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Introduction

“We establish the existence of the top quark using a 67 pb−1 sample of pp collisions
at

√
s = 1.8 TeV collected with the Collider Detector at Fermilab”. This is a

quotation from [11] in which the discovery of top quark was announced in 1995.

The top quark discovery completed the present picture of the fundamental
constituents of the nature. Since then, the Collider Detector at Fermilab (CDF)
and D/0 Collaborations have been spending great efforts to measure its properties
better. About 30 times larger than the second heaviest quark, the mass of the
top has been measured with increased statistic and more and more sophisticated
techniques in order to reduce as much as possible its uncertainty. This is because
the top is expected to play a fundamental role in the Standard Model. The value of
its mass sets boundaries on the mass of the unobserved Higgs boson, and perhaps
more appealing, studies of its properties might lead to the discovery of new physics.

In the work described in this thesis the top mass is measured via top pair pro-
duction and decay in the dilepton mode tt→ (W+b) + (W−b) → (l+νb) + (l−νb).
Dilepton events are selected by the “LTRK” signature, which is optimized for a
larger statistic while preserving a fair signal to background ratio (Chapter 4).
The top mass is estimated using the so-called Template Method (Chapters 5 to
10). Event-by-event the azimuthal angles of the neutrinos are arbitrarily set, all
associations of the final state observables to the decay particles of the tt system
are tried and the top mass is obtained from the association which agrees best with
a tt dilepton event. The procedure is iterated by varying the assumed azimuthal
neutrino angles and a mass is obtained for each iteration. A suitably weighted
average of the obtained masses gives the mass associated to an event (Chapter 6).
Once the masses of the 236 candidate events are obtained their distribution is
fitted in terms of simulated distributions (“templates”) for signal and background
events. The fit is performed using a likelihood distribution function. The back-
ground template is obtained adding the contributions by the competing channels

1



Introduction 2

weighted according to their cross section, while mass-dependent signal templates
are obtained by simulated tt events (Chapters 5, 7). The result of the two compo-
nent fit indicates the best mass template, the top mass and its statistical error.

Systematic uncertainties are added to the statistical error to account for uncer-
tainties in the parameters used in the simulations and for defects of the analysis
process (Chapter 9).

The method (“Neutrino φWeighting Method”) was already successfully applied
on a 190 and 340 pb−1 integrated luminosities and the result was published [45].

The measurement described in this thesis has made use of a refined Neutrino
φ Weighting Method both in event selection (Chapter 4), and in the way to re-
construct events for a better accuracy on top mass. Furthermore the method was
applied to a sample of a much larger statistic (2.1 fb−1 integrated luminosity).

The Laurea Candidate worked at Fermilab for over nine months in close col-
laboration with Dr. Igor Suslov, who had already played a key role in the pre-
vious analysis [45], and under the supervision of Dr. Gueorgui Velev and the
advise by Prof. Giorgio Bellettini. It was a full time and massive effort, in which
the personal contributions of the Candidate have been primarily in the selection
of lepton+track events, estimation of backgrounds, particularly those relative to
mismeasured events (“Fakes”) which are the main background (Chapter 4), and
evaluation of a number of systematic uncertainties.



Chapter 1

Standard Model and Top Quark
Physics

In this chapter a brief overview of particle physic theory will be provided. The
first section will deal with the Standard Model and the second one with top quark
physics.

1.1 The Standard Model

Present understanding of fundamental constituents of matter and the fundamental
interactions are provided by a theory called Standard Model (SM).

The SM has been developed in the 1960’s and 70’s and has been experimentally
tested in these last 50 years.

The SM incorporates two gauge theories: the theory of Quantum Chromodi-
namics (QCD) [1, 2], which describes the strong interactions, and the Glashow-
Salam-Weinberg (GSW) theory of electroweak interactions [3, 4, 5], which unifies
the weak and electromagnetic interactions. The problem to incorporate gravity in
the theory is still open.

The SM describes two families of fundamental particles 1: fermions and bosons,
which have different spins. Bosons and fermions have integer and half-integer spin
respectively.

The fermion families contain six quarks and six leptons arranged in three gener-
ations of weak isospin doublets. Four bosons are the interaction carriers 2. Figure
1.1 gives a picture of the particles in SM.

1A particle is considered fundamental if no internal structure is revealed
2Each of these particles has its own antiparticle

3



Standard Model and Top Quark Physics 4

Figure 1.1: The three fermion generations and the four bosons of the Standard
Model.

1.1.1 Fundamental Interactions

SM is a gauge theory. In a gauge theory the fundamental particles are described by
quantized fields ψ and their interactions are expressed by the Lagrangian density
L. Noether’s theorem states that an invariance of L under a certain transformation
of fields will hide a symmetry for the system described by the Lagrangian density.

The Electroweak Theory

Electromagnetic and weak interactions theory have been unified in the electroweak
theory.

The electromagnetic interaction (QED) is described by the following La-
grangian density:

LQED = ψ(i/∂ −m)ψ − 1

4
F µνFµν +QeAµψγµψ (1.1)

where� ψ(i/∂ −m)ψ is the Lagrangian density of a free fermion of mass m described
by a Dirac four-component spinor ψ.� −1

4
F µνFµν describes the propagation of a free photon field and expresses the

Maxwell equations in a covariant form.



Standard Model and Top Quark Physics 5� QeAµψγµψ describes the interaction between a fermion of charge Q in units of
the electron charge 3 and the photon field. By analogy with classic mechanics
a QED current can be defined:

JQED
µ ≡ Qeψγµψ (1.2)

While the second and third term have a direct analogy to classical physics, the
first term is pure quantum field theory.

QED has U(1) gauge Abelian local symmetry since a local change in the phase
definition for the fields does not affect the electromagnetic Lagrangian density (see
1.1). The symmetry group for QED is defined as U(1)Q, since conservation of the
charge Q comes from local U(1) invariance.

Weak interaction phenomena show common properties between doublets of

fermions (

(
e
νe

)
,

(
µ
νµ

)
, . . . see figure 1.1). Because of this reason a weak

isospin is defined and weak interaction Lagrangian density is built in order to be
invariant under 2-D rotation in the weak isospin space (SU(2)). Fermions are
therefore grouped into doublets and singlets as follows:

χL =

(
ψu

ψd

)

L

(1.3)

χR = ψR (1.4)

where “L” and “R” mean left-handed and right handed respectively 4. “u” and
“d” are the labels up and down fermions (according to figure 1.1).

Analogously to QED (see 1.2), three weak currents can be defined:

Jweak,i
µ = χγµ

σi

2
χ i = 1, . . . , 3 (1.5)

where σi are the Pauli matrices, J3 is the neutral current, J1 and J2 are linear
combination of the charged ones.

Neutral weak current is experienced by both left and right handed fermions.
Since neutrino are massless 5, charged currents are experienced only by left-handed
fermions 6.

3e is the charge of the electron. e = 1.60217646× 10−19 Coulomb
4a particle is left/right-handed if the direction of its spin is opposite/same as the direction of

its motion.
5In the SM neutrino are considered massless. Their very small mass does not change our

picture.
6This statement is true for leptons since no right-handed neutrinos have been seen yet. It is

considered valid for quarks as a natural extension in the electroweak unification
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Electroweak theory incorporates flavor changing charged currents and the ab-
sence of such neutral currents 7: ψquark

d ≡ (d, s, b) → ψ′quark
d ≡ (d′, s′, b′) where

(d′, s′, b′) is expressed according to the following:




d′

s′

b′


 = VCKM




d
s
b


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d
s
b




where VCKM is the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

According to the proposal presented by Glashow in 1961 [3, 4, 5], these two
theories, QED and weak, have been unified in the EW theory, represented by the
group SU(2)xU(1).

Since right-handed fermions experience QED and are singlets in a weak-isospin
space it is convenient to define the hypercharge Y and hypercharge current JY

µ :

Y = 2(Q− t3) (1.6)

JY
µ = ψγµY ψ (1.7)

where t3 is the third component of the weak isospin. 1.7 is the Gell-Mann-Nishijima
formula.

According to formulas 1.1,1.5,1.7 the EW Lagrangian density is written in
terms of the weak fields Bµ and Wµ ≡ (W 1

µ ,W
2
µ ,W

3
µ):

LEW = ψ(i/∂ −m)ψ − 1

4
F µνFµν −

1

2
W+µνW−µν −

1

4
ZµνZµν + gJweak

µẆ
µ +

g′

2
JY

µ B
µ (1.8)

where� W 1
µ and W 2

µ are linear combinations of W±
µ (fields carried by W± bosons),

while Bµ and W 3
µ can be expressed in term of Z0

µ and Aµ (fields carried by
Z0 and γ bosons) 8.� 1
2
W±µνW±µν , 1

4
ZµνZµν describe the propagation of W and Z0 gauge boson

fields. W±µν and Zµν are defined by analogy with QED case.

7The first evidence came from strangeness changing charged current. An example of this
phenomenon is Λ → peνe

8W± and Z0 are respectively the charged and neutral carriers of weak interaction (see 1.1)



Standard Model and Top Quark Physics 7� g, g’ are defined according to:

e = gsin(θW ) = g′cos(θW ) (1.9)

θW being the Weinberg angle.

This Lagrangian density is invariant under transformations in the SU(2)LxU(1)Y

group 9.
However, this symmetry would be exact if fermions, W and Z bosons were

massless. In order for the standard model to be compatible with the large observed
masses of W and Z bosons 10, symmetry breaking must occur. This EW symmetry
breaking (EWSB) would presumably also be responsible for the mass hierarchy
observed for the fermions.

Spontaneous EWSB can be accomplished by the introduction of a scalar field,
interaction term in the Lagrangian known as Higgs Field [7]. The existence of
a massive boson, the Higgs boson, would be associated with the Higgs field. At
present the existence of the Higgs boson has yet to be confirmed experimentally.
Indirect experimental bounds for the SM Higgs boson mass are obtained from fits
to precision measurements of the measured top and W masses.

The current (winter 2007) best fit is mH = 91 ±45
32 GeV or mH < 186 GeV at

the 95% confidence level [8].

Quantum-Chromo-Dynamics

The last piece of the SM is QCD describing the strong force. This force is respon-
sible for quarks “sticking” together to form composite particles (hadrons).

QCD is described by a non-abelian local SU(3) group. As for QED and weak
interactions, gauge invariance of this group implies a new degree of freedom to be
conserved: the color. However, unlike QED, the gauge symmetry group is non-
abelian, causing gluons (carriers of strong interaction) to possess color charge and
interact with each other.

A consequence of the interactions among gluons is that the coupling “con-
stant” αs depends on Q2 (the interaction momentum transfer scale) 11. To a first
approximation in Q2/λ2 one has:

αs(Q
2) =

12π

(33 − 2f)ln(Q2/λ2)
(1.10)

9SU(2)L acts only on left-handed fermions while U(1)Y acts only on right-handed one, being
Y conserved in processes among right-handed fermions.

10MW = 80.41 ± 0.05 GeV/c2 and MZ = 91.188 ± 0.002 GeV/c2

11αQED, the QED coupling constant, does not depend on Q2 since QED is an abelian symmetry
group.
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where f is the number of different flavoured quarks with mass less than Q2. Fits
to experimental data set λ around 200 MeV [6].

QCD features two very important properties:

1. Asymptotic freedom. αs(Q
2) becomes small at large Q2 (see 1.10). This

means that quarks and gluons interact weakly if they are within a short
range. This property allows perturbation theory to be used in theoretical
calculations to produce experimentally verifiable predictions for hard scat-
tering processes.

2. Confinement. Colored particles are confined into colorless singlets (hadrons)
by an increasing QCD potential with increasing relative distance. If quarks
are forced to large relative distances the energy density in the binding color
string increases and energy is materialized into colored quark pairs. Thus
a hard scattered parton evolves into a shower of partons and finally into
hadrons (hadronization).

Even if analytically unproven, confinement is widely believed to be true
because it explains the consistent failure of free quark searches.

1.1.2 Fundamental particles

Figure 1.1 shows the fundamental particles divided into three categories: gauge
bosons, quarks and leptons. Tables 1.1, 1.2 summarize their most important quan-
tum numbers. Each particle has a corresponding antiparticle with opposite electric
charge 12.

Bosons Mass (approx) Q force carried force experienced

photon (γ) < 6 · 10−26 GeV 0 EM Grav.
W± 80.4 GeV ±1 Weak Grav., EM, Weak
Z0 91.2 GeV 0 Weak Grav., Weak

gluon (g) 0 GeV 0 Strong Grav, Strong
graviton not yet observed. 0 Grav. Grav.

Table 1.1: Bosons: Mass, electric charge and the force they carry and experience.

12Some particles can be their own antiparticles. One examples is the photon
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Fermions Mass (approx) Q T 3 Y/2

leptons

electron (e) 511 KeV -1 -1/2 -1/2
electron neutrino (νe) < 2 eV 0 +1/2 -1/2

muon (µ) 106 MeV -1 -1/2 -1/2
muon neutrino (νµ) < 2 eV 0 +1/2 -1/2

tau (τ) 1.78 GeV -1 -1/2 -1/2
tau neutrino (ντ ) < 2 eV 0 +1/2 -1/2

quarks
u 1.5÷3 MeV +2/3 +1/2 +1/6
d 3÷7 MeV -1/3 -1/2 +1/6
c ∼ 1.25 GeV +2/3 +1/2 +1/6
s ∼ 95 MeV -1/3 -1/2 +1/6
t 170÷175 GeV +2/3 +1/2 +1/6
b 4.2÷4.7 GeV -1/3 -1/2 +1/6

Table 1.2: Leptons and quarks: mass, electric charge, third component of weak
isospin, hypercharge.

1.2 The Top Quark

As consequence of the discovery of bottom (b) quark in 1977 the existence of
its weak isospin doublet partner, the top (t) quark, has been inferred because of
several reasons.

1. First of all the renormalizability of the standard model requires that the sum
of electric charges of all left-handed fermions is zero.

2. The measured Γ(Z0− > bb) is 384 ± 4 MeV , very close to the value of 381
MeV expected if T b

3 = −1/2

The discovery of top quark was accomplished in 1995 at the CDF and D/0 ex-
periment [10, 11]. After more than 10 years from its discovery the world average
for top quark mass is Mtop = 170.9± 1.1(stat)± 1.5(syst)GeV/c2 [58] (more than
30 times the mass of second heaviest quark). Figure 1.2 summarizes a number of
top mass measurements at CDF.
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Figure 1.2: Top quark mass measurements in Run I and Run II at CDF (summer
2007).
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1.2.1 Top Quark production and tt cross section

At CDF top quarks are produced predominantly in pairs via qq̄ collisions 13. Even if
quarks and gluons are bound within hadrons, at large momentum transfer they can
be considered free (asymptotic freedom). An example of such a process is shown
in figure 1.3. Each parton carries a fraction x of the hadron total momentum.

Figure 1.3: pp̄ → tt.

Parton distribution functions (PDF) f(x, µ) for gluons and quarks are shown in
figure 1.4. In this figure the scale of the process µ has been set of the same
order of Mtop. Only two partons participate to the tt production, while the other
ones are “spectators”. At Tevatron Collider energies q-q scattering dominates the
production process. If q and q carry the same momentum fraction x the threshold
fraction for tt production is:

xthre =
2Mtop√

s
(1.11)

At the Tevatron the center-of-mass energy
√
s of the pp̄ system is 1.96 TeV: there-

fore the minimum fraction required is ∼ 0.18 14.

13Single top production via the electroweak force has not yet been observed.
14this value is 0.025 at LHC (

√
s = 14TeV )
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Figure 1.4: Parton distributions functions [42]

According to leading orders SM predictions tt pair are expected to be produced
via qq̄ annihilation (qq̄ → tt) approximately in the 85% of the cases and via
gluon fusion (gḡ → tt) in the remaining ones ([45]). Feynman diagrams for these
processes are shown in figure 1.5. Next-to-leading order processes are expected
to have a weight of 30% 15 in the estimated σNLO = 6.7 ±0.7

0.9 pb for Mtop =
175GeV/c2 [12]. Some NLO order diagrams for qq̄ annihilation are shown in figure
1.6. Diagrams of NLO order processes for gluon fusions are similar.

The cross-section is computed as:

σ(pp̄ → tt; s) =
∑

i,j

∫ 1

0

∫ 1

0

fi(x1)fj(x2)σ̂i,j(qiqj → tt; x1x2s)dx1dx2 (1.12)

where the i,j indices run over the parton families and gluon, σ̂i,j is the cross sections
at parton level, fi is the PDF (see figure 1.4) for the i parton carrying a x fraction
of the proton (antiproton) momentum.

With a cross section about 4 times smaller the top quark is also expected to be
produced in the single-top channel via the weak interaction. The main processes
that contribute to single top production are shown in figure 1.7

15see [13] for further details.
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Figure 1.5: Leading order Feynman diagrams contributing to top quark pair pro-
duction at hadron colliders.

Figure 1.6: Some NLO Feynman diagrams for tt production via qq̄ annihilation

Figure 1.7: Single top production: leading processes.
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1.3 Top Quark Decay

The top quark decay is mediated by the weak force. Since off-diagonal CKM matrix
elements Vts and Vtd are much smaller than Vtb a BR of 100% can be assumed with
an accuracy of O(10−3). Therefore the intermediate state for a decaying tt pair is
defined as follows:

tt→ (bW+)(bW−) (1.13)

Moreover, the large mass of top quark results in a lifetime (τt ≈ 0.5 × 10−24s)
shorter than the timescale required for quarks to hadronize. Because of this top
quark can be considered free from “the confinement effect”..

Final tt states are classified according to the decay products of the two W’s.
Because of the large energy scale available lepton masses can be neglected and
W−(W+) → l−(l+)νl(νl) is expected to have the same BR independently of the
lepton (l) flavor.

Three tt final state configurations (channels) are possible: all-hadronic, all-
leptonic (“dilepton”) and semi-leptonic (“lepton+jets” or “single-lepton”). The
relative branching ratio (BR) of each final state are reported in table 1.3.

Decay mode relative BR Channel

tt→ (qq′b)(qq′b) 36/81 Full-hadronic
tt→ (qq′b)(eνeb) 12/81 Lepton + jets
tt→ (qq′b)(µνµb) 12/81 Lepton + jets
tt→ (qq′b)(τντ b) 12/81 Lepton + jets (τ)
tt→ (eνeb)(µνµb) 2/81 Dilepton
tt→ (eνeb)(τντ b) 2/81 Dilepton (τ)
tt→ (µνµb)(τντ b) 2/81 Dilepton (τ)
tt→ ((eνeb)(µνeb) 1/81 Dilepton
tt → (µνµb)(µνµb) 1/81 Dilepton
tt→ (τντb)(τντ bb) 1/81 Dilepton (τ)

Table 1.3: Relative BR of the decay modes of the tt system

Antiparticles are not specified in table 1.3. q, q’ can be u (u), d (d), c (c), s (s).
A different experimental signature in the detector is associated with a different

channel.� The all-hadronic channel : both W bosons decay to quarks, resulting in a
final state having a signature of six jets.



Standard Model and Top Quark Physics 15� The lepton+jets channel : one W decays to a lepton and neutrino and the
other one to quarks, resulting in a signature of a high momentum lepton,
four jets and missing transverse energy 16.� the dilepton channel : Both W bosons decay to leptons resulting in a signature
of two high momentum leptons, two jets and large missing transverse energy.

Relative branching ratios for any final state configurations are shown in the pie
chart 1.8. tt events involving at least a τ lepton are grouped together and shown
in this plot for completeness. They are much more difficult to study than other
channels.

Figure 1.8: Relative BRs of tt decay.

16Assuming a zero transverse energy of the initial state, the missing transverse energy (/ET ) is
defined as the imbalance in final state transverse energy. For further details see 4.1
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1.3.1 Importance of top mass measurement

The top mass measurement is one of the main goals of CDF. This measurement is
extremely important because some parameters of the standard model depend on
it.

The W boson mass contains loops corrections with a contribution by the top
quark.

MW =

πα√
2GF

sin2θW (1 + ∆R)
(1.14)

where GF is the Fermi coupling constant. The contribution to ∆R involving the

top mass is: (∆R)top ≈ 3GF M2
t

8
√

2π2tan2θW
. (∆R)top is computed at NLO, whose Feynman

diagram is shown in figure 1.9.

W  W  

t  

b  

Figure 1.9: Virtual top quark loop contribution to the W mass.

Similar corrections at NLO are applied to the Z mass. The related NLO Feyn-
man diagram is shown in figure 1.10.

