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Zusammenfassung

Bis zum Ende des 19. Jahrhunderts hielt man Atome für die kleinsten Bausteine der
Materie. Mit der Erkenntnis, dass Atome aus negativ geladenen Elektronen bestehen,
die einen positiv geladenen Kern umgeben, änderte sich dieses Bild grundlegend. In den
folgenden Jahrzehnten führten zahlreiche Entdeckungen, wie beispielsweise die Beob-
achtung von Protonen und Neutronen oder der Nachweis von Quarks, zu einem tieferen
Verständnis der Prozesse, die dem Aufbau der uns bekannten Materie zugrunde liegen.
Heute werden die fundamentalen Teilchen und ihre Wechselwirkungen mit dem, in der
Zeit um 1970 entwickelten Standardmodell der Teilchenphysik beschrieben. Die Suche
nach dem Higgs-Boson, dem letzten Teilchen, welches vom Standardmodell vorher-
gesagt wird, aber bisher noch nicht entdeckt werden konnte, sowie die Überprüfung
weiterer, vom Standardmodell abgeleitete Vorhersagen, sind Gegenstand der aktuel-
len Forschung. Zu diesem Zweck werden Teilchenbeschleuniger gebaut, in denen Elek-
tronen mit Positronen, Protonen mit Antiprotonen oder Protonen mit Protonen zur
Kollision gebracht werden. Momentan erreicht das Tevatron, ein Proton-Antiproton
Beschleuniger in der Nähe von Chicago (USA), mit 1.96 TeV weltweit die höchste
Schwerpunktsenergie in Teilchenkollisionen. Mit dem diesjährigen Start des Large Ha-
dron Colliders (LHC) am Europäischen Zentrum für Teilchenphysik (CERN) in Genf
können sogar Schwerpunktsenergien von 14 TeV erreicht werden.
Das schwerste der bisher bekannten Quarks, das Top-Quark, wurde 1995 von der CDF-
und der DØ-Kollaboration am Tevatron Beschleuniger entdeckt. Neueste Messungen
ergeben eine Top-Quark-Masse von 172.6 ± 1.4 GeV/c2 [3], was ungefähr der Masse
eines Goldatoms entspricht. Am Tevatron werden Top-Quarks hauptsächlich über die
starke Wechselwirkung in so genannten “Top-Quark-Paaren” erzeugt. Hierbei entste-
hen gleichzeitig ein Top- und ein Antitop-Quark. Theoretische Berechnungen sagen für
diesen Prozess einen Wirkungsquerschnitt von σtt = 6.70+0.71

−0.88 pb vorher [11].
Zusätzlich gibt es im Standardmodell die Möglichkeit, einzelne Top-Quarks über die
schwache Wechselwirkung zu erzeugen. Dabei unterscheidet man drei verschiedene Pro-
duktionsprozesse, die sich vor allem in der Virtualität Q2 = −q2 des ausgetauschten
W-Bosons unterscheiden, wobei q hier den W-Boson Viererimpuls bezeichnet. Zum
einen gibt es die t-Kanal und die s-Kanal Produktion, welche ihren Namen von der,
zur Beschreibung des auftretenden Übergangsmatrixelements benutzten Mandelstam-
variable erhalten. Zum anderen wird die assoziierte Produktion vorhergesagt, in der
das Top-Quark zusammen mit einem reellen W-Boson erzeugt wird. Am Tevatron Be-
schleuniger ist der Wirkungsquerschnitt für die assoziierte Produktion vernachlässigbar
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klein. Die Wirkungsquerschnitte der s-Kanal bzw. t-Kanal Produktion sind mit vor-
hergesagten σ = (0.88 ± 0.11) pb bzw. σ = 1.98+0.28

−0.22 pb zusammen fast halb so groß,
wie der Wirkungsquerschnitt für tt Produktion.
Eine präzise Messung des Wirkungsquerschnitts für die Produktion einzelner Top-
Quarks, würde einen interessanten Test des Standardmodells ermöglichen. Jeder der
oben beschriebenen Prozesse zur Produktion einzelner Top-Quarks verfügt über einen
Wtb Produktionsvertex. Der Wirkungsquerschnitt dieser Prozesse ist deshalb propor-
tional zum Quadrat des |Vtb|-Matrixelements der Cabibbo-Kobayashi-Maskawa-Matrix
(CKM-Matrix), was eine direkte Messung von |Vtb| ermöglicht. Bisher kann |Vtb| nur in-
direkt, unter Einbeziehung der Unitaritätsbedingung für die CKM-Matrix, zu |Vtb| ≈ 1
bestimmt werden. Für Modelle, welche beispielsweise eine weitere Quarkgeneration fa-
vorisieren, wäre |Vtb| aber deutlich von 1 verschieden.
Die große Herausforderung an eine Analyse, die sich die Messung des Wirkungsquer-
schnitts für die Produktion einzelner Top-Quarks zum Ziel gesetzt hat, ist die Reduk-
tion des immensen Untergrundes. Eine bewährte Methode hierfür ist die Identifikation
so genannter b-Quark Jets: Im Standardmodell zerfallen Top-Quarks nach ca. 0.4·10−24

Sekunden in ein W-Boson und ein Bottom-Quark. Aufgrund von Hadronisationspro-
zessen bildet das Bottom-Quark einen Jet von Hadronen aus, welcher üblicherweise
als b-Quark Jet bezeichnet wird. Da in vielen Untergründen zur Produktion einzelner
Top-Quarks keine b-Hadronen bzw. b-Quark Jets auftreten, kann durch eine effiziente
Identifikation dieser Jets eine signifikante Reduktion des Untergrundes erreicht werden.
Der für CDF-Analysen standardmäßig eingesetzte Algorithmus zur b-Quark Jet Identi-
fikation nutzt die extrem lange b-Hadron Lebensdauer von ungefähr 1.6 ps aus. Hierzu
sucht man in Jets nach den Spuren, die ihren Ursprung nicht am Primärvertex ha-
ben. Aus diesen Spuren versucht man schließlich einen so genannten Sekundärvertex
zu rekonstruieren. Diese Sekundärvertizes stammen mit hoher Wahrscheinlichkeit vom
Zerfall eines b-Hadrons und ermöglichen somit die Identifikation von b-Quark Jets.
Leider ist auf diese Weise keine perfekte Identifikation möglich, da zum einen die Le-
bensdauer von c-Hadronen ebenfalls von Null verschieden ist, was zur Rekonstruktion
sekundärer Vertizes in c-Quark Jets führen kann. Zum anderen können, durch die
begrenzte Auflösung des Detektors, Spuren unzureichend rekonstruiert werden, was
durchaus zur Fehlidentifikation von Jets aus leichten Quarks als b-Quark Jets führen
kann.
In den Analysen zur Messung des Wirkungsquerschnitts der Produktion einzelner Top-
Quarks werden nur Ereignisse selektiert, in denen das W-Boson aus dem Top-Quark
Zerfall leptonisch zerfällt. Aufgrund der speziellen Ereigniskinematik werden weiter-
hin zwei oder drei hochenergetische Jets gefordert, von denen mindestens einer als
b-Quark Jet identifiziert worden sein muss. Schnitte, wie zum Beispiel auf die feh-
lende Transversalenergie in einem Ereignis, führen zu einer weiteren Unterdrückung
von Untergründen. Nach der Selektion der Einzel-Top-Quark Kandidaten beträgt das
Verhältnis zwischen Signal- und Untergrundereignissen immer noch ungefähr 1/15,
was den Einsatz multivariater Analysemethoden unumgänglich macht. Des Weiteren
bestehen trotz der Forderung nach mindestens einem als b-Quark Jet identifizierten
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Jet 48% des Untergrundes aus Ereignissen, in denen kein b-Hadron vorhanden ist. Dies
ist hauptsächlich darauf zurückzuführen, dass die b-Quark Jet Identifikation nicht per-
fekt ist. Da der oben angesprochene Algorithmus nicht alle Eigenschaften, mit denen
b-Quark Jets von c-Quark Jets und leichten Jets unterschieden werden können, aus-
nutzt kann die Identifikation noch verbessert werden.
Um eine verbesserte Trennung von Ereignissen mit und ohne b-Hadronen zu erreichen
wurde der so genannte KIT-Flavor-Separator entwickelt, dessen aktuelle Version im
ersten Teil der vorliegenden Arbeit vorgestellt wird. Es handelt sich hierbei um ein
Neuronales Netz, welches neben der langen Lebensdauer weitere b-Hadron Eigenschaf-
ten, wie ihre Masse von ungefähr 5 GeV/c2, ihre hohe Zerfallsmultiplizität und die
Wahrscheinlichkeit semileptonisch zu zerfallen, ausnutzt, um b-Quark Jets von c-Jets
und Jets aus leichten Quarks zu unterscheiden. Insgesamt wurden 54 mögliche Einga-
bevariablen für das Neuronal Netz betrachtet, von denen schließlich 31 zum Trainieren
des Netzwerks benutzt werden. Vier dieser Variablen werden in der aktuellen Flavor-
Separator-Version zum ersten Mal benutzt. Die Ausgabe des Neuronalen Netzes ist
kontinuierlich zwischen −1 und 1 verteilt, wobei sich b-Quark Jets bei 1 und c-Jets
bzw. leichte Jets in der Nähe von −1 anhäufen. Es ist nun möglich durch einen Schnitt
auf diese Ausgabeverteilung eine sehr reine b-Quark Jet Datensatz zu erhalten. Für die
Messung des Wirkungsquerschnitts der Produktion einzelner Top-Quarks hat es sich
jedoch als vorteilhaft erwiesen, die kontinuierliche Ausgabe als Eingabevariable wei-
terer multivariater Analysen zu benutzen. Da die Ausgabeverteilung des Neuronalen
Netzes nicht auf den der Produktion des b-Quark Jets zugrunde liegenden physika-
lischen Prozess sensitiv ist, ist der KIT-Flavor-Separator universell in Analysen von
Ereignissen mit hohem Transversalimpuls, die auf die Identifikation von b-Quark Jets
angewiesen sind, einsetzbar.
Da das Neuronale Netz mit simulierten Ereignissen (auch Monte-Carlo Ereignisse ge-
nannt) trainiert wurde, muss überprüft werden, ob die Simulation gemessene Ereignisse
richtig beschreibt. Dies ist notwendig, da zum Beispiel die Fehlmodellierung einer der
Eingabevariablen zu einer Ausgabe des Neuronalen Netzes führen kann, die die Realität
nicht mehr korrekt beschreibt. Für diese Überprüfung werden zunächst die Verteilungen
der Eingabevariablen von simulierten und gemessenen Ereignissen verglichen. Hierauf
werden auch die Ausgabeverteilungen des Neuronalen Netzes für b-Quark Jets und
leichte Jets mit gemessenen Daten verglichen. Kleine Unterschiede in der simulierten
und gemessenen Verteilung leichter Jets werden mit einer Korrekturfunktion behoben.
Neben den bereits erwähnten Einsatzgebieten kann der KIT-Flavor-Separator auch
zur Bestimmung der Flavorzusammensetzung eines gegebenen Datensatzes eingesetzt
werden. Aktuell wird dies zur Korrektur der Untergrundabschätzung für die Einzel-
Top-Quark Analyse eingesetzt. Hierzu werden die Ausgabeverteilungen für b-, c- und
leichte Jets an die Datenverteilung eines Seitenbandes angepasst und Korrekturfakto-
ren bestimmt, mit denen die Vorhersage für die jeweiligen Prozesse korrigiert wird. In
der vorliegenden Arbeit wird eine Anpassung an eine Datenmenge von 2.2 fb−1 gezeigt.
Gerade für die zuletzt genannte Anwendung wäre es wünschenswert, eine bessere Tren-
nung der Ausgabe von c-Jets und leichten Jets zu erreichen. Zu diesem Zweck wurde
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ein weiteres Neuronales Netz, das c-Netz, trainiert, welches eine hervorragende Sepa-
rierung dieser beiden Jetflavor ermöglicht. In der c-Netz − Flavor-Separator Ebene
häufen sich die drei Jetflavor in räumlich voneinander getrennten Bereichen an. Durch
eine zweidimensionale Anpassung an die Datenverteilung des Seitenbandes können die
Fehler auf die obige Anpassung um die Hälfte reduziert werden. Da für die Validierung
der c-Netz Ausgabeverteilung ein möglichst reiner c-Quark Jet Datensatz selektiert
werden muss, und dies leider äußerst schwierig zu realisieren ist, konnte das c-Netz
bisher noch nicht in einer ”offiziellen” Analyse eingesetzt werden.
Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit der Kombination dreier
multivariater CDF Analysen zur Messung des Wirkungsquerschnitts der Produktion
einzelner Top-Quarks in einer Datenmenge von 2.2 fb−1. Zum einen wird in dieser
Studie gezeigt, inwiefern Neuronale Netze zur Kombination von hochkorrelierten Ein-
zelanalysen geeignet sind, zum anderen wird eine Messung des Wirkungsquerschnitts
der Produktion einzelner Top-Quarks durchgeführt und hieraus ein Wert für |Vtb| be-
stimmt.
Drei unterschiedliche CDF Analysen zur Suche nach einzelnen Top-Quarks wurden in
der Kombination verwendet: Eine Methode beruht auf einer Likelihood Funktion, eine
weitere ist eine so genannte Matrixelement-Methode. Die dritte Analyse benutzt ein
Neuronales Netz zur Unterscheidung von Signal- und Untergrundprozessen. Alle drei
Analysen greifen auf dieselbe Kandidatenselektion zurück, berücksichtigen die gleichen
Quellen systematischer Unsicherheiten und benutzen dieselbe statistische Interpreta-
tion zur Auswertung der Messdaten. Dies vereinfacht eine Kombination der Analysen
deutlich.
Die in dieser Arbeit vorgestellte Methode benutzt nun die Diskriminanten der drei
Analysen als Eingabe zu einem Neuronalen Netz, welches eine weitere Trennung von
Signal und Untergrund erreicht. Insgesamt werden vier Netze trainiert, da in vier ver-
schiedenen Kategorien von Ereignissen nach einzelnen Top-Quarks gesucht wird. Dies
sind Ereignisse mit zwei bzw. drei Jets, von denen einer bzw. zwei als b-Quark Jet
identifiziert wurden. Die Ausgabeverteilungen dieser vier Netze werden mit Hilfe einer
Likelihood Funktion gleichzeitig an die Datenverteilung angepasst. In dieser Anpas-
sungsrechung wird der Wirkungsquerschnitt für die Produktion einzelner Top-Quarks
zu σst = 2.2+0.8

−0.7 pb bestimmt. Der zentrale Wert liegt damit unter dem vom Standard-
modell vorausgesagten, ist innerhalb der angegeben Unsicherheiten aber mit diesem
kompatibel. Die Sensitivität der Kombination, die mit Hilfe von Ensembletests be-
stimmt wurde, liegt mit 4.8σ etwas über der beobachteten Signifikanz von 3.9σ, die
schließlich in Daten gefunden wurde. Insgesamt kann somit eine Verbesserung von
8% im Vergleich zu den einzelnen Analysen erzielt werden. Aufgrund der schon ange-
sprochenen Proportionalität zwischen dem gemessenen Wirkungsquerschnitt und |Vtb|2
kann |Vtb| = 0.88+0.14

−0.12(exp.)±0.07(theo.) bestimmt werden. Wie erwartet sind die Unsi-
cherheiten auf diesen Wert zu groß, um eine abschließende Aussage über die Gültigkeit
der Unitarität der CKM-Matrix treffen zu können.
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Introduction

