ interactions.

The first step in simulation is the treatment of the pp̄ hard scattering, and the outgo-
ing quark and gluon collision products, followed by simulation of the fragmentation
and hadronization processes which yield hadrons and associated jets. We used the
bgenerator package [101]: it concentrates on producing only one B meson per event,
which yields a great advantage in computational speed. On the other hand, by design
it does not mimic the full collision environment, as the pythia package could perform.
For our purposes, bgenerator is sufficient since we wish to model single B decay
samples.

The second step is the simulation of the full decay chain of the B mesons under
study. For this task, we use the evtgen package [102]. evtgen is specialized for heavy
flavor decays and accounts correctly for quantum mechanical interference effects. In
order to model the detector angular acceptance for both Bs → φφ and Bs → J/ψφ, we
use the phase-space decay model of evtgen. Phase-space means that all spins of the
particles in the final state are averaged. This yields flat distributions in the angular
variables whose acceptance we wish to study.

The third step in simulation incorporates the interaction of the decay products
(K+K− and µ+µ−) with the detector material. For this task we use the cdfsim package
[103], which is a CDFII-specific full detector simulation based on the geant simulator
[104]. The final step is the simulation of the triggering and event reconstruction that
data events pass through. cdfsim outputs simulated events with the same data banks
as the raw real data events.

The detector and trigger configurations have undergone several variations during
Run II. The simulation can access the databases and thus allows us to simulate the
detailed configuration of any set of real data-taking runs for modeling the realistic
detector response in any given subset of data. On the other hand, the MC is not able
to reproduce exactly the trigger behavior of the trigger-paths which have a built-in
dependence on the instantaneous luminosity, because this information is not fully
stored in the database. In order to use all the trigger paths, in [29] it was checked
that, once we reweight MC events in a way suitable to reproduce the different trigger
mixture observed in data, a sufficiently good agreement is observed in all relevant
variables.

The output of the MC simulation is then processed with the software package which
reconstructs B decays and writes the output events in the BStntuple format, allowing
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us an easier comparison between MC and data. Some plots of these comparisons are
shown in the following figs. 4.6 – 4.7, and in the previous fig. 4.3. For other distribu-
tions we point to [29]. In the comparison, we adopt the following nomenclature: the
side-band subtraction is the operation performed on the real data subtracting from the
events, in a window around the signal region in the invariant mass histogram of the
Bs candidate, [5.32; 5.42] GeV/c2, those events which are located in the sidebands. The
two sidebands are: the left one from 5.244 to 5.294 GeV/c2 and the right one from 5.444
to 5.494 GeV/c2. The side-band subtraction is needed in the comparison, because the
MC data reproduce only the signal events.
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Figure 4.6: Comparison of data and MC in the Bs → φφ: pT of the reconstructed Bs meson
(a), pT of the reconstructed φ meson (b). The plot shows the comparison between
MC data (red line) and side-bands subtracted data (black points), used in the MC
validation.
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Figure 4.7: pT of the reconstructed J/ψ meson in the Bs → J/ψφ decay. The plot shows the com-
parison between MC data (red line) and side-bands subtracted data (black points),
used in the MC validation.
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4.6 SIGNAL CHARACTERIZATION AND ANGULAR DISTRIBU-
TION

We are interested to obtain the largest available data sample. Therefore, in the analysis
we would like to use the reconstructed B candidates coming from the union of the
three exclusive trigger selections, HIGHPT, ScA and LOWPT. Since the different trigger
requirements may introduce some large discrepancies from one trigger selection to
another, we look for these differences in the variables distributions. In particular, we
check the consistencies of the angular variables, which are the most significant for our
analysis. The comparison of the three trigger selections are shown in figs. 4.8 – 4.10.
For other distributions we point to [29]. A good agreement is seen: the Kolmogorov
test performed returns probabilities which are

• about 5% for distributions (a) and (b) in fig 4.8;

• greater than 30% for distributions (c) and (d) in fig 4.8;

• greater than 10% for distributions in figs. 4.9 and 4.10.

This allow us to easily use all the three exclusive subsamples together in a single fit.
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Figure 4.8: Comparison of trigger paths for the Bs → φφ decay: ∆ϕ (a) and ∆η (b) between
the φ, ∆ϕ (c) and ∆η (d) between the K+K−. The black points are HIGHPT, the blue
points are LOWPT and the red ones are ScA.



68 DATA SET AND RECONSTRUCTION

1ϑcos
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Trigger Path:

HIGHPT
LOWPT
scA

 (Helicity)1ϑcos

(a)
2ϑcos

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Trigger Path:

HIGHPT
LOWPT
scA

 (Helicity)2ϑcos

(b)

 (rad)Φ
0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Trigger Path:

HIGHPT
LOWPT
scA

 (Helicity)Φ

(c)

Figure 4.9: Helicity angles of the Bs → φφ for the different trigger paths: cos ϑ1 (a), cos ϑ2 (b)
and Φ (c) . The black points are HIGHPT, the blue points are LOWPT and the red ones
are ScA.

Another check performed is the comparison between the distributions for the high-
luminosity runs and the low-luminosity ones. We split the events into two sets:

• events for run numbers > 228 596, which correspond to high-luminosity data
sample,

• events for run numbers ≤ 228 596, which correspond to low-luminosity data
sample,

and we look for discrepancies in the distributions shapes. These comparisons are
reported in fig. 4.11. Again, a good agreement is seen, since the Kolmogorov test
performed returns probabilities greater than 85%.

Finally, we present in fig. 4.12 the mass distribution of the reconstructed φ meson
after the off-line selection. A fit is performed with the convolution of a Breit-Wigner
function (resonance) and a Gaussian function (experimental resolution). The width of
the Breit-Wigner function is fixed from the PDG value (4.26± 4 MeV/c2). From this fit
we deduce that there are no evident non-resonant (scalar) components under the φ
peak signal.
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Figure 4.10: Transversity angles of the Bs → J/ψφ for the different trigger paths: cos Θ (a),
cos Ψ (b) and Φ (c) . The black points are HIGHPT, the blue points are LOWPT and
the red ones are ScA.
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Figure 4.11: Comparison of high-luminosity and low-luminosity runs for the Bs → φφ decay:
∆ϕ between the φ (b), ∆ϕ between the K+K− (b). The black points are high-
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Figure 4.12: Reconstructed φ mass after off-line selection. The black points are side-bands sub-
tracted data; the red line is the fit performed with the convolution of a Breit-Wigner
function (resonance) and a Gaussian function (experimental resolution). The σ pa-
rameter is the Gaussian resolution width. M is is the central mass value; N is a
normalization factor.
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In this chapter we present the first attempt to measure the Bs → φφ polarization
amplitudes: the time-integrated analysis. As a first step in this approach a fit to the

reconstructed mass and angular variables is developed and tested on simulated- ex-
periments, real data and high statistics realistic MC. The latter test revealed a possible
shortfall of this first approach due to an expected dependence of the signal acceptance
on the proper decay time of the Bs mesons. Investigations on this specific issue, which
is most likely a general feature induced by any signal selection based on the lifetime
information, and, as such, something that should be thoroughly examined also in
the future experiments, are reported in this Chapter while an attempt to solve this
problem is proposed in the next Chapter. In the present Chapter we present several
components of the fitter and the related study on the data that will remain unchanged
in the final fit described later.

5.1 STRATEGY
The aim of the analysis is the estimation of the two polarization amplitudes, |A0|2 and
|A‖|2 and the relative phase between them, using as probability density function the

71
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angular decay rate distribution of eq. 2.60 integrated in time. We want to perform
an unbinned Maximum Likelihood (ML) fit to the mass and the three helicity angles
distributions of the reconstructed B candidates. The mass distribution is used in the
fit to discriminate the signal yield with respect to the background. Since in eq. 2.60 the
time and the angular terms do not factorize, the time integration introduces a bias in
the estimated parameters. In fact, the time evolution in eq. 2.60 is represented by two
expressions having different live times: τL = 1/ΓL and τH = 1/ΓH. Our hypothesis is
that the statistical uncertainty of our measurement is bigger than the systematic one
induced by the time integration. The latter should not be greater than ∆Γ/Γ ∼ 10%.

In eq. 2.60 we fix ΓL and ΓH to the latest PDG values. Moreover, the CP-violation’s
phase φV is set equal to zero, as its value in the SM prediction is very small. In the
analysis we don’t distinguish between Bs and B̄s at the production time (untagged
analysis). At this stage, the detector acceptance in the angular variables defined in
Sec. 2.4.1 is assumed unrelated to the B meson proper decay time. This acceptance is
determined with the MC program described in the previous chapter.

The fitter framework will be checked by three tests: the pseudo-experiments pulls
distributions, the fit of the Bs → J/ψφ decays as a control sample, and the fit on real-
istic MC data. The latter one actually reveals the correlation of the angular acceptance
with the B meson proper decay time. Because of this complication, a time-dependent
analysis has been performed as well and it is the subject of the next Chapter.

5.2 FITTING TECHNIQUE

5.2.1 Unbinned Maximum Likelihood Fit

The parameters estimation is obtained through the construction of the likelihood func-
tion of the data sample under study. Suppose we have a set of n measured quantities
~x = (x1, . . . , xn) described by a joint probability density function (pdf) g(~x;~ξ), where
~ξ = (ξ1, . . . , ξk) is a set of k parameters whose values are unknown. The likelihood
function is given by the pdf evaluated with ~x, but expressed as a function of the pa-
rameters, i. e., L(~ξ) = g(~x;~ξ). If the measurements xi are statistically independent
and each follow the pdf g(~x;~ξ), then the joint pdf for ~x factorizes and the likelihood
function is

L(~ξ) =
n

∏
i=1

g(xi;~ξ). (5.1)

The method of ML takes the estimators ξ̂ to be those values of ~ξ that maximize L(~ξ).
It is usually easier to work with lnL, and since both L and lnL are maximized for the
same parameter values ~ξ, the ML estimators can be found by solving the likelihood
equations:

∂ lnL
∂ξi

= 0, i = 1, . . . , k. (5.2)

ML estimators are approximately unbiased and efficient for large data samples [36],
under quite general conditions, and the method has a wide range of applicability. The
inverse V−1 of the covariance matrix Vij = cov[ξ̂i, ξ̂ j] for a set of ML estimators can be
estimated by using

V̂−1
ij = −∂2 lnL

∂ξi∂ξ j

∣∣∣∣∣
ξ̂

. (5.3)
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5.2.2 Numerical Maximization

For most of the fits the solution of eq. (5.2) is analytically impossible to find. Thus,
a numerical method must be used. Here, this is achieved by minimizing the value
−2 logL using the software package minuit [105]. minuit is conceived as a tool to
find the minimum value of a multi-parameter function and analyze the shape of the
function around the minimum. The main application is foreseen for statistical analy-
sis, working on χ2 or log-likelihood functions, to compute the best-fit parameter val-
ues and uncertainties, including correlations between the parameters. It is especially
suited to handle complex problems.

The minuit package works on the multi-parameter function F = −2 logL. The
value of F depends on the parameters to be estimated. The user can request minuit

to minimize F with respect to the parameters, that is, to find those values of the
parameters which give the lowest value of F.

The width of the function around the minimum, or more generally, the shape of
the function in some neighbourhood of the minimum, gives information about the
uncertainty on the parameters values, often called the parameter error.

The minuit processors migrad and hesse produce an error matrix. This matrix is
the inverse of the matrix of the second derivatives of F (eq. (5.3) ). Therefore, errors
based on the minuit error matrix take into account of all the parameter correlations.
When the error matrix has been calculated then the parameter errors printed by mi-
nuit are the square roots of the diagonal elements of this matrix.

5.2.3 Note on the Test of Goodness of Fit

Once a fit is performed, one would estimate the goodness of the results obtained.
There is no direct method for testing the goodness-of-fit of an unbinned ML fit. Dif-
ferent approaches have been proposed in literature for this purpose, but none is rigor-
ously correct [?]. In order to have a feasible estimation of the goodness of our fit, we
compare the distributions of data with the joint pdf corresponding to the Likelihood
function evaluated with the set of parameters ~ξ = ξ̂. We can define the fit projection
onto the observable xi as the following one-dimensional function:

P(xi, ξ̂) =
∫

g(~x, ξ̂) dx1 . . . dxi−1dxi+1 . . . dxn (5.4)

which is the predicted distribution for xi under the assumed values for the fit parame-
ters, and it can be overlaid to the experimental data. This allows us to detect possible
discrepancies between the observed distributions and our model.

Then, we perform the comparison of the fit projection onto xi with its data distribu-
tion making a χ2 test. To simplify the notation, xi is called z. Then:

• we construct the z distribution, filling an histogram of M bins of (constant) width
∆. Each bin is identified by the point (zj, wj), where zj and wj are the central
value and the content of the j-th bin, respectively;

• we build an equivalent M-bins-histogram, evaluating the expected content w(e)
j

of each bin with the projection P(z, ξ̂). This is defined by:

w(e)
j =

(
P(zj, ξ̂)∆

)
N; (5.5)

where N is the total number of events.1

1 If there is only one observable per event, then N = n. In general, for each event i corresponds a vector of

observables ~xi = (x(i)
1 , . . . , x(i)

l ).
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• the χ2 is

χ2 =
M

∑
j

(
wj − w(e)

j
)2

wj
; (5.6)

• we evaluate the probability of the given χ2, whose degrees of freedom are M− 1,
since the normalization is fixed by the number of events N.

In the following, when a χ2 probability for the unbinned ML fit is reported, it refers
to the one computed with the above procedure. The test returns a rough evaluation
of the goodness-of-fit, since it doesn’t take into account for the correlations among the
variables: it has to be considered only as a qualitative indicator.

5.2.4 The Probability Distribution Function

As mentioned before, one needs to known the pdf of the data sample to construct the
likelihood function. In the following, the pdf functional form is presented for our cases,
describing it component by component.

As an event is reconstructed, several are the measured quantities, called observables,
which describe a decay mode and can be used as input variables to the fitter. For this
Bs angular analysis, the reconstructed quantities are:

• the mass m;

• the angles

– ~ω = (cos ϑ1, cos ϑ2, Φ), for the Bs → φφ decay;

– ~Ω = (cos Θ, cos Ψ, Φ), for the Bs → J/ψφ decay;

Here, m is the reconstructed mass of the B candidate. For the Bs → φφ decay, the
angles forming the vector ~ω are defined in the helicity basis chosen to treat symmetri-
cally the two K+K− pairs decaying from the two φ in order to obey Bose statistics (see
the theoretical section); the vector Ω is composed by angles defined in the customary
transversity basis for the Bs → J/ψφ decay.