Z  Z  

t  

t  

Figure 1.10: Virtual top quark loop contributing on Z mass

Therefore a top mass measurement allows to impose conditions on possible
contributions by other virtual loops, including sub-dominant Higgs boson loops,
to the physical W and Z boson masses.
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Because of this, top mass measurements are asked to be as precise as possible
in order to provide bounds to the Higgs mass via limits to virtual Higgs loops
imposed primarily by the measured W mass. The present situation is illustrated
by figure 1.11.

Figure 1.11: Top and W mass data constraining the Higgs mass. Expected cor-
relations between Mt and MW as a function of Higgs mass are shown as shaded
band. Ellipses are drawn to span 1σ variation in top and W mass.

Low MH values seem to be favored by current measured top and W masses.
An accurate measurement of top mass is also important in some extensions

of SM. The minimal supersymmetric extension of SM sets a top mass dependent
upper bound on the lightest neutral Higgs (h) mass. By using the word average
top mass, the light SUSY Higgs boson h mass is expected to be below 140 GeV/c2.
If no h below this limit is found in the future, minimal SUSY will be ruled out



Chapter 2

Accelerator Complex

The Tevatron in Batavia, Illinois, US is the first large-scale superconducting syn-
chrotron in the world. Originally named the Energy Doubler since as a proton-
synchrotron it was reaching twice the energy of the original Fermilab facility (the
“Main Ring”), it began operation in 1983 in fixed target mode and in 1985 as a
proton-antiproton collider.

Since 1985 various periods of collider or fixed target operations or shut down for
upgrading the machine alternated with each other. The on-going (2007) collider
operation period is named Run II. The present pp̄ energy (

√
s) in center of mass

system (C.M.S.) is 1.96TeV .
After the Tevatron another high energy hadron collider (the Large Hadron Col-

lider) is expected to collide proton beams in 2008. According to the expectations
it will reach

√
s = 14 TeV .

Along the Tevatron ring there are two apartment building-sized collider detec-
tors, CDF (Collider Detector at Fermilab) and D/0, that have undergone extensive
upgrades during the 6 years long (1996 to 2001) preparations for Run II. Both
experiments host over 600 physicists from allover the world.

A schematic layout of the Fermilab accelerator complex is shown in figure 2.1:

In section 2.1 this complex (accelerator feeding the Tevatron, and Tevatron
Collider) will be briefly described.

18
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Figure 2.1: The accelerator complex of the Fermi National Accelerator Laboratory.

2.1 Acceleration Chain

2.1.1 Cockroft-Walton electrostatic Preaccelerator

Acceleration begins with a Cockroft-Walton electrostatic Preaccelerator. Here H−

ions are accelerated from a ion source to 750 KeV.

2.1.2 Linac

Ion bunches at 750 KeV are fed into the Linear Accelerator (Linac). The Linac
(figure 2.2) is approximately 140 m long and comprises two sections. In the first
one five accelerating cavities with a drift tube design fed by a single RF genera-
tor accelerate ions to approximately 166 MeV. The second one, comprising 7 RF
cavities fed by a more modern set of Klystron amplifiers, ramps ions by additional
400 MeV 1. At the Linac exit the ion beam strikes a thin carbon target and turns
into a proton beam by electron stripping.

1The 750 final energy is the result of a Linac upgrade, that took place in 1993 and increased
the boost in the second Linac sector from 200 MeV to 400 MeV. This effort allowed to double the
number of protons per bunch and to increase by about 50 % the production rate of antiprotons.
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Figure 2.2: upstream view of the 400 MeV section of the Linac

2.1.3 Booster

Stripped protons enter the Booster, a 8-GeV synchrotron whose diameter is about
150 m. To maintain a constant circular orbit the dipole magnetic field in the
Booster increases from 0.74 Tesla to 7 Tesla during acceleration.

Both Linac and the Booster provide pulses up to 5 × 1012 protons at a rate of
about 5 Hz for antiproton production every 1.5s, or 6 × 1010 protons per bunch
in series of 5 to 7 bunches, repeated 9 times per second (in average). Figure 2.3
shows a view of the Booster.

Figure 2.3: View of the booster building (left) and of the Booster tunnel (right)
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2.1.4 Main Injector

From the Booster the proton beam is fed into the Main Injector whose role is either
to accelerate protons as needed for injection in the Tevatron or to deliver beam to
the antiproton production target.

The original Tevatron injector was the Main Ring, built to provide primarily
400 GeV protons to fixed target experiments. The main ring limited aperture was
a limit to the whole accelerator performances. The Main Injector was designed to
solve this problem and located in a separate tunnel for an easier operation of the
complex.

The Main Injector is a synchrotron with circumference of about 3km. It is
able to accelerate protons of 8 GeV energy up to 150 GeV . It operates at 120 GeV
for antiproton production, while 150 GeV protons are delivered to the Tevatron.

The Main Injector is also used to give beam to a number of fixed target exper-
iments, noticeably on secondary neutrino beams.

An inside view of the Main Injector tunnel is shown in picture 2.4.

Figure 2.4: The Main Injector (blue magnets on the ground), completed in 1999,
and the Recycler (green ring)

2.1.5 Debuncher and Recycler: Antiproton Production and

Storage

A pulse of 5 × 1012 protons at 120GeV is extracted every ∼ 2.2 seconds from
the Main Injector and directed to the antiproton station, a rotating 7 cm-thick
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target made of nickel alloys containing chromium, iron and other metals. The
resulting particles spray contains some antiprotons with a broad momentum and
wide-spread spatial distribution.

A cylindrical lithium lens (760 T/m) focuses the particles produced around the
forward direction. Negative particles in a 35 mrad cone about the forward direction
are selected by a 1.5 T pulsed dipole magnet, focused by strong magnetic lenses
and injected in the Debuncher Storage Ring. Typically, 21 antiprotons per 106

protons on target are collected.
In the Debuncher ring, a rounded triangular-shaped synchrotron with mean

radius of 90 meters stochastic cooling and bunch phase rotation 2 to reduce mo-
mentum spread while increasing time spread.

After each beam pulse the Debuncher is emptied. The antiproton bunches
(8 ± 0.018 GeV ) are transferred with a 60%-70% efficiency to the Antiproton
Accumulator, a 75 m mean radius storage ring of larger acceptance housed in
the same tunnel as the Debuncher (see a sketch in figure 2.5). In the Accumulator
multiple beam pulses are stacked and p are further cooled to increase the antiproton
phase space density.

Figure 2.5: Fermilab antiproton Accumulator: a zoom-in of figure 2.1

For the time being problems in antiproton collection, cooling and stacking are
among the main causes limiting the final Tevatron luminosity 3.

A further improvement of the antiproton source is the Recycler, a post-
accumulator storage ring of constant 8 GeV energy, located in the Main-Injector

2Stochastic technique is a way of narrowing the particle distribution in transverse and lon-
gitudinal momentum around the average value. There is no associated beam-loss. This goal is
achieved by applying iteratively a mechanism which recognizes deviation from the spatial orbit
of a 8 − GeV antiproton in upstream sensors and makes appropriate correction downstream.

3as written above a very small fraction of the protons incident on target produces antiprotons
and only a part of these can be stored.
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(see figure 2.1) enclosure and composed of permanent magnets. Because of its
larger acceptance it can store an antiproton current up to over 2.5 Amps, much
larger than the Accumulator.

When a new store is ready for collider operation, the antiprotons are transferred
from either Accumulator or the Recycler to the Main Injector in order to boost
their energy up to 150 GeV . Antiprotons are then transferred to the Tevatron,
where an opposite proton beam of the same 150 GeV energy was previously stored.

2.2 The Tevatron

The Tevatron is a 1 − km radius synchrotron. As written in section 2.1.4 the
Tevatron receives protons and anti-protons from the Main Injector at 150 GeV .
At injection 36 bunches composed typically of 300 × 109 p are transferred with a
timing separation of 396 ns from each other.

Protons and antiprotons orbit are in the same vacuum pipe. Electrostatic
separators reduce to a negligible amount the unwanted interactions, by keeping
the beams away from each at all points in the orbit helix 4, except at the collision
points.

Protons and antiprotons are accelerated to 980 GeV . A tour of the Tevatron
takes about 21 µs. About one minute is needed to reach the final beam energy 5.

High-power focusing quadrupole magnets minimize the beam section at the
interaction regions to maximize the collision rate.

The resulting transverse beam distributions are approximated by 2D Gaussian
functions, with σT ≈ 30 µm. The typical longitudinal dimension of a bunch is
60-70 cm. The event source is roughly distributed longitudinally as a Gaussian
with σz = 28 cm 6 .

Tevatron bunches are organized in three trains (see figure 2.6). Within a train
the inter-bunch time is 396 ns while inter-train time is 2.6 µs. The intra-train
empty sectors allow enough time for fast kicker magnets to abort the beam into a
dump before the arrival of the next train in case of emergency.

4Intrabeam distance is typically 5 times the sum of the beam widths (in a Gaussian approxi-
mation)

5The Tevatron comprises about 1000 superconducting magnets including 772 dipoles. Each
dipole is approximately 6 m in length and 4 tons in weight. The superconducting coils are made
up of niobium-titanium wires embedded in copper. A 4400 A current in the dipoles provides a
4.2 T magnetic field. All superconducting magnets are kept at 4 K temperature

6The about 28 cm length of the interaction region is determined by the overlap of the two
approximately longitudinally Gaussian bunches.
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Figure 2.6: Bunch structure of the Tevatron beams in Run 2

The record peak luminosity 7 reached by the Tevatron is ∼ 2.92x1032 cm−2s−1

(figure 2.7) corresponding to about 5 interactions per bunch-crossing.

Figure 2.7: Run 2 Peak luminosity in the stores and its average, as a function of
calendar date (up to January 2007).

7In January 2007
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The integrated luminosity delivered up to August 2007 is ∼ 3 fb−1. (figure
2.8). By Autumn 2010 the integrated luminosity is expected to reach 6-8 fb−1.

Figure 2.8: The integrated luminosity in Run 2 weeks. Empty periods are due to
Tevatron shutdowns



Chapter 3

The Run II CDF Detector at
Fermilab

The Collider Detector at Fermilab (CDF) was designed to study pp̄ collisions at the
Tevatron. Commissioned in 1987 it was upgraded in 2001 in order to be adapted
to the higher collision rate coming from the increased instantaneous luminosity
delivered by the accelerator.

A cylindrical (r, φ ,z) coordinate-system is used to describe CDF geometry.
The origin is the geometric center of the detector. The z-axis points along the
direction of protons. Polar and azimuthal angles relative to the z-axis are used
to describe particle trajectories.

It is often convenient to use a polar variable invariant under boost along ẑ.
This variable is the rapidity defined as

y =
1

2
ln(

E + pcos(θ)

E − pcos(θ)
) (3.1)

where E, p, θ are respectively the energy, momentum and polar angle of the con-
sidered particle. At high energies and away from very forward angles y ≈ η ≡
−ln[tan(θ/2)] 1.

3.1 Overview

The Run II Detector (see figure 3.1, 3.2) is composed of several components, each
optimized for a specific task.

1In CDF literature one distinguishes ηdet, which is relative to the geometrical center of detec-
tor, and η, which is measured with respect to the interaction point z0 where particles originated.
Usually the former symbol is used for describing the detector geometry and the latter for outgoing
particles. For simplicity the same symbol will be used in both cases.

26
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Figure 3.1: Elevation view of the CDF II detector
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Figure 3.2: Artist view of the CDF Run II detector.
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Starting from the interaction point and following the path of an outgoing par-
ticle within acceptance there are:� a tracking system enclosed by a superconducting solenoid (1.5 m in radius

and 4.8 m in length), which generates 1.4 T magnetic field parallel to the
beam axis. The magnetic field is nearly uniform in the tracking region.� finely segmented calorimeters� planar drift chambers backed by scintillation counters.

In the next sections these sub-systems will be discussed.
Some of the components (the time-of-flight detector, the Cerenkov Luminosity

Counters, the small angle spectrometers on the beam pipe, etc.) of the full CDF
II detector have been neglected since are not directly related with this thesis.

A detailed description of the upgraded detector can be found in [43].

3.2 Tracking System

Charged particles within the tracking system acceptance encounter an inner silicon
tracking system and outer gas drift-chamber as shown in figure 3.3.
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Figure 3.3: Longitudinal view of the Tracking System of the CDF II detector.
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Within the solenoid field they follow helical trajectories which are measured by
the system in order to measure their momentum.

3.2.1 Inner Tracker

The Inner Tracker is composed of eight layers (seven at θ = 90°) of silicon sensors
arranged in approximately cylindrical sub-systems coaxial with the beam-pipe:
Layer 00 (L00) [14, 15], the Silicon Vertex Detector (SVX II), and the Intermediate
Silicon Layers (ISL) [16, 17]. Figure 3.4 zooms on the Inner Tracker from two
different point of views.

Figure 3.4: Upper: cutaway transverse to the beam of the three inner tracker
sub-systems. Lower: sketch of the silicon detector in a x/y projection.

All silicon microstrip sensors have a space resolution of ∼ 12 µm in the direction
transverse to the beam. They also provide z-measurements with reduced accuracy.
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◮ L00

L00 is 90 cm long, radiation hardened cylindrical arrangement of silicon strip de-
tectors, that is mounted directly on the beam pipe: it is at radial distance of 1.35
to 1.62 cm from the beam axis. L00 purpose is to improve the track impact param-
eter (the measured distance of minimum approach to the beam axis) resolution
(∼ 25/30 µm) and compensate for the degraded performance, due to radiation
damage, of the other silicon sub-detectors.

◮ SVX II

SVX II, shown in an artist view 3.5, extends radially from 2.5 cm to 10.7 cm.

Figure 3.5: Isometric (left) and end-view (right) of the CDF Silicon Vertex Detec-
tor

It is segmented into three 29 cm barrels along the z axis: this allows for a η < 2.0
coverage. Each barrel carries 5 layers of double-sided microstrip wafers. Four
silicon wafers are aligned on common support structures called ladders. Twelve
concentric ladders make a layer.

The double-sided imprint of the wafers allows for 3D position measurements:
one side of the wafer has strips along the beam axis, the other one has either 90°or
1.2°stereo strips.

This sub-detector has a 12 µm resolution on the single hit in the direction
transverse to the beam on the single hit, and provides also some dE/dx informa-
tion.
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◮ ISL

The main ISL purpose is to compensate for incomplete coverage of other sub-
detectors in the region |η| > 1 by providing precision tracking at 1 < |η| < 2. It
consists of 5 layers of double sided silicon wafers (same wafers as for SVXII). Four
layers are at 1 < |η| < 2 (at radii of 20 and 28 cm, as shown in figure 3.4), one
layer is at |η| < 1.

The combined resolution of the CDF inner trackers for high momentum tracks
is ∼ 40 µm in impact parameter and ∼ 70 µm along z direction [14].

3.2.2 Central Outer Tracker

The main tracker at CDF is the Central Outer Tracker (COT). The COT has a
cylindrical shape and is radially right outside the ISL. Its internal and external
radii are 43 and 137 cm respectively. COT provides full tracking in the central
region (|η| < 1), even if its maximum geometrical acceptance reaches up to |η| < 2
(see figure 3.3), where tracking performances are reduced.

The COT is composed of 4 axial and 4 stereo 2 superlayers of azimuthal cells.
Each cell 3 has alternated sense and field shaping wires (figure 3.6). Within the
cell width, the trajectory of a particle is sampled 12 times (by sense wires spaced
0.583 apart). Figure 3.6 shows a portion of the COT endplate.

Figure 3.7 shows the equipotential electrical field lines in a cell.
Inside the solenoid magnetic field, the drifting electrons experience a Lorentz

force which rotates their path. The cells are tilted by 35°with respect to the radial
direction in order to make the electrons drifting perpendicularly to the radius for
optimal momentum resolution 4.

The single hit position has been measured with an uncertainty of ∼ 140 µm
which translates into an overall transverse resolution σ(PT )/PT = 0.15% Pt[GeV/c]
[18], PT being the transverse momentum of the tracked particle.

3.2.3 Calorimeters

The CDF calorimeter measures the particle energy by absorbing their total energy
and providing a signal proportional to it. Calorimeter information is also used to

2stereo superlayers are tilted at ±2°with respect to the z direction. Axial layers provide
tracking information in r − φ, stereo layers are also sensitive to the z direction.

3The number of cells in a superlayer increases linearly with the radius.
4For best momentum resolution, the optimal correlation between drift time and hit distance

from wire is for electrons drifting in the direction transverse to the radius
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Figure 3.6: Slots housing the wire holding fixtures of one quadrant of a COT
endplate (left). Drift and field wires in three cells (right). The horizontal arrow
shows the radial direction.

estimate the transverse energy of weakly interacting particles, such as neutrinos,
by computing the imbalance in the total transverse energy. CDF uses scintillator
sampling calorimeters divided into an inner electromagnetic and an outer hadronic
compartment. Both calorimeters are segmented into projective towers. Each tower
consists of alternating layers of passive absorber material (Pb in the front and Fe
in the rear compartment) and plastic scintillator for shower sampling. The light
from the scintillator plates is read out through wavelength-shifting (WLS) bars or
plates and light guides by photo-multiplier tubes (PMT) (see figure 3.8).

High energy electrons and photons generate an electromagnetic shower which
is mostly absorbed in the front calorimeter compartment 5. For charged particles
heavier than the electron, radiative energy losses are negligible to a first approxi-
mation.

Hadrons interact with the detector matter mostly through inelastic collisions
with nuclei of the absorbing medium. Particles produced in the nuclear interactions
can loose their energy by ionization and secondary nuclear interactions. Mixed
electromagnetic and hadron showers that originate in this process are absorbed in
the entire (front + rear compartments) calorimeter.

CDF calorimeters provide full azimuthal coverage and up to 3.6 in |η| 6. They
include the Central Electromagnetic Calorimeter (CEM) and the Hadronic Calorime-

5In the case of photons and electrons the showers are composed mainly of electrons, positrons
and photons.

6Calorimeters (Miniplugs) for measurement of diffractive processes are not considered in this
thesis. More information is available at [25]
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Figure 3.7: Equipotential lines in a COT cell

ter (CHA) in the |η| < 0.9 region, the Endwall Hadronic Calorimeter (WHA) at
0.9 < |η| < 1.3 and the electromagnetic and hadronic plug calorimeters (PEM,
PHA) at 1.1 < |η| < 3.6 (figures 3.1, 3.3).

Central Calorimeter

The central calorimeters, CEM, CHA and WHA are composed of two parts joining
at the geometrical center of CDF 7. Central calorimeters are azimuthally divided
into 24 wedges covering ∼ 15°in φ each. Each wedge is divided into projective
towers of size δη = 0.11.

The CEM calorimeter is made of 31 alternate layers of 0.5 cm thick plastic
scintillator plates and 0.32 cm thick lead absorbers: the total amount of material
is 18 ·X0 (X0 is the electron radiation length). The CEM energy resolution is:

σET
/ET = 13.5%

√
ET [GeV ] ⊕ 2% (3.2)

ET being the energy of an electron or a photon hitting the calorimeter perpendic-
ularly to its front.

CEM also includes two additional specialized detector: the Central Electron
Strip Chambers (CES) and the Central Preshower (CPR). CES is a combined
strip/wire gas proportional chamber embedded in CEM at about 6 · X0

8. The
CES purpose is to measure the position and the shape of electro-magnetic showers

7In this zone, η = 0, there is an un-instrumented area about 20 cm thick in the z-direction
(“crack”)

8the maximum energy density in the longitudinal development of the electromagnetic shower
is expected at about 6 · X0



The Run II CDF Detector at Fermilab 35

Figure 3.8: Light-shifter plates connected to light guides and to photomultipliers
of the front electromagnetic compartment of a central calorimeter wedge.

in both transverse plane and longitudinal direction. CES resolution is about 1 cm
in z and 1 mm in r-φ. CPR is a set of scintillator tiles located in front of the
calorimeter wedges which help distinguishing electrons from charged hadrons by
gauging their probability of showering in the detector material prior to entering
the calorimeter [20].

The CHA calorimeter, located behind CEM, is composed of 32 alternate lay-
ers of 1 cm thick plastic scintillator and 2.5 cm thick steel. The WHA calorime-
ter employs the same technology as CHA except for the smaller number of layers
(15) and the larger thickness of the radiator plates (5 cm). The total calorimeter
thickness is ∼ 4.7 λ0 (λ0 is the charged pion absorption length) for both CHA and
WHA.

Resolutions of CHA and WHA for perpendicular particle entrance are:

CHA : σET
/ET = 50%

√
ET [GeV ] ⊕ 3% (3.3)

WHA : σET
/ET = 75%

√
ET [GeV ] ⊕ 4% (3.4)

Plug Calorimeters

The PEM calorimeters (see figure 3.9) have the same structure as CEM: same
tower segmentation in η, but finer in φ (7.5°wide φ bins) for |η| < 2.11, 22 layers
of 4.5 mm thick lead alternate with 22 layers of 4 mm thick scintillator [21].