Until the end of the 19th century, atoms have been considered to be the smallest
components natural matter is built of. With the knowledge that atoms are built up
of electrons surrounding a nucleus this view has rapidly changed. In the following
decades many discoveries, like the observation of protons and neutrons or the detec-
tion of quarks, have led to a deeper understanding of the physical processes which are
central to the formation of matter.
Today the fundamental particles and the forces between them are described by the
Standard Model (SM) of particle physics which was developed in the 1970s. The
search for the Higgs boson, the last Standard Model particle which has not been dis-
covered so far, and the check of various predictions made by the Standard Model are
subjects of the current research. For this purpose large particle accelerators, colliding
e+e−, pp or pp-pairs, are built. At the moment, the proton-antiproton collider Teva-
tron at Chicago is the collider with the world’s highest center of mass energy (1.96
TeV). When the Large Hadron Collider at CERN begins to operate this year, center
of mass energies up to 14 TeV can be reached.
In 1995 the heaviest known quark, the top quark, was discovered by the CDF and the
DØ collaborations at the Tevatron collider. With a mass of 172.6±1.4 GeV/c2 the top
quark is almost as heavy as a gold nucleus. At the Tevatron, top quarks are generally
produced in pairs via the strong interaction. Nevertheless the production of single
top-quarks via the weak interaction is also predicted by the Standard Model, but its
cross section is roughly 2.5 times smaller than the tt one. A precise measurement of
the single-top cross section would enable a interesting test of the SM, since it provides
a direct measurement of the Cabbibo-Kobayashi-Maskawa matrix element |Vtb|. The
SM predicts |Vtb| ≈ 1, however models including a fourth quark generation predict
|Vtb| to be significantly smaller.
The main challenge for a single-top analysis at CDF is the reduction of the tremendous
backgrounds. In the Standard Model, top quarks decay with a probability of nearly
100% into a W boson and a bottom quark. Due to hadronization processes b quarks
form so-called b jets. Since roughly 99% of the backgrounds to single-top production
do not contain any b quark, identifying b jets would significantly reduce the large back-
ground. CDF’s standard b jet identification algorithm, also called b-tagging algorithm,
tries to reconstruct secondary vertices in jets by taking advantage of the long b-hadron
lifetime (≈ 1.6 ps). Unfortunately, a large amount of events containing c-quark jets
or light-quark jets have false reconstructed secondary vertices and thus are identified
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as b jets. This is due to the non-zero lifetime of c hadrons and due to the spurious
reconstruction of secondary vertices within light-quark jets. The KIT Flavor Separa-
tor is a neural network which further detaches tagged b jets from tagged non-b events
with high efficiency. In addition to the b-hadron lifetime, it exploits further b-hadron
properties like their mass of nearly 5 GeV/c2, their high decay multiplicity and their
probability to decay semileptonically. In this diploma thesis, we show the improved
KIT Flavor Separator and its application in the search for single top-quarks.
For some applications, additionally a good separation between c-quark and light-quark
jets is useful. Thus, we report the training of an additional neural network which is
able to distinguish between tagged c-quark and tagged light-quark jets. Furthermore
an example for its application is given.
Currently there are three different multivariate single-top analyses at CDF, namely a
Likelihood Function method, a Matrix Element method and a Neural Network anal-
ysis. These analyses use the same single-top candidate selection, the same signal and
background estimate and the same treatment of systematic uncertainties. Hence, the
discriminants of the different analyses can be combined to one super-discriminant. In
this thesis we present a combination method which uses a neural network to distinguish
between single-top and background events. In order to measure the single top-quark
production cross-section, the output distributions for simulated single-top and back-
ground events are fitted to the distribution observed from CDF data. Furthermore the
statistical sensitivity of the combination is quoted and a value for |Vtb| is calculated.
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Chapter 1

Theoretical Background

Since the 1970s, the standard model of elementary particle physics has been very suc-
cessful in describing the properties of elementary particles and their interactions, which
are the electromagnetic, the strong and the weak force. Gravitation, the fundamental
force we know from every days life, is not included but explained by the theory of
general relativity [1]. In the following we give a short overview of the main ideas of the
standard model (SM) and then concentrate on the physics of the top quark, especially
the elektroweak production of single top quarks which is one of the main aspects of
this thesis.

1.1 Main ideas of the standard model

The standard model is a quantum field theory that is consistent with quantum me-
chanics and special relativity. Quantum numbers, like the electromagnetic charge or
the spin, are used to describe the quantum state of any particle.
According to the SM, all matter is made up of twelve fundamental fermions, shown
in table 1.1. These particles carry spin s = 1

2
and therefore obey the Pauli exclusion

principle, which states that particles with half integer spin cannot occupy the same
quantum state, i.e. not all quantum numbers of two fermions can have the same values
at the same time. As can be seen in table 1.1, the fermions are arranged in three
generations. Particles of the first generation form most of the natural matter we know,
higher-generation particles, however, can only be observed in high energy interactions
since most of them decay very quickly to particles of the first generation.
Furthermore, the twelve fermions are divided into six quarks and six leptons. The

electron and its heavy “brothers” muon and tau belong to the leptons and carry elec-
tric elementary charge. Each of these particles has an neutral partner, the neutrino.
Neutrinos are also leptons and occur in three different types: νe, νµ, ντ . The standard
model predicts the neutrinos to be massless but measurements during the last decade
showed that there are oscillations between the different neutrino types [4]. However,
such oscillations are only possible if neutrino masses are not exactly zero and so the
SM has to be extended for massive neutrinos. The neutrino masses listed in table 1.1

1
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name fermion-type symbol el. charge[e] mass [MeV/c2]

1.generation:

electron lepton e −1 0.51
electron neutrino lepton νe 0 ≤ 2 · 10−6

up quark quark u +2
3

1.5 − 3.0
down quark quark d −1

3
3 − 7

2.generation:

muon lepton µ −1 105.66
muon neutrino lepton νµ 0 ≤ 0.19
charm quark quark c +2

3
(1.25 ± 0.09) · 103

strange quark quark s −1
3

95 ± 25
3.generation:

tau lepton τ −1 1776.9
tau neutrino lepton ντ 0 ≤ 18.2
top quark quark t +2

3
(172.6 ± 1.4) · 103

bottom quark quark b −1
3

(4.20 ± 0.07) · 103

Table 1.1: The standard model fermions with their electric charge, given in units of the electron
charge, and their mass [2]. The top quark mass is based on recent Tevatron results published in [3].

are limits given by direct measurements but cosmological models predict the sum of
all neutrino masses to be in the order of 0.1 eV.
Quarks carry fractional electric charges, of +2

3
|e| or −1

3
|e| and appear in the following

six different types (or flavour): up, down, charm, strange, top and bottom. Owing
to confinement, a process that will be discussed later, quarks cannot be observed as
free particles but only in bounded quark-antiquark (meson) or three-quark (baryon)
states. Because of the existence of baryons, consisting of three identical quarks, and
the Pauli exclusion principle, quarks have to carry a further quantum number called
color which appears in three different types: red, green and blue. Antiquarks carry
anticolor (anti-red, anti-green and anti-blue). All observable particles are colorless (or
white), i.e. in baryons each of the three colors has to be carried by one of the quarks
and the colors of quarks in mesons are for example red and anti-red.
An antiparticle corresponds to each of the above mentioned fermions. These were first
predicted by Dirac in 1931 and with the discovery of the positron, the antiparticle of
the electron, in 1932 a first experimental validation could be made. All the mentioned
particles are predicted by the standard model nevertheless it makes no statement on
their masses. Hence, the fermion masses enter the SM as free parameters.
In the standard model the interactions between the fundamental fermions are described
by gauge theories. These theories predict massless, so-called gauge-bosons which me-
diate the three already mentioned forces described by the SM. The gauge-bosons are
particles with spin quantum number s = 1. Electromagnetic forces are mediated by
exchange of massless and chargeless photons. For example, they are responsible for the
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name symbol force el. charge[e] mass [MeV/c2]

photon γ electromagnetic ≤ 5 · 10−30 ≤ 6 · 10−23

gluon g strong 0 0
W boson W± weak ±1 80.403 ± 0.029
Z boson Z0 weak 0 91.188 ± 0.002

Table 1.2: Properties of the standard model gauge-bosons. The electric charge and the masses are
taken from reference [2].

bound states of electrons with nuclei and the intermolecular forces in liquids and solids.
Theoretically, the electromagnetic interaction is described by the theory of Quantum
Electro Dynamics (QED). The strong force is described by Quantum Chromo Dynam-
ics (QCD) which predicts massless gluons, coupling to the color charge and carrying
color themselves. Gluon self-interactions are therefore possible and thereby the differ-
ent strength of the strong force, which is small for short distances (asymptotic freedom)
and increases for large distances (confinement), can be explained. The strong inter-
action is responsible for the binding of quarks to baryons or mesons and also for the
formation of nuclei out of protons and neutrons. An example for the weak interaction
is the β-decay of a radioactive nucleus. The mediators of the weak force are the W±

and the Z0 bosons, which have been found to be very massive (roughly 100 times the
proton mass). A mechanism to “create” boson masses will be explained later in the
text. The properties of the mentioned gauge-boson are summarized in table 1.2.

In the following we give a more detailed description of phenomena concerning the
weak interaction. First of all, W bosons only couple to the left-handed (right-handed)
part of the wave function of a particle (antiparticle). A wave function ψ is called left-
handed (LH) if γ5ψ = −ψ, it is called right-handed (RH) if γ5ψ = ψ. Wave functions
of massive particles, are superpositions of LH and RH parts. The weak interaction is
furthermore the only force which acts on neutrinos and also the only possibility for
changing a quark’s flavor is the exchange of a W boson. Transitions between quark
flavors of different generations are possible, because the weak eigenstates of the quarks
(d′, s′, b′) are not the same as the mass eigenstates (d, s, b). Transformations between
the two bases are described by a unitary 3×3 matrix, the so-called Cabibbo-Kobayashi-
Maskawa (CKM) matrix:





d′

s′

b′



 = VCKM





d
s
b



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b



 (1.1)

The matrix elements Vqiqj
represent the strength of the coupling between the quarks

qi, qj and the W-boson. The following values have been measured for the elements of
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the CKM-matrix [2]:

VCKM =





0.97383+0.00024
−0.00023 0.2272 ± 0.001 (3.96 ± 0.09) · 10−3

0.2271 ± 0.001 0.97296 ± 0.00024 (42.21+0.1
−0.8) · 10−3

(8.14+0.32
−0.64) · 10−3 (41.61+0.12

−0.78) · 10−3 0.999100+0.000034
−0.000004



 (1.2)

In the late 1960s Weinberg, Salam and Glashow described how it should be possible
to treat the electromagnetic and the weak interaction as different aspects of a single
electroweak force [5, 6, 7]. This unification appears for high energies, for low energies
the symmetry is broken which explains the different behaviour of the electromagnetic
and the weak interaction. Up to now, the most favoured mechanism for breaking the
elektroweak symmetry is the so-called Higgs mechanism [8, 9], which explains also the
masses of the weak gauge-bosons. Higgs introduced another scalar field called Higgs
field whose quantum is the Higgs boson, the only standard model particle that hasen’t
been discovered so far. All fundamental particles, including the Higgs boson itself, get
their masses by interacting with this Higgs field.

-e

+e

γ

+e

-e

Figure 1.1: Feynman diagram of electron-positron scattering.

Feynman graphs are useful symbolic notations of physical processes. Figure 1.1
shows the annihilation of a electron and positron to a virtual photon and the following
recreation of an electron positron pair. Due to convention the x-axes represents the
time coordinate and the y-axes the spacial coordinate. Straight lines represent the
space-time propagation of fermions while bosons are illustrated by wavy lines. Ver-
tices stand for interaction points and contain the coupling nature and strength. By
using the so-called Feynman rules, all parts of Feynman diagrams can be translated
into mathematical expressions which allow the calculation of the matrix element of
the corresponding interaction. The cross section, a measure for the probability of the
process, can be calculated by integrating the matrix element over all possible initial
and final states.
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1.2 The top quark

The top quark belongs to the third fermion generation and is the heaviest fundamental
particle discovered so far. Recent measurements of the CDF- and the DØ-collaboration
found its mass to be mtop = 172.6 ± 1.4 GeV/c2 [3]. With a predicted lifetime of
τ ≈ 0.4 · 10−24 s, the top quark decays before any hadronization process starts. It is
therefore the only quark which passes all its properties to its decay products. Since
|Vtb| ≈ 1 (see eq. 1.1, 1.2), these decay products are almost always a W boson and
a bottom quark. Below we will give a short overview of top quark production via
the strong and the electroweak force. A more detailed review of top quark physics in
hadron collisions can be found in [10].

1.2.1 Top quark pair production at hadron colliders

In this subsection we will focus on tt production by the strong interaction, since the
cross sections for electroweak top-pair productions are completely negligible for hadron
collisions. For the calculation of the tt cross section a factorization ansatz is made:

σ(AB → tt) =
∑

i,j

∫

fi,A(xi, µ
2)fj,B(xj , µ

2) · σ̂ij(ij → tt; ŝ, µ2) dxidxj . (1.3)

A andB are hadrons consisting of nearly-free quarks and gluons (partons). The fraction
of a hadron’s longitudinal momentum a specific parton i(j) is carrying, is represented
by xi = pi/pH. ŝ is the square of the center-of-mass energy of the colliding partons. The
so-called renormalization scale µ describes the typical energy scale of the considered
interaction and is often set to µ = mtop. σ̂ij represents the hard parton-parton cross
section which can be calculated in perturbative QCD. The Feynman diagrams of the
two dominant tt production processes at a proton-antiproton collider, namely quark-
antiquark annihilation and gluon-gluon fusion, are shown in figure 1.2.
For the Tevatron, a proton-antiproton collider with a center-of-mass energy of 1.96

TeV, next-to-leading order (NLO) calculations predict the fraction of the annihilation
process to be 85 percent of the whole cross section. In eq. 1.3 the parton-parton
cross section is folded with f(x, µ2) which represents the parton distribution functions
(PDF) for the hadrons A and B. For example a proton consists of two u and one
d valence quark which are bound by the exchange of gluons. Gluons can split into
quark-antiquark pairs, called see-quarks. Each of these proton constituents could be
the interacting parton described in eq. 1.3. A PDF now gives the probability of finding
the parton i with a longitudinal momentum fraction xi within a proton. Figure 1.3
shows the CTEQ5L proton PDF parametrization for µ2 = (175 GeV)2. For a top
quark mass of mtop = 175 GeV/c2, the tt production cross section is predicted to be
σtt = 6.70+0.71

−0.88 pb [11].
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Figure 1.2: Leading order diagramms for top-pair production at the Tevatron: (a) quark-antiquark

annihilation, (b) gluon-gluon fusion.
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Figure 1.3: The CTEQ5L proton PDF parametrization.

1.2.2 Single-top quark production

In the standard model, top quarks can also be produced singly by the electroweak
interaction. There are three different production modes: the t-channel, the s-channel
and the associated production. The first and the second get their names from the
Mandelstam variable which gives the virtuality Q2 and are the dominant production
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channels at the Tevatron. Furthermore the different processes can be distinguished
by the virtuality Q2 of the participating W boson (Q2 = −q2, where q is the four
momentum of the W ). In the following we discuss the three production modes a bit
more detailed:

• t-channel(q2 = t̂)
This channel is also named the W-gluon fusion. A virtual, space-like (q2 < 0)
W boson hits a bottom see-quark in a proton or an antiproton. The see-quark
stems from a gluon splitting in a bb pair, thus the name W-gluon fusion. With
a cross section of σ = 1.98+0.28

−0.22 pb at a top quark mass of 175 GeV/c2 [12, 13],
the t-channel is predicted to be the dominant production mode at the Tevatron.
The Feynman diagrams of the leading order (LO) and the most important NLO
process with an inital state gluon splitting are shown in figure 1.4.

b

)du(

+W

)ud(

t

(a)

b

)du(

g

t
+W

)ud(

b

(b)

Figure 1.4: The single-top t-channel production mode for (a) leading order, and (b) for NLO with

an initial gluon splitting.

• s-channel(q2 = t̂)
In the s-channel production mode a timelike W boson with q2 ≥ (mtop + mb)

2

is produced by the fusion of two quarks. Assuming again a top quark mass of
175 GeV/c2 the s-channel cross section is σ = (0.88 ± 0.11) pb at the Tevatron
collider [12, 13]. Figure 1.5 shows Feynman diagrams for the LO process as well
as an example for an NLO process including initial state gluon splitting.
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u
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b

t

(a)

d

g u

t
u

+W
b

(b)

Figure 1.5: The single-top s-channel production mode at (a) leading order, and (b) an example for

NLO with an initial gluon splitting.