The identification of the two φ as φ1 and φ2 (and then of the two angles θ1 and θ2) is
randomly implemented in the code to avoid any bias caused by the internal ordering
(e. g., in pT(φ)) of the particles in the BStntuple, in order to carry out the symmetry
mentioned above. We proceed as follow: for each reconstructed Bs candidate,

• if the event number is even, we use the internal ordering of the BStntuple;

• if the event number is odd, the two indexes, 1 and 2, of the BStntuple order are
exchanged among each other.

This simple algorithm assures the symmetry of the variables under indexes exchange
1 ↔ 2. Since our main purpose is the Bs → φφ angular analysis, in the following all
the notations refer to its study. We leave the description of the Bs → J/ψφ analysis in
a separate section (Sec. 5.6).

The observables m and ~ω give rise to the vector

~xi = (mi, ~ωi) (5.7)

where i spans over the number of events in the data sample, so the above called
measurement vector is ~x = (~x1, . . . ,~xN). As we saw in the previous chapter, all ~xi
can be divided into two sets: the events which come from the decay under study,
the signal, and the events which are not related to it, the background. Accordingly,
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the pdf is the sum of two components: gs, representing the signal set, and gb, for the
background events, i. e.

g(~xi,~ξ) = (1− fb)gs(~xi,~ξs) + fbgb(~xi,~ξb), (5.8)

where fb is the fraction of background events (0 ≤ fb ≤ 1). Since the mass and
the angular variables are statistically independent, the pdf can be factorized in two
corresponding terms:

gs(~xi,~ξs) = g(m)
s (mi,~ξm

s )g(ω)
s (~ωi,~ξω

s ), (5.9a)

gb(~xi,~ξb) = g(m)
b (mi,~ξm

b )g(ω)
b (~ωi,~ξω

b ) (5.9b)

(5.9c)

The pdf must be normalized to one, thus the following relations hold:∫
g(m)

s/b dm = 1, (5.10a)∫
g(ω)

s/b d~ω = 1. (5.10b)

We evaluate the best parametrization of the pdf components, using also the MC
simulation. They are presented in the following sections. This procedure allowed
us to fix some parameters in the function parameterization and then to make a global
fit with a limited number of free parameters.

At this stage of the work, we don’t consider the reflection components in the back-
ground parametrization: since they are a tiny percentage of the total data sample, they
can be neglected at first order. Thus, throughout this chapter, when we refer to the
background, we mean only the dominant combinatorial component.

5.3 MASS MODEL
The signal distribution has a width of around 20 MeV for the Bs → φφ (see fig. 4.4
in the previous chapter). It is parameterized with two gaussian functions having the
same mean value M but different resolutions, σ and kσ. This choice is fairly standard
and takes into account the detector effects that cause an additional spread in the tail
distributions. The function used to parametrize the distributions is the following:

g(m)
s = h

1√
2πσ

e−
(m−M)2

2σ2 + (1− h)
1√

2πkσ
e−

(m−M)2

2k2σ2 (5.11)

where h is the fraction of one gaussian component with respect to the other. Fitting the
MC events of fig. 5.1, we obtained the parameters summarized in tab. 8 . In the final

Parameter MC fit value

M [GeV/c2] 5.36995± 0.00004
σ [GeV/c2] 0.01577± 0.00004

k 2.87± 0.03
h 0.932± 0.002

Table 8: Parameters of MC data mass fit for Bs → φφ. All symbols are defined in the text.

fit the multiplicative factor k and the fraction h are fixed, while the other parameters
are left free.
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Figure 5.1: Mass fit of MC data for Bs → φφ. The black points are the MC data; the red line is
the resulting fit distribution.

The mass background follows, with a good approximation, an exponentially de-
creasing behavior:

g(m)
b =

b
e−bmmin − e−bmmax

e−bm (5.12)

where b is the slope of the exponential function, and m spans the interval [mmin =
5.2, mmax = 5.6] GeV/c2. In this case, we didn’t perform a MC study and a simple
parametrization has been used instead.

5.3.1 Comparison with Binned Likelihood Fit of the BR Analysis

We can compare the results of this unbinned ML fit of the reconstructed B mass with
respect to the binned fit performed in the branching ratio analysis [29]. This allows
us to check the tiny effects of the reflections in the background component, since the
binned fit takes them into account and since the data sample is the same for the two
fits. Table 9 reports the two fit’s results and the mass distributions are shown in fig. 5.2.
The χ2 probability of the unbinned mass fit is 0.07. We obtain a very good agreement
in the central values and in their uncertainties. This could be sufficient to justify the
reflections’ neglect at first order.

Parameter Unbinned fit Binned fit

M [GeV/c2] 5.364± 0.001 5.364± 0.001
σ [GeV/c2] 0.016± 0.001 0.017± 0.001
fb 0.38± 0.03 0.39± 0.03
b 2.7± 0.7 2.5± 0.7

Table 9: Comparison of the mass fit results with the branching ratio analysis’ ones [29].
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Figure 5.2: Comparison of our fit mass projection with the fit of the branching ratio analysis.
(a) mass projection of the unbinned fit; (b) binned fit in [29]. The χ2 probability of
the unbinned mass fit is 0.07.

5.4 ANGULAR MODEL
The pdf used to describe the helicity angular distribution for the signal is obtained inte-
grating in time the theoretical differential decay rate reported in eq. (2.60) of sec. 2.4.3.
It is important to stress that this formula has been obtained summing over the initially
produced Bs and B̄s, without attempting to tag the production flavor identification at
the production time, and, assuming no CP violation, fixing φV = 0 as in the SM. Thus,
the resulting signal angular pdf is:

g(ω)
s =

d3Λ(~ω)
d~ω

=
9

32π

1
W̃

[
F̃e(~ω) + F̃o(~ω)

]
(5.13)

where

F̃e =
2

ΓL

[
|A0|2 f1(~ω) + |A‖|2 f2(~ω) + |A0||A‖| cos δ f5(~ω)

]
(5.14)

F̃o =
2

ΓH
|A⊥|2 f3(~ω) (5.15)

W̃ =
|A0|2 + |A‖|2

ΓL
+
|A⊥|2

ΓH
(5.16)

and the notation has been described in sec. 2.4.3. Since we want to measure only the
polarization amplitudes, we fix ΓL and ΓH to the latest PDG values (see eq. (2.18a)) in
the final fit.

5.4.1 Detector Angular Acceptance

In the case of an ideal detector we could assume an homogeneous acceptance distri-
bution for the angles. Since CDF does not have uniform efficiency and performances
in the three-dimensional space, we expect not to have a uniform acceptance in the
helicity (transversity) angles. In principle, the trigger paths and the off-line selection,
could modify the angular distribution as well. Another source of inefficiency is due
to the pT acceptance: the helicity variables are strictly related to the K pT since, in
practice, the computation of the angles is based on the reconstructed momenta. Thus,
a part of the angular inefficiency comes from the events which have in the final state K
with low pT that are lost in the on-line selection. So it is crucial for the analysis to be
able to unfold all these effects, which are usually referred to as “angular acceptance”.
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In order to study the detector impact on the angular distributions, we generate a
“phase space MC” data sample with uniform distributions in all the angular variables
(in the following we refer to it as “flat MC”). Phase space MC means that the MC sim-
ulates the decays considering only the phase space variables of the particles: particles
spins in the final state are averaged.

The simulated events are passed through the full-fledged detector simulation. Then,
they are selected with the same on-line and off-line requirements of the real data.
Thus, we can obtain a three-dimensional acceptance curve A(~ω), which accounts for
the detector acceptance in the angular variables. In practice, we construct A(~ω) as
a three-dimensional histogram H(~ω), and the acceptance is calculated as the ratio of
accepted and generated events in each three-dimensional bin in ω divided by the total
number of generated events such that the sum of the weights in all the bins in the
histogram is 1. The three-dimensional histogram is made of 223 000 events, which fill
20× 20× 20 bins. Thus, the acceptance function can be interpreted as the probability
to find an event at each position in the ~ω space. The projections of H(~ω) onto the
three axes of the helicity angles basis are shown in fig. 5.3. We note that the detector
and the other selections don’t change the Φ distribution, that is still flat.
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Figure 5.3: Detector angular acceptance projections: cos ϑ1 (a), cos ϑ2 (b) and Φ (c).

The angular acceptance effect is finally taken into account by the multiplicative term
A(~ω) in the signal angular pdf:

g(ω)
s =

d3Λ(~ω)
d~ω

→ g(ω)
s =

1
N

d3Λ(~ω)
d~ω

A(~ω) (5.17)

where N is a normalization term. The presence of A(~ω) bring some complication
in the normalization process: both the angular distribution and the acceptance distri-
bution are independently normalized, thus it is not assured that their product will be
normalized as well. The normalization procedure for the calculation of N is described
in Appendix A.
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5.4.2 Effect of Different Trigger Path on the Detector Angular Acceptance

There is the possibility that the acceptance curve is different for the three trigger path
selections. If this happens, more complications arise in the analysis of all exclusive
trigger sets together. To check if this is the case, we look at the projections of H(~ω) for
the different trigger paths. They are shown in fig. 5.4: we can conclude that H(~ω) is
quite similar for each trigger selection. This test also guarantees no dependencies on
the integrated luminosity collected with the three different trigger paths. These allows
us to use in a straightforward way all the exclusive data set together, minimizing the
statistical errors on ours measurements.
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Figure 5.4: Effect of different trigger path on angular detector angular acceptance: cos ϑ1 (a),
cos ϑ2 (b) and Φ (c).

5.4.3 Comparison with Previous Works

In some of the previous CDF angular analysis, another method has been adopted to
treat the detector angular acceptance. Like the one presented above, it makes use of
the flat MC, but in a different way.

In principle, the angular acceptance besides the angular variables is a function of
kinematic variables as well as the detailed trigger criteria: we have A(~ω,~k), where~k is
the vector of the kinematic variables. Thus, remembering the form of the differential
decay rate of eq. (2.57), the signal pdf is

1
N

d3Λ(~ω)
d~ω

V(~k)A(~ω,~k) =
V(~k)A(~ω,~k)

N
6

∑
i=1

Ki fi(~ω) (5.18)
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where V(~k) is the distribution of the candidates in the~k space. N is the normalization
factor:

N =
∫ ∫

d~ωd~k
d3Λ(~ω)

d~ω
V(~k)A(~ω,~k) =

=
6

∑
i=1

Ki

[ ∫ ∫
d~ωd~k fi(~ω)V(~k)A(~ω,~k)

]

=
6

∑
i=1

Kiζi

(5.19)

In the last line of eq. (5.19), the coefficients ζi are the result of the double integral in
the second line: they can be computed once using the flat MC. In fact, in the limit of
infinite number of reconstructed candidates, N → ∞, the following relation holds:

ζi =
1
N

N

∑
j

fi(ωj), with ωj ∈ {flat MC} (5.20)

Then, the method of ML requires the maximization of the logL:2

logL =
N

∑
j

log

[
V(~k j)A(~ωj,~k j)

N
6

∑
i=1

Ki fi(~ωj)

]

=
N

∑
j

log

[
6

∑
i=1

Ki fi(~ωj)

]
− N log

[
6

∑
i=1

Kiζi

]
+

N

∑
j

log

[
V(~k j)A(~ωj)

] (5.21)

Since the last term of the second line of eq. (5.21) doesn’t depend on the fit parameters,
it can be removed from the likelihood function: it is a constant in the maximization
procedure. Thus, the final fit doesn’t depend on the knowledge of the analytic form
of the detector angular acceptance: the entire information of its effect is contained in
the ζi coefficients.

This method seems more convenient than ours, but, paying attention of some as-
sumptions in this approach, we will realize that they are not so different. This method
is based on the eq. (5.20). This formula is an approximation, because:

1. the identity is valid only in the limit of N → ∞;

2. the equation represents a good description as well as the MC data can reproduce
the real data.

The same considerations can be done for our method. First, the histogram takes
automatically into account the V(~k) distribution. Second, if we model the acceptance
curves A(~ω,~k) with a three-dimensional histogram H(~ω,~k), coming from the flat MC,
this is subjected to the same two issues presented above:

1. the histogram reproduces a continuum function only in the limit of an infinites-
imal bin’s volume, i. e., an infinite number of bins, which requires an infinite
number of events;

2. since the histogram comes from the MC simulation, its quality depends on the
MC’s ability to reproduce the real data.

2 For simplicity, here is considered only the angular part.
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Finally, we don’t find any reasons to prefer one of the two methods. Our choice comes
only from a pragmatic motivation: the framework used to perform the analysis is a
modification of an older one involving the histogram’s method.

A further comparison with the previous works is to look at the angular acceptance
projections. This is the first time that the Bs → φφ decay is studied and its descriptions
make use of the helicity angles. However, the other decays analyzed at CDF are all
described in the transversity basis: they are Bs → Jψφ and Bd → J/ψK0? in [1, 106],
Bd → J/ψK0? and Bd → φK0? in [62] . Anyway, ϑ1 (of helicity basis) and Θ (of the
transversity basis) are the same angles (see the definitions in sec. 2.4). Thus, it is
correct to compare the cos ϑ1 angular acceptance distribution with the one of cos Θ.
Looking at the analysis listed above, we find that:

• the distributions’ shape is the same of fig. 5.3;

• the difference between the maximum of the distribution at cos Θ = 0 and the
minimum at cos Θ = ±1 is about 20% and it is of the same order of what we
find in our distribution.

If one wants to look at the other angles, the control samples used here (Bs → Jψφ),
which is described with the transversity angles, must be considered. We only mention
here that no discrepancies are found with respect to the analysis in [1, 106, 62], as can
be seen from the plots in fig. B.3 of the Appendix B, which represent the transversity
angular acceptance projections for the Bs → Jψφ decay.

The agreement with the angular acceptance projections of the previous work con-
firms that the main consequence of the angular acceptance on the angular distributions
comes from the detector geometry; it is independent of certain trigger details.

5.4.4 Background Parameterization

It is reasonable to suppose that the helicity angles do not have any intrinsic meaning
for the combinatorial background. To verify this hypothesis in fig. 5.5 we compare the
side-bands angular distributions and those of the flat MC data. Thus, we use a purely
empirical model derived by analysing the angular distributions in the mass sidebands
to model the background. In order to increase the statistic of the side-bands region,
we enlarge the side-bands width ranges with respect to the ones defined in Sect 4.5.
4.5, choosing the two intervals [5.02; 5.22] GeV/c2 and [5.52; 5.72] GeV/c2; then we also
remove the Lxy > 330 µm cut selection, which doesn’t have any appreciable effects on
the angular variables distributions, as one can see in fig. 5.6.