The PEM transverse energy resolution is:

σET
/ET = 16%

√
ET [GeV ] ⊕ 1% (3.5)



The Run II CDF Detector at Fermilab 36

Figure 3.9: Longitudinal view of Plug Calorimeters

As for CEM, PEM is equipped with a shower maximum detector (PES). Details
are reported in [22].

PHA, located behind PEM, has the same tower segmentation. The technology
is the same as for CHA, with 23 layers of 2 cm thick steel absorber alternating
with 6 mm thick scintillator. The total amount of material corresponds to ∼ 4.7
λ0. PHA resolution is:

σET
/ET = 80%

√
ET [GeV ] ⊕ 5% (3.6)

3.2.4 Muon Detectors

Although muon interact mostly electromagnetically as the electrons, because of
their much larger mass they can cross a much larger amounts of material before
losing a significant fraction of their energy 9. For this reason systems dedicated to
detect muons are located in the outermost shell of the detector. Muon momenta
are measured in the tracker.

9At Tevatron energies muons interact in calorimeters as minimum ionizing particles (MIP).
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Four independent systems are used to detect muons in the |η| < 1.5 region: the
Central Muon Detectors (CMU), the Central Muon Upgrade Detectors (CMP), the
Central Muon Extension (CMX), the Intermediate Muon Detectors (IMU). The
η − φ coverage of the Run II muon detectors is shown in figure 3.10.
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Figure 3.10: Coverage of muon detectors in the (η,φ) space.

Muon detectors share common features [23, 24]. They consists of stack of
rectangular drift chamber modules 10 composed of single-wire cells. Stacks are
four layers deep with laterally displaced cells from layer to layer to compensate
for cell edge inefficiencies. The difference in drift-electrons arrival-times between
neighbour cells provides a typical resolution of 250 µm for the hit position in the
transverse plane. Charge division at the wire ends measures the z coordinate with
a 1.2 mm resolution.

Chambers are coupled with scintillator counters in order to suppress back-
grounds due to secondary interactions in the beam pipe material and to cosmic

10chambers are filled with a mixture of argon and ethane (50% each)
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rays.

A muon candidate is reconstructed when a short track segment (stub) in the muon
chambers corresponds to the extrapolation of a COT track..

The CMU detector is behind CHA at a radius of 347 cm from the beam
axis and covers the |η| < 0.6 region. CMU consists of 144 modules with 16 cells
each. The CMP detector is arranged to enclose the |η| < 0.6 region in an
approximately central box (see 3.10). Scintillator layers (CSP) on the outermost
side of the CMP chambers allow identifying bunch crossing. CMU/CMP system
is called CMUP. It detects muons with a minimum energy of ∼ 1.4 GeV.

The CMX detector extends the muon identification in 0.6 < |η| < 1 region.
As for CMP cells are sandwiched to scintillators (CSX).

The forward region of muon system is the IMU detector (1.0 < |η| < 1.5).
The associated scintillator counters sub-system is named BSU.

3.2.5 Trigger System

At Tevatron Run II the interaction rate is typically 2.5 MHz (the bunch crossing
frequency), which is much higher than any possible event recording rate (order of
100 Hz).

However, pp̄ interactions are mostly inelastic, elastic and diffractive with no
significant momentum transfer. More interesting events have cross-sections from
103 to 1012 times smaller than inclusive pp̄ cross section (for example σpp̄→tt ≈ 7pb).

The identification of the interesting events is accomplished by dedicated fast
online electronics, called the Trigger System, which evaluates the information
from the detector and makes an accept/reject decision in real time. The trigger
system (see figure 3.11) is a three-tier system, where each level of electronics per-
forms a slower but more accurate event reconstruction and applies a tighter filter
with increasing trigger level according to a set of pre-defined conditions.

� Level 1

The level 1 (L1) is a synchronous pipeline system where up to 42 subsequent
events can be stored for ∼ 5.5 µs while the hardware is making a decision. If no
acceptance decision is made up to that time the event is rejected 11. L1 decisions
are made in average in about 4 µs: no dead time is expected from this level. L1
rejects ∼ 97% of the events and typical output rate is ∼ 50 kHz.

The L1 decision is generated by:

11In order to be as fast as needed by the no-dead time condition L1 employs only hardware
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Level 2
Trigger

Level 1
Trigger

Rejection factor:
Accept rate < 75 Hz

> 4

Mass
Storage

µs = 1/50 kHz~ 20

L1 accept

L2 accept

14 clock
cycles deep

DETECTOR

L1 storage
pipeline:

DAQ buffers /
Event Builder

Level 3
System

4 events
L2 buffers:

Asynchronous 2−stage pipeline

L1+L2 rejection factor: 25,000

396 ns clock cycle)(
Crossing rate

2.53 MHz synchronous pipeline
Latency
Accept rate < 50 kHz

5544 ns = 42 x 132 ns

Latency
Accept rate 300 Hz

2.53 MHz

Figure 3.11: CDF trigger block diagram� XFT (extremely fast tracker), which reconstructs approximate tracks (PT ≥
1.5GeV ) in the transverse plane by exploiting information from COT super-
layers 12. These tracks can be propagated to the calorimeter and to the muon
chambers to contribute to higher trigger levels.� the calorimeter trigger, which indicates large energy releases in the electro-
magnetic or hadronic cells (these can be seeds for electrons or jets identifi-
cation at higher levels)� the muon trigger, which matches XFT tracks to stubs (see 3.2.4) in the muon
chambers.

� Level 2

Events accepted at level 2 (L2) are sent to 4 asynchronous buffers. Buffers are
used to store events until a decision is made. Because of the limited size of buffer
deadtimes may occur. L2 purposes are:� to add the energy deposited in the towers in small regions around L1 seeds,

as an approximate measure of an electron or jet energy

12It searches the 4 axial SL for track segments, then the Linker Board tries to link together at
least three of them.



The Run II CDF Detector at Fermilab 40� to combine calorimeter and CES (see 3.2.3) information to signal candidates
electrons� to reconstruct a full COT track and associate it to an outer muon stub (see
3.2.4) in order to improve muon signature� to indicate tracks with a large impact parameter by means of the Silicon
Vertex Tracker (SVT) which allows to trigger on secondary vertexes from
decay of long-lived beauty hadrons.

L2 acceptance rate is ∼ 300 Hz (rejection factor ∼ 150)

The block diagram of L1 and L2 with the involved subdetectors is schematized
in figure 3.12.

� Level 3

Level 3 (L3) is a software trigger. L3 addresses event objects delivered by L2 to the
Event Builder (EVB), which reconstructs the entire event with the same accuracy
as in the offline analysis.

The final decision to accept an event is made on the basis of a list of observ-
ables indicating candidate events of physical interest (top production events, W/Z
events, Drell-Yan events, etc.).

Accepted events exit L3 at a rate of up to 100 Hz and are permanently stored
on tapes.
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RUN II TRIGGER SYSTEM

Detector Elements

GLOBAL 
LEVEL 1

L1 
CAL

COT

XFT

 MUON

MUON
PRIM.
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MUON

 L2 
CAL

CAL

XTRP

L1
TRACK

SVX 

SVT

CES

XCES

PJW 9/23/96

GLOBAL 
LEVEL 2 TSI/CLK

Figure 3.12: Block diagram of level 1 and level 2 triggers. The involved sub-
detectors are indicated.



Chapter 4

Object Identification and Event
Selection

Information of the CDF sub-detectors are combined in order to reconstruct the
“physical objects” (leptons, jets, etc.) of interest for the analysis (section 4.1).
In the top candidate event sample these objects are used by a machinery, called
“event selection”, in order to skim the events of interest (section 4.4). The event
selection machinery is driven by the peculiarities of the tt signature in the dilepton
channel (section 4.2) and by the need of reducing the number of background events
1(section 4.3).

4.1 Object Identification

Outgoing particles from pp̄ interactions are identified using the information from
tracker, electromagnetic and hadronic calorimeters and muon detectors. Detector
sub-systems are described in chapter 3, whose notation is going to be used in the
rest of this Chapter.

4.1.1 Tracks

In the tracking system charged particles travel on a longitudinal helix in the
solenoidal magnetic field. The helix curvature (C) allows for particle PT mea-
surement, since:

PT = Bqρ =
Bq

2C
(4.1)

1The standard way to optimize selections is to maximize S/
√

S + B, S and B being the
expected signal and background.

42
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where B is the magnetic field, ρ the curvature radius in the transverse plane, q the
charge of the particle.� COT+SVX Tracking Algorithms

The following tracking algorithms exploit the information from the COT and SVX
sub-detectors:

X Stand-alone: only SVX information are used.

X Inside-Out : SVX response is used to find seed tracks and COT hits are
linked. This algorithm allows tracking beyond |η| = 1 region.

X Outside-In: COT tracks are used as input and the available SVX hits are
linked. This algorithm allows tracking in |η| < 1 region.

Since this analysis uses the Outside-In (OI) algorithm to reconstruct the central
tracks (|η| < 1) only OI is going to be described. More details about the other
algorithms are available in [26, 29].

The Outside-In algorithm implements the following steps:

1. every COT super-layer is looked for groups (segments) of three aligned hits.

2. Threefold groups are fitted by a straight line. All close hits in the same super-
layer 2 are attached and the fit is repeated until a segment is completed.

3. A track is reconstructed from the segments by the standard CDF linking
algorithms 3.

4. If a track is reconstructed, stereo hits are attached to the track by the linking
algorithms.

5. A global fit is performed taking into account corrections for field non-uniformity
and the modeling of electron drift.

6. If available, SVX hits are attached to the track and the fit is redone.

7. If more tracks have hits in common the track with the largest number of hits
is accepted 4.

2the distance between hit and fitted straight line must be less than 1 mm
3At CDF two algorithms have been implemented: the “segment linking” and “histogram

linking” [27].
4If two or more tracks score equal, the one with the best fit is selected.
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The “Plug” region (1 < |η| < 3.6) is not covered by the COT: a calorimetry-seeded
tracking algorithm, named “Phoenix algorithm”, is needed to identify tracks.

Phoenix algorithm reconstructs the track of an electron (Phoenix electron or
PHX) by using:

i. the reconstructed 3D point where the pp̄ interaction took place (primary
vertex).

ii. the 3D position of the EM shower estimated by PES.

iii. the transverse energy deposited in the calorimeter.

The primary vertex and shower position are used as seed for the track helix
and the helix curvature is varied to match the transverse energy. If such a match
is found available hits from SVX are added to allow for a better fit.

4.1.2 Electrons

Electron reconstruction starts when a cluster in the electromagnetic calorimeter
(“EM cluster”) is found. Iterating over all calorimeter tower seeds 5, the EM
candidate clusters are defined by adding the transverse energies of the seed towers
and their neighbours 6. For CEM neighbours towers can be 2 on each side in η
direction, while for PEM the maximum cluster size is 2x2 including the seed. A
cluster is found if Eem

T > 2 GeV and Ehad
T /Eem

T < 0.125, where Eem
T and Ehad

T are
the EM and hadronic energies in the cluster. The clustering algorithms look for
EM objects in the CEM and PEM separately.

CES/PES 7 information are used to estimate the cluster center and tracks (see
4.1.1) are linked to the cluster. An electron is finally identified if the cluster is
matched with at least one track 8.

4.1.3 Muons

Muons are identified by stubs in muon chambers (see 3.2.4) and COT tracks. Muon
stubs must be matched to tracks. Tracks must satisfy certain quality criteria in
order to be considered for the matching [30].

5ET > 2 GeV in a tower seed
6a tower is defined by using electromagnetic and hadronic calorimeters info.
7depending on the region where the cluster is reconstructed
8If this criterion is not satisfied the cluster may be a photon.
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At Tevatron energies ionization losses dominate in the passage of muons through
matter. The small ionization energy lost by muons in the calorimeter provides a
significant signature.

Muons can be faked by hadrons whose showers leak from the back of the
hadronic calorimeters, or by cosmic rays 9.

4.1.4 Jets

Outgoing quarks and gluons undergo the hadronization process whereby hadron
showers are created around the primary parton direction. Figure 4.1 represents
the steps from parton to jet level.

Figure 4.1: From the initial partons to the final jets.

Jets are the only objects that can be used to obtain information about final
state partons of the hard interaction. Clusters of energy deposited in localized

9Cosmic muons can be rejected by imposing tight requirements on their distance from the
beam line.
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areas may indicate the presence of jets. However, there is no universal way of
defining a jet because of the lacking information about the hadronization process.

� Jet Reconstruction

A number of jet reconstruction algorithms have been developed at CDF. Some
algorithms make use of tracking information in searching for charged jets or in
measuring their transverse momenta. The jet algorithm used in this analysis,
called JETCLU [31], relies only on calorimeters.

JETCLU belongs to the family of cone algorithms. The cone radius is defined
as:

∆R =
√

(∆η)2 + (∆φ)2 (4.2)

where ∆η and ∆φ are the distances in pseudorapidity and azimuthal angle between
a tower center and a cluster axis.

JETCLU proceeds through the following steps:

1. searching for towers with ET ≡ Eemsinθem + Ehadsinθhad > 1 GeV , where
θem (θhad) is the polar angle of the vector pointing from the primary vertex
10 to the geometrical center of the electromagnetic (hadron) tower.

2. The towers above 1 GeV are marked as precluster seeds and ordered with
increased ET .

3. All seeds in a 49-towers square centered on the highest ET seed, define a
precluster. Seeds cannot belong to more than one cluster. The centroid of
the precluster is calculated as the ET -weighted center of the seeds.

4. A ∆R = 0.4 11 cone is drawn around the centroid and all ET > 0.1 GeV
towers in the cone are summed. The centroid is then recalculated as follows:

(ηbPC , φbPC) = (

∑
j ηjET j∑
j ET j

,

∑
j φjET j∑

j ET j

) (4.3)

5. The step above is iterated until (ηbPC, φbPC)i ≈ (ηbPC , φbPC)i+1, i being the
ith iteration. Jet candidates are now defined.

6. Since jet candidates may share some amount of transverse energy (see figure
4.2),� jet candidates are merged if the shared ET is more than 75% of the less

energetic ET jet. Jet centroid is then recalculated.

10reconstructed position of the pp̄ collision
11Cone radii used at CDF in other analysis are also 0.7 and 1.0
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Figure 4.2: Jet reconstruction by the JETCLU cone algorithm. See text for sig-
nificance of symbols.

A jet is univocally identified by this procedure. The four-momentum of the jet
is computed from its towers 12:

E =

Ntowers∑

i=1

(Eem
i + Ehad

i ) (4.4)

Px =
Ntowers∑

i=1

(Eem
i sinθem

i + Ehad
i sinθhad

i )cosφem
i (4.5)

Py =

Ntowers∑

i=1

(Eem
i sinθem

i + Ehad
i sinθhad

i )sinφem
i (4.6)

Pz =

Ntowers∑

i=1

(Eem
i cosθem

i + Ehad
i cosθhad

i ) (4.7)

where x, y are the Cartesian coordinates in the transverse plane. In this scheme
the towers are handled as massless particles. Therefore:

P =
√
P 2

x + P 2
y + P 2

z (4.8)

PT =
√
P 2

x + P 2
y (4.9)

ET = E × PT

P
(4.10)

y =
1

2
ln
E + pz

E − pz
(4.11)

12Two schemes have been defined at CDF: “Snowmass scheme” [32], and “E-scheme”. The
latter is used in this analysis.
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φ = arctan(
Py

Px

) (4.12)

� Jet Energy Corrections

The 4-momenta assigned to a jet (4.4-4.7) suffer for both detector inaccuracies
and reconstruction algorithm imperfections. A set of corrections to the jet recon-
structed energy (“raw energy”) have been developed to overcome these limits.

These corrections are applied in a sequence of levels (of “L-levels”) in order to
correct for each bias independently.� η-Dependent correction (L1)

The L1 correction accounts for non-uniformities in calorimeter response along
η. This correction is obtained by studying the PT -balancing in djet events
[36, 37]. Djet events are selected in order to have one jet (“trigger jet”) in
the 0.2 < |η| < 0.6 region 13. The other jet, called “probe jet”, is free to
span over the |η| < 3 region (see figure 4.3).

The PT balancing fraction is formed:

fb ≡
∆PT

P ave
T

=
P probe

T − P trigger
T

(P probe
T + P trigger

T )/2
(4.13)

where P probe
T and P trigger

T are the transverse momenta of the probe and the
trigger jets respectively. fb, is used to define the correction factor 14:

β ≡ 2+ < fb >

2− < fb >
(4.14)

which is in average equal to P probe
T /P trigger

T
15. In figure 4.4 β is shown as a

function of η.

The L1 correction is thus defined as fL1(R = 0.4, Eraw
T , η) = 1/β(η).

The error on fL1 varies from 0.5% to 7.5%.

13This region is far away from detector cracks and is expected to have a stable response.
14< fb > is the average in the η bin chosen for this study
15The definition 4.14 reduces the sensitivity of the measurement to the non-Gaussian tails

which affect the ratio P probe
T /P trigger

T . See [36] for further details.
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Figure 4.3: Schematic drawing of djet balancing

Figure 4.4: η-dependent energy scale correction factor for three different cone radii.
JET20 sample comprises the events satisfying the trigger level 1 request to have
at least one tower above 20 GeV.



Object Identification and Event Selection 50� Multiple Interaction Corrections (L4 16)

Energy from additional interactions 17 may fall into the jet cone and affect
its overall energy. A correction for this effect is extracted using a sample
of minimum bias events [38]. A cone is drawn in random positions within
the 0.1 < |η| < 0.7 region and the corresponding ET is measured. The ET

distribution is parametrized as a function of the number of vertexes of quality
18 (figure 4.5) in the event. This function is used as a luminosity-dependent
correction factor.

Figure 4.5: ET in R=0.4 cone as function of the number of reconstructed primary
vertexes in minimum bias events.

The correction factor uncertainty, depending on luminosity, event topology
and vertex reconstruction efficiency, is about 15%.� Absolute Energy Scale Corrections (L5)

While L1 and L4 accounted for corrections at calorimeter level, L5 steps back
to particle level. The procedure used to estimate the L5 correction factor is
as follow [39]:

16L2 and L3 have survived in the CDF jargon but are not used anymore. L2 was used in Run
I to remove any time dependence of the calorimeter PMT’s, L3 was used in a brief period during
Run II to account for differences between MC and data observed in photon+jets events. These
differences have been later cured.

17At the current maximum luminosity the average number of pp interactions per bunch crossing
is about 5 (see chapter 2).

18Vertexes composed at least by two COT tracks.
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- A large event sample is generated with the full CDF detector simulation.

- Jets are reconstructed at both calorimeter (C) and hadron (H) level 19.
PC

T and PH
T transverse momenta are assigned to C and H jets respec-

tively.

- Each C jet is associated to a H jet if ∆R < 0.1.

- The expected probability P(PC
T |PH

T ) to measure PC
T , given PH

T , is ex-
tracted.

- MaxP H
T

(P(PC
T |PH

T )) is taken as correction factor (see figure 4.6).

Figure 4.6: Absolute corrections for different cone sizes as a function of jet trans-
verse momentum.

L5 correction factor uncertainty is about 1.5-3%. Main contributions to this
uncertainty arise from calorimeter simulation, modeling of fragmentation and
stability of the calorimeter.� Underlying Event (L6) and Out-Of-Cone (L7) Corrections

Reconstructed jet energies in hard pp̄ interactions may contain contribu-
tions by particles created by soft spectator interactions or by gluons from
initial state radiation. These contributions are called underlying event. On
the other hand a fraction of the parton energy may be lost outside the jet

19This procedure does not distinguish between jets from gluons or quarks.
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cone because of final state gluon radiation, fragmentation effects or low PT

particles bending in the magnet field.

L6 and L7 purpose is to correct for these effects. L6 and L7 correction factors
are obtained from simulated djet processes by applying the same procedure
as for the L5 corrections (more details are described in [39]).

The correction factors described above are applied to the raw energy Eraw
T

20 as
follows (in this analysis a cone radius R = 0.4 is used):

ET (Eraw
T , η) = (Eraw

T · fL1(E
raw
T , η)−AL4)fL5(E

raw
T ) − AL6 +AL7(E

raw
T ) (4.15)

where fL1, AL4, fL5, AL6, AL7 are the correction factors for each indicated
level.

Formula 4.15 define the Jet Energy Scale (JES) 21.