• associated production
In this process, the top quark is produced in association with a real W boson
(q2 ≈ m2

W ) whereas the initial bottom quark is a see-quark within a proton or
an antiproton. At the Tevatron, the cross section for the associated production
is very small, σ = 0.094+0.015

−0.012 pb [14], and therefore negligible. For the proton-
proton collisions at a center-of-mass energy of 14 TeV at the Large Hadron Col-
lider (LHC), which is located near Geneva, Switzerland, this cross section will
increase and even exceed the one of the s-channel. The leading order Feynman
diagram of the associated production is shown in figure 1.6.

b

g

t

t

-W

Figure 1.6: Leading order process for associated single-top production

Since all of the above mentioned production channels have a Wtb vertex, the corre-
sponding cross sections are all proportional to the square of the CKM matrix element
Vtb. Hence, measuring the single-top cross section allows for direct |Vtb| . The value of
Vtb is very interesting for the validation of the standard model and the exclusion of other
models. In the standard model the CKM matrix is unitary, which leads, for example,
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to the following unitary constraint: |Vtd|2 + |Vts|2 + |Vtb|2 = 1. This constraint enables
an indirect measurement of |Vtb|: 0.9990 < |Vtb| < 0.9992 at 90% confidence level (CL).
The unitary assumption is mainly based on three experimental facts: First the mea-
surements of Vub and Vcb in B-meson decays shows, that the hierarchy of the elements
belonging to the first two rows of the CKM matrix is in excellent agreement with the

unitary condition. Furthermore the measurements of the B0
s −B

0

s oscillation frequency
constraints the ratio of Vtd and Vts to 0.20 < |Vtd/Vts| < 0.22 [15, 16]. The unitarity hy-
pothesis predicts this ratio to be of order sin(θc) ≃ 0.22 which is in very good agreement
with the experimental results. Finally, the ratio R ≡ |Vtb|/

√

|Vtd|2 + |Vts|2 + |Vtb|2 is
measured to be larger than 0.6 at 95% CL [17, 18]. From the definition of R it is clear
that R ≃ 1 implies a strong hierarchy between Vtb and the other two matrix elements,
as expected in the unitary case.
If there is for example a fourth quark generation the 4 × 4 CKM matrix would be
unitary too, but the 3 × 3 unitary constraint won’t be fulfilled anymore. Theoretical
calculations including different experimental results found the following limits for the
“four-generation” CKM matrix elements Vti : |Vtd| . 0.03, |Vts| . 0.2, |Vtb| & 0.8 [19].
Hence, a precise measurement of the single-top cross section is necessary to be able to
distinguish between three and four quark generations. As it is shown in section 5.3
this will be hard to realize at the Tevatron. At the LHC, the uncertainty of Vtb from
t-channel cross section measurements in 10 fb−1 is estimated to be 5% [19].



Chapter 2

Experimental Setup

Figure 2.1: Aerial view of the Fermilab area with the Main Injector in the foreground and the
Tevatron ring in the back. The CDF-experiment is located at the ten o’clock position of the Tevatron.

The CDF II experiment is located at the Fermi National Accelerator Laboratory
(Fermilab or FNAL) in Batavia, Illinois. About 60 km away from Chicago, the Fermilab
is one of the centers for High-Energy-Physics in the United States of America. An
overview of the 28 km2 area can be seen in figure 2.1. Since the first high-energy
particle beam at Fermilab in 1972, a lot of successful experiments have been conducted,
which led for example to the discovery of the bottom quark in 1977. Measurements
of the two experiments CDF and DZero (DØ) at Fermilab’s proton-antiproton collider
Tevatron, yielded the first observation of the top quark in 1995. In the following, we
will give a short description of the Tevatron ring and the main components of the CDF

10
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II detector.

2.1 The Accelerator Chain

Currently, the Tevatron is the accelerator with the highest center-of-mass energy in
the world. A proton and an antiproton beam, each with an energy of 980 GeV, collide
in two interaction regions with a center-of-mass energy of 1.96 TeV. As illustrated in
figure 2.2 several different pre-accelerators are needed to reach such high beam energies.
The proton beam begins life as a pulsed, 25 keV negative hydrogen ion beam from a

Figure 2.2: Overview of Fermilab’s Accelerator Chain

magnetron surface-plasma source [20]. This type of source consists of an oval-shaped
cathode surrounded by an anode. The approximately 1 mm wide gap between the
two electrodes is filled with hydrogen gas which turns into a dense plasma by the
impact of electric and magnetic fields. Positive hydrogen ions then hit the cathode,
absorbe two electrons and are reflected. Caesium vapor coating the cathode’s surface
and lowering its work function, increases the probability for the mentioned process.
After formation, some of the H− ions are extracted through the anode aperture and
are accelerated through an extraction plate.
The whole source is located in a metallic enclosure kept at −750 keV by a Cockcroft-
Walton generator. While flying from the source to ground potential, the extracted H−

ions are accelerated to 750 keV and are then sent to the Linac, an 400 MeV linear
accelerator. Here, the ions are accelerated in cavities by alternately oscillating electric
fields. At the end of the Linac is a carbon foil which removes the electrons from the
ions, leaving only the protons.
In the third step, the resulting proton beam enters the so-called Booster, a proton
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synchrotron with a diameter of roughly 150 m. Unfortunately, the momentum spread
of the Linac-proton beam is about 0.3% which possibly leads to a radius difference of
nearly 8 mm in the Booster [20]. Thus a radio frequency (RF) cavity which decelerates
too fast and accelerates too slow particles, is placed between the two accelerator stages.
After spinning around 20,000 times in the Booster, protons have reached an energy
of 8 GeV and enter the Main Injector. This second synchrotron has a radius of 524
meters and increases the beam energy from 8 GeV to 150 GeV. Futhermore, the Main
Injector provides a 120 GeV proton beam for the Antiproton Source.

In the Antiproton Source the high energy proton beam hits a stack of nickel target
and copper cooling disks whereby many secondary particles, especially antiprotons,
are produced [21]. A cylindric lithium lense, which focusses the secondary particles
along trajectories parallel to the cylinder axes, is placed directly behind the target.
Negatively charged particles are then selected by a dipole magnet and sent to the
Debuncher which has the shape of a “rounded triangle”. The purpose of the Debuncher
is to accept pulses of antiprotons from the source and to reduce their momentum
spread through RF bunch rotation and adiabatic debunching from 4% to 0.2% [20].
Additionally, the phase space is reduced by stochastic cooling [22].
The beam then enters the Accumulator which is placed in the same tunnel as the
Debuncher. Its task is to store antiprotons for several hours while they are cooled with
different techniques like momentum or betatron cooling [21]. Thereby the physical size
and energy spread of the particle beam is reduced without any accompanying beam
loss. When enough antiprotons have been collected, they are sent to the Recycler
which is installed in the same tunnel as the Main Ring. Here they are further cooled
by stochastic and electron cooling processes and finally stored until they are shot into
the Tevatron.

The Tevatron is the last part of Fermilab’s accelerator chain. On their way around
the 6.3 km long ring, protons and antiprotons, which are flying in opposite directions,
are accelerated to 980 GeV. This is currently the highest particle energy ever reached
with a collider. All magnets, that are guiding particles on their track, are supercon-
ducting coils cooled with liquid helium to nearly 4 K. The acceleration itself happens in
RF-cavities. Therefore the particle beams have to be bunched. Finally, 36 bunches of
protons and antiprotons, consisting of billions of particles, circulate with a revolution
time of 20 µs.
The two beams are then forced to cross each other at two interaction regions where the
two detectors, CDF and DØ, are ready to detect the products of the proton-antiproton
collisions.

2.1.1 Luminosity

An imporant characteristic of an accelerator is its luminosity. The luminosity is given
by

L = j · v
C

· Na ·Nb

4πσxσy
, (2.1)
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where j is the number of bunches, v the velocity, C the circumference of the accelerator,
Na (Nb) the number of particles of type a (b) per bunch and σx (σy) the average bunch
width. It is therefore a measure for the ability of an accelerator to produce collisions
and is often given in units of cm−2s−1. Frequently, the overall performance of storage
rings is also represented by their integrated luminosity

∫

L dt, which is a measure for
the amount of data collected. Hence, the number of events of a specific physiscs process
can easily be calculated by multiplying its cross section, often given in units of b (1 b
= 1 barn = 10−24 cm2), with the integrated luminosity:

Nproc = σproc ·
∫

L dt . (2.2)

Since the number of protons and antiprotons per bunch decreases with the number
of collisions the maximum luminosity is reached at the beginning of each run (initial
luminosity). In figure 2.3(a) the initial luminosity is shown as a function of the store
number, where a store denotes the period between Tevatron beam initialization and
abortion. The luminosity delivered by the Tevatron per calender year is illustrated in
figure 2.3(b). During winter 2006/2007 the Tevatron achieved its design luminosity
of 270 · 1030 cm−2s−1 . On March, the 17th 2008 the current record initial luminosity
of 315, 9 · 1030 cm−2s−1 was reached. Figure 2.4 compares the integrated luminosity
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Figure 2.3: (a): Initial Tevatron luminosities given as a function of time. (b): Luminiosity delivered

by the Tevatron per year.

delivered by the Tevatron with the integrated luminosity which the CDF detector
recorded. As can be seen, the Tevatron yielded approximately 3.8 fb−1 till April 2008
whereas CDF managed to write about 3.1 fb−1 to tape. The measurement of the
luminosity at CDF is performed with low mass Cherenkov detectors [23].
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Figure 2.4: Integrated luminosity delivered by the Tevatron (red) and the luminosity recorded by
CDF (blue) till April 2008. The black line represents the time period in which the data used for the
single-top analyses have been taken.

2.2 The CDF II Detector

The Collider Detector at Fermilab (CDF) is one of the two detectors installed at
Tevatron. It is an azimuthally and forward-backward symmetric general purpose
solenoidal detector which combines precision charged particle tracking with fast pro-
jective calorimetry and fine grained muon detection [24].
Figure 2.5(a) shows a cutaway view of the CDF II detector. The tracking systems

are enveloped by a superconducting solenoid, 1.5 m in radius and 4.8 m in length,
which produces a 1.4 T magnetic field along the beam axes. All calorimetry and muon
systems are located outside this solenoid. As can be seen in figure2.5(b) , the detector
is described by a right-handed spherical coordinate system, where the z axis points
along the proton beam. The azimuthal angle φ is measured from the Tevatron plain,
and the polar angle θ is measured from the proton direction. One usually replaces
the polar angle by the pseudorapidity η, which is defined as η = − ln(tan θ

2
). This is

reasonable, because the production of relativistic particles is a constant as a function
of rapidity.

2.2.1 Tracking System

The CDF Tracking System, which is responsible for a high momentum resolution, con-
sists of two main parts: a barrel-shaped silicon system and an open cell drift chamber
(COT) surrounding the first. Moreover the silicon system consists of three subsystems,
namely the Layer00 [25], the Silicon VerteX detector (SVXII) [26] and the Intermediate
Silicon Layers (ISL) [27]. The different components are illustrated in figure 2.6.
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Figure 2.5: (a) Cutaway view of the CDFII detector with its different components. The inner
green and orange parts belong to the tracking system, the red and blue ones to the calorimeters. The
labeled objects are part of the muon system. (b) The CDFII coordinate system.

Layer00, added to the detector design in 1999, is a single-sided layer of silicon mi-
crostrips, which provides a full azimuthal coverage. With their location at radii of
1.35 cm and 1.65 cm the two sensors are very close to the beam pipe and responsi-
ble for a high impact parameter1 resolution i.e. for high-quality track reconstruction.
SVXII consists of five layers double-sided silicon wafers covering the region |η| < 2.
On the front side, the strips are placed parallel to the z-axis, hence one has a high
resolution in the r − φ−plane. In contrast to this, the strips on the backside of three
sensors are rotated by an angle of 90◦ with respect to beam-parallel strips and allow
the measurement of a particle’s z coordinate with high precision. The strips on the
backside of the other two layers of sensors are only rotated by an angle of 1.2◦. In the
central region (|η| < 1), a single ISL layer is placed at a radius of 22 cm and in the
forward-backward region, 1 ≤ |η| ≤ 2, two further ISL layers are located at radii of 20
cm and 28 cm. SVXII and ISL together are a single functional system which provides
stand-alone silicon tracking over the full |η| ≤ 2 region. The whole CDF silicon system
reaches an impact parameter resolution of 40µm.
In the central |η| ≤ 1 region the silicon system is surrounded by the COT. This drift
chamber is roughly 3 m long and covers radii between 44 cm and 132 cm. It is seg-
mented in 8 super-layers alternating stereo and axial, with a stereo angle of ±2◦. Each
super-layer contains 12 sense wires alternating with 13 potential wires which provide
the field shaping within the cell, yielding a total of 96 measurement layers. The COT
is filled with a mixture of Argone-Ethane-CF4(50:35:15) and the drift field is about 2.4
keV/cm which limits the maximum drift time to less than 100 ns. It provides track

1impact parameter: closest distance of a particle track to the primary interaction point
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Figure 2.6: Longitudinal view of the CDF II tracking system and the plug calorimetry

momentum measurements with resolution
σpT

pT
= 0.0015 GeV−1 × pT.

In 2001 a Time-Of-Flight (TOF) detector has been installed just outside the COT.
The motivation for this was to enhance the particle identification capability provided
by the central drift chamber. With a time-of-flight resolution of nearly 100 ps, TOF
is capable of identifying charged kaons from pions by their flight time differences with
at least two standard deviation separation up to kaon momenta of 1.6 GeV/c.

2.2.2 Calorimetry

Outside the solenoid, scintillator-based calorimetry allows the measurement of parti-
cle and jet energies. Except of muons and neutrinos all particles are fully absorbed
in different electromagnetic or hadronic calorimeters. The whole system consists of
five parts: The Central ElectroMagnetic (CEM) calorimeter [28], the Central HAdron
(CHA) [29] calorimeter, the end-Plug ElectroMagnetic (PEM) calorimeter, the end-
Plug HAdron (PHA) calorimeter and the end-Wall HAdron (WHA) calorimeter. All
of these calorimeters are segmented into towers pointing towards the center of the de-
tector.
The electromagnetic calorimeters use layers of lead alternating with polystyrene scin-
tillators (central region 0 ≤ |η| ≤ 1.1) or plastic scintillators (forward-backward region
1.1 ≤ |η| ≤ 3.64) as active detector medium. CEM has an average energy resolution,
σ(E)/

√

E[GeV], of 13.5%/
√
E as well as a position resolution of ±2 mm at 50 GeV

and PEM possesses a energy resolution of 16%/
√
E⊕1%, where ⊕ represents the sum
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CMU CMP/CSP CMX/CSX BMU

coverage |η| ≤ 0.6 |η| ≤ 0.6 0.6 ≤ |η| ≤ 1.0 1.0 ≤ |η| ≤ 1.5
chamber area[cm2] 2.68 × 6.35 2.5 × 15 2.5 × 15 2.5 × 8.4
chamber length[cm] 226 640 180 363
max. drift time[ns] 800 1400 1400 800
min. pT [GeV/c] 1.4 2.2 1.4 1.4 − 2.0

Table 2.1: Design Parameters of the CDF II muon system

in quadrature, as well as a position resolution between 5 mm for 50 GeV and 1 cm at
5 GeV.
The central and the end-Wall hadronic calorimeters consist of steel absorbers and
acrylic scintillators in contrast to PHA which uses iron absorbers. CHA and WHA
have energy resolutions of 50%/

√
E ⊕ 3% and 75%/

√
E ⊕ 4% respectively, the end-

Plug hadronic calorimeter however 80%/
√
E ⊕ 5%.

2.2.3 Muon Chambers

The key to many precision measurements and new discoveries at the high-energy fron-
tier is the efficient detection of muons over a large fiducial and kinematic range. CDF’s
muon system is divided into four subdetectors. The Central MUon (CMU) detector
[30] encloses the outside of the central hadron calorimeter at a radial distance of 3470
mm from the beam axis and covers the |η| ≤ 0.6 range. It consists of 144 modules
with 16 rectangle cells in each module. Every cell is further divided in four layers of
drift chambers which are filled with a 50%/50% argon-ethane gas. The Central Muon
uPgrade (CMP) consists of another set of muon chambers behind additional 60 cm
of steel in the region 55◦ ≤ θ ≤ 90◦ which form a box around the central detector.
Additionally a layer of 216 scintillation counters (the CSP) covers the outside surface
of the chambers. The Central Muon Extension, which consists of conical sections of
drift tubes (CMX) and scintillation counters (CSX), is located at each end of the cen-
tral detector and ranges in polar angle from 42◦ to 55◦. At 55◦ it slightly overlaps the
coverage provided by the CMU and extends its pseudorapidity coverage up to 1.0. The
last part of the system is the Barrel MUon detection system (BMU), which covers the
1.0 ≤ η ≤ 1.5 region. The heart of this detector is a barrel of CMP-like chambers and
CSP-like scintillation counters. Table 2.1 lists some design parameters of the CDF II
muon system and figure 2.5(a) shows its different parts. .