Looking at the scatter plots in fig. 5.7, we see that the angular variables are not
correlated in the sideband regions; then the angular background pdf factorizes in the
product of three terms:

gb = g(ω1)
b g(ω2)

b g(ω3)
b (5.22)

where for the Bs → φφ decay the parameterizations adopted are:

g(ω1)
b =

1

2(1 +
pϑ1
3 )

(
1 + pϑ1 cos2 ϑ1

)
, (5.23a)

g(ω2)
b =

1

2(1 +
pϑ2
3 )

(
1 + pϑ2 cos2 ϑ2

)
, (5.23b)

g(ω3)
b =

1
2π(1 + pΦπ)

(
1 + pΦ cos Φ

)
, (5.23c)
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Figure 5.5: Comparison between side-bands and MC data angular distributions: cos ϑ1 (a),
cos ϑ2 (b) and Φ (c). Black points are side-bands data; red points are MC data. All
plots present a Kolmogorov test probability greater than 88%.
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Figure 5.6: Comparison between side-bands data angular distributions with and without the
Lxy selection: cos ϑ1 (a), cos ϑ2 (b) and Φ (c). Black points are side-bands data with
all selections (see Sect. 4.3); red points are side-bands data removing the Lxy >
330 µm selection. All plots present a Kolmogorov test probability greater than 80%.
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Figure 5.7: Scatter plots for test of angular variables correlation in the side-band regions. On
the right, cos ϑ1 versus cos ϑ2. In the middle, cos ϑ1 versus Φ. On the left, cos ϑ2
versus Φ.

We perform a binned fit to the sideband angular distributions using the above equa-
tions and we determine the parameters pj table 10. Though this is a simple description,
we find that it is adequate to describe the angular distributions in the sidebands (see
Figure 5.8).

Parameter Binned fit value

pϑ1 −14± 10
pϑ2 −11± 10
pΦ 0.02± 0.03

Table 10: Parameters of the binned sidebands fit for Bs → φφ fit.

5.4.5 Parameters Summary

Let us summarize all the parameter that enter the complete Likelihood in the final fit.
The input variables are the mass m and the helicity angles ~ω = (ϑ1, ϑ2, Φ) for each
reconstructed candidate that passed the off-line selection. The ten fit parameters are
reported in tab. 11.

Signal Background

Mass M, σ fb, b
Angular |A0|2, |A‖|2, δ pϑ1 , pϑ2 , pΦ

Table 11: Parameters summary of the time-integrated Bs → φφ fit.

The following quantities are fixed in the final fit:

• k and h, from the MC fit;

• τL = ΓL and τL = ΓL, the two mean life-time of the Bs mass eigenstates, are
taken from the last PDG values;
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Figure 5.8: Side-bands data fit to determine the background parameterizations for the Bs → φφ
decay: cos ϑ1 (a), cos ϑ2 (b) and Φ (c). Black points are side-bands data; red lines are
the fitting functions described in the text.

Before carrying out the fit over the data sample, we perform several tests. The
aim is to validate the correctness of the implementation, to investigate the likelihood
behavior as function of the parameters, to look at their resolutions and to detect any
potential fit biases. The tests that we perform are:

1. the pulls distributions;

2. the fit of Bs → J/ψφ, used as a control sample;

3. the fit of the realistic MC;

They are described in the following sections.

5.5 PULLS DISTRIBUTIONS
The study of pulls distributions are a commonly used method. The procedure is as
follows: we generate a large set of pseudo-experiments (referred to as “toysMC”), ran-
domly polling the probability density function in each variable subspace to assign
a value to the event variables. As a consequence, each pseudo-experiment yields a
different random sample of events. For each of these pseudo-experiments, we per-
form a fit in the same way we do on the data. For each parameter ξi on the fit, the
corresponding pull Pi is defined as:

Pi =
ξfit

i − ξ
input
i

σi
(5.24)

where ξ
input
i is the parameter assigned in the random generation of the pseudo-experiment

variables, ξfit
i is its value found by the fitter, and σi is its uncertainty. In our pull stud-

ies, we adopt the convention that the pull for a given pseudo-experiment is calculated
using the positive (negative) error in the denominator if the fit value is lower (higher)
than the input value.
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In principle, the variables Pi are gaussian distributed, with mean and width equal
to 0 and 1, respectively. Thus, if the fitter is correct, we expect to find this kind of
pulls distributions. Naturally, several complications could arise. In some cases, there
can be a hard physical limit on one or both sides of the allowed parameter range. In
other cases, a degeneracy in the likelihood expression itself can lead to a fit value
that is simply another equivalent minimum without being a physically different value
(as far as the likelihood itself would be able to measure). These problems manifest
themselves in a modification of the pull distributions, like a non zero mean, a width
different from one, or a non gaussian shape. Thus, one has to understand if these
complications are related to some errors in the fitter implementations, or to some
intrinsic fitter limitations.

At first stage, we perform the fit on 1000 pseudo-experiments of 100 000 events
each: it’s more than 300 times of the events per experiment that we have in the actual
Bs → φφ data samples, so it is mostly a test of the fitter as a machinery to correctly
extract the parameters given in input to generate the toyMC sample. In fact, first, it is
preferable to work with large data sample in order to decrease the pulls parameters
uncertainty and to have a better control on the result, since different complications
can arise in presence of low statistics. Anyway, the fraction of signal to background
is fixed to reproduce the real data sample. We generate the events using as input
parameters the results of the final fit performed on the actual Bs → φφ sample, which
are described in the last section of this Chapter. The results of this test are very
satisfactory; they are presented in tab. 12. The pull distributions are reported in fig. 5.9.

Parameter Input value Mean Variance Prob(χ2) [%]

M 5.364 GeV/c2 −0.01± 0.03 0.96± 0.02 34
σ 0.016 GeV/c2 −0.06± 0.03 0.98± 0.02 28
fb 0.38 0.03± 0.03 1.02± 0.02 31
b 2.7 c2/GeV −0.04± 0.03 1.03± 0.02 6
|A0|2 0.35 0.02± 0.03 1.01± 0.02 98
|A‖|2 0.29 0.00± 0.03 1.00± 0.02 86

δ 0.4 rad 0.05± 0.03 1.02± 0.02 28
pϑ1 0.3 0.04± 0.03 0.98± 0.02 68
pϑ2 0.8 0.02± 0.03 1.00± 0.02 75
pΦ 0.03 0.00± 0.03 1.05± 0.02 6

Table 12: Pulls mean and variance for Bs → φφ (100 000 events per pseudo-experiment). The
fifth column presents the χ2 probability for a gaussian fit of the pulls distribution
with mean and variance 0 and 1, respectively.

5.5.1 Expected Resolution on the Polarization Observables

We repeat the previous test fitting samples with 1000 events for each pseudo-experiments,
which is of the same order of the statistics we have in 2.9 fb−1 of data. In this way,
we can check if there is any significant change in the fitter behaviour that might be
caused by the lower statistic of the actual Bs sample. Again, the generation of pseudo-
experiments is done using as input parameters the results of the final fit performed
on the actual Bs → φφ sample. The results of this test are reported in tab. 13, and the
pulls distributions are shown in fig. 5.10. The resolution (third column of the table) of
the polarization amplitudes are consistent with the one expected in Sect. 2.5.2 (4%).

We find that the fitter returns unbiased estimates and consistent uncertainties for
all parameters except for two of them: δ and pΦ. The latter presents a shift of the
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Figure 5.9: Pulls distributions of fit parameters for Bs → φφ (100 000 events per pseudo-
experiment).
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Parameter Input value Average fit error Mean Variance Prob(χ2) [%]

M 5.364 GeV/c2 0.0008 GeV/c2 0.01± 0.03 1.01± 0.02 66
σ 0.016 GeV/c2 0.0007 GeV/c2 −0.08± 0.03 1.03± 0.02 43
fb 0.38 0.02 −0.09± 0.03 1.00± 0.02 65
b 2.7 c2/GeV 0.5 c2/GeV −0.04± 0.03 1.00± 0.02 98
|A0|2 0.35 0.03 0.03± 0.03 0.99± 0.02 65
|A‖|2 0.29 0.03 0.02± 0.03 1.02± 0.02 38

δ 0.4 rad 0.3 rad 0.13± 0.03 0.88± 0.02 0
pϑ1 0.3 0.1 0.03± 0.03 0.99± 0.02 88
pϑ2 0.8 0.1 0.00± 0.03 0.96± 0.02 75
pΦ 0.03 0.04 0.11± 0.03 1.02± 0.02 0

Table 13: Pulls mean and variance for Bs → φφ (1000 events per pseudo-experiment). In the
second column the input parameters of the generation are listed. The third column
reports the average error in the pseudo-experiments fit (resolution). The fourth and
the fifth columns list the mean value and the variance of the pull distributions, re-
spectively. The sixth column presents the χ2 probability for a gaussian fit of the pulls
distribution with mean and variance 0 and 1, respectively.

mean value of order of about 0.1 sigma, but its shape is almost gaussian. The strong
phase δ instead seems to be affected by a different problem, since the distribution
is not gaussian. Both these complications arise in presence of low statistic: the fit
on the data sample might returns a biased estimates for this two parameters. The
behaviour of the δ pull distribution requires further examination that it is performed
in subsection 5.5.3.

5.5.2 Expected Resolution as a Function of Input Parameters

The fitter must estimate unbiased parameters independently of the specif value of the
parameters. Naively, since in principle there is no criteria to prefer some values with
respect to others, we don’t want that the fitter results depend on the parameters value.
Thus, in order to check if this condition is satisfied, we perform a pulls distributions
test by changing one by one the input parameters for the generation of the pseudo-
experiments variables.

In tab. 14, we report the result of the test; four different sets of input values are given.
Since we are interest in the polarization amplitudes, we fixed the mass parameters and
we vary the values of the signal angular parameters. Because of its problematic nature
shown in the previous section, the strong phase δ is discussed separately.

On average we are satisfied with the results obtained. The resolution for each pa-
rameter doesn’t appreciably change for each set and it is of the same order of the one
obtained in the previous test. One could just argue about the result for |A0|2 pull mean
in the first set of values in tab. 14. On the other hand, its distribution has a gaussian
shape, as the χ2 probability reveals. Thus, for the moment we disregard this issue and
we’ll check it better in the case the fit results on actual data presents a similar set of
parameters. The other parameters pulls that are not shown in tab. 14 are all gaussian,
with mean value and variance consistent with 0 and 1, respectively.
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Figure 5.10: Pulls distributions of fit parameters for Bs → φφ (1000 events per pseudo-
experiment).
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Parameter Input value Average fit error Mean Variance Prob(χ2) [%]

|A0|2 0.2 0.03 −0.12± 0.03 0.99± 0.02 20
|A‖|2 0.4 0.03 0.03± 0.03 1.03± 0.02 16

δ 1.57 rad 0.1 rad 0.05± 0.03 1.01± 0.02 26

|A0|2 0.7 0.02 0.03± 0.03 1.03± 0.02 2
|A‖|2 0.1 0.02 −0.04± 0.03 0.98± 0.02 61

δ 1.57 rad 0.1 rad −0.01± 0.03 0.98± 0.02 47

|A0|2 0.2 0.02 −0.05± 0.05 1.02± 0.03 4
|A‖|2 0.7 0.02 0.06± 0.05 1.02± 0.03 8

δ 1.57 rad 0.1 rad −0.04± 0.05 1.04± 0.03 65

|A0|2 0.1 0.03 −0.08± 0.05 1.03± 0.03 81
|A‖|2 0.2 0.03 0.04± 0.04 1.02± 0.03 2

δ 1.57 rad 0.2 rad 0.05± 0.04 0.94± 0.03 11

Table 14: Pulls test to check the resolution as a function of input parameters.

5.5.3 The Measurement of the Phase

We want to better understand the behaviour of the δ pulls distributions. First, from
the previous tests, we learned that this complication:

• arises only in presence of low statistic;

• vanishes for δ ' π/2 rad, as one can see in table 14.

We perform a set of pseudo-experiments changing the input value of the strong phase
to span the interval [0, 2π] rad. We fix all other parameters (also the polarization
amplitudes, |A0|2 and |A‖|2). We report the results of the δ pulls distributions in
tab. 15. This study puts in evidence a periodic behaviour of the pull distributions: if

δ Input value [rad] Mean Variance Prob(χ2) [%]

0.0 // // //
π/16 0.15± 0.06 0.84± 0.05 0
π/8 0.21± 0.04 0.93± 0.03 0
π/4 0.11± 0.04 0.92± 0.03 6
π/2 0.01± 0.05 1.04± 0.03 89

3π/4 0.05± 0.04 0.97± 0.03 0
7π/8 −0.12± 0.04 0.97± 0.03 0

π // // //
9π/8 0.15± 0.06 0.89± 0.04 0
3π/2 −0.02± 0.05 1.04± 0.03 74
15π/8 −0.22± 0.04 0.93± 0.03 0

Table 15: Pulls test to study the behaviour of the strong phase pulls.

the input value is near either to δ ' 0 rad or to δ ' π rad, the pulls are not gaussian
and the fitter returns a biased estimate. The biases are greater as δ is closer to those
two values, referred to as critic points. Although, when the input value is δ ' π/2
rad or δ ' 3π/2 rad the pulls are gaussian.

Furthermore, if we look to the distributions of the fitted value in the pseudo-experiments,
we found a strange behaviour, that is the origin of the pulls distribution issue. When
the input phase is close to the critic points, e. g., π/16 rad (9π/8 rad), the fitter fails
the parameter estimation and it often returns the value of the closest critic point, i. e.,
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0 rad (π rad). The distribution presents a peak centered on the specific critic point
value, as one can see in some representative distributions in fig. 5.11. Thus, the δ pulls
issue is due to those pseudo-experiments in which the fit returns a certain critic point
as parameter value. This is as less probable as farther to a critic points the input value
is, or as larger the statistic is.