4.1.5 Missing Transverse Energy

Neutrinos cannot be detected at CDF. In tt dilepton events some indirect infor-
mation on the two neutrinos ( /ET or MET) can be derived by the momentum
conservation in the transverse plane assuming the transverse momentum of the
interacting parton system to be zero. This is shown by equation 4.16 22:

−→
/ET raw = −

∑

i

Eisinθin̂i (4.16)

where the sum is over all towers with a deposited energy more than 0.1 GeV. n̂
is the transverse versor pointing from the CDF geometrical center to the tower,
whose polar angle is θ.

/ET raw must be corrected for various reasons (muons PT , interaction vertex
position, etc.), which will be discussed in section 4.4.2.

4.2 tt Dilepton Channel Signature

In 1.3 the three final state channels of the tt system have been briefly described.

20Correction factors can be equally applied to the raw transverse momentum P raw
T and Eraw

T ,
since both P raw

T and Eraw
T rely on calorimeter information.

21Some correction levels can sometimes be skipped. Later in the Chapter L4, L6 and L7 will
be neglected in event selection.

22The assumption mν = 0 has been made
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Figure 4.7: a tt dilepton event at Tevatron

The dilepton final state signature (see figure 4.7) consists of:� Two large transverse momentum leptons.� Large /ET , which is assumed to be due to the two-neutrinos in the W decays.� Two jets assumed to be originated from b-quarks.� The possibility of additional jets from initial and final state radiation.

4.3 Backgrounds

Background processes (BG) can be divided into two groups: physical and non-
physical background. The former is due to non-tt events simulating top dilepton
events because of similar kinematic features, while the latter is caused by detector
imperfections.

The main expected BG are discussed here.

4.3.1 Physical Backgrounds

◮ Diboson

this BG includes WW, WZ, ZZ 23 events in which respectively

23pp̄ → WW, WZ, ZZ + X , X being any additional system.
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Those events can cause physical background if they happen to have two or
more jets from initial or state radiation. In the case of WZ and ZZ, missing ET

may occur from mis-measured jets or leptons.

◮ Drell-Yan

Charged lepton pairs generated by Z boson or virtual photon 24 can simulate the
dilepton tt signature. A minimum number of two jets and /ET must occur because
of the same reasons as in WZ and ZZ events.

4.3.2 Non-Physical Backgrounds

◮ Fakes

Fakes are due to partons being confused with leptons. At detector level this effect
can be described as jet faking the signature of a lepton. W+jets and tt single lepton
(1.3) processes are expected to be the main contributions to Fakes background.

4.4 Event Selection

At CDF two selections have been performed so far in the dilepton channel: the
dilepton (DIL) and the lepton+track (LTRK) selections 25. Most selection criteria
are quite similar (with a large overlap, see figure 4.8) in both algorithms except
for the requirements defining the track 26 lepton.

Since LTRK selection has been used for this analysis, LTRK is going to be
described in this section. DIL selection will be described in appendix B.

4.4.1 Data Samples

In order to be included in the data sample, runs in the datasets (datasets are
listed in table E.1) are required to belong to the “good run lists”, which take into
account the optimal status of the beam and of sub-detectors. Good run lists used
in this analysis are reported in table E.2 27.

24pp̄ → Z/γ∗ + X
25CDF jargon
26See later in the Chapter for more details
27Each good run list in table E.2 is referred to the triggered lepton in the event.
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Figure 4.8: LTRK and DIL samples represented as ensembles. LTRK, DIL and the
overlap between LTRK and DIL are normalized to the union of DIL and LTRK (events
in either LTRK or DIL). LTRK scores 84%, DIL scores 60%. Shared events by the two
samples (light blue) are 44%. Percentages refer to an integrated luminosity of ∼ 350 pb−1

[45].

4.4.2 Requirements on the Physical Objects

Objects in candidate tt dilepton events must satisfy the following requirements 28.

N Tight Lepton (tl)

Four type of leptons are considered in the LTRK analysis: CEM, CMUP, CMX and
PHX 29. A tight lepton must have ET ≥ 20 GeV (PT ≥ 20 GeV for muons), asso-
ciated track |z0| < 60 cm and satisfy the following requirements defined according
to the lepton type.

- CEM :

99K Associated track must have PT > 10 GeV and be well-measured (≥ 3
axial and ≥ 2 stereo superlayers with ≥ 5 hits in the COT).

99K E/p < 2 if ET < 50 GeV (to reject hadrons accompanied by photons)

99K Ehad/Eem < 0.055 + 0.00045 ×E

99K Shower profile as determined in electron test beam measurements

- Muon:

99K A well-measured track with acceptable track reconstruction probability

99K Ehad < 6 +max(0, 0.028 × (p− 100))GeV

28Only main cuts are reported below. The full list is reported in [40, 41]
29Leptons are labelled with the name of the calorimeter they hit. The exception is the PHX

electron, which is identified using the plug calorimeter info (see 4.1.1)
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99K Eem < 2 +max(0, 0.0115 × (p− 100))GeV

99K Track |d0| < 0.02 cm if track is reconstructed with silicon hits; |d0| <
0.2 cm otherwise.

99K if the muon is a CMUP the extrapolated track must be matched to both
CMU and CMP stubs. If the muon is a CMX the exit radius of the COT
track must be ≥ 140 cm.

- PHX :

99K the track must include at least 3 silicon hits

99K Ehad/Eem < 0.05

99K the shower in PES must be at 1.2 < |η| < 2

99K if ET ≤ 100 GeV the shower profile must match the one obtained in test
beam

99K the quality χ2 of the PEM cluster match to the track must be ≤ 10

99K the distance between PEM cluster and PES shower must be ≤ 3 cm

Tight electrons (muons) must be isolated, i.e. the ratio between the additional
ET (PT ) in the R=0.4 cone centered on the electron (muon) and the ET (PT ) of
the electromagnetic associated cluster (COT associated tracks) must be < 0.1.

Tight leptons must be triggered. They are selected with the following decreas-
ing priority: CEM, CMUP, CMX, PHX. If two tight leptons of the same type are
found the highest-ET is chosen as first.

N Track Lepton (trkl)

A track lepton (also called second or loose lepton) is a reconstructed track (see
4.1.1), which satisfies the following requirements:

⊲ ≥ 24 axial and ≥ 20 stereo COT hits

⊲ ≥ 3 available silicon hits if its trajectory indicates that it should

⊲ |d0
corr| < 250 µm, where d0

corr is the beam - corrected track impact para-
meter 30

⊲ An acceptable track reconstruction probability

30The impact parameter is corrected for the displacement of the reconstructed primary vertex
with respect to the CDF geometrical center. The beam inclination relative to the ideal line
induces a z-dependent correction to the impact parameter. See [34] for further details
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⊲ |ztl
0 − ztrkl

0 | < 5 cm, where ztl
0 and ztl

0 are the z coordinates of the closest
approach to the z-axis for tl and trkl respectively. They are measured with
respect to the CDF geometrical center.

⊲ the track isolation, defined as
P

PT
P

PT +P trkl
T

< 0.1 where the sum runs over all

additional PT > 0.5 GeV tracks within a R=0.4 cone centered on the trkl 31.

N Jets

Jets must satisfy the following requirements

1. Ecorr
T > 20 GeV , where Ecorr

T is the raw jet transverse energy (4.10) corrected
up to L5 without L4 corrections (see 4.1.4).

2. |η| < 2

Jets are also required to be fully outside the R=0.4 cones whose axis are the
tl and trkl directions.

N Missing ET

Starting from 4.16, /ET is corrected as follows: 32.� The distance of the interaction vertex from the geometrical vertex. /ET is
recalculated with all vectors in 4.16 as having the origin in the interaction
vertex.� If the tl is a muon its momentum is used in building /ET rather than the
calorimeter energy.� If the transverse energy in the track tower is much less than the track PT ,
the track PT rather than the calorimeter energy is used in building /ET .� If a track within a jet cone has a transverse momentum larger than the jet
transverse energy, the track PT rather than the jet ET is used in building
/ET .� L1, L5 jet energy corrections. /ET is recalculated accounting for the corrected
transverse energy of the jets.

After corrections, missing ET is required to be > 25 GeV .

31The track isolation is defined in a slightly different way with respect the tight leptons
32More details are given in [34].
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4.4.3 Vetoes

Several topological vetoes are implemented in the LTRK selection in order to
reduce the impact of BG.

1. Cosmic Removal: Muons tagged as cosmic rays are rejected. The distance
between the muon track and the interaction point, timing info from COT
and calorimeters are used for the tagging 33.

2. Conversion Removal: Electrons coming from the conversion of photons to
e+e− pair are rejected.

3. Z veto/ /ET : if the invariant mass of the system tl-trkl 34 is within the Z mass

window ([76,106] GeV/c2) /ET > 40 GeV is required. This veto aims to reject
the Drell-Yan events in which /ET arises from mis-measured jets or leptons.

4. ∆φ( /ET − trkl): /ET parallel or antiparallel to the trkl may be faked by
the mis-measurements of leptons in Drell-Yan events. Therefore a min-
imum angular separation between the /ET direction and trkl is required
(5° < ∆φ( /ET − trkl) < 175°)

5. ∆φ( /ET − tl): events with ∆φ( /ET − tl) < 5° are rejected. The main reason
of this cut is the same as above. An additional motivation is to reduce the
acceptance for Z/γ∗ → µµ as electron + trkl events, where very high-PT

muons emit a bremsstrahlung photon [47].

6. ∆φ(Jet− /ET ): events with ∆φ(jet, /ET ) < 25° are rejected. All jets with

ET > 10 GeV are considered. This veto is dropped if /ET > 50 GeV . The
purpose of this cut is to reject events with mis-measured jets.

7. Opposite-Sign (OS): An opposite charge between tl and trkl is required.
This aims at reducing fakes (see 4.3.2) contributions to the selected sample
since fakes have the same chance for both charge signs.

The requirement on physical objects (4.4.2) and vetoes described above are the
core of the LTRK selection which is applied on data.

In order to avoid double-counting fakes from Diboson and tt single lepton events
one more “technical” cut with respect to data is implemented for the following
categories:� Signal, Diboson (WW): tl and trkl are required to come from W’s

33Further details are available at [35].
34trkl is assumed to be of the same flavor as tl.
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Fakes selection, which is performed on data, is described in appendix C.



Chapter 5

Top Quark Mass Measurement
Methods

The approach to measure the top mass adopted in this analysis is the Template
Method (TM): the experimental distributions of variables sensitive to the top
mass are compared with the ones built from simulated events (“templates”) (sec-
tion 5.1). Several sensitive variables, such as the jet transverse energies, the decay
length of the tagged b-quarks in the transverse plane (section 5.2.3), the top re-
constructed mass M reco

t
1 can be chosen to implement a TM.

Other two approaches, the Matrix Element (ME) and the Ideogram methods,
are used at CDF. ME estimated the top mass by maximizing the Mtop-dependent
probability to have the same configuration of final products in the event as it is
observed. The ideogram method combines TM and ME. Details are available in
[80, 81].

A number of TM methods will be discussed in this chapter.

5.1 The Dilepton Channel

The Dilepton channel has two neutrinos in the final state (see figure 4.7): this
means that 6 constraints involving the neutrinos cannot be imposed by the con-
servation equations.

As can be understood from figure 4.7 the tt decay chain involves 10 parameters,
out of which only 4 are measurable. Moreover the tt system decay has 5 vertexes

and for each of them we can write the conservation relations as in equation 5.1 2

1M reco
t is the mass reconstructed by exploiting the information of the top decay products in

the event. See next Chapter or [45] for details.
2The overall energy and longitudinal momentum conservation cannot be used, because small

60
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−→
P

t

T +
−→
P

t

T = −−→
E

UnderEv

T (5.1)

P b
µ + PW+

µ = P t
µ (5.2)

P b
µ + PW−

µ = P t
µ (5.3)

P l+

µ + P ν
µ = PW+

µ (5.4)

P l−

µ + P ν
µ = PW−

µ (5.5)

Where EUnderEv
T is the underlying event transverse energy (See 4.1.4 for the defi-

nition of underlying event). Pµ indicates the 4-momentum vector.
In the system above neutrinos can be assumed to have zero mass, W mass is

known (MW = 80.4 GeV/c2), top and antitop masses are assumed to be equal to
each other.

Finally, we have 23 equations out to 24 unknown (see Appendix A): therefore
the system is underconstrained, a so called -1C kinematics. One must assume as
known at least one more parameter in order to be able to reconstruct kinematically
the events and find for each event a value for the mass of the top. In CDF
three analysis have been developed with three different parameters assumed as
known: the “Full kinematic analysis”, the “Neutrino weighting algorithm” and
the “Neutrino φ weighting method”.

Once the best top mass is found in each event, the three methods share the tem-
plate method for reconstructing the top mass. The experimental mass distribution
is fit in terms of a likelihood function which is a mix of a background template and
of a top-mass dependent signal template. The templates are probability density
functions (p.d.f’s) obtained from simulated events. The total likelihood function
takes the form 3:

L (Mtop) ≡ Lshape(Mtop) × Lbackgr (5.6)

with

Lshape(Mtop) ≡ e−(ns+nb)(ns + nb)
N

N !

N∏

n=1

ns · fs(mn|Mtop) + nb · fb(mn)

ns + nb

(5.7)

Lbackgr ≡ e
(
−(nb−n

exp
b

)2

2σ2
n

exp
b

)

(5.8)

fs, fb are the signal and background, parametrized as continuous functions and
weighted by an expected number of signal (ns) and background (nb) events, esti-
mated by the fit. mn is the top mass reconstructed in the nth event, N is the total

angle particles are lost by the CDF detector around the beampipe.
3The likelihood 5.6 is used by the Full kinematic and Neutrino algorithm method. One more

term is added in the likelihood by the Neutrino φ weighting algorithm (see Chapter 6 for details)
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number of observed events in data.
nexp

b , σ2
nexp

b
are obtained from a separate measurement of the cross section [47].

We will give more details about how to obtain the likelihood function in the next
chapter when we will discuss our template method. Now we will describe briefly
the Full kinematic and Neutrino algorithm method. The Neutrino φ weighting
algorithm, which we have adopted in this analysis, will be discussed in detail in
the next Chapter.

5.1.1 Full kinematic analysis (KIN)

The Full kinematic method reconstructs the top mass by assuming as known the
total longitudinal momentum of the tt system, ptt

z .
Although the distribution should be centered around zero for any top mass, its
width might depend on top mass. However, simulations show that this quantity
is a zero-centered Gaussian with a width σ = 220 GeV/c2, which is insensitive
to Mt in the range Mt = 140 − 200 GeV/c2. In the single lepton channel this
expectation can be checked with data, since ptt

z can be measured. The MonteCarlo
analysis are validated by comparing the distribution obtained in simulations with
data in lepton+jets channel as it is shown in figure 5.1 4.

In figure 5.2 we show the P tt
z distribution for dileptonic events: the width is

slightly reduced because of the limited η coverage of the CDF detector.
So KIN method adds to the system 5.1 the equation

P z
t + P z

t = P z
tt (5.9)

Where P z
tt

is randomly drawn from Gaussian with zero mean and 195 GeV/c2

width. Thanks the equation 5.9 the system 5.1 is now solvable.
Since it is composed on non linear equations, this methods uses the iterative nu-
merical procedure called Newton’s method. Generally speaking this method starts
from a system expressed by the vectorial equation F(x) = 0 and requires an
initial guess x = x0 for the unknown vector which should be as much close as
possible to the true root. The local Jacobian is calculated to allow the procedure
to be repeated with a new value according to the recursive equation

xn+1 = xn − F(xn)

JF(xn)
(5.10)

until a satisfactory 5 solution is found.

4Of course the ptt
z distribution is the same in any top decay channel.

5|∆xn| = |xn+1 − xn| << 1
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Figure 5.1: Longitudinal momentum of the tt system in lepton+jets data, com-
pared to simulations.

This method should converge after a few iterations if the initial guess is not so
far from the true root. If no solution is found the assumption on Mt and MW are
replaced by the following equations:

Mt = Mt ± 2.0 GeV/c2; MW± = 80.4 ± 3.0 GeV/c2 (5.11)

to allow for the finite precision with which we know Mt and MW .
The full constrained system, schematized as F (x), can be simplified into a set

of three equations shown below:

f1(p
ν1
x , p

ν1
y , p

ν1
z ) = (El1 + Eν1)

2 − (
−→
P l1 +

−→
P ν1)

2 −m2
W = 0 (5.12)

f2(p
ν1
x , p

ν1
y , p

ν1
z ) = (El2 + Eν2)

2 − (
−→
P l2 +

−→
P ν2)

2 −m2
W = 0 (5.13)

f3(p
ν1
x , p

ν1
y , p

ν1
z ) = (El1 + Eν1 + Eb1)

2 − (
−→
P l1 +

−→
P ν1 +

−→
P b1)

2 −
(El2 + Eν2 + Eb2)

2 + (
−→
P l2 +

−→
P ν2 +

−→
P b2)

2 = 0 (5.14)

These equations are easily solvable if the momentum of the second neutrino is
expressed in terms of the momentum of the first one:

pν2
x = /ETx

− pν1
x (5.15)
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Figure 5.2: P tt
z distribution for events passing DIL selection. These events are

from MC sample with Mt = 175 GeV/c2. The continuous curve is a Gaussian fit
to the distribution.

pν2
y = /ETy

− pν1
y (5.16)

pν2
z = ptt

z − (pb1z + pl1z + pν1z + pb2z + pl2z) (5.17)

(5.18)

Applying Newton’s method we determine the first of two pairs of solutions for the
two neutrinos 6.
Since there are two possible associations among b-quark jets and leptons, we have
in total 8 solutions per each step of Newton method iteration.
In order to allow for the range of possible ptt

z (shown in figure 5.2), as well as the
finite resolutions of measured momenta and MET, in a current analysis [51] the
above procedure is repeated 104 times per each possible solution. Each time, ptt

z is
randomly drawn from a Gaussian with zero mean and 195 GeV/c width. The jet
Energy and MET are similarly smeared by Gaussian functions according to their
estimated resolutions, while the measured jet angles and the lepton momenta which
are measured with small errors are assumed to be exactly known.

6Notice that we are solving quadratic equations for both neutrinos, so we have 2× 2 possible
(pν1 , pν2) solutions
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Once we have all the kinematical variables we can calculate the t(t) →W± +
b(b) → l± + ν(ν) + 2jets invariant mass, by using jet and lepton information and
the obtained solutions for neutrinos. Notice that we can have up to 104 invariant
masses per each of the 8 solutions. We choose the most probable value (MPV)
of a spline fit to the mass distribution as the “raw top quark mass”. The mass
indicated by an event must be selected among these eight masses.
These solutions are split into two classes according to the lepton-to-jet pairing and
in each class the solution that minimizes the invariant mass of the tt system is
chosen as the favored one 7.
The mass distributions of the two solutions are compared (see as example figure
5.3) and the solution with the largest number of entries provides the measured top
mass.

Figure 5.3: Smeared top quark mass distributions of the favoured and disfavoured
lepton+jet pairings from the KIN method applied to a HERWIG Monte Carlo tt
event with Mt = 175 GeV/c2. Also shown for the favoured pair is the spline fit
used to select the top quark mass

In the above procedure events with less than 1000 entries in the invariant mass
histograms are not taken into account.

7The efficiency of this method has been estimated to be 84% on MC generated events with
Mt = 178 GeV [51]
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5.1.2 Neutrino weighting algorithm (NWA)

The second method for estimating the top quark mass from dilepton events is the
Neutrino weighting algorithm. For the time being the method has been applied
by CDF to a 360 pb−1 LTRK event sample.

The strategy of this method is to solve for the neutrino and antineutrino mo-
menta, independently of the measured missing energy, by constraining the system
5.1÷5.5 with additional assumptions on the tt decay. The neutrino/antineutrino
configurations are weighted with a function /ET (and mt !) dependent function and
used to create a probability distribution.

The NWA weight function is constructed according to the following procedure.� We assume values for the top quark and W boson masses, neutrino and
antineutrino pseudo-rapidities, and the lepton-jet.� We apply the conservation equations to the top quark decay and obtain up
to two possible equations for the neutrino� We repeat this procedure on the antitop decay� To each of the four obtained pairs of (ν, ν) solutions is assigned a probability
(weight) according to the measured /Ex and /Ey and their uncertainties σx

and σy respectively. The formula for the weight is shown below:

wi = e
− (/Ex − pν

x − pν
x)2

2σ2
x × e

− (/Ey − pν
y − pν

y )2

2σ2
y (5.19)

We use σx = σy = 15 GeV , which is obtained from tt generated events
with mt = 178 GeV/c2 8.� Since (ν, ν) 4 solutions have a priori equal probability, we sum the four
contributions:

w(mt, ην , ην , l − jet) =
4∑

i=1

wi (5.20)� Since the neutrino polar angles are a-priori equally likely, we repeat the above
steps for many possible (ην , ην) pairs.
MC studies indicates that neutrino η′s are uncorrelated (as seen in Figure
5.4) and follow a Gaussian distribution centered at zero with width of about
1.