2.3 The Trigger System

As mentioned in section 2.1 the Tevatron beam is splitted in bunches. The average time
between two particle bunches is 396 ns. Additionally the 36 bunches are subdivided
into three trains, each containing 12 bunches, with an “empty space time” of roughly
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Figure 2.7: Overview of the CDF II data flow which shows the initial design rates. The expected
bunch crossing rate of 7.6 MHz could not be reached because of beam stability criteria.

2.6 µs between two trains. Therefore the effective bunch crossing rate is approximately
1.7 MHz. Since the tape writing speed is limited to an event rate of 100 Hz one has to
decide for every event, whether it is one of the rare interesting or one of the numerous
background events. This decision is made by a three-level trigger system [31], which
is illustrated in figure 2.7. Level-1 (L1) is a purely hardware trigger, Level-2 (L2) is a
combination of hardware and software triggers and Level-3 (L3) is a software trigger,
running on a Linux computer farm.
L1 uses custom designed hardware to find physics objects based on a subset of the
detector information and makes a decision based on simple counting these objects.
The following three systems are used to evaluate the events: The calorimeter trigger
boards are searching for electrons, photons and jets by applying thresholds to individ-
ual calorimeter trigger towers. They are also senitive to an events’s total transverse
energy and missing transverse energy by applying thresholds after summing over all
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towers. Muon trigger cards use hits in the muon chambers to identify single and
dimuon objects. Finally, the eXtremely Fast Tracker (XFT) reconstructs tracks in the
COT and matches these to energy depositions in calorimeter towers or hits in muon
chambers. In conclusion, L1 reduces the event rate by a factor of 42.5 to 40 kHz.
The second trigger system performs minimum event reconstruction utilizing a custom-
designed hardware, which consist of several asynchronous subsystems, for the pre-
processing, while the L2 decision is taken on a high performance commodity PC. In
addition to the informations from the calorimeters, muon chambers and the COT, L2
processes data from the CEntral Shower maximum detector (CES) and SVXII. CES
is placed in the CEM at a depth which corresponds to the average maximum of an
electromagnetic shower and improves the identification of electrons and photons. The
Silicon Vertex Trigger (SVT) allows to trigger for tracks with large impact parameters
which is important for processes involving hadronic decays of b-quarks. Jet reconstruc-
tion, which is provided by the Level-2 cluster finder, is also a part of the L2 trigger
that accepts in average 600 events per second.
Events passing L2 are sent to the Level-3 computer farm. The main goal of this last
trigger is the decrease of the 600 Hz event rate after L2 to about 100 events per second,
which can be written to permanent storage. L3 has access about the full event record
and its decisions are based on the particle content and the event topology.



Chapter 3

Experimental techniques

3.1 Neural networks

Neural networks(NNs) are simplified models of the neural processing of our brain. Dur-
ing a training process they are able to learn how to perform a special task, e.g. the
determination whether a given candidate belongs to a class A or a class B (classifi-
cation). Once trained, NNs can be applied to unknown datasets. Unlike cut-based
analyses, neural networks are able to account for the information and correlations of
various variables. In the following we will concentrate on feed-forward NNs.

Figure 3.1: Three-layer feed-forward Neural Network with one neuron in the output layer.

A feed-forward net is made up of different layers. The first one is the input-, the last
one the output-layer. Layers between those two are called hidden-layers. Furthermore,
every layer consists of a specific number of neurons (or simply nodes). There is no
connection between nodes of the same layer only the nodes of two adjoining layers

20
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can be connected. All of these connections have specific weights which represent the
strength of the contacts. During the network training, the weights are changed and
connections can actually disappear (pruning). Figure 3.1 illustrates a feed-forward
Neural Network with one node in the output layer.

3.1.1 The NeuroBayes R© package

The NeuroBayes neural network package [32, 33] is a highly sophisticated tool to per-
form multivariate analysis of correlated data. It combines a three-layered feed-forward
neural network with an automated preprocessing of input variables and uses Bayesian
regularization techniques for the network training.

Preprocessing of input variables

In order to find an optimal starting point for the network training, input variables
are automatically preprocessed before being fed to the neural network. In a first step
variables are flattened, i.e. they are transformed such that the resulting variables
are distributed uniformly between 0 and 1. Then they are scaled to lie between −1
and 1. Such transformations reduce the influence of extreme outliers. The flattend
distributions are then converted into Gaussian distributions, centered at zero with
standard deviation one. Therefore also the output of the hidden-layer is distributed
with mean zero and width one. That provides optimal conditions for a fast initial
learning and avoids neuron saturation. Optionally the above mentioned transformation
to a Gaussian distribution can be replaced by an individual preprocessing for different
variables, like fitting a spline curve to the flattened distributions. The individual
preprocessing is also able to deal with variables that are only given for a subset of events
by assigning the missing values to a δ-function. Further, it is useful to decorrelate the
input variables before starting the network training. Hence, NeuroBayes calculates
the covariance matrix of the preprocessed variables and diagonalizes it using iterative
Jacobian rotations [34]. Afterwards the rotated input vectors are divided by the square
root of the corresponding eigenvalues. Finally the covariance matrix of the transformed
variables has become a unit matrix.
After preprocessing NeuroBayes ranks the input variables according to the significance
of their correlation to the target. To achieve this, the correlation matrix and the total
correlation to the target for the whole set of variables are calculated. In the following,
one variable is removed from the original set and the total correlation to the target
is recalculated. This process is done with each input variable. Finally, the one with
the least loss of information, i.e. the least significant one, is removed from the set
and gets the last place in the significance ranking list. The procedure is then repeated
for N − 1 variables and so on until only one variable, reasonably the most significant
one, remains. For this ranking the significance is calculated by multiplying the loss of
correlation to the target of the individual variable with

√
n, where n is the number of

events in the training sample.
Based on the significance ranking of the input variables, one can fix a significance limit
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for the variables which will be used to train the network. Hence, one ensures that only
variables with relevant information, that is not already given by other variables, enter
the network training. For this purpose, NeuroBayes starts at the end of the ranking
list and looks for the first variable with a significance higher than the cut value. This
variable and all the higher ranked once are then finally used to train the network.

The ”independent correlation” option

If one uses individual preprocessing for the variables and fits spline curves to the
flattened distributions, there is the possibility of using the ”independent correlation”
option, as it is named in the following. In this case, only the part of a variable’s
correlation to target which is independent of the correlation to the target of another
variable is incorporated.
In general the flattened distributions are divided in bins. Every bin is represented by
its signal probability, i.e. the number of signal events in the bin devided by the overall
number of entries in the bin. A spline curve is then fit to this binned signal probability
distribution and the resulting signal probabilities for each bin are assigned to every
event which corresponds to the bin. Now, suppose we want to have the variable V2(x2)
independent of the correlation to the target of the variable V1(x1) and look to an event
which lies for V1 in the bin i with a signal probability of pi(x1) and for V2 in the bin
j with a signal probability of pj(x2). Instead of using pj(x2) as the signal probability
for the given event one makes the following ansatz:

pj(x2) = pi(x1) · f2(x2) (3.1)

Here f2(x2) is a variation function that represents the excess of information given by
V2 in comparison to V1. f2(x2) is calculated for every event of bin j and the same
procedure is done for all other bins. Eventually, the spline curves are fitted to the
binned f2(x2) distribution and the signal probabilities are assigned to the events in the
same way as mentioned above.

The network structure

As already mentioned, NeuroBayes is a three-layer feed-forward neural network. Its
input-layer consists of one node for each input variable, labeled by an index i, and one
bias node. There is further an arbitrary number of nodes in the hidden layer (index j)
and for classification trainings discussed in this thesis, there is only one output node
which gives a continuous output in the interval [−1, 1]. Connections between nodes of
different layers are represented by the weights ωij, between the input- and the hidden-
layer, and ωj, between the hidden- and the output-layer. Weights between the bias
node, which implements the threshold for the nodes j, and hidden nodes are given by
ν0j . The input of a node j in the hidden layer is calculated via the biased weighted
sum,

hj(x) =
∑

i

ωijxi + νoj , (3.2)
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Figure 3.2: The sigmoid function in [−10, 10]

where the xi are the input data. A sigmoid transfer function,

S(h(x)) =
2

1 + e−h(x)
− 1 , (3.3)

then gives the output of the particular node. This function maps the interval ]−∞,∞[
onto ] − 1, 1[. As can be seen in figure 3.2, the sigmoid function is only sensitive to a
small region around zero. For large |x| the sigmoid function is flat whereby saturation
effects can appear. Hence, the task of the bias weight is to shift the weighted sum of
input values,

∑

i ωijxi, to the linear part of the transfer function. Finally, the network
output is calculated by

o = S(
H

∑

j

ωj · S(
V

∑

i

ωijxi + νoj)) , (3.4)

where H is the number of hidden nodes and V is the number of input variables.

The Training Process

Historical or simulated data, for which the expected network output is known, is used
for the network training. The training itself is done by minimizing the entropy error
function

ED =
N

∑

i

log(
1

2
(1 + Ti · oi + ǫ)) , (3.5)

where N is the number of training events, Ti is a binary number which denotes the
event as signal (Ti = 1) or background (Ti = −1) and oi is the calculated network
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output for the specific event, see eq. 3.4. A small constant ǫ was inserted to avoid
numerical problems at the beginning of the training (e.g. total misclassification Ti = 1
and oi = −1 or vice versa would lead to an infinitely large ED). After just a few
training iterations ǫ is equal to zero.
The main challenge during the network training is to find a set of weights for which
the multidimensional structure of the error function has a minimum close to the global
one. For this purpose NeuroBayes uses a combined method of backpropagation and
gradient decent. Here the change of the weights δωij is proportional to the current
gradient of the error function and the step size ηij :

δωij = −ηij
∂E(ω)

∂ωij
(3.6)

The step size is calculated individually for each weight, see [32] for details. Due to
the already mentioned pruning, unsignificant weights or even nodes can be neglected.
This reduces the number of free parameters, i.e. the dimension of the error function
structure. Another minimization is based on the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method.

Training Results
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Figure 3.3: Results of the network training: (a) network output for signal(red) and
background(black) (b) signal purity in each output bin.

After a successful training, the distribution of network outputs looks similar to the
one illustrated in figure 3.3(a). Signal events cumulate at outputs next to +1 and
background events gather at −1. If the network was trained with a realistic mixture
of signal and background events and if the signal purity in each output bin lies on
the diagonal(see figure 3.3 (b) ), the output, scaled to [0, 1], can be interpreted as a
Bayesian a posteriori probability. Again, see [32] for further details.
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3.2 Monte Carlo generators and detector simula-

tion

In order to get a description of the different physics processes happening in hadron
collisions, the complete physical knowledge about those is implemented in Monte Carlo
(MC) event generators. These computer programs use statistical methods to randomly
produce hard parton interactions according to the probability density of phase space
and the matrix element of a given process. The behaviour of the various particles
originating from the hard process, from particle decays or radiation processes in the
detector is simulated by the CDFII detector simulation.

3.2.1 Monte Carlo event generation

Besides the hard parton interactions, which take place at high momentum transfer
scales Q2, initial and final state radiation, decays of unstable particles and hadroniza-
tion processes have to be simulated. At high Q2 the strong coupling constant αs is
small, thus the scattering processes can be calculated in perturbation theory. Since the
hadronization of quarks and gluons, which describes the formation of jets, takes place
at low Q2 and large αs perturbation theory cannot be applied. The phenomenologic
models, used to describe hadronization in the absence of any firm theoretical under-
standing are different for distinct Monte Carlo generators. In the following we give a
brief introduction to the MC generators used to simulate the different processes for the
KIT Flavor Separator training (see chapter 4).

Pythia

The Pythia [35] program is a standard tool for the generation of high-energy collisions,
comprising a coherent set of physics models for the evolution from a few-body hard
process to a complex multihadronic final state. It is able to simulate the collisions of
pp, pp, e+e− and µ+µ−. Models for initial- and final-state parton showers, multiple
parton-parton interactions, beam remnants and particle decays are also included. The
hadronization process is based solely on the Lund string fragmentation framework. In
this model the color field between final state quarks and antiquarks is illustrated by
color flux tubes (or strings). If the potential energy in such a tube is high enough, it
can be transformed in new quark-antiquark pair. Thus colorless hadrons can be built.

ALPGEN

ALPGEN [36] is designed for the simulation of multiparton hard processes in hadronic
collisions like the proton-(anti)proton collisions at the Tevatron or the LHC. It performs
the calculation of the exact matrix element in leading order perturbation theory for
QCD and electroweak hard scattering processes. ALPGEN focusses on multijet final
states originating directly from hard QCD radiative processes or the decay of massive
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particles, such as for example W and Z bosons. Besides the evaluation of matrix ele-
ments, ALPGEN further provides a complete parton-level simulation which offers the
possibility to carry out the shower evolution and hadronization of the partonic final
states. In order to use these results in practical analyses of experimental data, the cal-
culations need to be completed with the treatment of higher-order corrections leading
to the development of partonic cascades, and with the subsequent transformation of
the partons into observable hadrons. For this task MC programs like Pythia can be
used.

MadEvent

The multipurpose event generator MadEvent [37] is based on the calculation of arbi-
trary tree level helicity amplitudes with the MadGraph [38] program. Given a process,
MadGraph automatically identifies all the relevant subprocesses, generates both the
amplitudes and the mappings needed for an efficient integration over the phase space,
and passes them to MadEvent. MadEvent then produces a stand-alone code that allows
to calculate cross sections and to obtain unweighted events. Once the events have been
generated they can be passed to any shower Monte Carlo program (such as Pythia)
where partons are perturbatively evolved through the emission of QCD radiation, and
eventually turned into physical states (hadronization).

3.2.2 Detector simulation

In order to get a useful simulation of the different physics processes it is necessary
to model not only the particle final states correctly but also to get an idea how they
will interact with the CDF detector. For this purpose it is crucial to simulate the be-
haviour of the various particles in the different detector subsystems. The CDF detector
simulation framework (cdfSim) is integrated into an AC++ [39] application used to
process events at the CDF experiment. GEANT3 [40] performs the tracking of parti-
cles through matter.
The main purpose of simulating the silicon detector is to describe the charge deposition
of traversing tracks on the silicon strips well enough to evaluate silicon tracking per-
formance. This charge deposition is again calculated by the GEANT3 package. CDF’s
Central Outer Tracker is modeled by the GARFIELD [41] program, which is a general
drift chamber simulation package. The most challenging part in the muon simulation is
the description of the complicated geometry of the muon systems. Nevertheless a good
agreement between data and simulation has been found [42]. The simulation of the
CDF calorimeters is based on the GFLASH [43] parameterization package interfaced
with the GEANT3 simulation. Further details of the detector simulation are given in
[42].
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3.3 Track and jet reconstruction

A crucial prerequisite for the KIT Flavor Separator, as for any other b jet identification
algorithm, is the reconstruction of tracks and jets. In the following, we therefore give
an introduction to the tracking in the different CDF subdetectors, the jet cluster algo-
rithm, the jet energy corrections and the standard CDF high-pT b-tagging algorithm.