We have not already understood the cause in the fitter of this issue, but we can
explain its periodic behaviour in the range [0, 2π] rad: since the strong phase δ enters
the fit as the argument of the cosine function, there is an ambiguity on its definition,
because, naively speaking, cos(δ) = cos(−δ). This implies that the likelihood function
has two equivalent maxima in the δ space. They can be seen in fig. 5.19 of the Sect. 6.5.
This ambiguity is well known from a previous similar angular analysis [106], which is
actually affected by a similar problem.
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Figure 5.11: Distribution of the δ fitted values in the pseudo-experiments for four different
input values: δ = π/16 (a), δ = π/4 (b), δ = 9π/8 (c) and δ = 3π/2 (d). The red
lines represent the value of the input parameter.

5.6 FIT TO THE TTT Bs → J /ψφ SAMPLE

The second test is the implementation of the developed framework to fit the Bs →
J/ψφ data sample collected with the same TTT selection of the Bs → φφ decay (see
previous Chapter). We use the Bs → J/ψφ decay mode as a control sample: we com-
pare the results coming from our fit with the ones obtained in the different analysis
published in [1], whose events was collected at CDFII by a different trigger selection,
the Dimuon trigger (see later). Therefore, the control sample serves the purpose of
improving the reliability of the main analysis. In this section, we summarize the pro-
cedure and we discuss the results for the Bs → J/ψφ, leaving the analysis details in
the Appendix B.



5.6 FIT TO THE TTT Bs → J/ψφ SAMPLE 91

For its intrinsic nature of control sample, many of the technical aspects are in com-
mon with the Bs → φφ analysis. The main difference is that the Bs → J/ψφ decay
is described making use of the transversity angles ~Ω = (Θ, Ψ, Φ) presented in Sect.
2.4.2.

First, we build the likelihood function for this case. The pdf structure is the same of
eq. 5.8. In particular, the pdf components are described by:

• the equations 5.11 and 5.12 for the mass parameterization, since the distribution
is similar to the Bs → φφ one (compare fig. 4.5 and fig. 4.4). The parameters of
the second gaussian is fixed from the fit to the MC data (see App. B).

• The equation 5.13 provides the signal angular parameterization, replacing the
functions fi(~ω) and the phase φV by fi(~Ω) (eq. 2.62) and by 2βs, respectively. As
in the main analysis:

– we assume no CP-violation, fixing βs = 0;

– we set ΓL and ΓH to the latest PDG values;

– the angular acceptance is taken from the three-dimensional histogram of
the flatMC;

– the angular background term comes from the parameterization of the side-
bands events.

Then, the fitter is subjected to two tests: the pulls distributions and the fit to the real
MC data sample. They are reported in the App. B. The pulls distribution test reveals
unbiased estimate for all parameters, except for the strong phase δ, as in the Bs → φφ
case.

5.6.1 Fit Results and Projections

The results of the fit performed on 2.9 fb−1 of data for the Bs → J/ψφ are listed in the
table 16. The fit projections onto the three transversity angles are shown in fig. 5.18

Parameter Our fit value

|A0|2 0.539± 0.021
|A‖|2 0.246± 0.029

δ 0.0± 0.29

Table 16: Parameters of angular fit for Bs → J/ψφ.

5.6.2 Comparison with the Dimuon Sample Results

We compare the results in tab. 16 with the ones obtained in the analysis published
in [1], whose data were collected by the CDFII detector between February 2002 and
January 2007, and correspond to an integrated luminosity of 1.7 fb−1. First, we briefly
summarize that analysis.

The events with J/ψ → µ+µ− decays were recorded using a different trigger selec-
tion. This is the Dimuon trigger, which requires two oppositely-charged COT tracks
matched to muon chamber track segments with a dimuon mass between 2.7 and
4.0 GeV/c2.

In the offline analysis, B0 → J/ψφ decays are reconstructed making use of an ar-
tificial neural network (ANN). The ANN is trained to separate Bs decays from the
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Figure 5.12: Angular fit projections for Bs → J/ψφ: cos Θ (a), cos Ψ (b) and Φ (c). The χ2

probabilities of the fit projections are 0.21, 0.17 and 0.16 respectively.

combinatorial background, which is the dominant one. The signal is modelled with
simulated events and data from Bs mass sidebands are used to model the combinato-
rial background. The input variables to the ANN are kinematic quantities, vertex fit
quality parameters, and particle-identification information obtained from the muon
system, the time-of-flight detector, and the dE/dx measurements. The requirement on
the ANN output is selected by maximizing the significance S/

√
S + B on data where S

(B) is the number of signal (background) events in a ±20 MeV/c2 window around the
Bs mass peak position. The selected sample contains about 2500 Bs → J/ψφ decays.
The ratio S/B is about 30%. In our TTT sample we have S = 1766 and S/B ' 70%,
thus, even if we collect a low statistic, we can reach the same resolution for the fitted
parameters.

To extract the parameters, an unbinned ML fit is performed with pdf depending
on mass, lifetime, and transversity angles. For the pdf of the background, empirical
models are used with floating fit parameters determined from the data. Because cor-
relations among the three angles are negligible, the angular pdf can be factorized as a
product of polynomials in cos2 Θ, cos 2Φ and cos Ψ.

The lifetime-angular distribution without acceptance effects is given by eq. 2.57.
The analysis is time dependent, since it is aimed at the estimation of ∆Γs. The angular
distribution of the Bs decays is modified by the detector acceptance as well as trigger
and selection efficiencies. This effect is taken into account with an acceptance function,
A(~Ω), derived from simulated Bs → J/ψφ decays. The factor A(~Ω) is described by
a three-dimensional histogram with 20 bins in each of the angles, as we made in the
Bs → φφ analysis. The dominant source of systematic uncertainties on the amplitudes
is the angular background model. Under the assumption of CP conservation (βs = 0),
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the result in tab. 17 are obtained. The first uncertainties are statistical, the second ones
systematic. They do not quote an estimate of the strong phase because its likelihood
profile is non-parabolic and this makes the uncertainty estimate unreliable. The fit
projection are shown in fig. 5.13.

  

Figure 5.13: Angular projections for Bs → J/ψφ in [1].

The agreement of our results with the ones published in [1] is very satisfactory:
the central values are consistent within the uncertainty ranges. For a better compari-
son, we report the two analysis results in the same table (17). In conclusion, the two
experiments have compatible results among each other and provide us with an impor-
tant successful check of our framework on the kinematically equivalent data sample
Bs → J/ψφ: this result contributes to enforce the reliability of our angular analysis
implementation.

Parameter Our fit result Dimuon sample result

|A0|2 0.539± 0.021 0.531± 0.020± 0.007
|A‖|2 0.246± 0.029 0.239± 0.029± 0.011

Table 17: Comparison of our fit results and the ones in [1] for Bs → J/ψφ.

5.7 FIT TO THE REALISTIC MC
The fit to the realistic MC data sample is the last test that we present. The MC is
called “realistic” because it reproduces in order the main physical processes and the



94 TIME-INTEGRATED ANALYSIS

processing steps involved in collecting data from real pp̄ interactions, as described in
Sect. 4.5.

The purpose of the test is to check if the fit is reliable. This means that the fit should
return the same set of parameters adopted in the MC generation of the events. We fit
the phase space MC used for the calculation of the detector angular acceptance. We
expect to find no polarization, since the phase space MC has all the final state particles
with averaged spins. This means that the polarization amplitudes are |A0|2 ' |A‖|2 '
|A⊥|2 ' 0.33 and that the strong phase is δ ' π/2. In the realistic MC, the Bs are
simulated to decay with a unique mean life. Thus, for this fit we put τL = τH = τ.3

We find that the fit is not able to reproduce the expected values of the polarization
amplitudes, although the strong phase is correctly estimated. The results are listed in
table 18. The fit projections on the three helicity angles distributions are reported in
fig. 5.14. The distributions are not well modelled by the fitting functions, except for
the Φ projection.

Parameter MC fit value

|A0|2 0.311± 0.001
|A‖|2 0.344± 0.001

δ [rad] 1.573± 0.005

Table 18: Parameters of the realistic MC angular fit for Bs → φφ

1ϑcos
-1 -0.5 0 0.5 1

ca
nd
id
at
es
/0
.0
8

0

2

4

6

8

10

12

14

16
310×

 

real MC data
Fit projection

 projection1ϑMC data: cos

(a)
2ϑcos

-1 -0.5 0 0.5 1

ca
nd
id
at
es
/0
.0
8

0

2

4

6

8

10

12

14

16
310×

 

real MC data
Fit projection

 projection2ϑMC data: cos

(b)

 (rad)Φ
0 2 4 6

ca
nd

id
at

es
/0

.2
 ra

d

0

2

4

6

8

10

12

14

16
310×

 

real MC data
Fit projection

 projectionΦMC data: 

(c)

Figure 5.14: Angular fit projections of realistic MC for Bs → φφ: cos ϑ1 (a), cos ϑ2 (b) and Φ (c).
The χ2 probabilities of the fit projections are 0 for (a) and (b), and 0.44 for (c).

3 The value of τ is not important, since, putting τL = τH, it becomes a constant factor that multiply the
likelihood (see eq. 5.13).
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5.7.1 Dependence of the Angular Acceptance on the B Proper Decay Time

We want to understand the origin of the problem in the polarization amplitudes esti-
mation on the real MC data sample, and, in particular, the unsatisfactory behavior of
the cos ϑ1(2) fit projections. We can exclude that the origin is a intrinsic problem of
the fitter framework, since the other two test (the pulls distributions and the control
sample results) clearly reveal the correctness of the implementation and the reliability
of the results.

We argue that the cause is the approximation adopted in the treatment of the de-
tector angular acceptance: we have assumed that A(~ω) is not dependent on the re-
constructed Bs proper decay time t. Thus, we check if this hypothesis is correct, by
dividing the MC data sample in three sets (see fig. 5.15):

• set1: events which have ct ∈ [0.00; 0.05] cm;

• set2: events which have ct ∈ ]0.05; 0.10] cm;

• set3: events which have ct ∈ ]0.10; 0.50] cm.

For each set the three-dimensional histogram representing the angular acceptance,
Hi(~ω) (i = 1, 2, 3), is built, and then its projections on the three helicity angles are
produced. We call this the operation of “binning the angular acceptance in slices
of ct”.4 Thus, we compare the three different slices in ct for each Hi(~ω) projection.
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Figure 5.15: ct distribution of real MC data sample. The three ct slices are represented with
different colors: in yellow 0.00 cm < ct < 0.05 cm, in red 0.05 cm ≤ ct < 0.10 cm
and in blue 0.10 cm < ct < 0.50 cm.

They are shown in fig. 5.16. From these plots the effect of the angular acceptance
dependence on ct is evident in the cos ϑ1 and cos ϑ2 variables; the Φ projection, instead,
is quite the same for each bin of ct. We perform a Kolmogorov test (tab. 19) on these
projections, that confirms the changes of the cos ϑ1(2) projections with ct. Moreover,
these changes with ct of the cos ϑ1(2) angular acceptance projections present the same
shape’s differences of the fit projections with respect to the data distribution. It is
interesting that there is no dependence on ct for the Φ acceptance projection, and
this is consistent with the fact that the fit projection correctly reproduces the realistic
MC data distribution. We conclude that the assumption of no correlation with t of
the detector acceptance is the origin of the problem in the polarization amplitudes
estimation on the realistic MC data sample.

4 In the following, we often refer to the reconstructed B proper decay time t using the observable ct and vice
versa, since they have equivalent meaning for us, being the speed of light c only a dimensional conversion
factor.
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Variable Kolmogorov Probability

cos ϑ1 set1 Vs set2 2× 10−4

set2 Vs set3 9× 10−4

set1 Vs set3 1× 10−9

cos ϑ2 set1 Vs set2 5× 10−5

set2 Vs set3 5× 10−5

set1 Vs set3 1× 10−12

Φ set1 Vs set2 0.36
set2 Vs set3 0.57
set1 Vs set3 0.65

Table 19: Comparison between three different slices of ct of the angular acceptance.
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Figure 5.16: Dependence of detector angular acceptance projections on ct: cos ϑ1 (a), cos ϑ2 (b)
and Φ (c).

5.7.2 Impact on the Measurement of A(~ω) dependence on ct

We want to estimate the impact on the fit to the real data sample of the detector
angular acceptance dependence on ct. In fact, the MC data sample has around 223 000
events, which is above 600 times more events that we have in the actual Bs → φφ
data sample. Thus, this effect may have small observable consequences in the final
fit compared to the statistical uncertainty. If this is the case, we can include it in the
computation of final the systematic uncertainty; otherwise, we have to change the fit
to consider the dependence of the angular acceptance on the Bs proper decay time.

We proceed as follow:

• we bin the three-dimensional histogram H(~ω) with the three slices of ct above
presented (see fig. 5.15); thus, we deal with three different acceptance curves,
Hi(~ω), one for each of the defined ct interval.
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• using the toyMC tools, we generate a pseudo-experiment made of 50 000 events,
in which we apply the original no-ct-binned angular acceptance;

• we fit the previous pseudo-experiment, using each of the Hi(~ω) acceptance in
the angular pdf separately.

This allow us to estimate the difference between the input polarization amplitudes,
and the fitted ones, for each acceptance Hi(~ω). We choose to generate the pseudo-
experiments with |A0|2 = |A‖|2 = 0.333 and δ = π/2, as in the flatMC. The results are
reported in tab. 20 for |A0|2, and in tab. 21 for |A‖|2. In both tables, the third column
reports the difference ∆i-f between the input and the fitted central values. On average,
∆i-f are of order of about 2-3%, with a peak of 6%. In the next section, we report
the results of the fit performed on the actual data sample: we find that the statistical
uncertainties of the polarization amplitudes are about 4%. Since they are of the same
order of the differences ∆i-f, we choose to properly change the fit to consider also the
detector angular acceptance dependence on the reconstructed Bs meson proper decay
time. This is described in the next Chapter.

Acceptance |A0|2 ∆i-f

H1(ω) 0.300± 0.003 0.033
H2(ω) 0.342± 0.003 0.009
H3(ω) 0.391± 0.003 0.058

Table 20: Differences between fitted and input values of |A0|2 for the three detector acceptances.

Fit acceptance |A‖|2 ∆i-f

H1(ω) 0.348± 0.003 0.015
H2(ω) 0.328± 0.003 0.005
H3(ω) 0.301± 0.003 0.032

Table 21: Differences between fitted and input values of |A‖|2 for the three detector acceptances.