8In practice, however, the performance of the algorithm is insensitive to the particular choice
of the /ET resolution
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Figure 5.4: Neutrino η distribution with Gaussian fit (left) and neutrino Vs an-
tineutrino η’s (right) from a HERWIG tt sample with Mt = 178 GeV/c2

The neutrino η width varies little with top quark mass (see Figure 5.5) and
a constant width of 0.9888 is assumed.

Figure 5.5: η width as a function of generated top quark mass, compared with fit
value at Mt = 178 GeV/c2 (horizontal line)

To ensure symmetry and smoothness, we scan the neutrino η distributions
from -3 to 3 in steps of 0.1 and we assign to each step a probability of
occurrence P (ην , ην) derived from a zero centered Gaussian with a 0.988
width. Each trial ην , ην will contribute to the event according to its weight,
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w, and probability of occurrence P (ην, ην), as shown in the equation below

w(mt, l − jet) =
∑

ην , ην

P (ην, ην) × w(mt, ην , ην , l − jet) (5.21)� Since no b-tagging is used we sum over the two possible pairings and get the
NWA weight function as :

W (mt) =

l+−jet2∑

l+−jet1

w(mt, l − jet) (5.22)

We choose as top mass per event the MPV value of the weight distribution
(see figure 5.6).

Figure 5.6: NWA weight distribution as a function of the assumed top quark mass
(from equation 5.22) for a HERWIG Monte Carlo tt event with Mt = 170GeV/c2.
The vertical line shows that the most probable value (MPV) is close to 170GeV/c2.

In the next section we are going to give a brief description on how to measure
the top mass in the single lepton and in the all-hadronic channels.
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5.2 Lepton plus jets channel

The lepton plus jets channel (see section 1.3) has provided up to now the most
precise measurements of the top quark mass. This is because it has the best
compromise between background contamination (signal to noise ratio of the order
of 1/1, which becomes as high as 20/1 if b-tagging is used) and branching ratio
(BR), which is ≈ 30%.
In this channel we have in the final state only one neutrino, so we can assign the
full missing transverse energy to it. The kinematic equations are over constrained
(2-C kinematics) 9. The only ambiguity not solved by the conservation equations
is the sign of the longitudinal component of neutrino momentum (see previous
section) and the pairings of jets to light or b quark jets, which can only in part
be solved if b-tagging is used. We have respectively 24 combinations if b-tagging
algorithm is not used (pretag sample), 12 if only one b-jet quark is tagged and 4
if we have two tagged b-jets 10.

5.2.1 Template method with in situ W → jj calibration

Since in the single lepton channel the kinematic is over-constrained and because
of two jets attributed to W decays, this method offers the possibility of correcting
the jet energy scale to fit at best the W mass. This allows to revise the calibration
of the jet energy scale and to reduce the main source of systematic uncertainty
that affects the final top mass estimator.

The signal templates fs(Mt,∆JES) are derived from simulations as a function
of the top massMt and of the correction to the input jet energy scale ∆JES 11. The
background template fs is independent of Mt and is assumed to be independent
of ∆JES.

The final likelihood has the form:

L (Mtop, ∆JES) = Lshape × L
mjj

t
shape × Lbackgr (5.23)

where

L
mjj

t
shape ≡

N×Ci∏

n=1

ns × fs(mjj,n|Mtop,∆JES) + nb × fb(mjj,n)

ns + nb

(5.24)

9three more degrees of freedom than in the dilepton channel are constrained
1024 = 2×2× 4!

2
where in the numerator 4! are all the possible jet permutations, a factor 2

is because of neutrino P − z uncertainty and another is because we do not know which is the
leptonical decaying W. The factor 2 in the denominator is because a permutation on light jets
does not change the likelihood. Combinations for 1-tag and 2-tags are calculated in the same
way

11the MC samples are generated with fixed Mt and ∆JES (Section 4.1.4)
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mjj,n being the djet invariant mass for the nth event and Ci the number of the
possible djet combinations. The other factors are given by 5.7, 5.8.
Notice that the likelihood function 5.23 has two free parameters (Mtop,∆JES) to
be determined by the minimization.

5.2.2 Multivariate template method

This method is very similar to the one already discussed in 5.2.1, since it uses the
same sensitive variable M reco

t and the same procedure to reconstruct the top mass
per event.
However, it tries a number of improvements in comparison with the previous dis-
cussed method:

1. Reducing the statistical uncertainty by estimating the probability of picking
up the correct jet permutation up on event-by-event basis and re-weighting
the events accordingly.

2. Improving S/N by using a number of kinematic variables to distinguish tt
events from background ones.

The applied procedure loops over seven different W masses, taking into account
the Breit-Wigner distribution for weighting each iteration.
One seeks a set of “good” variables which increase the sensitivity to the top quark
mass and improve the discrimination between signal and background. To look for
those we compare the probability density distributions for a number of variables
in signal and background using W + 4jets sample. It is found that kinematic
energy-dependent quantities, above all the transverse energies of the four leading
jets, have the best signal to background discrimination.

5.2.3 Template method using decay length technique

This method uses the transverse decay length, Lxy, of b-hadrons from top decay
in order to reconstruct top mass. Figures 5.7 gives a graphical visualization of Lxy

in the transverse plane.
In top quark rest frame b-quark momenta pb ∝ mt for large mt. For a b hadron
of momentum pb, angle θ with the beam-axis, mass mb and proper lifetime τ0,
Lxy = τ0

pb

mb
sin(θ) can be directly measured.

This method uses signal and background Monte Carlo distributions as probability
density functions from which sets of pseudo-experiments are performed. Mean
values of each set of pseudo-experiments are histogrammed and mean and width
are extracted accordingly. This procedure is repeated for each generated top mass.
Means are then parametrized as function of top mass by using a third degree
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Figure 5.7: A visualization of transverse decay length

polynomial. The fit to the expected distribution of the means as a function of top
mass establishes the top mass estimator, once a measured mean Lxy is given.

This method, as other methods that suffer from a large statistical error, are
relatively new. This means that more studies should be performed in order to
optimize these methods.

Despite of the simplicity, these methods are insensitive to large sources of
systematic uncertainty (JES for example, see Section 4.1.4) and will be important
above all at LHC, where the statistical error will be small relative to the systematic
one.

5.3 All-hadronic channel

This channel is characterized by a 6 jets final state topology with little missing
energy in the event.
In addition to the small S/N ratio (prior to any cuts ∼ 1/1000 in the large ET jet
sample) a search in this channel faces multiple ambiguities in the jet-to-partons
association. In each event there are 6! = 720 possible jet permutations (if no
b-tagging is applied). However, since a number of them do not change the top
and W mass 720

2×2×2
= 90 are the possible combinations. If one b-jet is tagged

the number of combinations decreases to 30 (30 = 2×5!
8

), while if both b-jets are
tagged we have a total of 6 (6 = 2×4!

8
) combinations.

At CDF one TM technique has been developed for measuring the top quark
mass in the all-hadronic channel. This technique introduces a number of additional
kinematical tools relative to template methods in the dilepton and lepton+jets
channel.
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Despite these difficulties a mass measurement with about a 5 GeV/c2 overall
error has been obtained in a template analysis. A reduction of the error to about
4 GeV/c2 is in view in a two parameters template analysis where the error on the
JES is reduced by constraining to the W mass the jet pairs attributed to the decay
of the two W’s.

5.4 Comments on the different measurement me-

thods

In this sub-sections we make a number of comments on the merits of different ways
to measure the top mass. The full picture of the CDF Run II results can be seen
in figure 1.2.

Among the template methods the most sensitive ones are those which use
M reco

t as top mass estimator. Naively this is expected, since in the reconstructed
top mass much of the kinematical information about the event is included. Other
template methods that use less sensitive parameters than M reco

t were developed in
order to avoid some systematic uncertainties by which the methods using M reco

t are
affected. For example the one using leptons PT is not affected by jet systematics.
Using little sensitive variable, they suffer from a large statistic uncertainty, but
the increasing statistic in Run II (L ≈ 2fb−1) make the statistical error become
less important with time. We can expect that in the future these simple methods
will give some useful results.

It is appropriate to expand on these considerations in our thesis about the
dilepton channel.
Here we have three different methods, KIN, NWA, PHI. They all use M reco

t as
sensitive variable, but differ for the variable chosen to constrain the kinematics
(see subsection 5.1). All methods give consistent results with comparable errors.
The consistency indicates that the systematic errors special to each method have
been properly accounted for.

Finally, we comment on why it is important to have many ways to measure top
quark mass in different channels and with different methods.
We can mention three advantages� Measuring the mass with different methods in the same channel, in our case

the dilepton one, serves as a cross-check and protects from systematic errors.� The measurements can be combined to provide a measurement with smaller
uncertainty.� If measurements in different decay channels would significantly differ from
one another we might conclude that we are not taking into account some
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events that would be background for a channel but not for other ones. This
would be hint for physics beyond Standard Model, since all possible kinds of
events suggested by the SM have been considered.



Chapter 6

Neutrino φ Weighting Method

In this chapter we will focus on the method we are using to measure the top quark
mass: the Neutrino φ Weighting Method (PHI).

As we wrote in the previous chapter, this method exploits M reco
t as a variable

sensitive to the true top mass and reaches the final goal by comparing distributions
obtained in Monte Carlo generated events with the distribution obtained in the
data.
In 5.1 we discussed briefly two other methods that perform the measure within
the same approach. In this chapter we are going to present the full procedure of
the PHI method, from the choice of the constrained variables to the top quark
estimator. We will provide as many details as possible, and illustrate how we
developed and are developing this method step by step. We will also point out
the improvement that this analysis represents with respect to analysis performed
previously by the Dubna group [44].

6.1 Principles of the Method

6.1.1 Constrained variables

We have: a total of 24 unknowns (t, t, W−, W+, ν, ν 4-momenta) and only 23
equations (see 5.1) available to constrain the kinematics. We must assume at least
one of these variables as known, in order to be able to find solutions from the tt
decay chain.
The PHI method chooses to make assumptions about the 2-D vector R = (φ1, φ2).
A net of solutions in the two dimensional R plane is built. Because of the symmetry
of the solutions for φ′

ν1,ν2
= φν1,ν2 + π this net can be limited to the range (0, π)×

(0, π).

74
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6.1.2 Fitter

The Fitter reconstructs the most likely kinematics of the event in the t-tbar as-
sumption and finds a top quark mass per event.

The χ2 form

The Fitter makes use of all final state observables in the χ2 below 1, to be mini-
mized in order to find the top mass favoured by the event:

χ2 ≡ −2ln(P(x)) (6.1)

where P is the probability density in the variable x: in our case x means transverse
momentum components or a number of invariant masses in the case of jets and
leptons, energy in the case of unclustered energy.
We have a contribution to the χ2 for each observable: we write the total χ2 in the
formula below:

χ2 = χ2
reso + χ2

constr (6.2)

χ2
reso =

2∑

l=1

(P l
T − P̃ l

T )2

σl
PT

2 +
2∑

j=1

[−2ln(Ptf (P̃
j
T |P j

T ))] +
∑

i=x,y

(UEi − ˜UEi)2

σi
UE

2 (6.3)

χ2
constr = −2ln(PBW (ml1,ν1

inv |MW ,ΓMW
)) − 2ln(PBW (ml2,ν2

inv |MW ,ΓMW
))

−2ln(PBW (ml1,ν1,j1
inv |M̃t,ΓM̃t

) − 2ln(PBW (ml2,ν2,j1
inv |M̃t,ΓM̃t

)) (6.4)

The upper-marked variables are the output values adjusted by the minimiza-
tion procedure, whereas PT and UE (unclustered energy) represent measured val-
ues corrected for known detector and physics effects. M̃t is the fit parameter giving
the reconstructed top mass. Indices BW and tf indicate relativistic Breit-Wigner
and transfer function respectively. Since the utilization of Breit-Wigner distribu-
tions is new with respect to [44] we will discuss it more in this chapter, while we
refer to appendix I for more information on the transfer functions.
The χ2 has two terms: the first one, χreso, takes into account the detector uncer-
tainties, whereas the second one constrains the parameters to the known physical
constants.
The first sum runs over the primary lepton (tight lepton) and the track lepton

1The χ2 defined below does not refer to a chi-square in the statistical sense but it is still a
function to be minimized.
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(loose lepton). We use in the denominator the known values for the uncertainty
in measuring primary electron and muon PT respectively. For the loose lepton
momentum uncertainty we use the same formula as for the muons:

σe
PT

P e
T

=

√
a

P e
T

+ b (6.5)

σµ
PT

P µ
T

= c · P µ
T (6.6)

where a = 0.1352, b = 0.022, c = 0.0011 are taken from the Run I study [43].
The second sum is over the two leading jets. These transverse momenta have

been corrected for multiple interactions, underlying event contribution and out-of-
cone jet energy loss (“level 4, 6 and 7” corrections in CDF jargon) even though
jets corrected for detector defects only (“level 5 corrections”) have been considered
in selecting the candidate events 2.
The third sum is over the two transverse components of the unclustered energy 3.
The 6.4 terms constrains the invariant masses of the lepton-neutrino pairs and of
the lepton-neutrino-leading jet system to the W and to the top mass respectively.

We set MW = 80.41 GeV/c2, ΓMW
= 2.06 GeV/c2, as suggested by P.D.G and

for the top width we use the function

ΓMt =
GF

8
√

2π
M3

t (1 − M2
W

M2
t

)2(1 + 2
M2

W

M2
t

) (6.7)

according to the standard model. The dependence of ΓMt on Mt is shown in figure
6.1.

Allowing for the mass dependence of the top width is something new. We will
comment at the end of this section on the improvements obtained by introducing
this novelty in the fitter.

2see 4.4 for further explanations.
3UE is defined as the sum of all unclustered energy in the calorimeter, that is the sum of the

towers which are not associated with any of the objects previously considered in the χ2 formula
(tight lepton, track-lepton, two leading jets). Notice that this definition also includes possible
additional jets with ET > 8 GeV and |Eta| < 2 not already taken into account as leading
jets.
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Figure 6.1: Top Width Vs top mass

Scanning the (φ1, φ2) plane

As in the “KIN” and “NWA” methods we cover the entire field spanned by the
constraining variables. We choose a step and we scan the (0, π) × (0, π) (φ1, φ2)
net accordingly.
For each point of the net we can write the following linear system:

{
P ν1

T cos(φν1) + P ν2
T cos(φν2) = /ETx

P ν1
T sin(φν1) + P ν2

T sin(φν2) = /ETy

(6.8)

that is solved by:





P ν1
x ≡ P ν1

T · cos(φν1) =
/Ex·sin(φν2)−/Ey ·cos(φν2)

sin(φν2−φν1)
· cos(φν1)

P ν1
y ≡ P ν1

T · sin(φν1) =
/Ex·sin(φν2)−/Ey ·cos(φν2)

sin(φν2−φν1)
· sin(φν1)

P ν2
x ≡ P ν2

T · cos(φν2) =
/Ex·sin(φν1)−/Ey ·cos(φν1)

sin(φν1−φν2)
· cos(φν2)

P ν2
y ≡ P ν2

T · sin(φν2) =
/Ex·sin(φν1)−/Ey ·cos(φν1)

sin(φν1−φν2)
· sin(φν2)

(6.9)

Since we have constrained two degrees of freedom, we can perform a 1C mini-
mization of the χ2, given by 6.2. This is done for every point of the net 4.

4Net points satisfying the equation φ1−φ2 = 0, π are conveniently redefined in order to avoid
a singularity (6.9).
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We note that we would have the same components of the neutrino’s momentum
P ν1,ν2

x,y for φ
′

ν1,ν2 = φν1,ν2 + π (see 6.9) and we would include three unphysical
solutions (P ν1

T < 0 and/or P ν2
T < 0) by considering the remaining three regions

(0, π) × (π, 2π), (π, 2π) × (0, π), (π, 2π) × (π, 2π) of the (0, 2π) × (0, 2π) (φ1, φ2)
space, as shown by the equation below:

φ
′

ν1,ν2 = φν1,ν2 + π =⇒ P
′ ν1,ν2
x,y = P ν1,ν2

x,y and P
′

T

ν1,ν2
= −P ν1,ν2

T (6.10)

We avoid this inconvenience by choosing corresponding physical solutions accord-
ing to 6.10 when unphysical solutions are found.

The net is chosen to have 12x12 points. We have checked that choosing a finer
net would not give any significant improvement (see figure 6.5), while each solution
requires a long CPU time.
We will deal again with this topic in section 6.4.

With 8 solutions per net point we have to do 1152 1C minimizations, each of
which returns a value of M reco

ijk and χ2
ijk (i = 1, . . . , 12; j = 1, . . . , 12; k = 1, . . . , 8).

We select the lowest χ2 solution for each point of the (φ1, φ2) net, thereby
reducing the number of obtained masses to 144 per event. All these values carry
information on the mass favoured by the event: the problem is how to weight the
information carried by each one of them.

Weighting the solutions

In section 6.1.2 we introduced the Breit-Wigner functions in the χ2 formula 6.2
to take into account how invariant masses are distributed in W or t decay. The
adopted relativistic Breit-Wigner formula is:

PBW (minv; m,Γ) ≡ Γ2 ·m2

(m2
inv − m2)2 + m2Γ2

(6.11)

where m and Γ are the mass and the width of top or W, minv refers to the invariant
mass, calculated with the appropriate information from lepton and neutrino, in the
case of W decay, or from lepton, neutrino and leading jet, in the case of t decay.

In the case of W → lν, formula 6.11 has a constant numerator. This plays no
role in the χ2 minimization. In the case of top decay ΓMt depends on one of the
parameters for the minimization of the χ2. We must allow for this dependence,
but we are free to use any Breit-Wigner functions, like the following one, as long
as they differ from 6.11 only by a normalization factor:

PBW (minv; m,Γ) ≡ Γ ·m2

(m2
inv − m2)2 + m2Γ2

(6.12)

6.11, 6.12 are plotted in figure 6.2 assuming three different top masses.
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Figure 6.2: Two possible relativistic Breit-Wigner functions. a), 6.12; b), 6.11
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On the other hand, while weighting the 144 solutions of an event, the normalization
of the adopted BW is important. The expression for the weight is given below:

wij = e−
χ2

ij
2 ; i, j = 1, · · · , 12 (6.13)

this formula is obtained by inverting 6.1.
While expression 6.11 was used in the minimization, we adopted expression

6.12 to associate a weight to a solution, since simulations showed that this would
minimize the statistical error. We note for completeness that the two χ2 are related
as follows:

wij ∝ Γ−2
Mt
e−

χ2
ij,minimiz

2 (6.14)

where, obviously, χ2
minimiz refers to the χ2 used in the minimization. This relation

shows that the solution with the smallest mass will have the largest weight among
solutions with the same χ2

minimiz. In such a case this solution is adopted.

6.1.3 Picking up the solution

Once the weight for each of the 144 masses per event is determined, we define
an optimized procedure to obtain the final reconstructed mass per event. The
procedure follows the steps below:

1. We build a probability density distribution (“pdd”) of reconstructed masses
with 144 entries. Each mass has been weighted according to 6.13.

2. We identify the most probable value (MPV).

3. We apply a discriminator level (DL) cut and neglect masses in bins with less
than the DL fraction of the MPV bin content.

4. We calculate M reco
t as the mass weighted average.

In this measurement we are using DL = 0.3. This was the optimal choice in-
dicated by a study on simulated events [44]. The discriminator level was varied
in the interval from 0.0 to 0.99. Figures 6.3 show the results from MC pseudo-
experiments 5. The points at DL=-0.1 obtained by accepting all 144 masses per
event [46]. We observe that any positive DL values give a better resolution (better
a-priori statistical error 6) than DL=-0.1 and that a value around DL=0.3 gives
optimal performance.

5In pseudo-experiment masses are drawn randomly from signal and background templates,
according to expected number of signal and background events. For more details see Chapter 8

6See Chapter 8 to understand more about the a-priori statistical error.
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Figure 6.3: Mean (red), median (green) of positive and negative statistical error
vs. cut (DL). Top mass 160 (upper left), 175 (upper right), 190 (lower) GeV/c2
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6.2 Templates

The reconstructed top mass might be biased by many sources, also beyond the
inaccuracy in the measurements of the involved variables. Examples are theoret-
ical assumptions of some quantities in 6.2 (top decay width, etc...), the possible
adoption of a gluon jet as one of the two leading jets in the final state, a wrong
lepton-jets combination choice.