3.3.1 Reconstruction of tracks

In a homogeneous magnetic field, a charged particle travels on a helix whose axis is
parallel to the applied magnetic field. The shape of this helix depends on the particle
charge and momentum. Particles flying on their helices are detected from the silicon
detector and the COT (i.e. the particles produce so-called “hits” in the tracking
systems). The challenge for tracking algorithms is the reconstruction of particle tracks
from these hits.
In a first step, tracks in the COT are reconstructed. The COT is placed at larger radii
than the silicon detector, hence the density of tracks is lower and so the tracks are
more isolated which leads to a much easier reconstruction than in the silicon detector.
Currently two different reconstruction algorithms for tracks in the COT are in use.
The first one, adopted from Run I, reconstructs and links segments in the super-layers
to find the trajectory [44]. The second, faster approach [45] uses axial segments found
in the outermost super-layers as seeds. For every seed the algorithm calculates a
“reference circle” which is tangent to the segment and also includes the beam line.
Furthermore for each hit within a large window around the circle, a new trajectory,
which goes through the middle of the segment and includes the hit and the beam spot,
is calculated. The distances of these trajectories to the reference circle are filled in a
curvature histogram. Since real tracks lie along a single “hit circle”, they appear as
a peak in this histogram. For each track that has been found the algorithm performs
a 3D fit using all combinations of stereo segments in the outermost super-layers that
could be consistent with the given axial track. The newly estimated 3D trajectory
is then used to determine which of the segments in the remaining stereo layers are
consistent with belonging to the track.
The track reconstruction in the silicon detector consists of three major phases. In the
first, tracks found in the COT are extrapolated into the silicon detector (“outside-
in” [46]). Axial and stereo silicon hits are added using a progressive fit. The second
phase of silicon reconstruction consists of stand-alone pattern recognition in the silicon
detectors [47]. Since it is possible to have as many as 50, 000 seeds from a few tens
of tracks it is necessary to reduce the combinatorics. For example hits already added
to outside-in tracks are excluded. Hence, the silicon stand-alone algorithm essentially
looks for tracks in the forward-backward region, 1 ≤ |η| ≤ 2, not covered from the
COT. The final phase is called “inside-out” tracking [48]. Tracks found with the silicon
stand-alone algorithm are extrapolated to the COT to identify tracks which have no
hit in the outermost super-layers and thus could not be found by the COT algorithms.
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3.3.2 Jet clustering algorithm

Due to hadronization processes, final state quarks create jets of colorless hadrons which
are detected in the calorimeters. For these jets different reconstruction algorithms are
possible. In this analysis only jets clustered with a cone algorithm [49] are used. An
example for the evolution from the pp-collision via the final state quarks to calorimeter
jets is illustrated in figure 3.4.
For the clustering only calorimeter towers with ET,i > 1 GeV are taken into account.

Figure 3.4: Schematic overview of jet evolution and reconstruction

Here ET,i = Ei · sin(θi) is the transverse energy of a tower with respect to the z-
position of the pp interaction, and the energy Ei is the sum of the energies measured
in the electromagnetic and hadronic compartments of that tower. The jet cluster
algorithm starts with the definition of “seed towers” in order of decreasing ET,i. All

towers within a radius R =
√

(ηtower − ηjet)2 + (φtower − φjet) = 0.4 with respect to its
position (ηjet,φjet) are used to build a “cluster” around each seed tower. In a further
step the jet energy and the current center of the cluster is calculated. The above
procedure is then repeated (e.g. adding all towers within R around the new center
and calculate the new jet energy and the new center) until the jet location is stable.
If two jets overlap by more than 50% they are merged together. The final jet energy
is calculated by Ejet =

∑Ntower

i=0 Ei, where Ntower is the number of calorimeter towers
added to the final cluster.
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3.3.3 Jet energy correction

From the measured jet energy the transverse momentum of the inital partons can be
estimated. For this purpose it is necessary to correct the jet energy for instrumental
effects and for radiation and fragmentation effects. This correction is done in different
levels, which for example allows the application of a subset only.

• Level 1: “η-dependent” corrections

Level 1 corrects for the nonuniform response in η of the CDF calorimeters, which
arises from the separation of calorimeter components at η = 0 where the two
halves of the central calorimeter join and at |η|=1.1 where the plug and central
calorimeters join.

• Level 2: unused

• Level 3: unused

• Level 4: “Multiple interactions” This correction subtracts the contributions
to the cluster energy of different pp interactions during the same bunch crossing
(pile-up).

• Level 5: “Absolute jet energy scale” Level 5 corrects the jet energy measured
in the calorimeter for any non-linearity and energy loss in the uninstrumented
regions of each calorimeter. The jet energy measured is corrected to

∑

pT of the
particles within the cone of same size around the parton direction which matched
the jet direction with R < 0.4.

• Level 6: “Underlying event” The underlying event is defined as the energy
associated with the spectator partons in a hard collision event. Level 6 subtracts
this energy from the particle-level jet energy.

• Level 7: “Out-of-cone” and Level 8: “Splash-out” The “out-of-cone”
corrections adjusts the particle-level energy for leakage of radiation outside the
clustering cone used for jet definition, taking the “jet energy” back to “parent
parton energy”. The level 7 systematic uncertainties are evaluated by looking at
energy leakage from the jet clustering cone up to R = 1.3. The uncertainty for
the leakage outside R = 1.3 is referred to as level 8 ”splash-out” uncertainty.

3.3.4 Reconstruction of secondary vertices

A crucial prerequisite for any top quark analysis is the identification of b quark jets
with high efficiency. Since nearly 100% of the top quarks decay into a W boson and
a bottom quark, identifying those b jets would significantly reduce the background.
Common algorithms used to identify b jets are predicated on the reconstruction of
secondary vertices and take advantage of the long b-hadron lifetime which is about
1.6 ps. The considerable lifetime in conjunction with a large relativistic boost causes
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b hadrons to fly on average several millimeters before decaying. Therefore, b-hadron
decays produce secondary vertices displaced from the primary interaction point. By
reconstructing charged tracks with large impact parameters, i.e. tracks with a low
probability of coming from the primary interaction point, possible displaced vertices
can be found. Figure 3.5 illustrates the mentioned event topology. The secondary ver-
tex reconstruction algorithm used by CDF, SecVtx [50], is described below. We focus
on so-called tight SecVtx vertices, because only those are used in the following chapters.

Figure 3.5: Event topology expected for b-quark jets.

SecVtx starts with the selection of tracks associated to a jet with R < 0.4, which
have large impact parameters d0. The impact parameters are calculated with respect
to the primary pp vertex determined for each event separately. In a first step all
tracks with pT > 0.5 GeV/c and an impact parameter significance Sd0 = | d0

σd0
| > 2.0

are selected. Furthermore tracks with too large d0 (> 0.15 cm) values are discarded,
because they are likely to originate from nuclear interactions in the detector material
or the decay of long-lived particles. The tracks are than ordered by their Sd0 and
their pT. Starting with the high ranked onse, tracks are paired to form a seed vertex.
Around such a seed vertex the algorithm searches for tracks with an impact parameter
significance smaller than three with respect to the seed vertex. With these additional
tracks a vertex fit is performed. If there is a track which contributes to the vertex fit χ2

more than 50, the track is discarded and the vertex is refitted until all tracks contribute
less than 50 to χ2. The vertex fit is successful if the number of remaining tracks is
≥ 3 and if at least one of the tracks, used for the secondary vertex fit, has pT ≥ 1
GeV/c. The requirements explained above have to be fulfilled for pass 1 vertices. If
the reconstruction of a pass 1 vertex fails, the algorithm tries to find a pass 2 vertex.
For pass 2 vertices tracks are required to have pT > 1.0 GeV and Sd0 > 3.5. In contrast
to the pass 1 procedure, for pass 2 no seeding is performed, hence all tracks are fitted
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to a secondary vertex. Again, tracks which contribute too much to the vertex χ2 are
discarded. The vertex fit is successful if at least two tracks remain. Before a jet is said
to be “tagged”, all secondary vertices have to pass a last round of quality criteria. For
each vertex the two dimensional decay length with respect to the primary vertex (Lxy)

is calculated. The decay length significance, SLxy = | Lxy

σLxy
| is demanded to be greater

than nine. A complete list of all requirements for secondary vertices is given in [55]. Jets
for which a good secondary vertex is found are said to be b-tagged. If the dot product
of the 2D decay length and the jet axis is positive, i.e. the jet and the reconstructed
secondary vertex lie in the same detector hemisphere, the jet is called positively tagged.
Otherwise the jet is called negatively tagged. Since secondary vertices corresponding
to the decay of heavy flavor hadrons are expected to have large positive Lxy, vertices
with a negative tag cannot be consistent with heavy flavor decays and are tue to the
finite tracking resolution of the CDF II detector. Figure 3.6 illustrates a positive and
a negative SecVtx tag. Two further SecVtx vertex versions are available at CDF, the
loose definition leads to a higher tagging efficiency but less purity. The ultra-tight
vertex definition increases the tagging purity but decreases the efficiency.

Figure 3.6: On the left hand side a positive SecVtx tag is illustrated. An example for a negative
SecVtx tag is shown on the right hand side.

Tagging efficiency

The tagging efficiency of the SecVtx algorithm is defined as the ratio of jets com-
ing from bottom quark production that have a positive tag among all tagged jets.
This efficiency is very easy to calculate from Monte Carlo simulations because one has
the complete knowledge of the particles within a jet, and thus it is straightforward to
identify jets that come from b-quark production and the fraction of tagged ones. Unfor-
tunately, the b-tagging in Monte Carlo simulations has non negligible weaknesses: The
charge deposition in the silicon detector is not understood precisely, there is no perfect
simulation of tracking and several detector effects, like noise for example. Therefore,
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the b-tagging efficiency has to be measured in data. Here the main challenge is to
separate a pure b-jet sample from a large amount of dijet events. Two methods for
this measurement exist at CDF. Both are utilizing high pT leptons matched to jets to
identify jet pairs consistent with heavy flavor decays.
The first method looks for high-pT muons within a jet, the so-called “muon jet”. This
jet has to be paired with a back-to-back jet, called “away jet”, which is required to
have a positive SecVtx tag. Such jet pairs are consistent with coming from heavy flavor
quark production. Furthermore, the pT of the muon relative to the jet axis (prel

T ) is a
powerful discriminator of b jets from jets of charm or light flavor. Fitting the prel

T spectra
of b and non-b jets derived from Monte Carlo to the tagged and untagged data sample,
the fraction of tagged b-jets (i.e. the tag efficiency) can be determined. In 1.2 fb−1 of
CDF data the muon method finds a b-tag efficiency of 0.388± 0.006(stat)±0.006(syst)
in data [51]. The tag efficiency is often used when assessing signal acceptance, which
is typically done in signal Monte Carlo samples. Hence it is necessary to construct
a data-to-Monte Carlo scale factor for the tagging efficiency, which accounts for the
differences between b-tagging in data and Monte Carlo. The muon method calculates

this scale factor to SFmuo
tag =

ǫdata
tag

ǫMC
tag

= 0.932 ± 0.016(stat)±0.015(syst) [51].

The second method roughly works the same way as discussed above but uses electrons
instead of muons. A detailed description of this method can be found in [52]. The result
of the electron method for the scale factor is SF ele

tag = 0.977± 0.018(stat)±0.030(syst),
which is in good agreement with the results of the muon method using the same inte-
grated luminosity. Reference [53] explains how the two scale factors can be combined
to SFtag = 0.95±0.01(stat)±0.04(syst). For the single-top analyses discussed in chap-
ter 5 and 6 CDF data corresponding to 2.2 fb−1 is used. Since the scale factors doesn’t
change significantly for the new data the ones for 1.2 fb−1 are used [54].

False positive rate

Typically the performance of b-tagging algorithms is also characterized by the rate
of light flavor jets which have been mistakenly tagged (mistags). Due to the limited
detector resolution, material interaction and decays of long-lived particles (e.g. Λ, KS),
tracks in light quark jets can still have large impact parameters and therefore fulfill
secondary vertex requirements.
Mistags resulting from the limited detector resolution are expected to be symmetric in
Lxy. Hence the number of jets with negative tags is a good estimate for the contribution
of mistags to the positive tag sample. At CDF an a priori prediction of the mistag
rate is calculated from the inclusive jet samples, which are collected by a set of simple
triggers gathering events with a certain minimum amount of calorimeter energy. The
per jet probability to be a mistag is determined from the probability of getting a
negative tag, parametrized in six variables (mistag matrix) [56]:

• Jet ET, the uncorrected transverse jet energy

• Ntrk, the number of tracks per jet (track multiplicity)
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• |ηjet|, the absolute value of a jet’s pseudorapidity

• nPV, the number of primary vertices in an event

• ZPV, the z-position of the primary vertex

•
∑

ET, the sum of the transverse energy of all taggable1 jets

From the mistag probabilities of the whole jet sample, the contribution of mistagged
positive jets to a given data sample, due to the limited detector resolution, can be
predicted.
However, not all mistags stem from limited detector resolutions alone. Since secondary
vertices in light quark jets which are reconstructed from tracks coming from material
interactions or long-lived particle decays are strictly at positive Lxy, the assumption
of a symmetric Lxy leads to an underestimation of the false positive tag rate. Hence a
correction factor αβ is applied [57]. Here α is given by the number of light positive tags
divided by the number of negative tagged jets in data. The numerator of this fraction
is derived from a fit to the vertex mass Mvtx. The factor β includes the number of
jets in the pretag sample divided by the number of number of light jets in the same
sample. Finally the positive mistag rate is given by

N+
light

Npre
light

= αβ ·R−

mistag , (3.7)

where R−

mistag is the mistag rate predicted from negative tags which is calculated as
explained above. Results for the scale factors α and β in bins of ET are given in [57].

1A jet is said to be taggable, if ET > 10 GeV, |η| < 2.4 and at least two tracks are reconstructed
within the jet.
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The KIT Flavor Separator
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Figure 4.1: Jet multiplicity distribution for signal and background processes. The predicted number
of events in each W+jet bin is compared with the number of observed events. Uncertainties on the
observation are statistical; the hatch marks represent systematic errors in the background estimate.
The single-top analyses are performed using W+2jet and W+3jet events.

After the single-top candidate selection, which is discussed in detail in chapter 5,
the expected signal and background composition for events with two and three jets is
shown in figure 4.1. In spite of the requirement of at least one jet identified as a b
jet, still 50% of the selected single-top candidates do not contain any bottom quark.
The main contributions to this background stem from W+charm and W+light quark
events. Jets containing a charm quark can be misidentified as a b jet due to the non-zero
lifetime of C hadrons which can therefore produce a secondary vertex. An inaccurate
track reconstruction leads to a spurious reconstruction of secondary vertices in light

34
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flavored jets. Since the SecVtx-tag method is mainly based on the long b-hadron
lifetime of τ ≈ 1.6 ps, non-b backgrounds can be further suppressed by taking other
b-hadron characteristics into account. Suitable properties are the large b-hadron mass
of roughly 5 GeV/c2, their high decay multiplicity and their probability for decaying
semileptonically.
In this chapter we present an improved version of the KIT Flavor Separator [58], a
neural network which is able to distinguish between tagged b jets and tagged c/light
jets. For this purpose 54 input variables have been investigated and then delivered
to the NeuroBayes R© package. After preprocessing, 31 variables which have passed a
3.5σ significance cut are used for the network training. The Flavor Separator output is
continuously distributed between −1 and 1. Most of the c/light jets have outputs next
to −1 and b jets accumulate at outputs next to 1. Furthermore, we show how the output
distributions for the different processes can be validated or, if necessary, corrected. In
the last section we will give some examples of use for our Flavor Separator.

4.1 Training of the neural network

4.1.1 Event selection and used MC-Samples

Since the requirements of the single-top candidate selection drastically reduce the num-
ber of available events, we only demand that an event has to have exactly one tight
(see lepton identification in subsection 5.1.2) electron or muon. As explained in section
3.3, jets within an event are reconstructed with a jet-cone cluster-algorithm (R < 0.4).
Furthermore, each jet used for the network training has to have a positive SecVtx tag
and a corrected transverse energy of ET > 20 GeV. Jet energies are corrected up to
hadron level.
For the modelling of b signal we use single-top s-channel, t-channel, tt, and Wbb sim-
ulated events. Only jets in which at least one track can be identified as produced by a
particle of the b-Hadron decay, using the Monte Carlo truth, are taken into account.
The W+light jet events are derived from W +n-parton (W +np) samples by excluding
events which contain a b or c hadron. Wcc and Wc simulated events are used to de-
scribe the background containing c-quarks. From these events we use only jets which
contain a track produced by a particle of a c-hadron decay. In all W boson samples
the W boson is forced to decay leptonically, i.e. W → eνe, W → µνµ or W → τντ .
Table 4.1 gives on overview of the used Monte Carlo samples and the particular MC
generator.