We make a further study, similar to the one above, on the changes of the angular
acceptance with ct. The purpose is to try a smaller bin width of the ct-slices with
respect to the three previous defined, to check if the differences ∆i-f in the polarization
amplitudes estimation can be minimized. This represents the first step to the handling
of the time-dependent angular acceptance, that is discussed in the next Chapter. We
proceed as follow:

• we bin the three-dimensional histogram H(~ω) in five slices of ct (see fig. 5.17);
thus, we deal with five different acceptance curves, Hi(~ω), one for each of the
following ct interval:

1. H1(~ω) for events which have ct ∈ [0.0000; 0.0375] cm;
2. H2(~ω) for events which have ct ∈ ]0.0375; 0.0550] cm;
3. H3(~ω) for events which have ct ∈ ]0.0550; 0.0750] cm;
4. H4(~ω) for events which have ct ∈ ]0.0750; 0.0950] cm;
5. H5(~ω) for events which have ct ∈ ]0.0950; 0.5000] cm.

The ct segmentation is chosen in order to have, on average, about the same
number of events per bin (≈ 26) in each of the Hi(~ω) histogram, as in case of
the initial no-ct-binned angular acceptance (≈ 28); for this reason, since the flat
MC is made of 223 000 events, the three-dimensional histograms are built with
12× 12× 12 bins.



98 TIME-INTEGRATED ANALYSIS

ct (cm)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ca
nd

id
at

es
/0

.0
1 

cm

0

5

10

15

20

25

30

310×

ct (cm):
0.0000 - 0.0375
0.0375 - 0.0550
0.0550 - 0.0750
0.0750 - 0.0950
0.0950 - 0.5000

 ctsMC data: B

Figure 5.17: ct distribution of real MC data sample. The five ct slices are represented with
different colors: in red 0.0 cm ≤ ct < 0.0375 cm, in yellow 0.0375 cm < ct <
0.055 cm, in green 0.055 cm ≤ ct < 0.075 cm, in light blue 0.075 cm ≤ ct < 0.095 cm,
and in blue 0.095 cm < ct < 0.50 cm.

• using the toyMC tools, we generate a pseudo-experiment made of 1000 events
(the same order of events that we have in the actual sample), in which we apply
the Hi(~ω) detector acceptance;

• we fit the previous pseudo-experiment, using the Hi+1(~ω) acceptance in the
angular pdf.

Thus we can compute the differences ∆i-f between the input polarization amplitudes,
generated with the Hi(ω) acceptance slice, and the fitted ones, using the Hi+1(ω)
acceptance slice. This allow us to study:

1. the variation of ∆i-f with the slices, and thus, with ct;

2. if we can reduce the differences between an acceptance slice and the next one
with a smaller binning of ct.

Again, we generate the pseudo-experiments with |A0|2 = |A‖|2 = 0.333 and δ = π/2.
The results are reported in tab. 22 for |A0|2, and in tab. 23 for |A‖|2. We find that the
values of ∆i-f decrease with the smaller binning of ct, although, on average, the ∆i-f
are still of the order of 1-2%.

In principle, one can further reduce the ct bin width and make more slices than five;
anyway there is a practical issue: a larger number of bins requires also a huge number
of events generated in the flatMC, to maintain a certain number of events per bin to
control the fluctuations of the three-dimensional acceptance histogram. We see that,
both in the |A0|2 and in the |A‖|2 estimation, the largest ∆i-f is for the case where the
pseudo-experiment is generated using H4(ω) and it is fitted with H5(ω). Maybe, the
cause of this is the large ct bin of the H5(ω), that doesn’t consider the variation of the
acceptance in the tail of the ct distribution (see fig. 5.17).

5.8 TIME-INTEGRATED FIT TO REAL DATA
The results of the fit performed on 2.9 fb−1 of data for the Bs → φφ are finally listed in
the table 24. We observe that the statistical uncertainties of the polarization amplitudes
are of the same order of the ones that we have quoted in Sect. 2.5.2. The correlation
coefficient between |A0|2 and |A‖|2 is ρ = −0.447.
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Generation acceptance Fit acceptance fitted |A0|2 ∆i-f

H1(ω) H2(ω) 0.35± 0.03 0.02
H2(ω) H3(ω) 0.35± 0.03 0.02
H3(ω) H4(ω) 0.36± 0.03 0.03
H4(ω) H5(ω) 0.37± 0.03 0.04

Table 22: Differences between fitted and input values of |A0|2 for the five detector acceptances.

Generation acceptance Fit acceptance fitted |A‖|2 ∆i-f

H1(ω) H2(ω) 0.33± 0.03 0.00
H2(ω) H3(ω) 0.32± 0.03 0.01
H3(ω) H4(ω) 0.32± 0.03 0.01
H4(ω) H5(ω) 0.31± 0.03 0.02

Table 23: Differences between fitted and input values of |A‖|2 for the five detector acceptances.

Parameter Fit value

M [GeV/c2] 5.364± 0.001
σ [GeV/c2] 0.016± 0.001

fb 0.38± 0.03
b [c2/GeV] 2.7± 0.7

|A0|2 0.351± 0.041
|A‖|2 0.286± 0.043

δ [rad] 0.4± 0.4
pϑ1 0.3± 0.3
pϑ2 0.8± 0.5
pΦ 0.03± 0.06

Table 24: Results of the time-integrated fit for Bs → φφ.

The time-integrated fit projections onto the three helicity angles are shown in fig. 5.18:
we see that the data distributions are very well reproduced by the fitting functions.
The χ2 probabilities of the fit projections are 0.46 for cos ϑ1, 0.62 for cos ϑ2 and 0.11 for
Φ. The cos ϑ1 and cos ϑ2 projection present a very similar behaviour, both in the signal
and in the background components, which is a confirmation of the symmetry of these
two variables.

5.8.1 Likelihood scan

The results are given in terms of the ML estimates. Therefore the likelihood parabolic
behaviour for the relevant parameters has to be checked. This can be achieved with the
likelihood scans. In a scan, the value of the likelihood function is sampled by varying
a certain parameter, leaving all other parameters fixed at the estimated value. The
curve resulting from each scan is plotted in order to show the approximate behaviour
of the likelihood. The procedure is not intended for minimization, thus the value of
the minimum showed in the scan plot could be a little bit different with respect to the
estimate point in the minimization procedure.

The likelihood scans for the polarization amplitudes and the strong phases are re-
ported in fig. 5.19. The scans for the polarization amplitudes shows the expected
parabolic behaviour mandatory to be able to have a reliable point estimate. This is not
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Figure 5.18: Angular projections of the time-integrated fit for Bs → φφ: cos ϑ1 (a), cos ϑ2 (b) and
Φ (c). The χ2 probabilities of the fit projections are 0.46, 0.62 and 0.11 respectively.

the case for the strong phase: the definition ambiguity can be seen in the likelihood
profile, which has two minima. Since the likelihood scan for δ has a non-parabolic
shape and because of its biases put in evidence in Sect. 5.5.3, we don’t consider the
point estimate for this quantity.
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Figure 5.19: Likelihood scans of the time-integrated fit for Bs → φφ: |A0|2 (a), |A‖|2 (b) and δ
(c).
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This chapter details the time-dependent analysis. The general problem of dealing
with a time-dependent angular acceptance is worked out: a solution is proposed

and the new likelihood, which contains also the reconstructed Bs proper decay time, t,
as input variable, is then built on this basis. Thus, in this thesis, with “time-dependent”
we mean that the fit takes into account the dependencies on t of the detector angular
acceptance and the time evolution in the angular decay rate. In particular, this means
that we use eq. 2.60 instead of eq. 5.13 as the signal angular pdf:

gs(~ω) =
1
N A(~ω)

d3Λ
d~ω
→ gs(~ω, t) =

1
N ′A(~ω, t)

d4Λ
dtd~ω

The new fitter is tested by studying to the pull distributions. Then, the achieved im-
provements are shown, testing the framework with the fit to the realistic MC. Finally,
we measure the polarization amplitudes of the Bs → φφ decay, and the fit projec-
tions onto the data distributions are shown. A list of the sources of the systematic
uncertainties is also reported.

6.1 HANDLING OF A TIME-DEPENDENT ANGULAR ACCEP-
TANCE

In the previous chapter, we demonstrate the dependence of the detector angular ac-
ceptance on the reconstructed B proper decay time. This is the first time that such an
effect has been discovered in CDF analyses in the B sector. Actually, in the previous
angular analyses, like in [1, 62], the constancy of the acceptance with respect to t was
always naturally assumed.

One may ask himself why this doesn’t happen in our case, or why the acceptance
ct-dependence was not visible till now. While is quite simple to answer to the second
question, the first one seems not to be so trivial. A hypothesis is that the origin of
this surprising behaviour is due to the TTT and off-line cut selections on the impact
parameter of the reconstructed K mesons, which is closely related to the helicity an-
gles (for instance, | cos ϑ1| ≈ 1 corresponds to a d0(K1) ≈ 0); the correlation of the
d0(K) selection to the Bs proper time is not so obvious, because for each Bs meson
there are four K particles that can trigger, and because the d0(K) may depend on the

101
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corresponding d0(φ). An exact answer needs a precise study. Anyway, we think that
the effect was not observed before because:

• there was no other angular analysis that uses the TTT selection, except for the
Bd → φK0? analysis in [62];

• the Bd → φK0? analysis has a lower statistics sample with respect to ours, thus,
even if a similar effect was present, it could be neglected (see tab. 3);

• the off-line selection in [62] is not based on same particle impact parameter cut
selection, as ours is;

• the topology of the Bd → φK0? is a little bit different with respect to the Bs → φφ,
since the K0? decay in a Kπ pair.

While a detailed study to investigate the exact origin of this issue with the aim of
reducing the impact of this on the analysis would be desirable in the future, in the
following we detail a general solution that could be applied to the present problem as
well as in other cases where such a time dependent angular acceptance is found. Thus,
in the following we discuss a way to treat the “time-dependent” angular acceptance
and to modify the time-integrated fit.

6.1.1 The New Detector Angular Acceptance

It is very difficult to find the analytical form of A(~ω) because of the correlations
among the three helicity angles. Actually, we have used the three-dimensional his-
togram H(~ω) to model empirically the detector angular acceptance, since the an-
gles correlations don’t allow us to simple write A(~ω) as the product of three terms
Aϑ1(ϑ1)Aϑ2(ϑ2)AΦ(Φ).

Now, the situation becomes more complicated, because we have to consider that A
is also a function of t:

A(~ω)→ A(~ω, t) (6.1)

By comparing the acceptance projected on helicity angle in different bins of ct we
notice that a non trivial correlation exist between angle and time so that it is not
possible to write a simple factorization of A(~ω, t) in two terms, A(~ω)At(t).

A feasible solution could be the generalization of the three-dimensional histogram
H(~ω): one may construct an object H(~ω, t), which is an extension of H(~ω), adding to
it another dimension, which account for the t variable. If H(~ω) returns the probability
to find an event at each position in the three-dimensional ~ω space, H(~ω, t) accounts
for this probability in the four-dimensional ~ω ⊗ t space. The construction of H(~ω, t)
is simple: one divides the ~ω⊗ t space in N four-dimensional cells,

vi = [cos ϑ
(i)
1 , cos ϑ

(i+1)
1 ]× [cos ϑ

(i)
2 , cos ϑ

(i+1)
2 ]× [Φ(i), Φ(i+1)]× [t(i), t(i+1)]. (6.2)

Then each vi cell is filled, counting how many events, generated with the flatMC, have
the right value (cos ϑ̂1, cos ϑ̂2, Φ̂, t̂) ∈ vi. Thus, once H(~ω, t) is normalized to one
dividing each cell content by the total number of event used, H(~ω, t) is an effective
representation of the four-dimensional detector acceptance curve A(~ω, t).

In practice, we compute H(~ω, t) by the procedure of binning the angular acceptance
in slices of ct, adopted in the previous chapter to put in evidence the dependence of
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A(~ω) on t: the binning of the t axis has an effect on H(~ω, t) that is represented by the
various ct slices Hi(~ω). Thus, the four-dimensional angular acceptance becomes:

H(~ω, t) =



H1(~ω) if t ∈ [t(0), t(1)]
H2(~ω) if t ∈ [t(1), t(2)]
. . .
Hi(~ω) if t ∈ [t(i), t(i+1)]
. . .
HN(~ω) if t ∈ [t(N−1), t(N)]

(6.3)

In principle, a large number of slices (i. e., a small bin width) assures a better sam-
pling of the variation in t, but a restriction is imposed by the total number of events
generated in the flatMC, as mentioned in Sect 5.7.2, since a certain number of event
per bin in the Hi histograms is necessary to control the fluctuations of each bin con-
tent. We can use the five slices defined in Sect. 5.7.2. The flatMC used is made of about
223 000 events, divided in 12× 12× 12 bins in ~ω and 5 slices in ct: on average, we have
about 26 events per bin which corresponds to a mean fluctuation of order of 20%.

A new conceptual topic arises from the construction of the angular acceptance with
the slices of ct. In fact, eq. 6.3 must be treat as a conditional probability, since the Hi(~ω)
returns the probability of an event to have a certain value ω̂, given t ∈ [t(i), t(i+1)]. We
use the following general notation:

• a conditional probability is written P(a|b) (the probability of some variable a,
given the occurrence of some other variable b);

• a joint probability, i. e., the probability of two variables in conjunction, is written
P(a ∩ b), or simply P(a, b).

• P(a) is the prior probability or marginal probability of a. It is prior in the sense
that it does not take into account any information about b.

The following equation holds:

P(a|b) =
P(a ∩ b)
P(b)

(6.4)

With the eq. 6.3 we pass to the use of a “conditional angular acceptance”:

A(~ω, t)→ A(~ω|t) (6.5)

6.2 THE NEW TIME-DEPENDENT LIKELIHOOD
To include the new effect in the fit, we have to consider the reconstructed Bs proper
decay time in the set of the input variables as well, since for each event the likelihood
function has to assign the correct angular acceptance slice. This means that the likeli-
hood must account the time evolution. The mass pdf is independent on t, so it doesn’t
change. The time evolution enters in the angular component: we have to use as the
signal angular pdf the decay rate as a function of both the proper decay time and the
helicity angles, described by eq. 2.60, instead of its time integration (eq. 5.13):

d3Λ
d~ω
→ d4Λ

dtd~ω
= f (~ω, t) (6.6)

The new angular pdf is in practice a joint probability of ~ω and t. This has to be com-
bined with the angular acceptance, that in our representation, H(~ω|t), is a conditional
probability.
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We have two choices:

1. find a method to compute H(~ω, t), instead of H(~ω|t);

2. transform f (~ω, t) in f (~ω|t). This is possible using the definition 6.4:

f (~ω|t) =
f (~ω, t)

g(t)
(6.7)

where g(t) =
∫

f (~ω, t)d~ω is the prior probability of t.