In the Template Method the top mass is found by comparing the mass
distribution in data and in simulated events. In as much as the simulation correctly
describes the measurement, since simulated and real data are analyzed in the
identical way, biases due to a number of inaccuracies like wrong jet assignments,
underlying event and out of cone corrections are automatically accounted for when
deriving the top quark mass from the measured mass-sensitive parameter.

Monte Carlo events generation

We generate template events by the Monte Carlo technique. This technique starts
from flat distributed variables and, using constraints from theory or experiment-
driven models, returns the distributions of the desired variable.� Signal samples

We generate a large number of tt events at parton level with top mass in
the range from 155 GeV to 195 GeV in two 2 GeV steps. We simulate
particle interactions with the detector, accounting for inefficiencies and for
non instrumented zones. Smearing, due to experimental uncertainties, is
included as a constrain.� Background samples

We use the theoretical cross sections and generate the process of interest 7

at parton level. The detector simulation is as for the signal samples.

6.3 Likelihood Form

In the previous sections we gave a prescription to obtain an estimator for the true
top mass per event.

The final step 8 is to compare the mass distribution in data events with simu-
lation in Monte Carlo events.

7see Chapter 7 for more information on the considered background events
8Internal CDF severe rules do not allow to work on data until the analysis method is discussed

and approved by the Collaboration.
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We perform this comparison by parametrizing with analytic functions M reco
t

distributions in Monte Carlo 9, building a M reco
t distribution in data and matching

the data to the Montecarlo-derived distributions with a likelihood unbinned fit and
minimization.

The fit to the likelihood function finds the probability that our M reco
t

distribution is described by a mixture of background events and dilepton
tt events with an assumed top quark mass. The maximum likelihood
determines the true top mass.

The likelihood used by the PHI method (6.15) differs from 5.6 because of an
additional Lparam. Below we report the total likelihood.

L ≡ Lshape · Lbackgr · Lparam; (6.15)

where,

Lshape ≡
e−(ns+nb) · (ns + nb)

N

N !
·

N∏

n=1

ns · fs(mn|Mtop) + nb · fb(mn)

ns + nb

(6.16)

and

Lbackgr ≡ exp(
−(nb − nexp

b )2

2σ2
nexp

b

) (6.17)

Lparam ≡ exp{−0.5[(~α − ~α0)
TU−1(~α− ~α0) + (~β − ~β0)

T
V −1(~β − ~β0)]}. (6.18)

α and β are parameters determined from fitting with analytic functions, the signal
and background templates respectively (see Chapter 7 for further details). U
and V are the corresponding covariance matrices, returned from the MINUIT [78]
minimization.

We assign a shape probability (fs) that each of the selected “LTRK” events is
signal or (fb) background. These probabilities are weighted according to appro-
priate signal and background numbers, nb and ns, that are self-estimated by the
likelihood fit. These two parameters are not completely free. The first one follows
a Gaussian distribution (see 6.17) where nexp

b and σnexp
b

are taken from “LTRK”
Dilepton Cross Section Analysis Group [47], while the ns + nb is constrained by

a Poisson term e−(ns+nb)·(ns+nb)
N

N !
, as shown in 6.16.

It should be observed that in this way the number of signal events estimated
by the likelihood is not forced to be distributed around the expected number of
signal events calculated by using tt cross section info 10.

9see Chapter 7
10for more info on the cross-section dependent top mass measurement see [50]
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The likelihood maximization procedure (we usually minimize −ln(L )) returns a
top quark mass estimator mt, as the mass value corresponding to [−ln(L )]min,
and its statistical uncertainty, by setting −ln(L ) to [−ln(L )]min + 0.5. We
note that uncertainties in signal and background parametrization are included in
the statistical error 11.

6.4 Monte Carlo studies

Studies are required to check whether� the minimization of the χ2, defined by 6.2, is able to reproduce the right final
particles configuration.� choosing another segmentation for the (φ1, φ2) net would change the result.

To address the first question we study the kinematics of the dilepton tt events 12.
We identify the primary leptons by matching tracks to leptons in the hepg bank.
With this technique we also know the neutrinos (φ1, φ2) angles. In parallel we run
our standard χ2 procedure (see 6.1.2).
Examples of χ2 distributions in the (φ1, φ2) plane are presented in figure 6.4.

Figure 6.4: χ2 distributions in the (φν1, φν2) plane for a number of simulated
dilepton signal events. The region of neutrino azimuthal angles preferred by the
reconstruction can be seen. The genuine neutrino angles are shown as the color
marker.

11In NWA and KIN methods these contributions are included in the systematic error [45].
Such contribution is called MC statistics error.

12we are performing this check using dilepton events passing “DIL” selection (see Appendix B
for details)
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Each plot corresponds to one particular event. Only one χ2 out of χ2
ij , i, j =

1 · · · , 24 is displayed. We plot the solution up to 2π on both axes since we are
interested in which of the four sectors we find the physical solution (see 6.1.1).
The white areas (areas with a relative good χ2 value) surround the genuine point
(the one extracted from hepg bank) confirming that our procedure to reconstruct
M reco

t is working properly.

To understand the impact of the chosen (φ1, φ2) segmentation we produced
MC templates for three different grids (6x6, 12x12, 24x24), as shown in figure
6.5. The obtained RMS are shown in figure 6.6. While the large mass tail is
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Figure 6.5: MC mass templates for different neutrino φ-plane segmentation for top
mass 170 GeV/c2

slightly reduced when the 12x12 segmentation is chosen rather than 6x6, there is
no significant progress in increasing the segmentation further to 24x24. Overall the
phi segmentation is not influential. A 12x12 grid is an approximately optimized
choice.

More studies which were performed on the method are described in Appendix
G.

6.5 Improvements

We introduced two changes relative to [44] in the definition of the χ2
constr (6.4): we

switched from the Gaussian functions to represent the top width of the previous
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Figure 6.6: RMS of templates vs. neutrino phi plane segmentation
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analysis (see appendix F) to the physical Breit-Wigner to schematize more appro-
priately the t, t, W± decay chains, and we use the Mt dependent rather than a
constant Γt. We also use an optimized Breit-Wigner (see 6.12) to weight the so-
lutions. A ∼ 20% improvement has been obtained. Details are given in appendix
H.

A change in the χ2
reso (6.3) made with respect to the previous analysis is the

introduction of the transfer functions 13 k = (P part
T − P jet

T )/P jet
T , where P jet

T is the
transverse momentum of the considered jet and P part

T is the transverse momentum
of the parton associated to the jet. Although this term allows for a more correct
description of b parton response the improvement in the mass resolution with re-
spect to the previous analysis (see F) is barely significant. The procedure to obtain
the transfer functions and the obtained improvement are described in appendix I.

13for further details see Appendix I



Chapter 7

Templates

Templates used in this analysis are mass distributions whose entries are tt (sig-
nal) or background simulated events, selected according to the “LTRK” dilepton
selection (see 4.4).

In this Chapter we are going to give some details about Monte-Carlo sam-
ples used to create signal (7.1) and background (7.2) templates. In section 7.2.1
the procedure used to combine the background processes and create an overall
background template will be described.

7.1 Signal tt templates

Pythia 1 tt samples of common CDF use [57] with top mass within 155÷195GeV/c2

in 2 GeV/c2 steps have been used 2. The samples generated with a top mass below
165 GeV and above 185 GeV contain approximately 0.6 × 106 events, while the
other ones contain approximately twice as many.

We require that all the events pass the “LTRK” dilepton selection. The number
of selected events per each sample is shown in table 7.1. Events generated with
higher top masses have a larger probability to be selected because of the larger
available space-phase.

For each event passing the selection cuts we reconstruct the invariant mass
(M reco

t ) and build a mass distribution. We thus obtain a mass distribution (tem-
plate) for each sample.

1Pythia is an event generator for a large number of physics processes.
2this range is more or less symmetric around the word average value of the top quark mass

(172.5±2.7 GeV/c2 [58]). It is chosen wide enough to cover at least 3 standard deviations of the
mass value

88
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Sample Size(106 events) # selected events Acceptance (%)

ttkt55 0.6 4742 0.79 ± 0.01
ttkt57 0.6 4642 0.77 ± 0.01
ttkt59 0.6 4783 0.80 ± 0.01
ttkt61 0.6 4922 0.82 ± 0.01
ttkt63 0.6 5025 0.84 ± 0.01
ttkt65 1.2 10208 0.85 ± 0.01
ttkt67 1.2 10259 0.86 ± 0.01
ttkt69 1.2 10689 0.89 ± 0.01
ttkt71 1.2 10840 0.90 ± 0.01
ttkt73 1.2 10999 0.92 ± 0.01
ttkt75 4.8 45020 0.94 ± 0.00
ttkt77 1.2 11458 0.96 ± 0.01
ttkt79 1.2 11595 0.97 ± 0.01
ttkt81 1.2 11723 0.98 ± 0.01
ttkt83 1.2 12015 1.00 ± 0.01
ttkt85 1.2 12255 1.02 ± 0.01
ttkt87 0.6 6255 1.04 ± 0.01
ttkt89 0.6 6271 1.05 ± 0.01
ttkt91 0.6 6358 1.06 ± 0.01
ttkt93 0.6 6121 1.02 ± 0.01
ttkt95 0.6 6454 1.08 ± 0.01

Table 7.1: Monte Carlo samples [57], number of generated events (GE), events
passing the selection cuts (SE) and acceptances (SE/GE).

In a global fit we parametrize all templates by a top mass Mt-dependent func-
tion 3. We choose a combination of one Landau and two Gaussian functions, as
shown in 7.1.

fs(M
reco
t |Mt) = p7(p6

1√
2πp2

e
−0.5(

Mreco
t −p1

p2
+e

−
Mreco

t −p1
p2 )

+ (1 − p6)
1√
2πp5

e
−0.5(

Mreco
t −p4

p5
)2

) +

(1 − p7)
1√
2πp3

e
−0.5(

Mreco
t −p8

p3
)2

(7.1)

In 7.1 the p1, . . . , p8 parameters are Mt-dependent as:

pk = αk + αk+8 · (Mt − 175) k = 1, . . . , 8 (7.2)

3Notice that in this fit Mt is considered a paramater
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fs is a probability density function (p.d.f) that the reconstructed mass M reco
t

comes from an event with true top mass Mt.
In figure 7.1 a number of templates are shown. Fitting functions (red lines) are

obtained by 7.1.

Figure 7.1: Signal templates for a number of generated top masses.
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Each template in figure 7.1 has a small but visible narrow peak in the M reco
t =

140÷ 160 GeV/c2 region, which becomes more important at lower masses. This is
a consequence of the fit constraints 4.

7.2 Background templates

From the measured cross section at CDF [47] we expect the dilepton LTRK sample
to be composed of about 50% of signal events and about 50% of background
events. Therefore it is important that the composition and the overall template of
background events be understood.
As already mentioned in 4.3, we include in the background the following processes5:� Diboson

1. WW → l+l′− + νlν l′6

2. WZ → l+l−

3. ZZ → l+l−� Drell-Yan (DY)

1. Z/γ∗ → l+l−� “Fakes”: events with a fake lepton (see 4.3 for details)

The used samples 7 are the CDF official MC samples, created with PYTHIA.
Samples are listed in table 7.2 8.

4The Breit-Wigner mass distributions, which are narrower at smaller top masses, are biased
by the kinematical cut M reco

t > MW + Mb
5All these processes may end having in the final state an arbitrary number of jets
6l, l′ = e, µ, τ
7events in these samples are generated ad hoc for top quark studies. A number of additional

large PT partons are requested at the generator level. This is done in order to reduce the number
of useless events for top analysis, given the small acceptance of these events by the selection cuts.

8if not specified otherwise, inclusive (on number of jets and type of leptons) processes over
all SM-allowed final products are considered.
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Category Process Sample Size(106 events) Cross section

Diboson WW itopww 2.4 7.70 pb
wewkbd 3.5 1.27 pb (NLO)

WZ itopwz 2.4 2.30 pb
wewkcd 3.5 0.36 pb (NLO)

ZZ itopzz 2.4 2.56 pb
DY

(Mγ∗ = [75, 105] GeV/c2) Z(ee)+2p ztop2p 0.5 3.47 pb
ztopzb 4.5 3.46 pb

Z(ee)+3p ztop3p 0.5 0.55 pb
DY

(Mγ∗ = [20, 75] GeV/c2) Z(ee)+2p xtop2p 0.5 1.61 pb
xtoppb 4.5 1.60 pb

Z(ee)+3p xtop3p 0.5 233 fb
DY

(Mγ∗ = [105, 600] GeV/c2) Z(ee)+2p ytop2p 0.5 117 fb
DY

(Mγ∗ = [75, 105] GeV/c2) Z(µµ)+2p ztop7p 0.5 3.47 pb
ztopzt 4.5 3.46 pb

Z(µµ)+3p ztop8p 0.5 0.55 pb
DY

(Mγ∗ = [20, 75] GeV/c2) Z(µµ)+2p xtop7p 0.5 1.60 pb
xtoppc 4.5 1.60 pb

Z(µµ)+3p xtop8p 0.5 233 fb
DY

(Mγ∗ = [105, 600] GeV/c2) Z(ee)+2p ytop7p 0.5 117 fb
DY

(Mγ∗ = [75, 105] GeV/c2) Z(ττ)+2p ztopt2 2.4 4.14 pb
DY

(Mγ∗ = [20, 75] GeV/c2) Z(ττ)+2p xtopt2 2 1.82 pb
DY

(Mγ∗ = [105, 800] GeV/c2) Z(ττ)+2p ytop7p 0.25 117 fb
Fakes W+jets data � �

Table 7.2: Leading order cross section, generated sample and number of accepted
events of background processes (first column) [57]. For Drell-Yan the dilepton
mass is indicated.
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Selected events are reconstructed, as described in Chapter 6. In order to build
the Z/γ∗ → e+e− (Zee), Z/γ∗ → µ+µ− (Zmm), Z/γ∗ → τ+τ−(Ztt) templates
events are weighted according to σs/Ns, where σs and Ns are respectively the
cross section of the process and the total number of events (see table 7.2) in the
sample. WW, WZ, ZZ templates are built with the same procedure. Zee, Zmm,
Ztt, WW, WZ, ZZ are normalized to their expected rates [47] for an integrated
luminosity of ∼ 2 fb−1 (see table 7.3). Drell-Yan template is obtained by summing
Zee, Zmm and Ztt. The Diboson template is the sum of WW, WZ, ZZ. The Fakes
template is built from data events (see Appendix C for details). Diboson, DY and
Fakes templates are shown in figure 7.2.

Figure 7.2: Background templates

As already observed in section 7.1, background templates are similar to signal
templates around M reco

t = 140.

7.2.1 Combined background

The fakes template is normalized to 53.73 events (see table 7.3). Diboson, DY
and Fakes templates are then merged into the combined background template (see
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figure 7.3).

Process expected number (1.1 fb−1) rescaled expected numbers (2.0 fb−1)

WW 3.90 ± 0.36 7.02 ± 0.65
WZ 1.43 ± 0.38 2.57 ± 0.68
ZZ 0.34 ± 0.02 0.61 ± 0.04

Z/γ∗ → e+e− 7.75 ± 2.24 13.95 ± 4.03
Z/γ∗ → µ+µ− 3.40 ± 1.15 6.12 ± 2.07
Z/γ∗ → τ+τ− 7.31 ± 0.89 13.16 ± 1.60

Fakes 29.85 ± 5.86 53.73 ± 10.55
Background 53.99 ± 6.60 97.18 ± 11.88

Table 7.3: Expected background events for an integrated luminosity of 1.1 fb−1

[47] and 2.0 fb−1. Same notations as in table 7.2.

The fitting function, fb, for the combined background is reported in 7.3.

fb(M
reco
t ) = β7(β6

1√
2πβ2

e
−0.5(

Mreco
t −β1

β2
+ e

−
Mreco

t −β1
β2 )

+ (7.3)

+ (1 − β6)
1√

2πβ5

e
−0.5(

Mreco
t −β4

β5
)2

) + (1 − β7)
1√

2πβ3

e
−0.5(

Mreco
t −β8

β3
+ e

−
Mreco

t −β8
β3 )

Two Landau and one Gaussian functions have been used. The main difference
with respect to the signal fitting functions fs is in the expression of the parameters
β1, . . . , β8.

The fit to the combined template is shown as a continuous curve in figure 7.3.

7.3 Concluding comment

In this Chapter the parametrized templates for signal and background events have
been presented. These parametrizations will be used for the top mass measure-
ment.

Before applying the method to data, we will apply it to simulated events to test
whether it gives reasonable outcomes. These tests will be subject of next Chapter.
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Chapter 8

Testing the Method

The machinery for deriving the top mass from fits to a mass-sensitive experimental
distribution has been presented in the previous chapters.

This chapter describes the tests that have been performed to check that the
mass and its statistical uncertainty 1 are correctly estimated. These tests have
been performed on simulated samples, where the true top mass was known.

Section 8.1 describes the technique used for the tests. The results will be
presented in Section 8.2.

8.1 Pseudo-Experiments

The implementation of a generic Pseudo-Experiment (PE) is as follows.
The expected composition of signal and background events in the LTRK data

sample is reported in table 8.1 2.

expected numbers (2.0 fb−1)

Signal 108.95 ± 3.38
Background 97.18 ± 11.88

Table 8.1: Expected signal and background events for an integrated luminosity of
2 fb−1

1The systematic uncertainties will be discussed in chapter 9
2The expected numbers of signal and total background events are obtained from the CDF

top cross section measurement made with lower statistics (1.1 fb−1) [47] and rescaled to the
luminosity of 2fb−1)

96
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This sample can be simulated from Monte Carlo generated events: an average
of 109 events is drawn from a signal template and an average of 97 events from the
combined background template. Top mass and statistical error can be estimated
by a likelihood fit of this sample, as explained in Section 6.3.

This procedure can be iterated, by splitting the original MC sample in many
uncorrelated sub-samples. A mass distribution is built with the result of each PE.
This distribution is expected to be centered on the generated top mass.

In principle we can perform as many PE’s as we want 3. However, Monte
Carlo samples have a limited statistics. In our case it was not possible to have a
number of PE’s as large as desired containing ∼ 100 signal events in average each
4, when disposing of simulated event samples of only ∼ 5000 to 45000 (see table
7.1), without generating a significant correlation among PE’s. Generating a much
larger Monte Carlo statistics was prohibitive from a computing point of view.

Some correlation can be accepted while still gaining in accuracy: the re-
sampling method5 demonstrates that the gain in accuracy can be accomplished
up to a number of pseudo experiments satisfying the condition (Nsample/N

ev
PE)2,

where Nsample is the number of entries in the signal template (see 7.1) and N ev
PE is

the number of events in each PE. Beyond this value the correlation among PE’s
does not allow any further improvements.

For the measurement an average number of 10000 PE’s has been chosen.
To test our method we proceeded as follows.� We generated N tt

PE signal events and N back
PE background events, according to

Poisson distributions with means 108.95 and 97.18 respectively.� We draw N tt
PE and N back

PE masses from the signal template and from the
combined background.� We perform the likelihood fit and find the top mass (Mfit

t ) and its statistical
error.� We iterate this procedure on 10000 PE’s 6

3The accuracy of these tests increases with increasing number of PE’s, which is limited in
practice.

4we do not repeat the same event in the same PE.
5We refer the reader to [59] for more information.
6A refinement is in progress by applying a Gaussian smearing to the expected number of

signal events.
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8.2 Sanity Checks

A number of checks have been performed to prove that the adopted templates
parametrization and the likelihood fit are able to return a mass value close to
generated mass. In order to do this, top mass, mass error and pull distributions
are built. The pull is frequently defined as:

Mfit
t − Mt

σ(Mfit
t )

(8.1)

where σ(Mfit
t ) =

σ+(Mfit
t )− σ−(Mfit

t )

2
, σ±(Mfit

t ) are the positive and negative sta-
tistical errors. A slightly different pull definition is used in this thesis:

Mfit
t − Mt

σ′(Mfit
t )

(8.2)

where σ′(Mfit
t ) = { σ+(Mfit

t ) if Mfit
t < Mt

|σ−(Mfit
t )| if Mfit

t > Mt

8.2.1 Reconstructed Masses and Statistical Errors

We use the median of the mass distribution as top mass estimate (Mout
t ). Figure

8.1 shows Mout
t versus input mass and the bias, defined as Mout

t − Mt.
The slope of the fitting straight line in the upper plot is consistent with 1.000.