4.1.2 Discriminating variables

Lots of the variables used to discriminate b jets from c and light jets are direct results
of the secondary vertex fit. Since the fit procedure is very different for pass 1 and pass
2 vertices the shapes of these variables are expected to look different too. Hence, we
decided to split up pass-dependent variables into two separate ones (one for pass 1
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process Generator datasets

single top t-channel MadEvent + Pythia stopm0
single top s-channel MadEvent + Pythia stop00

tt̄ Pythia ttop75
Wbb̄+ np AlpgenV2 + Pythia btop0w, btop1w, btop2w

btop5w, btop6w, btop7w
dtop0w, dtop1w, dtop2w

Wcc̄ +np AlpgenV2 + Pythia ctop0w, ctop1w, ctop2w
ctop5w, ctop6w, ctop7w
etopw0, etopw1, etopw2

Wc+ np AlpgenV2 + Pythia stopw0, stopw1, stopw2, stopw3
stopw5, stopw6, stopw7, stopw8
stopwa, stopwb, stopwc, stopwd

Mistags AlpgenV2 + Pythia ptop0w, ptop1w, ptop2w, ptop3w
ptop4w, ptop5w, ptop6w, ptop7w
ptop8w, ptop9w, utop0w, utop1w

utop2w, utop3w, utop4w

Table 4.1: Monte Carlo samples used for the training of the neural network with the utilized
generator and the CDF internal dataset name.

and one for pass 2). In case of a pass 2 vertex, the corresponding pass 1 variables are
assigned to a δ-function (see 3.1.1) and vice versa. The pass of a given vertex itself is
used as an input variable, because for roughly 70% of the b jets a secondary vertex is
already found with the pass 1 algorithm. However, more than 50% of the vertices in c
and light quark jets can only be fitted in the pass 2 approach.
Below we illustrate the distributions of four variables, each exploiting one of the main
b-hadron characteristics mentioned above. Moreover the distributions of four “new”
variables, that haven’t been used in previous versions of our Flavor Separator, are
shown. The distributions of all other variables can be found in [59] or in documenta-
tions of previous tagger versions [58, 60]. Nevertheless all used variables are explained
in detail.

The invariant mass of the tracks fitted to the secondary vertex is shown in figure
4.2(a). As can be seen the secondary vertex mass is larger for jets containing a b
hadron. The cutoff between 1.7 and 1.8 GeV/c2 in the distribution for c-jets originates
from the c-quark mass. pSecVtx

T is the transverse momentum of all the tracks used for
the secondary vertex reconstruction. One new variable accounts for the ratio of the
transverse momentum at the secondary vertex and the transverse energy of the jet,
pSecVtx

T /Ejet
T . In figure 4.2(b) one can see that light quark jets accumulate at small

pSecVtx
T /Ejet

T values.
The two and three dimensional decay length (Lxy and Lxyz) are variables which incor-
porate the long b-hadron lifetime. False reconstructed vertices in light quark jets are
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Figure 4.2: Variables used for the discrimination of b jets from non-b jets: (a) the invariant mass of

the tracks fitted to a pass 1 secondary vertex (b) pSecVtx
T devided by the transverse energy of the jet,

Ejet
T .

likely to have large distances from the primary vertex but are expected to have smaller
decay length significances (Lxy/σLxy and Lxyz/σLxyz) than vertices stemming from b- or
c-hadron decays. The Lxy/σLxy distribution is illustrated in figure 4.3(a). Using the two
dimensional decay length, the secondary vertex mass and the transverse momentum
at the secondary vertex, the pseudo-lifetime of a vertex, cτ = Lxy ·MSecVtx/p

SecVtx
T , can

be calculated. Spuriously reconstructed secondary vertices can have large cτ values.
The number of “good SecVtx” tracks Ntrk within a jet represents the decay multiplicity
of b hadrons. Here “good”’ means that the tracks have to fulfill some minimal quality
requirements [55]. Also the number of tracks used in the vertex fit Nvtx

trk which is large
for vertices stemming from b-hadron decays, contains relevant information. Another
sensitive quantity is the number of tracks which are suitable for the pass 1 reconstruc-
tion algorithm explained in section 3.3. Figure 4.3(b) shows the distribution of the
number of tracks with an impact parameter significance d0/σd0 larger than three. As
it is illustrated secondary vertices in b jets consist of a large number of tracks with
d0/σd0 > 3. The absolute value of the charge |Qvtx| at the secondary vertex is a further
input variable. A measure for the quality of the vertex fit is the χ2/dof value. For
false reconstructed vertices in light quark jets, the distribution of χ2/dof is shifted to
larger values.
Besides the variables related to the secondary vertex, jet and track based variables are

also taken into account. In case of jets the transverse energy Ejet
T and the jet’s pseu-

dorapidity ηjet are included. For the purpose of including track-based information, the
good SecVtx tracks within a tagged jet are sorted according to their momentum. The
three tracks with the largest momentum are labeled as the 1st, 2nd and 3rd track. All
the following track-based variables are related to each of these tracks. Variables which
incorporate the long b-hadron lifetime are the impact parameter of a track d0 and its
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Figure 4.3: Variables used for the discrimination of b jets from non-b jets: (a) the significance of

the two dimensional decay length derived from the secondary vertex fit (b) the number of tracks in

the jet with an impact parameter significance larger than three.

significance. Tracks coming from a real secondary vertex are likely to have large impact
parameters and high values for d0/σd0 . This is also true for the lifetime-signed impact
parameter, which is defined as

ǫzik · pi
jet · pk

track

|ǫzik · pi
jet · pk

track|
· d0 (4.1)

and the corresponding significance. Quantities which exploit the b-hadron decay kine-
matics are the momentum p of the tracks, their transverse momentum with respect to
the jet axis prel

T,track and their rapidities with respect to the jet axis yrel
track. In the current

version of the Flavor Separator, additionally the transverse momentum of the tracks
ptrack

T is used. Figures 4.4(a) - 4.4(c) show the ptrack
T distributions for the 1st, 2nd and

3rd track.
The number of leptons within a jet, their energy and momenta are also taken into
account, because b hadrons have a large probability for decaying leptonically. As an
example figure 4.4(d) illustrates the transverse momentum of the muon with respect
to the jet axis prel

T,muo. Furthermore the number of muons and electrons in a jet, their
transverse momentum pmuo

T and pele
T , the transverse energy of the electron and its pT

with respect to the jet axis are used to separate b jets from c and light jets.
Since most of the above mentioned variables show only small differences between b
and non-b processes and are additionally highly correlated, a cut-based analyses won’t
succeed. We therefore use a neural network to combine all available information to one
discriminant.
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Figure 4.4: Variables used for the discrimination of b jets from non-b jets: (a)-(b) pT distribution

of the 1st, 2nd and 3rd track (d) transverse momentum of the muon with respect to the jet axis.

4.1.3 Network training

For the network training we use a realistic mixture of b-like signal and non-b background
processes. The signal template consists of single-top s-channel, single-top t-channel,
tt and Wbb events. Together the signal processes make up 53% of all training events.
The remaining 47% background events are composed of Wcc, Wc and W+light sam-
ples. The different subprocesses are mixed with fractions close to the ones predicted
from the single-top background estimate (see section 5.2). Table 4.2 summarizes the
different processes and the particular fractions.
As explained above, 54 variables have been investigated for the separation of b jets

from c/light jets. These variables are fed into the NeuroBayes package. After prepro-
cessing the variables are ranked according to their relative significance (see 3.1.1 for
details). We decided to perform a cut on the significance at 3.5σ, i.e. only variables
with a relative significance larger than 3.5σ are used for the network training. Table
4.3 lists the 31 variables which survived the significance cut sorted by their relevance.
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b signal Fraction of the complete sample
t-channel 2.9%
s-channel 2.0%

tt̄ 19.0%
Wbb̄ 29.1%

Σ b signal 53.0%

non–b background Fraction of the complete sample
Wcc̄ 11.0%
Wc 11.1%

Mistags 24.9%
Σ non–b background 47%

Table 4.2: Mixing ratios of the training samples used for the neural network training.

The residual variables are shown in table 4.4 also sorted according to their significance.
The neural network has the following structure: 32 input nodes, ten hidden nodes and

one output node. After the network training the output for b-quark jets, c-quark jets
and light-quark jets look like illustrated in figure 4.5(a). A good separation of the b-
like signal and the non-b backgrounds can be found. Vertices stemming from C-hadron
decays are classified to be less background-like than the spurious reconstructed vertices
in light jets, which is mainly due to the non-zero C-hadron lifetime leading to “real”
secondary vertices. Since the network is trained with a realistic mixture of signal and
background events and, as shown in figure 4.5(b), the purity in each output bin lies on
the diagonal, the network output (transformed to [0,1]) can be directly interpreted as
a Bayesian a posterior probability for a jet to be a b-jet.
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Figure 4.5: (a): Output of the Flavor Separator for b, c and light jets. (b): Purity of the network

output in each output bin
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Rank Variable rel. Significance (in σ)

1 number of tracks with d0 significance > 3 116.1
2 signed d0 significance of the 1st track 69.2
3 signed d0 of the 2nd track 46.3
4 signed d0 of the 3rd track 37.3
5 pass of SecVtx fit 28.1
6 invariant mass at secondary Vertex (pass 1) 27.5
7 pT of the muon with respect to jet axis 25.7
8 invariant mass at secondary vertex (pass 2) 21.4
9 number of good tracks in jet 20.6
10 pseudolifetime at secondary vertex 18.5
11 number of used tracks in fit (pass 1) 14.9
12 ET of the jet 13.5
13 η with respect to jet axis of the 2nd track 12.5
14 momentum of the 3rd track 12.3
15 significance of the 3D decay length 11.5
16 momentum of the 1st track 10.5
17 pT of the 1st track with respect to the jet axis 9.1
18 ET of the electron 8.8
19 significance of the 2D decay length 7.7
20 χ2 per degree of freedom of SecVtx fit (pass 1) 7.2
21 number of used tracks in fit (pass 2) 6.8
22 d0 of the 3rd track 5.4
23 d0 significance of the 3rd track 5.8
24 pT at secondary vertex (pass 1) 6.3
25 pT at secondary vertex over ET of jet 6.0
26 d0 of the 2nd track 5.4
27 momentum of the 2nd track 5.2
28 d0 significance of the 2nd track 5.1
29 number of muons in jet 5.1
30 pT of the muon 4.3
31 charge at secondary vertex (pass 2) 3.9

Table 4.3: Set of discriminating variables used to train the Flavor Separator, sorted by relevance.
The quoted relative significances are determined as described in section 3.1.1. These variables passed
the requirement of the significance being larger than 3.5σ.
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Rank Variable rel. Significance (in σ)

32 η with respect to jet axis of the 3rd track 3.4
33 d0 significance of the 1st track 3.1
34 2D decay length 3.1
35 signed d0 of the 1st track 2.7
36 η with respect to jet axis of the 1st track 2.3
37 pT of the 1st track 2.0
38 pT of the 2nd track 2.5
39 3D decay length 2.4
40 χ2 per degree of freedom of SecVtx fit (pass 2) 1.5
41 number of tracks with d0 significance > 2 1.5
42 number of pass 1 tracks in jet 1.4
43 η of the jet 1.3
44 number of electrons in the jet 1.2
45 pT at secondary vertex (pass 2) 1.2
46 number of tracks with d0 significance > 1 1.2
47 signed d0 significance of the 2nd track 1.1
48 charge at secondary vertex (pass 1) 1.0
49 pT of the electron with respect to the jet axis 0.7
50 pT of the 2nd track with respect to the jet axis 0.7
51 pT of the 3rd track with respect to the jet axis 0.5
52 signed d0 significance of the 3rd track 0.4
53 pT of the 3rd track 0.3
54 d0 of the 1st track 0.2

Table 4.4: Set of discarded variables sorted by relevance. The quoted relative significances are
determined as described in section 3.1.1. These variables did not survive the cut on the significance
> 3.5σ.
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Figure 4.6(a) shows the KIT Flavor Separator output for different processes con-
taining b jets. As can be seen the output is completely independent of the origin of
a b jet. Hence, the Flavor Separator can for example also be used in a Higgs analysis
(WH → bb). The output distributions for the different background processes are il-
lustrated in figure 4.6(b). Again the output for Wcc and Wc events look very similar.
In the figures 4.9(a) - 4.9(d) the neural network output for signal and background
processes is split for pass 1 and pass 2 vertices. Because of the high b-hadron decay
multiplicity, the vertices from b-hadron decays are mostly reconstructed by the pass
1 algorithm. This quantity has been learned by the neural network and thus b jets
with reconstructed pass 2 vertices look more background-like. For the same reason
the neural network output distribution for for c-quark jets, with pass 1 vertices, looks
more signal-like.
Further studies comparing the Flavor Separator output for different numbers of pri-
mary vertices (Nzvtx) in an event, are performed. As can be seen in figure 4.7 the
outputs for b, c and light jets look similar up to the number of five primary vertices
per event. Moreover, studies show that the Flavor Separator output does not depend
on the type of the lepton in which the W boson decays (see figure 4.8).
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Figure 4.6: (a) : Flavor Separator output for different processes which contain b jets. (b): Flavor

Separator output for Wcc, Wc and W+light jets.

Just to get an idea of how well the Flavor Separator works, we apply a cut on its
output at −0.4. After this cut still 90% of the b jets remain, however the number of
c jets is reduced by a factor of 1.75 and actually only 31% of all light-quark jets pass
this cut. Cutting for example at 0.9 leads to an almost pure b-sample whereas roughly
1/4 of all b jets remain. Like for every cut, one has to compromise between the sample
purity and the number of remaining events. It turned out that in practice it is better
to use the continuous Flavor Separator output as input to further multivariate analyses
(see sections 4.3 and 5.3).
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Figure 4.7: Comparison of the Flavor Separator output for different numbers of primary vertices.

On the upper left hand side the distributions for b-jets are shown. The plot on the upper right hand

side shows the comparison for c-jets. Beneath the distributions of light-jets are illustrated.

4.2 Comparison of MC-Events and measured data

As mentioned above, the neural network is trained with simulated events. Hence,
one has to ensure that the simulation describes observed events well, i.e. avoid any
mismodelling of input variables or network outputs. For this purpose three steps are
necessary: First, one has to verify that the shapes of the input variables look the same
in observed and simulated events. In the following step the Flavor Separator output of
a b jet enhanced data sample is compared with the output of simulated events. Finally,
the same comparison is done for light-quark jets.

4.2.1 Utilized samples

In general one wants to compare the events, which were used for the network training,
with measured events. In our case this is not feasible, because the flavor content of a
jet cannot be determined easily in observed events. Thus, only data samples in which
special quark flavors are enriched can be taken. For signal-like events we use dijet-data
with an identified electron or muon. Mistag events are obtained from data collected
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Figure 4.8: Comparison of the Flavor Separator output distributions for the different types of

leptons the W boson decays into. On the upper left hand side the distributions for b-jets are shown.

The plot on the upper right hand side shows the comparison for Wc processes. On the lower left hand

side the comparison is done for jets stemming from Wcc processes. The fourth plot shows the output

of light-quark jets.

with different jet triggers, which require different minimum jet energies.

Heavy-Flavor Samples

• Inclusive 8 GeV electron data We use data collected with the inclusive elec-
tron trigger (blpc0d, blpc0h, blpc0i and blpcmi datasets), which requires a COT
track with pT > 8 GeV/c matching an energy cluster with ET > 9 GeV. The
samples have been stripped for an 8 GeV electron and two 10 GeV jets.

• Inclusive 8 GeV muon data We use data collected with the MUON CMUP8
trigger (bmcl0d, bmcl0h, bmcl0i and bmclmi datasets). The samples have been
stripped for an 8 GeV muon and two 10 GeV jets.