The second option is the most feasible one, since the computation of g(t) requires a
simple integration.

We recall here eq. 2.60, i. e.,

f (~ω, t) =
9

32π

[
Fe(~ω)KL(t) +Fo(~ω)KH(t)

]
(6.8)

where we have distinct two time-dependent and two angular-dependent terms:

Fe(~ω) = |A0|2 f1(~ω) + |A‖|2 f2(~ω) + |A0||A‖| cos δ f5(~ω) (6.9a)

Fo(~ω) = |A⊥|2 f3(~ω) (6.9b)

KL(t) = 2e−ΓLt (6.9c)

KH(t) = 2e−ΓHt (6.9d)

Then we observe that:

g(t) =
∫

f (~ω, t)d~ω = (|A0|2 + |A‖|2)KL(t) + |A⊥|2KH(t) =

= aKL(t) + bKH(t)
(6.10)

This equation nicely shows that the polarization amplitudes combines to give the
fractions, a = |A0|2 + |A‖|2 and b = |A⊥|2, of the two time-evolution components. We
can rewrite eq. 6.7 in the following form:

f (~ω|t) =
9

32π

[
Fe(~ω)U (t) +Fo(~ω)V(t)

]
(6.11)

with the definition of:

U (t) =
KL(t)
g(t)

=
KL(t)

aKL(t) + bKH(t)
(6.12a)

V(t) =
KH(t)
g(t)

=
KH(t)

aKL(t) + bKH(t)
(6.12b)

Hence, the signal angular pdf becomes the following conditional probability

gs(~ω|t) =
1
N ′

9
32π

[
Fe(~ω)U (t) +Fo(~ω)V(t)

]
A(~ω|t) (6.13)

and the normalization factor N ′ is discussed in the Appendix A. We are not interested
in the estimation of ΓL and ΓH, thus we fix them to the latest PDG value as we did in the
time-integrated fit. Then, we can model the two time-evolution term, U (t) and V(t),
using a realistic MC simulation: KL(t) and KH(t) are represented in practice by two
histograms, hL(t) and hH(t), that are the ct distributions of the events generated with
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Figure 6.1: Plots of hL(t) (in black) and hH(t) (in red).

the mean time lives τL and τH, respectively. These histograms, properly normalized
to one, are in fact the two components of the prior probability density g(t). They are
shown in fig. 6.1. The use of the MC histograms allows us to automatically take into
account the detector and selection effects on the ct distribution, such as resolution in
the ct measurement and the trigger ct-acceptance.

Finally, the representation of the resulting signal angular pdf is:

gs(~ω|t) =
1
N ′

9
32π

[
Fe(~ω)

hL(t)
ahL(t) + bhH(t)

+Fo(~ω)
hH(t)

ahL(t) + bhH(t)

]
H(~ω|t) (6.14)

6.2.1 Angular Background Parameterization

In the time-integrated fit, we verified that the three helicity angles are not correlated
among each other, looking at their scatter plots in the side-bands events (fig. 5.7). This
allow us to write the angular background pdf as the product of three functions, one
for each helicity angles.

In the time-dependent fit, we would like to treat the angular background pdf in the
same simple manner, although we know this is an approximation, since, in principle,
the helicity angles could be correlated to t in the background events as well as they
are in the signal samples. To check how good is this treatment of the background pdf,
we divide the side-bands events in two sets, A and B:

• A events with ct < 0.03 cm;

• B events with ct ≥ 0.5 cm.

Then we compare the shapes of the angular distributions of A and B. Their plots are
shown in fig. 6.2. The Kolmogorov test returns probabilities (tab 25) which justify the
use of the factorization of the angular background pdf in the following way:

gb(~ω, t) = g(ω1)
b g(ω2)

b g(ω3)
b g(t)

b (6.15)

where the functions g(ω1)
b , g(ω2)

b and g(ω3) are defined by the eq. 5.23.
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Figure 6.2: Comparisons of the angular distributions of the set A and the set B: cos ϑ1 (a), cos ϑ2
(b) and Φ (c). Black points are events with ct < 0.03 cm; red points are events with
ct ≥ 0.03 cm.

Variable Kolmogorov test probability

cos ϑ1 0.82

cos ϑ2 0.51

Φ 0.95

Table 25: Kolmogorov test probabilities of angular side-bands distributions for the set A and
the set B.

The pdf gb(~ω, t) is a joint probability of ~ω and t. We can transform it in a conditional
probability as the angular signal pdf, using def. 6.4:

gb(~ω, t)→ gb(~ω|t) =
gb(~ω, t)

g(t)
b

=
g(ω1)

b g(ω2)
b g(ω3)

b g(t)
b

g(t)
b

=

= g(ω1)
b g(ω2)

b g(ω3)

(6.16)

Hence, with the factorization of the variables terms we can use the background pdf
adopted in the time-integrated fit, since the test in fig 6.2 allows us to assume that the
background pdf is independent on the reconstructed B proper decay time.
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6.3 NEW FIT SUMMARY
We now summarize the time-dependent fit features:

• the input variables are the reconstructed Bs mass m and proper decay time t, and
the reconstructed K helicity angles ~ω = (ϑ1, ϑ2, Φ);

• the mass pdf is not changed with respect to the one of time-integrated analysis,
both for the signal and the background components. They are described by
eq. 5.11 and eq. 5.12, respectively.

• The angular background pdf is the same of the time-integrated fit as well.

• The angular signal pdf is represented by eq. 6.14, where:
– the detector acceptance is given by the three-dimensional slices Hi(~ω) for

each ct-bins i (i = 1, . . . , 5) identified in Sect 5.7.2;
– the time evolution terms, U (t) and V(t), are modelled using the combina-

tion of the MC histograms hL(t) and hH(t) (eq. 6.12).

• We deal with the same ten fit parameters defined in the time-integrated fit, re-
ported in tab. 26.

Signal Background

Mass M, σ fb, b
Angular |A0|2, |A‖|2, δ pϑ1 , pϑ2 , pΦ

Table 26: Parameters summary of the time-dependent Bs → φφ fit.

• The following quantities are fixed in the final fit:
– k and h, from the MC fit;
– τL = ΓL and τL = ΓL, the two mean life-time of the Bs mass eigenstates, are

taken from the last PDG values and they are used in the generation of the
hL(t) and hH(t) histograms.

– φV = 0, assuming no CP-violation;

6.4 FITTER TESTS
Before carrying out the fit over the data sample, we perform two tests: the pull distri-
butions check and the fit to the realistic MC following the same approach we used for
the time-integrated analysis. These test are described in the following sections.

6.4.1 Pulls Distributions

We perform the pulls distribution test, fitting samples with 1000 events for each
pseudo-experiments, It is useful to check if there is any potential bias and any sig-
nificant change in the fitter behaviour with respect to the time-integrated case. The
pseudo-experiments are generated with the bootstrap of the real data sample. The boot-
strap is a useful statistical technique described in [107].1 The bootstrapped pseudo-
experiment is obtained by random sampling the real data set, given at each event the

1 Bootstrapping is the practice of estimating properties of an estimator by measuring those properties when
sampling from an approximating distribution. One standard choice for an approximating distribution is
the empirical distribution of the observed data.
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same probability to be chosen. The results of the test are reported in tab. 27, and the
pulls distributions are shown in fig. 6.3. The resolution (third column of the table) of
each parameter is consistent with the one found in the time-integrated fit (tab. 13).

Parameter Input value Average fit error Mean Variance Prob(χ2) [%]

M 5.364 GeV/c2 0.0009 GeV/c2 −0.02± 0.03 0.99± 0.02 93
σ 0.017 GeV/c2 0.0008 GeV/c2 −0.04± 0.04 1.16± 0.03 20
fb 0.40 0.02 −0.09± 0.03 1.03± 0.02 21
b 2.6 c2/GeV 0.5 c2/GeV 0.00± 0.03 1.03± 0.02 14
|A0|2 0.39 0.03 0.00± 0.03 1.03± 0.02 14
|A‖|2 0.26 0.03 −0.02± 0.03 1.03± 0.02 64

δ 0.4 rad 0.3 rad 0.13± 0.03 0.93± 0.02 0
pϑ1 0.2 0.2 0.10± 0.03 1.02± 0.02 0
pϑ2 0.5 0.3 −0.05± 0.03 1.05± 0.02 0
pΦ 0.03 0.04 0.11± 0.03 1.02± 0.02 0

Table 27: Pulls mean and variance for time-dependent fit. In the second column the input
parameters of the generation are listed. The third column reports the average error
in the pseudo-experiments fit (resolution). The fourth and the fifth columns list the
mean value and the variance of the pull distributions, respectively. The sixth column
presents the χ2 probability for a gaussian fit of the pulls distribution with mean and
variance 0 and 1, respectively.

We find that the fitter returns unbiased estimates and consistent uncertainties for
the polarization amplitudes. The strong phase δ presents the same problem of the
time-integrated fit. The pulls of the other parameters are within 0.1 σ of their mean
values.

6.4.2 Improvements of Realistic MC Fit

The fit to the realistic MC data sample is the second test of the time-dependent fit. The
purpose of the test is to compare the results with the ones of the time-integrated fit to
the same realistic MC data sample, in order to check if there are improvements with
the new pdf definition. Thus, we fit the phase space MC used for the calculation of
the detector angular acceptance as we discuss in Sect. 5.7. The results are listed in
table 28. The fit projections onto the three helicity angles distributions are reported in
figs. 6.4–6.6. The differences between the estimated values and the input ones are still
of the order of 1-2%. Anyway, the improvements achieved by the new fit is evident
in the fit projections onto the cos ϑ1(2) distributions, looking at the comparisons in
figs. 6.4 and 6.5. The not complete agreement with the expected values could be due
to the binning of the ct-slices: with this large statistic a smaller bin width is probably
needed to account for the ct-variations of the angular acceptance. The shifts from the
expected values could indeed represent an estimation of the systematic uncertainties
of the measurements due to the ct-bin width.

Parameter MC time-dependent fit value

|A0|2 0.356± 0.001
|A‖|2 0.322± 0.001

δ [rad] 1.567± 0.005

Table 28: Parameters of the realistic MC angular fit for Bs → φφ
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Figure 6.3: Pulls distributions for time-dependent fit
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Figure 6.4: Comparison of the time-integrated and the time-dependent fit to the MC data: cos ϑ1
projection. (a) time-integrated fit; (b) time-dependent fit. The black points are MC
data, the red line is the fit projection.
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Figure 6.5: Comparison of the time-integrated and the time-dependent fit to the MC data: cos ϑ2
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6.5 TIME-DEPENDENT FIT TO REAL DATA

The results of the time-dependent fit performed on 2.9 fb−1 of data for the Bs → φφ
are finally listed in the table 29. Table 30 reports the correlation coefficients between
the parameters. We observe that each parameter measurement is consistent with the
corresponding time-integrated fit result within the uncertainties.

Parameter Fit value

M [GeV/c2] 5.364± 0.001
σ [GeV/c2] 0.017± 0.001

fb 0.40± 0.03
b [c2/GeV] 2.6± 0.6

|A0|2 0.388± 0.042
|A‖|2 0.257± 0.041

δ [rad] 0.4± 0.3
pϑ1 0.1± 0.3
pϑ2 0.5± 0.4
pΦ 0.03± 0.05

Table 29: Results of the time-dependent fit for Bs → φφ.
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Figure 6.7: Time-dependent fit projection onto the mass distribution for Bs → φφ. The black
points are the data; the red line is the resulting fit distribution. The blue line rep-
resents the signal component, the green line the background. The χ2 probability of
the fit projection is 0.02,

The time-dependent fit projections onto the three helicity angles are shown in fig. 6.8:
we see that the data distributions are very well reproduced by the fitting functions. The
χ2 probabilities of the fit projections are 0.60 for cos ϑ1, 0.38 for cos ϑ2 and 0.12 for Φ.
The time-dependent fit projections onto the mass distribution is shown in fig. 6.7. In
fig. 6.9 we compare the ct distribution of the events in the mass signal peak side-bands
subtracted with the histogram of g(t) where the a and b fractions are calculated with
the estimated polarization amplitudes. The χ2 test on these two distributions returns
a probability of 46%.
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6.5.1 Likelihood Scan

The likelihood scans for the polarization amplitudes and the strong phases are re-
ported in fig. 6.10. The scans for the polarization amplitudes shows the expected
parabolic behaviour mandatory to be able to have a reliable point estimate. This is not
the case for the strong phase: the definition ambiguity can be seen in the likelihood
profile, which has two minima. Since the likelihood scan for δ has a non-parabolic
shape and because of its biases put in evidence in Sect. 5.5.3, we don’t consider accept-
able the point estimate for this quantity.

6.5.2 Perspectives: Systematic Studies

The next natural step to complete the measurement is the computation of the system-
atic uncertainty. In the following we discuss a list of the main systematic sources, but
we could not be achieved in the time frame of this thesis their estimation.

The systematic uncertainty for the ML fit is meant to cover the effects which may
have not been properly incorporated in our model and could precisely lead to system-
atic biases on the estimates. These uncertainties are mostly evaluated using pseudo-
experiments technique. For a parameter ξ, the magnitude of a systematics is evalu-
ated from the difference of the mean ξsyst from the toyMC with the systematic effect
included and the mean ξref of the toyMC when the effect is removed. Thus, we will
evaluate the systematic effects by simulating experiments with a different parameteri-
zation while using the default model for fitting.

UNCERTAINTIES ON Γ VALUES. The uncertainties on the values of ΓL(H) have an im-
pact on the estimates. To compute this effect we will fit some pseudo-experiments
generated varying the value of ΓL(H) within one sigma of their uncertainties. Per-
forming a fit to a pseudo-experiment sample generated with the central value
of ΓL(H), one gets the systematic uncertainty, looking at the differences of the
estimate values for two kind of pseudo-experiments.

ANGULAR BACKGROUND PARAMETERIZATION. We observe a good agreement between
the data in the sideband mass regions and the angular background model, but
we cannot exactly know if we used a too simple or too complex models. Thus,
we will test it fitting some pseudo-experiments in which the angular background
is generated using different models, as some linear functions for all angular vari-
ables or, alternatively, a similar functional form as the one of the signal com-
ponent. Then we will performs a fit to a pseudo-experiment generated with
the same model used in the fit to the real data. The difference between the ob-
tained estimate in the various fits defines the systematic uncertainty related to
the angular background parameterization.