The fit was performed in the mass range [160,190] GeV/c2 7: an average bias of
−0.16 ± 0.10 is obtained. Although this can be considered compatible with zero,
we apply a shift of −0.16 to the result on data.
The error bars in the figure 8.1 are mainly due to the limited MC statistic 8. They
are calculated with a Boostrap procedure:� The bin contents of signal and background templates (see chapter 7) are

used as means of Poisson distributions. New bin contents are generated
accordingly and new templates are built.� Re-sampling is performed by drawing masses from new templates.� The above steps are repeated 100 times for signal and background.� Two distributions are built.

7this covers 3 σ around the world average top mass
8Actually the error bars result from σLS ⊕ σP E√

NPE

where σLS is the contribution of the

limited statistic and σP E√
NPE

is due to the limited number of PE. σPE is the average RMS of the

distribution for PE’s and NPE = 104
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quadrature.
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Figure 8.1: Reconstructed versus input masses (upper) and bias (lower)

We used the signal template for Mt = 175 GeV/c2. The results of this procedure
are shown in figure 8.2.
Average mass uncertainty of signal and background templates, associated to boot-
strapping are 0.15 and 0.27 respectively. 0.28 is the induced top mass error. The
errors on points of figure 8.1 with generated top mass different from 175 GeV/c2

are calculated by applying a scaling factor 9 which corrects for the different statistic
in signal templates (see table 7.1).

9The scaling factor is:

√
Nev

175√
Nev

Mt

where Nev
Mt

and Nev
175 are the numbers of selected events in the

sample with generated top masses Mt and 175 GeV/c2 respectively
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Figure 8.2: Bootstrap results for signal (left) and background (right)

The expected statistical error distribution for an input top mass of 175 GeV/c2

is shown in figure 8.3.
Its average is 4.3 GeV/c2. The statistical error dependence on Mt is shown

in the figure 8.4. Errors are estimated with the bootstrap procedure mentioned
above.

8.2.2 Pull Distributions

Pulls gauge the goodness of mass reconstruction: they express, in units of the
statistical error, the bias of our method. Examples of pulls which have been
obtained are plotted in figure 8.5.
Pulls have been fitted by using Gaussian functions: the obtained χ2

red shows a good
agreement (see figure 8.5).

The mean and the width of pulls versus generated top mass are shown in figure
8.6.
The straight line fit on the upper plot has an offset of −0.04, which is slightly
different from the expected value of 0.00. This offsets corresponds to the bias
(seen in figure 8.1) for which a correction has been applied.

The average pull width is 1.011 ± 0.005. Accordingly, the statistical error
obtained from data will be rescaled by 1.011.

In order to estimate the “a-priori” average statistical error a generate mass of
175 GeV/c2 has been used as mentioned above (8.2.1). After rescaling by 1.011,
it becomes 4.4 GeV/c2.

Since the machinery (templates, likelihood fit, etc ...) has been tested on the
same MC samples that have been used to build signal and background templates,
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Figure 8.3: Expected statistical error for an input top mass of 175 GeV/c2.

some independent tests on orthogonal samples are needed in order to validate the
method. These are performed by analyzing “blind samples”.

8.2.3 Blind samples results

“Blind” samples are provided by the CDF Top Analysis Group Conveners in order
to accomplish this goal. Signal samples are generated with a top mass, which is
known only to the Conveners. The same distributions as in section 8.2.1 and 8.2.2
have been built.

Figure 8.7 shows examples of results by PE’s from 10 blind samples. Bias and
mean of the pulls are shown in figure 8.8 .

An average bias of 0.27±0.38 GeV/c2 and an average width of pulls of 1.029±
0.016 have been estimated by a straight line fit. Results are fully consistent with
the previously obtained values (see 8.2.1, 8.2.2) and provide the final validation of
the method.

It is worth observing that any technical imperfection (e.g. a mathematically
inappropriate definition of mass probability, 6.1) would play no role in a template
method, in as much as it is applied identically to data and simulations and it is
proved to return the correct mass values in blind samples.

The underlying theory to the analysis has a number of limitations (e.g lowest
order cross sections used in background estimates) whose impact on the result is
accounted for in the estimate of the systematic errors (chapter 9).
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Figure 8.4: Mean of statistical error versus generated top mass.

Figure 8.5: Pulls for Mt = 175 GeV/c2 (upper) and Mt = 181 GeV/c2 (lower)
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Figure 8.6: Mean (upper) and width (lower) of the pulls versus generated top mass
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8.2.4 Summary of corrections

The method has been tested according to the standard procedures at CDF. Results
from these tests show that outputs of the method has to be corrected according
to the following table:

Parameter correction

Top mass −0.16 GeV/c2 (shift)
Statistical error 1.011 (factor)

Table 8.2: Shift applied to the top mass and multiplication factor applied to
statistical error.
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Systematic Uncertainties

Besides the statistical uncertainty, there are several sources of systematic uncer-
tainty on the top mass.

Since our method compares findings to Montecarlo expectations discrepancies
between simulated and data events originate systematic uncertainties (sections 9.1
to 9.6). Other systematic uncertainties originate from the finite statistic used to
build the simulated background templates (section 9.7).

The procedure for estimating systematic uncertainties is as follows. Some pa-
rameters used to simulate events (e.g. Jet energy scale, amount of the initial and
final state radiation, etc.) are shifted 1 around their central value and shifted tem-
plates are generated. Top masses are measured using the shifted templates and
the difference from default values is used to estimate the systematic uncertainty.

The sample (ttkt75) with a generated top mass of 175 GeV/c2 is used to rep-
resent tt events in the mass range of interest.

9.1 Jet Energy Scale

The calorimeter energy assigned to jets is corrected according to the calibrated
detector response to electrons and hadrons and for physics effects. Six levels of jet
energy corrections have been considered, each of which have associated uncertain-
ties σ (4.1.4). The procedure to account for these uncertainties is as follows2:� In event selection and reconstruction each level is shifted by the ± σ

1σ is the standard deviation on the shifted parameter. The values of these parameters will
be reported later.

2Drell-Yan and Diboson samples which account for about 87% of the overall background are
used (see table 7.2). Since fakes background has been estimated on data, it is not included in
this systematic.

105



Systematic Uncertainties 106� Shifted signal and background templates (T±) are obtained.� Two sets of 104 PE’s are performed by using T± (Chapter 8): shifted top
masses (M±) are estimated.� (M+ −M−)/2 is taken as JES systematics.

These 6 contributions are finally summed in quadrature in order to obtain the
overall Jet Energy Scale (JES) systematic uncertainty. Results are reported in
table 9.1.

Reconstructed top mass distributions from PE’s where level 5 jet energy cor-
rection was shifted ± σ is shown in figure 9.1.
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Figure 9.1: Top mass distributions from PE’s. T− (green) and T+ (blue) for level 5
(see text for symbol significance). Arrows indicate the medians of the distributions.

Level 5 corrects for the absolute calorimeter energy scale. Its uncertainty dom-
inates the overall JES uncertainty.

Systematic uncertainties for each level and the total one are shown in table 9.1.

The total Jet Energy Scale uncertainty is 2.9 GeV/c2.
Despite of long efforts made to improve the understanding of the energy de-

pendence of calorimeter response this source of uncertainty is still dominating in
most of the jet analyses performed in CDF 3.

3Sensitivity of top mass to jet energy comes about because the leading-jets originate directly
from t(t) decay.
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Level Source Mass (GeV/c2) Uncertainty (GeV/c2)
+σ -σ ∆M/2

1 η-Dependent 175.80 174.58 0.61 ±0.03
4 multiple interactions 175.20 175.16 0.02 ±0.03
5 Absolute Scale 177.26 172.93 2.17 ±0.03
6 Underlying Event 175.37 175.05 0.16 ±0.03
7 Out-of-cone 176.99 173.36 1.81 ±0.03
4 splash-out 175.49 174.94 0.28 ±0.03

total 2.9±0.03

Table 9.1: Mass shifts when a ±1σ shift is applied to signal and background (see
text). Last row reports the total JES systematic uncertainty.

9.2 b-Jet Energy Scale

JES uncertainties are estimated with studies on samples dominated by light-quark
and gluon jets [60]. b-jets (jets initiated by a b quark) differ from light quarks jets
because of three features [62]:

1. Heavy Flavor Fragmentation: the b-hadron resulting from b-quark fragmen-
tation carries a larger fraction of the parent quark momentum than hadrons
born in light quark fragmentation 4.

2. Colour Flow : b-jets experience a mechanism of color compensation which is
channel specific.

3. Decay : A large fraction of the decay products of b-hadrons are leptons and
neutrinos 5

The shift on top mass due to b-JES uncertainty is estimated by applying a
± 1% shift to b-jet energy in the signal sample. Two shifted masses are then
estimated. Table 9.2 shows the results.
According to the standard CDF rules the obtained ∆M/2 is multiplied by 0.6 6:
the systematic uncertainty due to b-jet energy scale is 0.62 GeV/c2.

4An intuitive understanding of this effect is that, being much heavier than u,d,s,c, the b-quark
is only slightly decelerated when combined with a light quark to form a b-hadron

5Since leptons and neutrinos interact in a different way with the calorimeter than the more
common hadronic particles, b-jets will have a different response on average than W-jets. Al-
though this difference has been modeled in event reconstruction (see 6.2) uncertainty on leptonic
branching fractions cause additional uncertainty.

6This factor is obtained from simulations. Simulations have shown that 1 GeV/c2 shift in
top mass is returned by 1% shift in b-JES and that the b-JES systematic is expected to be 0.6
GeV/c2 for all top mass analysis [61, 62]. A more correct procedure would be to apply a shift
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Source Datasets Mass Mass Shift Syst.
GeV/c2 GeV/c2 GeV/c2

B-JES ± 1% shift in ttkt75(-) 174.15±0.04 ∆M/2 =1.04±0.03 0.62
JES for b-jets ttkt75(+) 176.24±0.04

Table 9.2: Results from PE’s by applying a ±1% b-jet energy scale shift in signal
events (see text).

b-JES systematic uncertainty is the largest systematic after the JES one. Since
b quarks are direct top products, the top mass is very sensitive to the uncertainty
on their energy scale.

9.3 Lepton energy scale

The top mass uncertainty associated to the uncertainty of lepton energy scale has
been studied by applying ±1% shifts to the lepton pT

7 [72]. Results are shown in
table 9.3.

Source Datasets Mass Mass Shift Syst.
GeV/c2 GeV/c2 GeV/c2

l-JES ± 1% shift in ttkt75(-) 174.84±0.04 ∆M/2 =0.3±0.03 0.3
ES for leptons ttkt75(+) 175.48±0.04

Table 9.3: Results from PE’s by applying a ±1% shift to the lepton momentum
scale shift in signal events (see text).

Half difference between the two shifted results (0.3 GeV/c2) is assumed as
systematic error from lepton energy scale uncertainty.

9.4 MC generators

As mentioned in Chapter 7, by default MC signal samples are generated with
the Pythia generator. However, at CDF two different tt generators, Pythia and

to the b-JES in the simulated Heavy Flavor Fragmentation, Color Flow and Decay and add the
resulting mass shift in quadrature. However, this procedure would be much more time consuming
and is not expected to give significantly different estimates of the systematic uncertainty.

7In this case leptons are defined as those tracks or electromagnetic objects that match gener-
ated leptons
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Herwig, are available. These generators use different models for the hadronization,
underlying events and multiple interactions [63].

MC generators systematic takes into account differences which arise by using
signal samples, generated with Herwig rather than Pythia. Signal sample (top mass
175 GeV/c2) generated with Herwig (htop75) and Pythia (ttkt75) are compared.
Table 9.4 summarizes the results from PE’s.

Source Datasets Mass Mass Shift Syst.
GeV/c2 GeV/c2 GeV/c2

Generator Pythia ttkt75 175.17±0.15 ∆M =0.46±0.35 0.46
Herwig htop75 174.71±0.32

Table 9.4: Results from PE’s for different Monte-Carlo generators. See text for
significance of symbols.

0.46 GeV/c2 is the estimated systematic of MC generators on top mass.

9.5 Initial and final state radiation

Jets radiated from interacting partons in the initial and final state affect the
top mass measurement because they can be misidentified as leading jets or can
change the kinematics of the final state partons. In order to study the effect on
the parametrization of initial (ISR) and final (FSR) state radiation four samples
(+σISR,−σISR,+σFSR,−σISR) are generated 8. Top mass reconstruction is per-
formed on these samples: results are summarized in table 9.5.

Source Datasets Mass Mass Shift Syst.
GeV/c2 GeV/c2 GeV/c2

ISR +σISR itoprk 175.00±0.32 ∆M =-0.17±0.34 0.34
−σISR itoprl 174.95±0.32 ∆M =-0.22±0.34

FSR +σFSR ftoprj 175.05±0.32 ∆M/2 =0.17±0.22 0.22
−σFSR ftoprl 175.38±0.32

Table 9.5: Top mass shifts obtained from PE’s. See text for significance of symbols.

8±σISR/FSR corresponds to an increase or decrease of the ISR/FSR in simulated events. See
Appendix J for details on the generation of these samples.
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ISR mass shift is below the nominal value (175.17) both for +σISR and −σISR.
However, the shifts are smaller than the errors 9. According to CDF rules under
such circumstances the error, 0.34, is used as ISR contribution to the systematic
uncertainty.

0.22 GeV/c2 is taken as FSR systematic uncertainty.

9.6 Parton distribution functions

Monte Carlo samples are generated by using parton distribution functions (PDF’s)
named CTEQ5L [70]. Discrepancy in top mass arising from different PDF’s must
be estimated.

The PDF uncertainty is composed of three sources [73]:� PDF parametrization.� PDF choice.� QCD scale (Λ).

In order to estimate these three sources of uncertainty the following PDF’s have
been used:� CTEQ5L: default PDF.� CTEQ6M: default next-to-leading order PDF from CTEQ group [70].� MRST72: PDF from MRST group [71] with the same QCD scale as CTEQ5L� MRST75: Same as MRST72 but with a different Λ 10

These uncertainties are estimated by the “re-weighting method” [74]: a PDF-
dependent relative weight to CTEQ5L 11, is assigned to each event. Templates are
re-built and PE’s are performed. Results are shown in figure 9.2.

The uncertainty on PDF parametrization is estimated by shifting ± σ the 20
eigenvectors of CTEQ6M PDF (red and blue dots in figure 9.2). Half differences
in the derived mass are added in quadrature.

The difference in top mass between CTEQ5L and MRST72 is used as system-
atic uncertainty associated to choosing one particular PDF. Difference in top mass

9This indicates that our method is insensitive to initial state radiation
10MRST75 is generated with Λ = 300 MeV , while MRST72 with Λ = 228 MeV
11This approach is less CPU time consuming than generating MC events according to all PDF’s

listed above
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Figure 9.2: top mass reconstruction using different PDF’s. Black horizontal line
is the nominal value for CTEQ6M PDF.
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between MRST72 and MRST75 is the systematic uncertainty for a different QCD
scale.

These systematic uncertainties are then added in quadrature. Results are sum-
marized in table 9.6:

Source Mass Shift Syst.
GeV/c2 GeV/c2

CTEQ PDFs Sum(∆M/2)=0.21±0.13 0.21
CTEQ5L vs MRST72 ∆M=0.07±0.06 0.07
Λ (MRST72 vs MRST75) ∆M=-0.22±0.06 0.22
Total 0.31

Table 9.6: PDF systematic uncertainties. See text for significance of symbols.

0.31 GeV/c2 is the PDF systematic uncertainty.

9.7 Background shape

Another source of systematic uncertainty is due to the possible mis-modeling of
the background shape.

Three independent sources may contribute significantly to the mis-modeling:

1. The background composition

2. The Fakes shape

3. The Drell-Yan shape

9.7.1 Background composition

The expected Diboson, Drell-Yan and Fakes number of events are varied alter-
natively by ±σ (see table 7.3), without changing the total background number.
Three ± shifted background templates are obtained and used for PE’s. Results
are presented in Table 9.7.

0.46 GeV/c2 is the systematic uncertainty for the background composition.

9.7.2 Fake events shape

Fakes represent the largest sources of background (see table 7.3). Effect on top
mass coming from uncertainty on fake shape is studied.
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New fake templates are built by applying a ± linear ET -dependent shift in the
fake rate matrix (see figure C.1) 12.

The two obtained fake templates are combined with the other background
templates, according to the procedure described in section 7.2.1. PE’s from these
templates are performed. The result is shown in table 9.7: 0.41 GeV/c2 is the
systematic uncertainty related to the Fakes shape.

9.7.3 Drell-Yan events shape

Drell-Yan events can pass the LTRK selection because jet mismeasurements can
cause a large missing ET . Mismodeling of this effect may shift the reconstructed
top mass. In order to estimate the sensitivity of our measurement to this effect, the
weight in Z/γ∗ → ee, Z/γ∗ → µµ 13 templates has been increased (and decreased)
by a factor of 2. Only the contribution of events with tight lepton and track lepton
inside Z window 14 has been considered for re-weighting 15. Two new combined
background templates have been obtained and used for PE’s. The result is shown
in table 9.7. 0.3 GeV/c2 is the systematic uncertainty related to Drell-Yan events
shape.

9.8 Comments on errors

As already mentioned in chapter 8, errors on PE results are estimated according
to the following formula:

σ = σLS ⊕ σPE√
NPE

(9.1)

where σPE is the average standard deviation from the single PE, NPE = 104

and σLS is the uncertainty because of limited statistic (8.2.1).

In order to calculate errors on individual systematic uncertainties (see tables
9.1-9.7) formula 9.1 has been interpreted as follows:� σ = σPE√

NPE
if “±σ shifted” top masses are obtained from the same signal sam-

ple. This is the case of JES, B-JES, l-ES and background shape systematic
uncertainties.

12The shift has the following form: wi
± = wi

0 ± [1
8
· (2iET

− 8) · σi
w]; i = 0, . . . , 8, where wi

0 is
the fake rate in the ith ET bin, σi

w is the uncertainty on wi
0, and iET

denotes the ET bin (see
figure C.1)

13Z → ττ events can have real /ET because of τ -decay neutrinos. For this reason they are not
considered in the background shape systematic.

14see section 4.4 for Z-window definition
15For details about the factor used for re-weighting see [51]
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Source Mass Mass Shift Syst.
GeV/c2 GeV/c2 GeV/c2

BG Diboson(-σ) 175.15±0.04 ∆M/2 =-0.02±0.03 0.03
compos- Diboson(+σ) 175.11±0.04
ition DY(-σ) 174.90±0.04 ∆M/2 =0.25±0.03 0.25

DY(+σ) 175.40±0.04
Fakes(-σ) 175.53±0.04 ∆M/2 =-0.39±0.03 0.39
Fakes(+σ) 174.74±0.04

0.46
Fake -linear ET -dependent shift 174.80±0.04
shape in fake rate matrix ∆M/2 =0.41±0.03 0.41

+linear ET -dependent shift 175.61±0.04
in fake matrix

Drell-Yan decreased weight 174.88±0.04
shape in the Z window ∆M/2 =0.30±0.03 0.30

increased weight 175.48±0.04
in the Z window

Table 9.7: Top mass shifts obtained from the PE for different BG composition,
Fakes and Drell-Yan shape. See text for more details.� σ ≈ σLS otherwise. This is the case of MC generator, ISR and FSR system-

atic uncertainties 16.

9.9 Summary of the systematic uncertainties

The total systematic error together with the single contributions are shown in table
9.8.
The systematic uncertainty on top mass is 3.1 GeV/c2. It is obtained by adding
in quadrature the single contributions 17.

16The bootstrap procedure used to estimate σLS accounts for the finite statistic signal sample.
In table 9.4 the error on top mass from Pythia sample is ∼ 0.15, as shown in figure 8.2. All other
errors are ∼ 0.32 since they are estimated from samples of an about twice smaller statistic.

17Fully uncorrelated sources have been assumed.
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CDF RunII Preliminary
Source Uncertainty (GeV/c2)

Jet Energy Scale 2.9
b-JES 0.6

Initial State Radiation 0.3
Final State Radiation 0.2

Parton Distribution Functions 0.3
Monte-Carlo Generators 0.5
Background composition 0.5

Fakes shape 0.4
DY shape 0.3

l-ES 0.3
Total 3.1

Table 9.8: Summary of systematic uncertainties

9.10 Conclusions

Ten sources of systematic uncertainty have been included in the systematic error
on top mass. At present (winter 2007) CDF physicists are working towards two
goals:� Decrease the systematic uncertainties with improved analysis techniques on

larger statistic.� Account for minor previously neglected sources of systematic uncertainty
(e.g. top width uncertainty) which with increasing statistic are becoming
sources of significant errors.