• Monte Carlo Pythia has been used to generate some generic 2 → 2 scattering
QCD events with a minimum outgoing transverse momentum of 20 GeV where
all flavors are generated (btopla sample). A filter requiring a 7 GeV electron or
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a 8 GeV muon in the generator parton list discards most light flavor events. In
this sample, unlike data, every event contains a lepton that was not created by
material interactions. The events are accepted or rejected according to a trigger
parameterization of the 8 GeV L2 lepton trigger, which describes the trigger’s
efficiency to identify an electron, based on its fully reconstructed ET, pT and,
in part, calorimeter isolation. The parameterization that has been chosen is the
one that corresponds to a moderate isolation cut (Isol0.4 < 4) [61], although the
shape of the function does not vary strongly with isolation.
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Figure 4.9: (a) : Flavor Separator output for different processes which contain b jets with pass

1 secondary vertices. (b): Flavor Separator output for different processes which contain b jets with

pass 2 secondary vertices. (c)Flavor Separator output for Wcc, Wc and W+light jets with pass 1

secondary vertices. (d)Flavor Separator output for Wcc, Wc and W+light jets with pass 2 secondary

vertices.
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Mistag Samples

• Jet-trigger data The dijet data used for the comparison of mistagged jets is
selected by generic jet triggers, which require a jet, reconstructed with a cone of
R = 0.7, having a transverse energy of ET > 20 GeV (gjt1XX), ET > 50 GeV
(gjt2XX), ET > 70 GeV (gjt3XX) or ET > 100 GeV respectively.

• Monte Carlo Dijet events simulated with Pythia are used to model the data.
The jets are required to have at least pT > 18 GeV/c (btopqb), pT > 40 GeV/c
(btoprb), pT > 60 GeV/c (btopsb) or pT > 90 GeV/c (btoptb) respectively.
Since the jet trigger is not simulated for these events the shapes for the corrected
Ejet

T are different in data and Monte Carlo. However, if one cuts on Ejet
T > 50

GeV (gjt2XX, btoprb), Ejet
T > 70 GeV (gjt3XX, btopsb) and Ejet

T > 100 GeV
(gjt3XX, btopsb) the shapes look more comparable. The two different scenarios
are shown in figure 4.10.
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Figure 4.10: Ejet
T distributions for the mistags data and respective Monte Carlo samples. On the

left hand side no cuts are applied. On the right hand side the cuts explained in the text are applied

which leads to more comparable shapes.

4.2.2 Comparison of input distributions

As already explained, the shapes of the input variables in data and simulation have
to be compared, because the mismodelling of an input variable could lead to corrupt
network trainings. For the comparison we use the inclusive lepton data and the corre-
sponding MC-samples introduced above. Each shape is checked twice, once for electron
and once for muon data. In the following we show the distributions for the four vari-
ables additionally included in this version of the Flavor Separator (figures 4.11 and
4.12). All other distributions are shown in [59].
Most input variable shapes show a good agreement in data and simulation. The only

significant deviations can be seen for the distribution of the transverse momentum at
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Figure 4.11: Comparison of input distributions with inclusive electron data. The four new variables,

added to the Flavor Separator training since the last version, are shown. All other distributions can

be found in [59].

the secondary vertex, for the shape of p of the track with the highest momentum in
the jet and for the ratio of pT at the secondary vertex and the ET of the jet. All these
distributions show a bump at low momenta which can’t be found in simulation. There
is evidence to suggest, that those bumps stem from the track of the high-pT lepton,
which, in data, fails more often to be a “good SecVtx” track than in simulation. In
[60] it has been demonstrated, that if one requires the trigger electron (i.e. the electron
fulfilling the cuts described in the previous section) to be in the same jet as the consid-
ered track and, in addition, that the track fulfills the appropriate requirements to be a
SecVtx track (i.e. pT > 0.5 GeV), the distributions of p of the track with the highest
momentum in the jet, fit perfectly for measured and MC events. In addition, the track
of the lepton seems to be used less often for the secondary vertex fit in data, than
in simulation. This has been proven by requiring the lepton track to be used in the
fit and compare the transverse momentum at the secondary vertex for data and MC.
With these requirements, those distributions fit quite well [60]. Hence the deviations
are specific for the used control sample and not expected in genuine b-quark jets. In
summary one can say that all input variables are modeled well and thus it is reasonable
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Figure 4.12: Comparison of input distributions with inclusive muon data. The four new variables,

added to the Flavor Separator training since the last version, are shown. All other distributions can

be found in [59].

to train the neural network with simulated events.

4.2.3 Validation of the network output for b-quark jets

For a validation of the network output for b-quark jets, first a heavy flavor enhanced
sample has to be selected. In a second step, the composition of the selected sample has
to be determined. Finally, the output distributions of observed and simulated events
are compared.

Preparation of the samples

To enhance heavy-flavor quarks within the inclusive electron sample, a method similar
to the one used in the determination of the SecVtx scale factor (see 3.3.4) is incorpo-
rated. An energetic electron, passing the same cuts as performed in [52], is required
within a jet, because it is often a signal for a heavy-flavor quark decay. Since these
quarks are dominantly produced in pairs, a further jet, opposite in φ, called the “away
jet” is also required. This additional demand increases the purity of the heavy-flavor
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sample. In contrast to the calculation of the SecVtx scale factor we focus on the away
jet for the following reason: The network is very sensitive to the presence of any lepton.
This is not only due to the use of lepton specific variables but also due to the use of
track based variables such as the momentum and the rapidity of the 1st track with
respect to the jet axis. Thus, a comparison including the electron jet would lead to a
strong bias.

Composition of the away jet sample

The contribution of different quark flavors to the heavy-flavor enhanced sample is
expected to differ for measured and simulated events. However, for a comparison it is
necessary to have roughly the same contributions. Therefore, the understanding of the
flavor composition of the away jet sample is mandatory. In simulated events the flavor
of a jet is determined by using Monte Carlo true values to look for a b or c quark with
pT > 5 GeV/c within a cone of R = 0.4 around the jet axis. If such a heavy quark
is found, the jet is assigned as a b or c jet, respectively. In the other case the jet is
labeled as light.
To estimate the heavy-flavor content in data a method, which is well established at
CDF, is used. This method takes advantage of the distribution of the invariant mass
at the secondary vertex. The flavor content can be estimated by fitting the secondary
vertex mass distributions of b jets, c jets and light jets derived from Monte Carlo events
to the distribution found in data. For this purpose two possibilities are imaginable.
On one hand side events for which only the away jet has a reconstructed secondary
vertex can be used. On the other hand side both jets can be required to have a SecVtx-
tag. Studies [59, 58] showed, that demanding a SecVtx tag for both jets leads to a
better suppression of c-quark and light-quark events and increases the comparability
of data and simulated events. In figure 4.13 the mass templates derived from Monte
Carlo events and the fit to the data distribution are illustrated. The fit results are
summarized in table 4.5. Within the uncertainties, a good agreement of the heavy-
flavor composition in data and simulation can be found.

sample b fraction c fraction light fraction
MC 94.9% 2.8% 2.3%
data 98.3% ± 2.2% 0.0% ± 3.4% 1.6 ± 1.5%

Table 4.5: Fractions of b, c and light away jets in Monte Carlo events and data: The composition in
the simulation was obtained by using Monte Carlo true values. The fractions in data are estimated by
fitting secondary vertex mass distributions derived from simulation to the data. For these numbers,
both the electron and the away jet are required to be tagged by SecVtx.

Comparison of output distributions

In figure 4.14 the Flavor Separator outputs for events with a tagged electron jet and
a tagged away jet in data and Monte Carlo events are compared. As can be seen,
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Figure 4.13: On the left hand side one can see the mass templates used for the fit. On the right

hand side, the secondary vertex mass distributions normalized to their fit values and the measured

distribution are illustrated. Both, the electron and the away jet are required to have a SecVtx tag.

no significant deviations between the two distributions can be found. In contrast
to previous Flavor Separator versions, there is no need for the determination of a
correction function this time. The differences observed in the previous version of the
Flavor Separator are most likely due to different compositions of the away jet sample.
Looking to table 4.5 and [58] one can see that the contribution of c quarks and light
quarks to the heavy-flavor content were much higher last time, which led to a more
background-like data distribution.
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Figure 4.14: Comparison of the Flavor Separator output for observed and simulated b-quark jets.
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4.2.4 Correction of the mistag output

Since the neural network is trained with jets which are already tagged by the SecVtx
algorithm, it is difficult to select light-quark jets. A model, similar to the one used
for the calculation of the mistag matrix (see subsection 3.3.4), assumes that jets with
a negative SecVtx-tag, i.e. with a negative decay length Lxy, can describe positive
mistagged jets. However, the jets used for the network training have all positive tags,
and thus per definition a positive decay length. This caveat is taken into account by
using the absolute value of Lxy when applying the network to negatively tagged jets.
The simulation of mistagged jets is complicated, because it requires a good knowledge
of the detector effects leading to a spurious reconstruction of a secondary vertex. Thus,
one has to verify that light-quark jets are simulated consistently. In figure 4.15 the
Flavor Separator output of simulated events with a negative tag is compared with the
output distributions of negative and positive tagged light-quark jets. As can be seen
the distributions look similar which leads to the conclusion that negatively tagged jets
are a suitable model for positively mistagged jets.
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Figure 4.15: The output distribution of negative tagged jets, is compared with the output distri-

butions of positive tagged light jets and negative tagged light jets.

If there is a deviation between the Flavor Separator output in measured and sim-
ulated events, one wants to determine a correction function which allows an event-
by-event correction of the differences. For the determination of a correction function,
so-called “accumulated” distributions (f acc) are used, which have the advantage of de-
creasing monotonically. These distributions are calculated by integrating the output
from the left to the right, i.e. at an output value i the value of the accumulated distri-
bution is the integral of the output distribution from i to 1 divided by the integral from
−1 to 1. If the output distributions of measured and simulated events are completely
alike, the ratio of f acc

data/f
acc
MC for each output value should be equal to one.
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The comparison of simulated and observed negatively tagged jets is shown in figure
4.16(a). One can see that the output distribution of observed events is more signal-
like than the distribution for simulated events. As already mentioned before, these
distributions are accumulated to quantify the difference in the outputs. The ratio of
the accumulated distributions of data and Monte Carlo events, f acc

data/f
acc
MC, is illustrated

in figure 4.16(b). Since the output distributions are quite different for jets with pass
1 and pass 2 vertices (figures 4.16(c) and 4.16(d)), these two jet classes are treated
separately in the following. Due to the significant deviations in the output of observed
and simulated events the calculation of a correction function is necessary.
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Figure 4.16: (a): Comparison of the output distributions of observed and simulated mistag events.

(b): Ratio of the accumulated data and Monte Carlo distribution (c): Comparison of the output

distributions of observed and simulated mistag events for jets with pass 1 vertices. (d): Comparison

of the output distributions of observed and simulated mistag events for jets with pass 2 vertices.
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Parametrization of the correction function

As described in subsection 3.3.4 the probability of a given jet to be mistagged can be
parametrized with six variables: ET of the jet, number of good tracks in the jet Ntrk,
|η| of the jet, number of z-vertices in an event, z-positon of the primary vertex zPV

and sum of the transverse energy of all taggable jets,
∑

ET. Therefore, it is reasonable
that the deviations found for the Flavor Separator output of mistagged jets between
data and simulation also rely on these variables. The dependencies are investigated
by dividing each variable into two bins (e.g. jets with ET < 60 GeV and ET ≥ 60
GeV). The variables cannot be divided in more than two bins, because the number of
simulated events is limited and thus the number of events in the different bins would
be too small to see non-statistical dependencies. For each bin the f acc

data/f
acc
MC ratio is

calculated. If the f acc
data/f

acc
MC distribution looks alike for the two bins, there is no need

to correct for this variable. If significant deviations for the two bins can be found, the
variable is taken into account for the correction function. The f acc

data/f
acc
MC distributions

of the six variables for jets with a pass 1 vertex are shown in figure 4.17. Deviations
can be seen for jets with ET < 60 GeV and ET ≥ 60 GeV, events with

∑

ET < 90
GeV and

∑

ET ≥ 90 GeV, jets with Ntrk < 8 and Ntrk ≥ 8 and jets with |η| < 0.8
and |η| ≥ 0.8. For mistagged jets with pass 2 vertices the same dependencies can be
found, as it is illustrated in figure 4.18. Furthermore the dependency of |η| is found to
mainly rely on a specific subset of events. In the case of pass 1 vertices, these events
have ET ≥ 60 GeV, Ntrk ≥ 8 and

∑

ET ≥ 90 GeV. For jets with a pass 2 vertex,
mainly events fulfilling ET ≥ 60 GeV, Ntrk < 8 and

∑

ET < 90 GeV depend on |η|.
The f acc

data/f
acc
MC distributions of these two subsets are shown in figure 4.19. f acc

data/f
acc
MC

distributions of |η| for all other possible combinations of ET, Ntrk and
∑

ET are shown
in appendix A.
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Figure 4.17: facc
data/facc

MC dependencies on the six variables mentioned in the text. Only jets with a

pass 1 vertex are taken into account.
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MC dependencies on the six variables mentioned in the text. Only jets with a
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ET < 90 is illustrated.

The functions used to correct the differences in the output of mistagged jets in data
and simulation are parameterized in the three variables ET, Ntrk and

∑

ET. For the
particular subsets of events mentioned above also |η| is taken into account. Overall
nine different correction functions have to be calculated for jets with pass 1 and pass 2
vertices respectively. For this purpose the output of each simulated jet oorig is replaced
by the output value ocorr where the accumulated data distribution has the same value

as the accumulated distribution of the simulated jets, i.e. f acc
data(ocorr)

!
= f acc

MC(oorig). In
figure 4.20 the correction functions for pass 1 and pass 2 vertices are illustrated.
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Figure 4.20: On the left hand side the functions used to correct the output of simulated jets with a

pass 1 vertex are illustrated. The correction functions for jets with pass 2 vertices are shown on the

right hand side.
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After applying the correction functions to the output of simulated events, their
Flavor Separator output matches the observed distribution very well. A comparison
between the original, the corrected and the observed outputs is shown in figure 4.21.
The difference between the original and the corrected output is used as systematic
uncertainty on the Flavor Separator output.
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Figure 4.21: On the left hand side one can see the comparison of the original, the corrected and

the observed Flavor Separator output of mistagged jets with a pass 1 vertex. The same comparison

for jets with a pass 2 vertex is shown on the right hand side.

4.3 Application in analyses

The KIT Flavor Separator was primarily developed for the search of single top-quarks.
It is integrated in all CDF single-top analyses and is very appropriate for the identifica-
tion of events containing b quarks. Its application in the different analyses is discussed
more detailed in section 5.3.
Furthermore, the continuous Flavor Separator output can be used for the estimation
of the heavy flavor content of a given data sample. Below we show how the fraction
of b and c jets can be estimated in a sideband (events with one jet) of the single-top
analyses.
Because of the already mentioned universality of the Flavor Separator output it can
be used in every analysis which has to distinguish between b and non-b events. For
example, the Flavor Separator is used in a search for Higgs bosons [62].

4.3.1 Estimation of heavy flavor contents

Since the output distributions of b jets, c jets and light jets have different shapes, the
fraction of each flavor can be estimated. Therefore one fits the output templates from
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simulated events of each flavor to the output distribution of observed events.
In the single-top analyses, the predicted heavy flavor fractions for events with two
jets are corrected with a correction factor K which is derived from a fit to the output
distributions of events with one leptonic W and one jet passing the single-top candidate
selection (see chapter 5). This factor incorporates the differences between the fitted
and the predicted heavy flavor fractions.
In the following we show the results of a fit to 2.2 fb−1 of data. In this fit, the fractions
of Wbb, Wcc+Wc and W+light processes are all allowed to float freely. In figure
4.22(a) the fitted templates and the fit result is shown. The yellow band represents
the uncertainty on the fit result. For comparison we perform also a fit to the Flavor
Separator output distribution of events with two jets whereof one jet has a SecVtx-tag.
The results of this fit is illustrated in figure 4.22(b). In table 4.6 the fit results are
compared with the predicted fractions. Within the given uncertainties the fit results are
well comparable with the predicted numbers. Nevertheless the central values for c-jets
and light-jets are somewhat different from the expected central values. The predicted
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Figure 4.22: Usage of the Flavor Separator output for the estimation of the heavy flavor content

in a given data set. In (a) a template fit to the output distribution of events with one jet is shown.

In (b) the fit is performed on the output of events with two jets. In both cases one jet has to have a

SecVtx tag.

fractions for b and c jets quoted in table 4.6 are already scaled with a correction factor
K = 1.4± 0.4. This factor has been derived from a fit to the Flavor Separator output
distribution in 1.5 fb−1 of data. In contrast to our fit, the fraction of light-quark jets
has been fixed to its prediction in this fit [63].
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W+1 jet W+2 jet
flavor fitted fraction [%] pred. fraction [%] fitted fraction [%] pred. fraction [%]

b 29.5 ± 1.8 29.0 ± 7.6 44.1 ± 2.8 45.4 ± 8.7
c 43.6 ± 4.6 37.4 ± 11.3 33.4 ± 6.2 31.3 ± 8.3

light 26.9 ± 3.8 33.6 ± 5.7 22.5 ± 4.9 23.3 ± 3.8

Table 4.6: The fitted fractions are compared with the predicted numbers. Within the given uncer-
tainties the fit results are well comparable with the predicted numbers.