Another potentially source of a systematic effect in the angular background com-
ponent comes from the assumption of no-correlation of the angular variables
with the proper decay time t. In order to estimate a systematic effect introduced
by this assumption, we will proceed as in the previous case, using toyMC where
the angular background component is generated with a certain reasonable func-
tion of both angles and time.

NON-RESONANT CONTRIBUTION. The fit of the reconstructed φ mass distribution shows
that there are no evident non-resonant components under the φ peak signal
(fig. 4.12). However, it is possible that there is a very small S-wave (scalar) con-
tribution to the angular distribution, such as a f0 state. To compute this effect,
one has first to estimate the fraction of these events in our data sample. Then,
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one can model with the MC technique the contribution of this scalar component
into the angular distribution. Thus, the usually pseudo-experiments procedure
allows one to compute the order of the systematic uncertainty of such an effect.

REFLECTIONS CONTRIBUTION. In our fit we do not include the Bs → φK? reflection
component. Anyway, we already know its fraction in our data sample from the
branching ratio analysis (see Sect. 4.4). To estimate the systematic effect intro-
duced by not accounting for the reflections, we can proceed with the pseudo-
experiments technique in a similar way of the case of the non-resonant contribu-
tion.

RESIDUAL DISCREPANCY BETWEEN DATA AND MC. In Sect. 4.5 we mention the MC val-
idation performed in the branching ratio analysis [29]. A residual discrepancy
between the MC and the actual data distributions could be present and a further
investigate is desirable, because the MC simulation plays a pivotal role in the
fitter framework, with the construction of the histograms that represents the an-
gular acceptance and the time evolution terms in the signal pdf. Thus, we will
proceed as follow:

• find the kinematic variables that present some discrepancy between the
data and the MC;

• reweight the MC distributions in order to achieve a greater agreement in
these distributions;

• use the reweighted MC to construct the needed histograms;

• fit the real data sample applying the reweighted MC histograms in the pdf;

• compare the estimates of that fit with the ones obtained by the not-reweighted
MC.

The latter comparison (in particular the differences of the estimates in the two
fits) gives the order of the systematic uncertainty due to the residual discrepancy
between the actual data and the MC model.

BIN OF THE ct-SLICES. It is evident that the number of the ct-slice and thus their bin
width have a consequence in the model of the acceptance variation with t for the
angular acceptance. The sampling of this dependency improves as well as the
number of the slices increase and their bin width becomes smaller. In particular,
the latter condition is needed in the tail of the ct-distribution. In this case we
can reduce this systematic effect. We will increase the statistic of the flatMC data
sample in order to allow one to construct the H(~ω|t) with a greater number of
slices than five.

We expect a small contribution to the total error by the systematic uncertainties,
since the statistical uncertainties should be dominant. Actually, the time-dependent
fit avoids the time integration of the differential decay rate, which was estimated to be
the main systematic source of the analysis.
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Figure 6.8: Angular projections of the time-dependent fit for Bs → φφ: cos ϑ1 (a), cos ϑ2 (b) and
Φ (c). The χ2 probabilities of the fit projections are 0.60, 0.38 and 0.12 respectively.
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7 C O N C L U S I O N S

In this thesis we have presented the first measurement of the polarization amplitudes
for the charmless Bs → φφ → [K+K−][K+K−] decay of the Bs meson. The result is
achieved using an unbinned Maximum Likelihood fit to the data collected by the CDFII
detector, in a period starting from March 2001 till April 2008, which corresponds to an
integrated luminosity of 2.9 fb−1. This measurement represents the natural evolution
of the branching ratio analysis [29], in which a yield of 300 signal events was selected
using the data sample collected by the Two Track Trigger.

In the analysis we don’t distinguish between Bs and B̄s at the production time (un-
tagged analysis) and we assume the Bs mixing phase φV = 0 because in the SM its
value is very small. The final fit takes into account the time evolution of the angular
decay rate in terms of the Bs Light and Heavy mass eigenstates evolutions, but their
two mean time lives, τL and τH, are taken as external parameters and they are fixed to
the latest PDG values. The input fit variables are the reconstructed Bs mass and proper
decay time, and the reconstructed K+ helicity angles. The fitter framework is checked
by different tests. First, the pull distributions, which shows that the estimates are unbi-
ased; second, the fit of the realistic Monte Carlo data. Third, the fit of the Bs → J/ψφ
decay selected by the TTT: the polarizations amplitudes we find are consistent with the
ones reported in [1]; this result contributes to enforce the reliability of the analysis.

Furthermore, our work puts in evidence an original topic, that was never observed
until now: an unexpected dependence of the signal acceptance on the proper decay
time (t) of the Bs mesons. This specific issue, which is most likely a general feature
induced by any signal selection based on the lifetime information, is supposed to be
related to the on-line TTT and off-line selections based on the impact parameter.

This complication is handled by binning in slices of t the signal acceptance, which
is modeled using the MC simulation. Such treatment involves the construction of the
pdf that enters the Likelihood thought as a conditional probability of the mass and
the helicity angles, given the t of the events. The final time-dependent fit, indeed,
reproduces the biases observed in large statistics MC samples.

The three estimated polarization amplitudes are:

|A0|2 |A‖|2 |A⊥|2

0.388± 0.042 0.257± 0.041 0.355± 0.044

and the resulting polarization fractions are:

longitudinal ( fL) transverse ( fT)

0.388± 0.042 0.612± 0.060

7.1 PERSPECTIVES
The systematic uncertainties listed at the end of the previous chapter have to be com-
puted and this is the next foreseen step of this analysis. Anyway, we expect that the
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statistical uncertainties give the dominant contribution to the total error. Actually, the
final fit avoids the time integration of the differential decay rate, which was estimated
to be the main source of the systematic uncertainty. An improvement of the used pro-
cedure, that minimizes the systematic uncertainty due to the binning in ct of the signal
acceptance, could be achieved increasing the number of the MC simulated events: this
allows one to use more ct-slices of a smaller bin width, and to better sample the vari-
ation with t of the signal acceptance. Besides, with a large number of events a direct
implementation of the “four-dimensional histogram” described in Sect. 6.1.1 can be
made.

The measurement is performed with 2.9 fb−1 of data, achieved by CDFII in April
of the last year. As of this writing, 6.9 fb−1 of data is already delivered, and at the
end of the next year an integrated luminosity of about 10 fb−1 is expected. Thus,
it is possible to extend the analysis to a greater data sample in order to minimize
the statistical uncertainties. A rough calculation, which doesn’t take into account the
prescaling of the different triggers with the instantaneous luminosity, shows that the
reachable resolutions σ on the polarization amplitudes is:

σ = 0.04

√
2.9
10
≈ 0.02 (7.1)

Hence, we could expect a factor 1/2 of the current statistical uncertainty for the anal-
ysis in 10 fb−1 of data.

Moreover, the extension of the analysis beyond 2.9 fb−1 of data allows us to measure
the two mean live times τL and τH. Actually, not much more statistics with respect
to the ones in ours sample are needed to perform a time-dependent fit aimed at the
ΓL and ΓH estimation; such an analysis, indeed, could just require only little modifica-
tions to the time-dependent fit described in this thesis.

7.2 THEORETICAL CONSIDERATIONS ON THE RESULTS
From our measurement we can draw the following considerations:

1. the amplitude hierarchy |A0| � |A‖| ' |A⊥| of the SM is not satisfied in the
Bs → φφ decay, being |A0| ' |A⊥| & |A‖|;

2. the longitudinal polarization fraction is less than the transverse one, in contrast
with

• the SM expectation, that predicts a dominant longitudinal fraction with the
transversely-polarized amplitudes suppressed by a factor mφ/mBs ;

• the decay amplitudes for B → φK?, a b̄ → s̄ penguin transition like the
Bs → φφ, measured by the BaBar and the Belle experiments [17, 54, 55],
which result in a transverse polarization about equal to the longitudinal one,
being fL = 0.50± 0.05 for the B+ → φK?+ decay, and fL = 0.484± 0.033 for
the B0 → φK?0 decay.

We compare our results with the theoretical predictions of the various approaches
adopted in the calculation of the polarization amplitudes. They are reported in tab. 31.
We find that our central values are consistent within the uncertainty ranges with the
expectations of the QCD factorization 1.a. and 1.b in [22], while they are not with the
expectation of perturbative QCD [46]. The approach adopted in [22] justifies the vio-
lation of the amplitudes hierarchy and the large transverse polarization fraction with
the penguin weak-annihilation effects (see eq. 2.12 of Sect. 2.2.2), because the penguin
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fL [%] fT [%]

Our experimental result 38.8± 4.2 61.2± 6.0
QCD factorization 1.a 43+0+61

−0−34 57+0+61
−0−34

QCD factorization 1.b 48+0+26
−0−27 52+0+26

−0−27
QCD factorization 2 86.6 13.4
Naive factorization 88.3 11.7

NLO EWP 1 86.3 13.7
NLO EWP 2 86.3 13.7

perturbative QCD 61.9+3.6
−3.2

+2.5
−3.3

+0.0
−0.0 38.1+3.6

−3.2
+2.5
−3.3

+0.0
−0.0

Table 31: Comparison of our experimental results with the theoretical predictions. The refer-
ences are: [22] for QCD factorization 1.a and 1.b, [44] for QCD factorization 2 and
Naive factorization, [45] for NLO EWP 1 and 2, [46] for perturbative QCD.

annihilation plays a more significant role for the transverse polarization amplitudes
than for the longitudinal polarization ones.

In fact, in this model the penguin weak annihilation:

• gives small contribution to the longitudinal penguin amplitude;

• can (but do not need to) give large contribution to the transverse polarisation in
penguin-dominated decays;

• doesn’t give such an enhancement to the tree amplitudes, hence tree-dominated
decays should be predominantly longitudinally polarized, as it was observed for
the tree-level b→ u transition, such as B0 → ρ+ρ− [49, 50], B+ → ρ0ρ+ [51], and
B+ → ωρ+ [52];

Anyway, the penguin annihilation amplitude is phenomenologically indistinguishable
from the QCD penguin amplitude (O8 of eq. 2.11). and no polarization observables
can be calculated reliably from the theory alone, and this is the cause of the large
uncertainties in the predictions.

Even thought the model in [22] seems to account for the experimental results ob-
tained in this thesis, further theoretical investigations are needed. We can finally state
that the measurement presented in this thesis gives important inputs to the theoretical
frameworks of the penguin dominated Bs decay, which should help to improve the
predictive power of the current theoretical tools and challenge the SM explanation of
the polarization puzzle.





A N O R M A L I Z AT I O N O F T H E A N G U L A R
D I S T R I B U T I O N S

In the final likelihood formulation, the signal angular pdf is expressed as the prod-
uct of a function of the three helicity angles, f (~ω) = ∑6

i=1 Ki fi(~ω), (eq. 5.13, for the
time-integrated fit, and eq. 6.13 for the time-dependent one), and a three-dimensional
histogram, H(~ω), that models the detector angular acceptance A(~ω).1

In this appendix we are going to discuss the numerical technique used for the nor-
malization N of such pdf:

gs(~ω) =
1
N H(~ω) f (~ω) (A.1)

Naively, we have to evaluate the integral of a mathematical function multiplied by a
function represented by a histogram. We cannot anymore compute it analytically, but
we need a numerical computation. In order to simplify the problem, let’s start with
the one-dimensional case.

Given an integrable function f (x) (
∫

f (x) dx = F(x)), a histogram γ(x) normalized
to one and a number of bins N along the x axis, the numerical computation of the
normalization factor N

N =
∫ xmax

xmin

f (x)γ(x) dx (A.2)

can be approximated by the following sum:

N '
N

∑
j
I f

j I
γ
j (A.3)

where

I f
j =

∫ xj
max

xj
min

f (x) dx (A.4a)

Iγ
j = γ(xj)∆j (A.4b)

and xj is the central point of the j-th bin ∆j = xj
max − xj

min (see fig. A.1). If the bin
width is constant for each j (∆j = ∆), then we can write

N = M∆ (A.5)

where

M =
N

∑
j
I f

j γ(xj) =

=
[

F(x1
max)− F(x1

min)
]

γ(x1) + · · ·+
[

F(xN
max)− F(xN

min)
]

γ(xN)

(A.6)

1 For the moment, we can consider the pdf to be a function only of the angles without loss of generality,
although the pdf of the time-dependent fit has also the B meson proper decay time. For the transversity
variables, one has exactly the same situation, considering ~Ω instead of ~ω.
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Figure A.1: Graphical example of the I f
j and the Iγ

j terms.

If F(x) is a linear combination of two (or more) functions of x, F(x) = K1F1(x) +
K2F2(x), M can be easily evaluated:

M =
(

F(x1
max)− F(x1

min)
)
γ(x1) + · · ·+

(
F(xN

max)− F(xN
min)

)
γ(xN) =

= K1

[(
F1(x1

max)− F1(x1
min)

)
γ(x1) + · · ·+

(
F1(xN

max)− F1(xN
min)

)
γ(xN)

]
+

+ K2

[(
F2(x1

max)− F2(x1
min)

)
γ(x1) + · · ·+

(
F2(xN

max)− F2(xN
min)

)
γ(xN)

]
=

= K1w1 + K2w2

(A.7)

where in the last line we define the weights wi =
(

Fi(x1
max)− Fi(x1

min)
)
γ(x1) + · · ·+(

Fi(xN
max)− Fi(xN

min)
)
γ(xN).

The extension to our three-dimensional case is then straightforward, replacing:

f (x)→ f (~ω) =
6

∑
i=1

Ki fi(~ω)

∫
f (x)dx = F(x)→

∫
f (~ω) d~ω = F(~ω) =

6

∑
i=1

KiFi(~ω)

γ(x)→ H(~ω)

(A.8)
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and the bin width becomes a bin volume: ∆ → V. The function f (ω) is normalized
by the following integral over the total solid angle:∫ 1

−1

∫ 1

−1

∫ 2π

0
f (~ω) d cos ϑ1 d cos ϑ2 dΦ =

32π

9(K1 + K2 + K3)
=

1
η(K1, K2, K3)

. (A.9)

Then, the normalized pdf is

gs(~ω) =
η(K1, K2, K3) ∑6

i=1 Ki fi(~ω)

∑6
i=1 Kiwi

H(~ω)
V (A.10)

The parameters we want to estimate within the fit are all contained in the Ki coeffi-
cients. Thus, the weights wi can be computed once, before starting the maximization
procedure, since they are constant and don’t depend on the parameters. Moreover,
assuming no CP-violation and summing over Bs and B̄s terms, we have only K1, K2,
K3 and K5, as we described in Sect. 2.4.3.