Figure 9.3 is an overview of the estimated dependence of statistical and systematic
errors on top mass versus the integrated luminosity by combined CDF and D/0.
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Figure 9.3: Projection of statistic and systematic uncertainties on top mass mea-
surement as a function of integrated luminosity [77]. CDF and D/0 combined results
in the single lepton channel are assumed. Only the residual JES calibration error
after imposing the W mass to jet pairs associated to the W is accounted for.
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Results

After having tested the method (chapter 8) it is possible to apply it on data events
and measure the top mass. Section 10.4 reports our result.

10.1 Data events

The data sample corresponds to an integrated luminosity of 2.1 fb−1 1. Accord-
ingly, the expected signal and total background events presented in table 8.1 have
been obtained by rescaling to this luminosity (see table 10.1).

expected events (2.1 fb−1)

Signal 118.6 ± 3.7
Background 105.8 ± 12.9

Table 10.1: Expected signal and background events for an integrated luminosity
of 2.1 fb−1

236 LTRK candidates have been found in the data.

10.2 Fit Results

LTRK events were reconstructed and an experimental mass distribution was built.
A background constrained likelihood fit (see 6.15) 2 was performed and the follow-
ing estimates of top mass and of the positive and negative statistical errors were

1The MC samples were tuned to data up to
∫

Ldt = 1.2fb−1, and the validity of the extrap-
olation method was tested for data collected up to 2.0 fb−1.

2Constraining parameters are nexp
b = 105.8 and σexp

b = 12.9

117
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obtained:
Mtop = 167.57+4.1

−4.0 (10.1)

The experimental top mass distribution is shown in figure 10.1.
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Figure 10.1: Two-component constrained fit to the LTRK sample. The blue shaded
area is the background returned by the fit and the red shaded area is the sum of
background and signal. The insert shows the fitted mass-dependent negative log-
likelihood function.

The fitted function shows the background (blue) and signal contributions to
the 236 events. Signal and background numbers of events are reported in table
10.2.
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Constrained Fit returned numbers (2.1 fb−1)

Signal 126.1+18.0
−17.4

Background 108.3+11.6
−11.5

Table 10.2: Signal and background events from the constrained fit.

The observed rates (table 10.2) are in agreement with expectations (table 10.1).
As a check, a fit leaving free the background events has been performed 3. This

fit returns:
Mtop = 167.59+4.4

−4.2 (10.2)

with 117.82+26.48
−26.59 signal events and 118.18+27.53

−25.52 background events. Top mass
estimate, signal and background from unconstrained and constrained fit are in
agreement.

Figure 10.2 shows the top mass distribution with the unconstrained best-fit
function superimposed.
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Figure 10.2: Two-component unconstrained fit to the l+trk sample. The blue
shaded area is to the background returned by the fit and the red line-shaded area
is the sum of background and signal. The insert shows the fitted mass-dependent
negative log-likelihood function.
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10.3 Comments on the statistical errors

The expected error distribution for a top mass of 167 GeV/c2 is shown in figure
10.3. The red arrows show the negative and positive errors found in the experiment.

0

200

400

600

800

1000

-8 -6 -4 -2 0 2 4 6 8

CDF RunII Preliminary (2.1 fb-1)
Constrained fit

T
he

 n
um

be
r 

of
 P

E
's

/(
0.

1 
G

eV
/c

2 )

Statistical error (GeV/c2)

MC (Mt = 167 GeV/c2)
Data

Figure 10.3: Expected statistical errors for a top mass of 167 GeV/c2. The arrows
indicate the errors found in this measurement.

The probability for a better accuracy is 83%.

10.4 Results

The top mass and its statistical errors as output of the background constrained fit

are corrected by the expected systematic −0.16 GeV/c2 shift and 1.011 factor (see

table 8.2) respectively. The resulting final value of the top mass is:
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Mtop = 167.7 +4.2
−4.0(stat.) ± 3.1(syst) GeV/c2



Conclusions and Prospects

We have measured the mass of the top quark in the first 2.1 fb−1 data collected
by the CDF II detector, analyzing top pair events in the dilepton channel. The
result is:

Mtop = 167.7 +4.2
−4.0(stat.) ± 3.1(syst) GeV/c2 (10.3)

consistent with the Tevatron combined mass (Mtop = 170.9 ± 1.8 GeV/c2) using
all top mass measurements of the CDF and D/0 Collaborations up to 2007.
This measurement is also in agreement with the previous result obtained with the
same method on a 340 pb−1 data sample [45]:

Mtop = 169.7 +8.9
−9.0(stat.) + 4.0(syst) GeV/c2 (10.4)

A significant improvement in resolution has been obtained. We summarize
below the novelties which made this progress possible.� A larger available statistics. In addition to using a larger data sample, this

was because candidates were selected with the LTRK selection (4.4) which
is less restrictive than the previous DIL.� A new algorithm to estimate the “Fakes” contribution to the background
(Appendix C) was implemented.� In the event reconstruction

– Relativistic Breit-Wigner distribution functions and a Mtop-dependent
top width, as suggested by the Standard Model, were introduced. This
allowed a smaller statistical error to be returned by the mass fit.

– Transfer functions (appendix I) were used for a more correct description
of b parton response.
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At the moment this measurement has the second best accuracy among mass mea-
surements in the dilepton channel. The same machinery as described in this thesis
is expected to result in a statistical uncertainty of ∼ 2.4 GeV/c2, by assuming with
about 6 fb−1 data as expected to be available in 2010

However, we note that this measurement can be further improved. We are planning
to include the following features in the next analysis:� Select events based on optimized neural networks for the mass measurement,

in order to increase significantly the signal to background ratio [81].� Exploit b-flavor tagging. Tagged and non-tagged events can be analyzed
separately and the results can be combined. This technique was proven to
lead to an improvement of about 20% in the statistical error [45, 51]

At the moment (Winter 2007) the CDF internal procedure for the publication of
this measurement has been started.



Appendix A

Unknown in the dilepton Channel

Particle Px Py Pz E # Unknown

t,t NM NM NM NM 8
ν,ν NM NM NM NM 8

W+,W− NM NM NM NM 8

b,b M M M M 0
l−, l+ M M M M 0
l−, l+ M M M M 0

Underlying event M M NM NM 2

Table A.1: Measured (M) and non-measured (NM) parameters in the dilepton
channel.
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Appendix B

DIL Selection

The DIL selections requires two well-identified high-PT leptons, a large missing
ET and at least two energetic jets in the events. The guidelines of the DIL which
was adopted in the past are going to be described below in order to point out the
differences with the LTRK selection.

B.1 Requirements on the Physical Objects

The same definition as in the LTRK selection is adopted in DIL for the first
(tight) lepton (see 4.4.2) 1.

The second (loose) lepton must pass the same identification cuts as for the
tight lepton with the following exceptions:� if CEM no isolation is required;� If muon the muon chamber hit requirement is relaxed 2.

Jets are required to have Ecorr
T > 15 GeV , where Ecorr

T is corrected up to L5
(see 4.1.4), and |η| < 2.5. These jets are called tight jets.

The corrected /ET
3 is required to be larger than 25 GeV.

B.2 Vetoes� Vetoes Cosmic and conversion removal: see 4.4.3� Z veto cut: if the invariant mass of the two leptons is in the Z window ([76,
106] GeV/c2) the following requirements must be satisfied:

1No PHX (Chapter 4) electrons used.
2More details about loose muon DIL cuts are available at [48, 49]
3Corrections applied are much the same as in LTRK. See [48, 49] for further details.
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1. JetSig ≡ /ET
q

P

i ETi
/̂ET

>
√

8 GeV , where the sum is over all tight jets in

the same hemisphere as the /ET .

2. dPhiJet > 10°, where dPhiJet is the minimum azimuthal angle between
/ET and the jets.� L cut: /ET > 50 GeV is required if the minimum azimuthal angle between

missing ET and any lepton or jet is smaller that 10°.� HT ≡
∑

iETi
> 200 GeV cut, where the sum runs over /ET , tight and loose

leptons and tight jets.� OS cut: see 4.4.3

More details about DIL selection are described in [48, 49].



Appendix C

Fake Events (“Fakes”)

The definition of fake event was given in 4.3.2. A fake LTRK event can be due to a
jet faking either the tight lepton or the track lepton. Since the former phenomenon
has a very small rate 1 only the latter is taken into account in this analysis.

Fakes are estimated as follows.

1. A tailored W+jets selection on the high-PT data sample listed in table E.1
is performed. Main steps of the W+jets are the following 2:� Identification of a tight lepton and a large missing ET (corrected /ET >

25 GeV ).� Cosmic and conversion removal, ∆φ( /ET , tl), ∆φ(Jet− /ET ) cuts� Veto on the LTRK events

2. A collection (”djets”) of fakeable objects composed of jets and tracks is
created. Jets or tracks matching the tight lepton are not taken into account.

3. Each djet is tested as a trkl. The following cuts are then applied.� ∆φ( /ET , trkl)� Z veto/ /ET� OS (if available 3).

4. Two or more jets not matching the tl and the trkl with ET > 20 GeV and
|η| < 2 are required

1The tight lepton identification cuts are much more severe than for the track lepton.
2Notation refers to 4.4
3No charge information is available for jets
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It should be noticed that more fakes per event may be signaled by this proce-
dure.

At the end to each returned event a weight is attached according to a fake rate
matrix, which expresses the probability that a djet fakes the track lepton. The
fake rate matrix (see figure C.1) is function of the djet ET

4.

Figure C.1: The track lepton fake rate matrix from γ + jets data, using a photon
with energy more that 80 GeV, and Z+1jet data [47]. Contributions for a different
number of jets are shown.

4The fake rate matrix is quite independent of η. See [47] for details.



Appendix D

Requirements of the Exploited
Trigger Paths

A trigger path, composed of three levels, is characterized by a sequence of re-
quirements on the physical objects. Trigger paths used in this analysis are the
following1:� ELECTRON CENTRAL 18:

- L1: one central tower with ET > 8 GeV , PXFT
T > 8.34 GeV/c, where

PXFT
T is the transverse momentum of the associated XFT track

- L2: one cluster with Eem
T > 16 GeV , |ηXFT | < 1.317, PXFT

T > 8.34 GeV

- L3: one CEM electron of ET > 18GeV and PCOT
T > 9 GeV/c, where

PCOT
T is the transverse momentum of the COT track� MUON CMUP18

- L1: one CMU stub with PT > 6 GeV , associated CMP stubs and an
XFT track with PXFT

T > 4.09 GeV

- L2: one CMUP muon with PXFT
T > 8.34 GeV

- L3: one CMUP muon of PT > 18 GeV� MUON CMX18

- L1: one CMX stub with PT > 6 GeV , trigger signal in CSX and an
associated XFT track with PXFT

T > 8.34 GeV

1The notation is as defined in the Chapter 3. The requirement on EM objects assumes the
constraint Ehad

T /Eem
T < 0.125
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- L2: one CMX muon of PXFT
T > 8.34 GeV

- L3: one CMX muon of PT > 18 GeV� MET PEM:

- L1: one CEM or PEM tower with ET > 8 GeV and a raw /ET > 15 GeV

- L2: one PEM cluster with Eem
T > 20 GeV

- L3: one PEM electron of ET > 20GeV and an offline /ET > 15 GeV



Appendix E

Exploited Samples and Good Run
Lists

High-PT data samples and good runs 1 used in this analysis are listed in the tables
E.1 and E.2.

Triggered lepton type Sample

High-PT Central Electrons bhel0d
bhel0h
bhel0i
bhel0j

High-PT Central Muons bhmu0d
bhmu0h
bhmu0i
bhmu0j

High-PT Plug Muons bpel0d
bpel0h
bpel0i
bpel0j

Table E.1: Data samples labelled according to the triggered lepton type.

1see 4.4.1 for the meaning of the good run lists
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Tight lepton type Good Run List Version

CEM em nosi v13, v17, v18
CMUP mu nosi v13, v17, v18
CMX mu nosi v13, v17, v18
PHX em si v13, v17, v18

Table E.2: Good Run lists for each tight lepton sub-sample. The conditions to be
satisfied by good runs have changed with increased luminosity (versions 17 and
18).



Appendix F

χ2 form and solution weights in
[44]

The χ2 defined in the analysis [44] is:

χ2 = χ2
reso + χ2

constr (F.1)

χ2
reso =

2∑

l=1

(P l
T − P̃ l

T )2

σl
PT

2 +

2∑

j=1

(P j
T − P̃ j

T )2

σj
PT

2 +

∑

i=x,y

(UEi − ˜UEi)2

σi
UE

2 (F.2)

χ2
constr =

(Ml1ν1 −MW )2

Γ2
MW

+
(Ml2ν2 −MW )2

Γ2
MW

+

(Mj1l1ν1 − m̃t)
2

Γ2
Mt

+
(Mj2l2ν2 − m̃t)

2

Γ2
Mt

(F.3)

Most notations have been already defined in section 6.1.2. More information
is given below.

The second term in F.2 sums over the transverse momenta P j
T of the two

leading jets. These momenta has been corrected for underlying event and out-of-
cone energy (see 4.1.4), and have a PT and η dependent detector resolution σj

PT

derived by simulation 1. F.3 takes into account Gaussian constraints for the W
and top decay chains. The top width is assumed to be 2.5 GeV/c2.

1further details available in [45]
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The solutions per each φ1, φ2 point of the net are weighted according to wij =

e−
χ2

ij
2 (see 6.1.2).



Appendix G

Impact of φ1-φ2 correlation

As described in Chapter 6, the Neutrino φ Weighting Method chooses to make
assumptions about the azimuthal angles, φν1, φν2, of the neutrinos. In this Chapter
we show that the method is not affected by the correlation (see figure G.1) between
φν1, φν2.

Figure G.1: Difference between the azimuthal angles of the neutrinos expected
from simulation. A dilepton DIL (see Appendix B) sample has been used with top
mass of 175 GeV/c2

To check that this is true we draw bi-dimensional distributions as a function of
φMC

ν1
−φi

ν1
and φMC

ν2
−φj

ν2
i, j = 1, . . . , 24, where φMC

ν1
and φMC

ν2
are the azimuthal

angles extracted directly from hepg bank, while the other two sets of values are
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those over which we iterate as described in section 6.1.
The plots below, (fig. G.2), are obtained from Monte Carlo samples generated
with different Mt and selected with the standard DIL selection (see Appendix B
for details on DIL selection).

Figure G.2: 2D distributions of φMC
ν1 − φi

ν1, φ
MC
ν2 − φj

ν2 with weights wij.

The content of each bin in the plots G.2 is defined according to the standard weight
wij = e−χ2

ij , where χ2
ij is the lowest χ2 for the φi

ν1, φ
j
ν2 net point.

Plots G.2 show that φMC
ν1 − φi

ν1, φ
MC
ν2 − φj

ν2 are uncorrelated because the curve
levels are almost circular around zero 1: this means that φ1, φ2 have the same
correlation as φMC

1 , φMC
2 and that we can safely choose randomly the azimuthal

neutrino angles to constrain the kinematics.

1As described in Chapter 6 large value of χ2 are not taken into account in event reconstruction.



Appendix H

Breit-Wigner functions
and Mt-dependent Γt in event
reconstruction

We are going to discuss two parameters which were refined with respect to the
previous analysis 1. New features are: a mt dependent rather than constant top
width and optimal choices of Breit-Wigner functions for χ2 and weight (see Chapter
6).

Two definitions of Breit-Wigner functions (BW) were taken into account (6.11,
6.12). Considering both the χ2 (6.2) and the weight definition (6.13) we have 4
possible BW algorithms for reconstructing an event. Table H.1 summarizes the
cases which were considered.

Case BW in χ2 BW in weight

Case A Γ2·m2

(m2
inv − m2)2 + m2Γ2

Γ2·m2

(m2
inv − m2)2 + m2Γ2

Case B Γ·m2

(m2
inv − m2)2 + m2Γ2

Γ·m2

(m2
inv − m2)2 + m2Γ2

Case C Γ2·m2

(m2
inv − m2)2 + m2Γ2

Γ·m2

(m2
inv − m2)2 + m2Γ2

Case D Γ·m2

(m2
inv − m2)2 + m2Γ2

Γ2·m2

(m2
inv − m2)2 + m2Γ2

Table H.1: Breit-Wigner functions considered for adoption in the χ2 and weight
definition

In figure H.1 2 expected statistical errors versus generated top mass have been
plotted for case A, B, C (see H.1) and ”0”, which is defined according to the χ2

1Previous and current definition of these parameters are given in F and 6.1.2 respectively
2This plot has been performed for dilepton DIL samples (see Appendix B for details about

DIL selection). The Gen5 framework was used.
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and weight of the previous analysis (see appendix F). These errors were obtained
in pseudo-experiments 3, for ns = 17.2 [75]. Only signal contribution has been
taken into account 4.
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Figure H.1: Top mass dependence of statistical errors by using a mass dependent
width, two different definition of Breit-Wigner functions and two different weights
for the 144 solutions. (see text for significance of symbols)

The error bars in figure H.1 are too small to be seen, since the boostrap procedure
(see Chapter 8) has not been applied 5.

Case D has not been considered since 6

1. test at hepg level show that reconstructed mass by using Γ·m2

(m2
inv − m2)2 + m2Γ2

in the χ2 has a larger spread than Γ2·m2

(m2
inv − m2)2 + m2Γ2 (see figure H.2)

2. using 6.11 for the weight definition was found to return a larger statistical
error than 6.12 (see figure H.1)

3see Chapter 8 for more details on PE’s
4The background contribution to the statistical error is not expected to depend on the cases

reported in table H.1 since background does not depend on top mass.
5In figure H.1 the same MC samples have been used at each mass value. Therefore errors on

MC limited statistic must not be considered
6More details are given in [76].
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Figure H.2: top mass reconstruction at hepg level by using Γ·m2

(m2
inv − m2)2 + m2Γ2

(red) or Γ2·m2

(m2
inv − m2)2 + m2Γ2 (purple). Results from three samples with generated

top masses of 161, 171, 181 GeV/c2

Case C (see table H.1) is the case with best mass resolution. The expected
improvement with respect to the previous analysis is ∼ 20%



Appendix I

Transfer functions

Figure (I.1), show the transfer functions, fitted in different (|η|, P jet
T ) regions.
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Figure I.1: Transfer functions

In building the transfer functions we used Monte Carlo tt events with top masses
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175, 175 ± 0.5 GeV/c2. However, these functions can be used throughout the full
analysis because we make them Mt independent by construction, by compensating
the b parton PT dependence on Mt by adding an appropriate weight.

Only a very small improvement with respect to the previous analysis is ob-
tained by adopting these functions, as seen in the figure below:
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Figure I.2: Statistical errors. Blue dots refer to the χ2 upgraded with transfer
functions, red dots refer to the previous analysis (see appendix F).



Appendix J

Initial and Final State Radiation

Initial (ISR) and final state radiation (FSR) is parametrized by the DGLAP ([64]-
[65]) evolution equation that expresses the probability for a parton to branch into
two.

For incoming quarks the level of ISR can be measured as a function of the
squared invariant mass of the two leptons in Drell-Yan events 1 (see figure J.1).
Two simulated samples (±σISR) are produced by varying the related QCD param-
eters in the DGLAP equation in order to cover the region given by uncertainties
in measured < PT >

2 (see figure J.1).
The ISR effect is thus extrapolated to energies of interest.
Since ISR and FSR shower algorithms are the same, the same variation in QCD

parameters as in the ISR study is applied in the shower equations for final state
partons: +σFSR and −σFSR samples are obtained.

1Drell-Yan events have no FSR and are produced via the qq̄ annihilation, as most ( 85%) tt
pairs are.

2< PT > corresponds to the average amount of ISR in Drell-Yan events
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Figure J.1: The average PT of the dilepton system in Drell-Yan events. A logarith-
mic dependence on M2 (squared dilepton invariant mass) can be seen. Data are
compared with the predictions of samples simulated with default ISR (PITHYA
6.2) and samples generated with ±σISR [69]



Appendix K

Data Validation
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Figure K.1: Leading jet ET (upper left), tight and track lepton invariant mass
(upper right), /ET (lower left), tight and track lepton PT (lower right) for predicted
and observed events (dots) in the LTRK sample. The prediction is scaled so that
the predicted number of events is equal to the observed one. Results from the
Kolmogorov-Smirnov test are shown. See text for significance of symbols.
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Figure K.2: ∆R(tl, highest-ET jet) (upper left), ∆R(trkl, highest-ET jet) (upper
right), ∆φ( /ET , highest-ET jet) (lower left), ∆φ( /ET , tl) (lower right) for predicted
and observed events (dots) in the LTRK sample. The prediction is scaled so
that the predicted number of events is equal to the observed. Results from the
Kolmogorov-Smirnov test are shown. See text for significance of symbols.
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