In the case of the time-integrated fit:

K1 = |A0|2/ΓL

K2 = |A‖|2/ΓL

K3 = |A⊥|2/ΓH

K5 = |A0||A‖| cos δ/ΓL

(A.11)

then, the η(K1, K2, K3) becomes:

η(K1, K2, K3) =
9

32π

1
|A0|2+|A‖ |2

ΓL
+ |A⊥ |2

ΓH

(A.12)

where one recognizes that the second fraction is the term 1/W̃ of eq. 5.13 in the
Sect. 5.4.

For the time dependent fit, the situation is a little bit different. The pdf, f (~ω|t)
(eq. 6.13), is defined for each ct-bin ∆ti (i = 1, . . . , 5) of the angular acceptance his-
togram Hi(~ω|t) and must be integrated both in time and in the ~ω-space:

N =
5

∑
i=1
Ni =

=
5

∑
i=1

{ ∫
∆ti

∫ [
Fe(~ω)U (t) +Fo(~ω)V(t)

]
Hi(~ω) dtd~ω

}
=

=
5

∑
i=1

{ ∫ [
Fe(~ω)

∫
∆ti

U (t)dt +Fo(~ω)
∫

∆ti

V(t)dt
]

Hi(~ω) d~ω

}
=

=
5

∑
i=1

{ ∫ [
Fe(~ω)gU i +Fo(~ω)gV i

]
Hi(~ω) d~ω

}
(A.13)

where in the last line we introduce the ten coefficients gji (j = U ,V):

gU i =
∫

∆ti

U (t)dt (A.14a)

gV i =
∫

∆ti

V(t)dt. (A.14b)
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These coefficients depend on the parameters a = |A0|2 + |A‖| and b = |A⊥|2, con-
tained in U (t) and V(t); thus, they must be calculated each time that the values a and
b change in the numerical maximization. Anyway, they are easy to compute, because
U (t) and V(t) are expressed in term of the two histograms hL(t) and hH(t); in practice,
one has:

g̃U i = ∑
k

nL(tk)
anL(tk) + bnH(tk)

∀tk ∈ ∆ti

g̃V i = ∑
k

nL(tk)
anL(tk) + bnH(tk)

∀tk ∈ ∆ti

gU i =
g̃U i

∑5
l g̃U l

gV i =
g̃V i

∑5
l g̃V l

(A.15)

where nL(H)(tk) is the content of the histogram hL(H)(t) in its bin centered in tk.2

Once the time-evolution is integrated, each factor Ni is obtained as in the time-
integrated case:

Ni =
∫

fi(~ω) d~ω =
[
K1w1i(~ω) + K2w2i(~ω) + K5w5i(~ω)

]
gU i + K3w3i(~ω)gV i (A.16)

and, finally,

N =
5

∑
i=5

{[
K1w1i(~ω) + K2w2i(~ω) + K5w5i(~ω)

]
gU i + K3w3i(~ω)gV i

}
(A.17)

In this case,

K1 = |A0|2

K2 = |A‖|2

K3 = |A⊥|2

K5 = |A0||A‖| cos δ

(A.18)

then, the η(K1, K2, K3) becomes simply the factor 9/(32π).

2 The ct-bin of the hL(H) histogram is not a bin ∆ti of H(~ω|t).



B T H E B s → J / ψ φ A N A LY S I S D E TA I L S

In this appendix we report the analysis details of the Bs → J/ψφ data sample collected
with the TTT. Since most of the technical details are in common with the main analysis,
here the presentation is quite schematic, following the same scheme of the main text.
The results are reported and commented in Sect. 5.6.

B.1 MASS MODEL
The signal function has a width of around 10 MeV (see fig. 4.5). It is parameterized
with two gaussian functions having the same mean value M but different resolutions,
σ and kσ:

g(m)
s = h

1√
2πσ

e−
(m−M)2

2σ2 + (1− h)
1√

2πkσ
e−

(m−M)2

2k2σ2 (B.1)

where h is the fraction of one gaussian component with respect to the other. Fitting the
MC events of fig. B.1 we obtained the parameters summarized in tab. 32 . In the final

Parameter MC fit value

M [GeV/c2] 5.36916± 0.00007
σ [GeV/c2] 0.01577± 0.00004

k 2.9± 0.1
h 0.929± 0.005

Table 32: Parameters of MC data mass fit for Bs → J/ψφ.

fit the multiplicative factor k and the fraction h are fixed, while the other parameters
are left free.

The mass background follows an exponentially decreasing behavior:

g(m)
b =

b
e−bmmin − e−bmmax

e−bm (B.2)

where b is the slope of the exponential function, and m spans the interval [mmin =
5.2, mmax = 5.6] GeV/c.

We compare the results of this unbinned maximum likelihood fit of the recon-
structed B mass to the others of the binned fit performed in the branching ratio anal-
ysis [29]. The data sample is the same for the two fits. Table 33 reports the two fit’s
results and the mass distributions with the fit function overlaid are shown in fig. B.2.
The binned fit takes into account for the reflections. At variance with the Bs → φφ de-
cay, in this case the reflections impact can be seen by comparing the two background
parameters, Fb and b, in the table 33. In fig. B.2, the height of the total fit projection
at the value M is lower respect to the data distribution, because of the absence of the
reflections component under the peak signal. So from the comparison we can check
if there is a sizable effect due to the fact that we disregard the reflection in our fit.
Anyway, we obtain a good agreement in the central values and in the uncertainties for
the signal parameters.
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Figure B.1: Mass fit of MC data for Bs → J/ψφ. The black points are the MC data; the red line
is the resulting fit distribution. The χ2 probability of the fit projection is 0.43.

Parameter Unbinned fit Binned fit

M [GeV/c2] 5.3657± 0.0003 5.3660± 0.0003
σ [GeV/c2] 0.0090± 0.0003 0.0094± 0.0003
fb 0.63± 0.01 0.57± 0.01
b −1.5± 0.2 −1.2± 0.2

Table 33: Comparison of the mass fit results with the branching ratio analysis’ ones [29].
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Figure B.2: Comparison of our fit result (a) with the one from the branching ratio analysis (b).

B.2 ANGULAR MODEL

The equation 5.13 provides the signal angular parameterization, replacing the func-
tions fi(~ω) and the phase φV by fi(~Ω) (eq. 2.62) and by 2βs, respectively.

We evaluate the three-dimensional acceptance curve A(~ω), which accounts for the
angular detector acceptance, constructing the three-dimensional histogram H(~ω), as
we do for the main analysis. The projections of H(~ω) onto the three axes of the
transversity angles basis are shown in fig. B.3.
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Figure B.3: Detector angular acceptance projections: cos Θ (a), cos Ψ (b) and Φ (c).

B.2.1 Effect of different trigger path on angular detector angular acceptance

There is the possibility that the acceptance curve is different for the three trigger path
selections. We want to check if this is the case: we look at the projections of H(~ω) for
the different trigger paths. They are shown in fig. B.4: we can conclude that H(~ω) is
similar for each trigger selections. This test also guarantees no dependencies on the
integrated luminosity collected with the three different trigger paths. These allows us
to easily combine of all exclusive data sets.

B.2.2 Angular Background parameterization

It is reasonable to suppose that the transversity angles do not have any intrinsic mean-
ing for the combinatorial background. Thus, we use a purely empirical model derived
by analysing the angular distributions in the mass sidebands to model the background.
Looking at the scatter plots in fig. B.5, we see that the angular variables are not corre-
lated in the sideband regions; then the angular part of the background pdf factorizes
in the product of three terms:

g(ω)
b = g(ω1)

b g(ω2)
b g(ω3)

b (B.3)

where for the Bs → J/ψφ decay the parameterization adopted are:

g(ω1)
b =

1

2(1 + p(1)
Θ
3 + p(2)

Θ
5 )

(
1 + p(1)

Θ cos2 Θ + p(2)
Θ cos4 Θ

)
, (B.4a)

g(ω2)
b =

1
2

(
1 + pΨ cos Ψ

)
, (B.4b)

g(ω3)
b =

1
5π

(
1 +

1 + p(1)
Φ cos Φ
2

+
1 + p(2)

Φ cos 2Φ
2

+
1 + p(3)

Φ cos 4Φ
2

)
, (B.4c)
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Figure B.4: Effect of different trigger path on angular detector angular acceptance: cos Θ (a),
cos Ψ (b) and Φ (c).
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Figure B.5: Scatter plots to check for angular variables correlations in the side-band regions.
On the right, cos Θ versus cos Ψ. In the middle, cos Θ versus Φ. On the left, cos Ψ
versus Φ.
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The parameters p(i)
j then are determined form the fit (background parameters). Fig-

ure B.6 shows a binned fit to the sideband angular distributions using the above equa-
tions B.4.
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Figure B.6: Side-bands data angular fit for background parameterization for the Bs → J/ψφ
decay: cos Θ (a), cos Ψ (b) and Φ (c). Black points are side-bands data; red lines are
the fitting functions described in the text.

B.3 PULLS DISTRIBUTIONS
We perform the complete fit on 5000 pseudo-experiments of 1000 events each, which
is of the same order of the statistic that we have in 2.9 fb−1 of data. The results of this
test are reported in tab. 34, and the pulls distributions are shown in fig. B.7.

Parameter Mean Variance Prob(χ2) [%]

M 0.00± 0.03 1.01± 0.02 15
σ 0.01± 0.03 1.01± 0.02 42
fb −0.02± 0.03 0.96± 0.02 73
b −0.06± 0.03 0.98± 0.02 99
|A0|2 −0.02± 0.03 1.03± 0.02 17
|A‖|2 −0.02± 0.03 1.01± 0.02 34

δ −0.58± 0.03 0.78± 0.02 0
p(1)

Θ −0.02± 0.03 1.00± 0.02 27

p(2)
Θ 0.01± 0.03 1.01± 0.02 16

pΨ 0.06± 0.03 0.97± 0.02 33
p(1)

Φ −0.01± 0.03 1.02± 0.02 2
p(2)

Φ 0.03± 0.03 0.98± 0.02 51
p(3)

Φ 0.00± 0.03 1.01± 0.02 61

Table 34: Pulls mean and variance for Bs → J/ψφ (5000 events per pseudo-experiment). The
fourth column presents the χ2 probability for a gaussian fit of the pulls distribution
with mean and variance 0 and 1, respectively.
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We find that the fitter returns unbiased estimates and consistent uncertainties for all
parameters except for δ, which presents the same strange shape as in the case of the
Bs → φφ analysis.

-4 -2 0 2 40

20

40

60

80

100

120

140

160 M

-4 -2 0 2 40
20
40
60
80
100
120
140
160
180 σ

-4 -2 0 2 40
20
40
60
80
100
120
140
160
180

bf

-4 -2 0 2 40

20

40

60

80

100

120

140

160 b

-4 -2 0 2 4
0

20

40

60

80

100

120

140

160 2|
0

|A

-4 -2 0 2 4
0

20

40

60

80

100

120

140

160

180 2|
1

|A

-4 -2 0 2 4
0

50

100

150

200

250
δ

-4 -2 0 2 40

20
40

60

80

100

120

140

160

180

Θ

(1)p

-4 -2 0 2 40

20

40

60

80

100

120

140

160

Θ

(2)p

-4 -2 0 2 40
20
40
60
80
100
120
140
160
180

Ψ
p

-4 -2 0 2 40

20

40

60

80

100

120

140

160
Φ

(1)p

-4 -2 0 2 40
20
40
60
80
100
120
140
160
180

Φ

(2)p

-4 -2 0 2 40
20
40
60
80
100
120
140
160
180
200

Φ

(3)p

Figure B.7: Pulls distributions of the parameters for Bs → J/ψφ (5000 events per pseudo-
experiment).
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B.4 FIT TO THE REALISTIC MC
The fit to the realistic MC is the second test for the Bs → J/ψφ analysis. In order
to check if the fit returns values consistent with the inputs given to our MC, we fit
the phase space MC used for the calculation of the detector angular acceptance. The
simulated events of the MC are passed through the full-fledged detector simulation.
Then, they are selected with the same off-line requirements of the real data.

We expect to find no polarization, since the phase space MC has all the final state
particles with averaged spins. This means that the polarization amplitudes are |A0|2 '
|A‖|2 ' |A⊥|2 ' 0.33 and that the strong phase is δ ' π/2. The results of the fit are
satisfactory, since they are very close to the expected values. They are listed in table 35.
The fit projections on the three transversity angles distributions are reported in fig. B.8.
The distributions are very well reproduced by the fitting functions.

Parameter MC fit value

|A0|2 0.328± 0.006
|A‖|2 0.353± 0.009

δ [rad] 1.48± 0.03

Table 35: Parameters of realistic MC angular fit for Bs → J/ψφ
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Figure B.8: Angular fit projections of realistic MC for Bs → J/ψφ: cos Θ (a), cos Ψ (b) and Φ (c).
The χ2 probabilities of the fit projections are 0.81, 0.006 and 0.86 respectively.
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SM Standard Model

LHC Large Hadron Collider

CDF Collider Detector at Fermilab

CDFII CDF in Run II

QFT Quantum Fields Theory

FNAL Fermi National Accelerator Laboratory

CKM Cabibbo-Kobayashi-Maskawa

SM Standard Model

GIM Glashow-Iliopoulos-Maiani

QED Quantum ElectroDynamics

QCD Quantum ChromoDynamics

OPE Operator Product Expansion

pdf probability density function

PDG Particle Data Group

SLAC Stanford Linear Accelerator Center

KEK Ko Enerugi Kasokuki Kenkyu Kiko

SVXII Silicon VerteX

ISL Intermediate Silicon Layers

L00 Layer 00

COT Central Outer Tracker

TOF Time Of Flight detector

CEM Central ElectroMagnetic Calorimeter

CES CEntral Strip multi-wire proportional chambers

CPR Central Pre-Radiator

CHA Central HAdronic

WHA Wall HAdronic

PEM Plug ElectroMagnetic calorimeter

PHA Plug HAdronic calorimeter

CMU Central MUon detector
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CMP Central Muon uPgrade

CMX Central Muon eXtension

IMU Intermediate MUon detectors

CLC Cherenkov Luminosity Counters

XFT eXtremely Fast Tracker

SVT Silicon Vertex Trigger

DAQ Data AcQuisition

MC Monte Carlo

TTT Two Track Trigger

MVB Minimum Variance Bound

ML Maximum Likelihood
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