4.4 A neural network to identify c-quark jets

Especially for the estimation of the heavy flavor content, a better separation of the
output for c jets and light jets would increase the sensitivity of the fit. For this purpose
we train a further neural network using the same input variables and the same Monte
Carlo samples as for the Flavor Separator training. In this training, c jets are assigned
to signal, light-jets to background. After preprocessing, the 26 variables shown in table
4.7 survive a 3σ cut on the relative significance and are therefore used for the network
training. In figure 4.23 one can see the result of the network training. A very good
separation between signal and background can be found.
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Figure 4.23: Result of the c-net training. A very good separation of c-jets and light-jets can be

found.

This, so-called c-net, together with the Flavor Separator enables to identify b jets,
c jets and light jets in a two dimensional plane. Figure 4.24 shows the distributions
of c-net output versus Flavor Separator output for the three jet flavors. As can be
seen b jets accumulate in the upper right corner whereas light jets have outputs next
to (−1,−1). Moreover c jets are spread along the upper border and have some small
contributions to the region in the lower left corner.
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Rank Variable Significance (in σ)
1 pT at secondary vertex over ET of jet 113.9
2 number of good tracks in jet 38.2
3 pseudolifetime at secondary vertex 31.0
4 significance of the 3D decay length 25.1
5 signed d0 of the 2nd track 18.4
6 χ2 per degree of freedom of SecVtx fit (pass1) 17.9
7 χ2 per degree of freedom of SecVtx fit (pass2) 16.5
8 η of the jet 15.7
9 signed d0 of the 3rd track 14.7
10 ET of the jet 13.8
11 signed d0 of the 1st track 14.3
12 charge at secondary vertex (pass2) 12.0
13 pT of the 3rd track 12.3
14 charge at secondary vertex (pass1) 10.0
15 pT of the 1st track 7.8
16 η with respect to the jet axis of the 2nd track 6.3
17 d0 of the 1st track 5.6
18 number of muons in the jet 5.5
19 number of used tracks in fit (pass1) 5.3
20 pT at secondary vertex (pass2) 3.8
21 pT at secondary vertex (pass1) 5.1
22 d0 significance of the 2nd track 2.9
23 d0 of the 2nd track 5.0
24 pT with respect to the jet axis of the 1st track 4.0
25 signed d0 significance of the 1st track 4.1
26 number of used tracks in fit (pass2) 3.2

Table 4.7: Set of discriminating variables used for the training of the c-net sorted by relevance.
The quoted relative significances are determined as described in section 3.1.1. These variables pass a
cut on the significance > 3.0σ.

The two dimensional output templates can be used for 2D fits of the heavy flavor
fractions. For this purpose we again allow the fraction of b, c and light jets to float
freely in the fit of the 2D output distribution of events with exactly one jet and,
for comparison, events with two jets. In both cases one jet has to be tagged by the
SecVtx algorithm. Figure 4.25 illustrates the fit results of the two fits, projected on
the c-net and Flavor Separator axes respectively. The yellow band again represents
the uncertainties on the fitted distributions. Table 4.8 lists the fitted and predicted
fractions. Within the given uncertainties the fit results are well comparable with the
predicted numbers. Also the fractions obtained from the Flavor Separator output fit
in the last section match quite well the numbers found in the 2D fit. The advantage
of the 2D fit is based on the uncertainties of the c jet and light jet fraction, which are
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Figure 4.24: Two dimensional output distributions of b, c, and light jets. The c-net output is

plotted on the ordinate, the Flavor Separator output on the abscissa. Red regions represent a high

point density, however blue regions represent low point densities.

roughly halved.
For the validation of the c-net output for c jets one needs a sample of observed events

which is enriched with jets originating from c-quarks. Unfortunately this is very hard
to realize and hasen’t been done so far. Therefore the c-net output cannot be validated
and hence the c-net hasen’t been used in any analyses so far. For the 2D fit explained
above the output for c jets and also for light jets is uncorrected. Nevertheless the c-net
together with the Flavor Separator offers a further probability to estimate the heavy
flavor composition of a given data set.
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Figure 4.25: The figures in the upper row show the templates and the fit result for events with

exactly one jet, projected on the Flavor Separator (left hand side) and the c-net axes (right hand

side). In the lower row the same plots are illustrated for the fit to the output distribution of events

with two jets. In both cases one jet has to have a SecVtx tag.

W+1 jet W+2 jet
flavor fitted fraction [%] pred. fraction [%] fitted fraction [%] pred. fraction [%]

b 30.1 ± 1.7 29.0 ± 7.6 46.2 ± 2.7 45.4 ± 8.7
c 44.6 ± 2.1 37.4 ± 11.3 26.2 ± 2.5 31.3 ± 8.3

light 25.4 ± 1.5 33.6 ± 5.7 27.6 ± 2.0 23.3 ± 3.8

Table 4.8: The fractions obtained from the 2D fit are compared with the predicted numbers. Within
the given uncertainties the fit results are well comparable with the predicted numbers and with the
fractions resulting from the Flavor Separator fit only.



Chapter 5

The single-top analyses

In this chapter we give a brief overview over the three CDF single-top analyses which
have been performed so far. First we report which data samples have been used and
how single-top candidates have been selected. In the second step the background
estimation for the selected candidates is explained. Finally we discuss the three mul-
tivariate analyses, namely the Likelihood Function Method (LF), the Matrix Element
Method (ME) and the Neural Network Method (NN), in more detail.

5.1 Event selection and utilized data samples

As can be seen in the figures 1.4 and 1.5 the single-top final state contains a real W
boson, one or two bottom quarks, and possibly additional light quark jets. As a result
of the event kinematics of a t-chanel single-top event, the second b quark in t-channel
events is primarily produced in forward direction. Thus, in most events only two jets,
the b and the light quark jet or the b and the second b jet in single-top s-channel
events respectively, can be observed. The acceptance of the candidate selection can
be increased by also including events with three jets where at least one jet is tagged
by SecVtx. To reduce multijet backgrounds, the W boson stemming from the top
quark decay is required to decay leptonically into electrons or muons. Leptonic W -
boson decays in τντ are not included because of CDF’s low τ identification efficiency.
However, W boson which decay into τντ where the τ decays further into e/µ νe/µ enter
the event selection with a small fraction. Summarised, selected events are required to
have:

• two or three jets, whereas at least one jet is identified as a b-jet with a displaced
secondary vertex

• exactly one isolated lepton (see lepton identification in subsection 5.1.2)

• large missing transverse energy from the non-detectable neutrino.

64
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5.1.1 Data samples

Since the W boson is required to decay leptonically, the analyses described below use
data which passes the high-pT lepton trigger. Central electrons have to pass the
Level-3 ELECTRON CENTRAL 18 trigger that requires a COT track with pT > 9
GeV/c matching an energy deposition ET > 18 GeV in the CEM. The MET PEM trig-
ger, which forward electrons have to pass, demands an energy deposition of 20 GeV
in the PEM. Muons have to satisfy the requirements of the L3 MUON CMUP 18 or
MUON CMX 18 trigger (COT track with pT > 18 GeV/c matched to a track segment
in the corresponding muon chamber).
The data samples get their names from the trigger they have passed, i.e. bhel data are
events fulfilling the central electron trigger, bpel data samples contain forward electrons
and muon data is integrated in bhmu samples. Furthermore the data is reprocessed
offline before being used in any physics analyses. During the processing with CDF-
SOFT2 version 5.3.3 (0d samples) or CDFSOFT2 version 6.1.2 (0h, 0i and 0j data
sets) the online calibrations are checked and improved, the misalignment of the sili-
con detector is corrected, tracks are refitted, energy clusters are checked, leptons are
identified and jet clustering as well as secondary vertex algorithms are performed. Be-
cause of hardware or software problems, some detector components may be inoperative
during accelerator stores. The runs, where all the detector elements necessary for the
single-top analyses were operating, are listed in the so-called “goodrun” list [64]. The
mentioned analyses have used the single-top goodrun list version 19 and data which
have been taken from February 2002 till August 2007. The largest data samples (CEM
and CMUP) correspond to an integrated luminosity of 2.2 fb−1.

5.1.2 Requests for single-top candidates

Lepton identification

Leptons are divided in two groups: isolated and non-isolated leptons. A lepton is
called isolated, if the energy in a cone with R = 0.4 around the reconstructed lepton,
excluding the lepton itself, is smaller than ten percent of the lepton energy.
Depending on the subdetector in which a lepton is detected, four lepton-types, namely
CEM, PHX, CMUP, CMX, are defined. Central electrons are detected in the CEM
and their pseudorapidity range is therefore |η| ≤ 1.1. The energy deposition in the
calorimeter tower has to be larger than 20 GeV and the reconstructed track pT ≥ 10
GeV/c. In addition, the ratio of the energy in the hadronic calorimeter and the energy
in the electromagnetic calorimeter (EHAD/EEM) for the cluster matching the electron
candidate, has to be smaller than (0.055+(0.00045×E)). The PEM calorimeter detects
electrons in the forward-backward region whereas only electrons with 1.1 ≤ |η| ≤ 1.6
are taken into account. Furthermore, ET ≥ 20 GeV, EHAD/EEM ≤ 0.05 and a track
with at least three r − φ hits in the silicon which points from the calorimeter cluster
to the primary vertex (Phoenix track), are required for forward electrons.
Events, containing an electron track and a further track which possesses positron char-
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acteristics, are rejected if the two tracks form a common vertex, because these elcetrons
are likely to originate from photon conversion processes. More details about the elec-
tron selection can be found in reference [65].
Muons have to have a COT track with pT > 20 GeV/c which can be extrapolated to
a muon chamber segment and a pseudorapidity |η| < 1.0. Again, further requirements
can be found in [66]. When identifying muons additionlly a further problem has to
be solved. Cosmic muons or muons coming from decays of long lived particles have
to be rejected. One possibility for this is to ask for impact parameters d0 ≤ 0.2 cm
[66]. Additionally the “unwanted” muons can be identified through their characteristic
track topology.
Furthermore, one has to differentiate between tight leptons, which are isolated and
fulfill all the requirements mentioned above, and loose leptons, which are non-isolated
and fulfill less quality requirements. An event is identified as a single-top candidate if
exactly one tight lepton is found, i.e. there is neither another tight lepton nor a further
loose lepton allowed (dilepton-veto).

Jet selection

Hadronic jets are reconstructed as explained in section 3.3. For this analysis the jet
energy is corrected up to hadron level. A jet candidate is required to have |ηdet| < 2.8,
where ηdet is defined as the pseudorapidity of the jet, calculated with respect to the
origin of the coordinate system which is located in the center of the detector. Jets are
called “tight”, if they fulfill ET > 20 GeV, however “loose” jets have an ET between
12 GeV and 20 GeV. Two or three tight jets are required to be present in a single-
top candidate event. A large fraction of the backgrounds is removed by demanding
at least one of these jets to be tagged as a b-quark jet by using displaced secondary
vertex information.

Missing transverse energy

Since the neutrino, originating from the W -boson decay, cannot be detected with
any part of the CDFII detector, there has to appear a lot of missing transverse energy

(E/T). The E/T is defined as the magnitude of ~E/T = −∑

iEin̂i, where n̂i is a unit vector
parallel to the transverse component of the vector pointing at the ith calorimeter tower,
and Ei is the energy therein. Missing transverse energy determined this way has to be
corrected because of two reasons: On one hand the jet energies are corrected for the
energy scale, thus this corrections have to be taken into account also for E/T. On the
other hand, muons pass the calorimeters without showering. Therefore the transverse
energy of the muons has to be added to the sum above and the small average muon
ionization energy has to be removed. The corrected E/T is required to be greater than
25 GeV for single-top candidate events.
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Z-boson veto

The Z-boson veto is used to reduce the background due to Z+jets production. If the
tight lepton together with another jet or lepton can be formed to an object with the
invariant mass of the Z boson, the event is rejected. For this purpose the Z-boson
mass is assumed to lie between 76 GeV/c2 and 106 GeV/c2.

QCD veto

Events in which no real W boson appears (often called QCD-multijet events), have
to be further suppressed by additional cuts. These events can pass the requirements
explained above, because of jets which are misidentified as leptons or because of leptons
originating from semileptonic heavy quark decays. Two data based samples are used
to model QCD-multijet events: The jet-electron and the anti-electron sample [62].
Monte Carlo samples of all expected backgrounds except for the QCD-multijet model
are fitted to W+jets data, on which no secondary vertex algortihm is applied (pretag
sample). By looking at different kinematic variables, the differences between measured
and predicted distributions, for the four lepton types (CEM, PHX, CMUP and CMX)
separately, are identified as QCD-multijet background. The variables, showing the
largest discrepancies, are the missing transverse energy E/T, the E/T-significance E/T,sig,
the transverse mass of the reconstructed W boson MT,W and, depending on the lepton

type, the azimuthal angle between ~E/T and one jet. E/T,sig is defined as

E/T,sig ≡
E/T

√

∑

jets C
2
JES · cos2(∆φjet, E/T) + cos2(∆φraw,corr)

, (5.1)

where CJES is the jet energy correction factor and ∆φraw,corr is the azimuthal angle
between corrected and uncorrected missing transverse energy. The transverse mass of
the W boson is given by

MT,W =

√

2pT,lepE/T − ~pT,lep
~E/T , (5.2)

where pT,lep is the transverse momentum of the charged lepton. Exemplarily, figure 5.1
shows the two dimensional distribution of E/T,sig and MT,W for events with a central
electron and two jets. The black line in the bottom left corner illustrates the applied
“triangle” cut. A more detailed description of the QCD veto can be found in [62].
The following requirements are applied to single-top event candidates:

• Events passing the electron triggers must have MT,W > 20 GeV/c2

• Central electrons are required to have E/T,sig > −0.05 c2/GeV·MT,W + 3.5 and
events with two or three jets have to fulfill E/T,sig > 2.5−2.5·|∆φ|/0.8 where ∆φ is

the azimuthal angle between ~E/T and the jet with the second largest uncorrected
ET (second leading jet).
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• Forward electrons must have E/T,sig > 2.0 and, for the first two leading jets,

E/T > 45 GeV−30 GeV·|∆φ|, where ∆φ is the azimuthal angle between ~E/T and
the corresponding jet, has to be fulfilled.

• The transverse W -boson mass of central muon events has to exceed 10 GeV.
Furthermore events with a CMUP muon and one jet are rejected, if
E/T < 60 GeV·|∆φ| − 145 GeV. Here, ∆φ is the angle between the tight lepton
and the jet in the x-y−plane.
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Figure 5.1: Illustration of the QCD veto in the central electron sample with 2 jets. The distribution
of E/T,sig versus MT,W is shown. On the left hand side, the predicted distribution of the W+jets
sample is shown. The plot in the middle shows the distribution for events without applying a SecVtx-
tag. On the right hand side, the difference between prediction and observation is shown. The line
represents the cut E/T,sig > −0.05 GeV−1 · MT,W + 3.5.

5.1.3 Backgrounds to single-top production

After the above mentioned event selection cuts, the ratio between single-top and back-
ground events is still less than S/B ≈ 1/15. The background is dominated by W -boson
production in association with heavy-flavor quarks. Figures 5.2(a) and 5.2(b) show ex-
amplary Feynman diagrams for Wbb, Wcc and Wc production. Further backgrounds
are events from top-pair production (see 1.2.1) and the diboson processes WW, WZ
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and ZZ. An example for diboson production is illustrated in figure 5.3(a). The pro-
duction of a Z boson in addition with jets, in the following called Z+jets, is shown
in figure 5.3(b). For the decay of the Z boson only leptonic processes are considered.
Each event with a W or Z boson and a light quark jet, which is falsely identified as
a b-jet, contributes to the background called mistags. Furthermore the QCD-multijet
processes, discussed for the QCD veto, have still a substantial contribution to the
background. A QCD process in which a jet can be misidentified as an isolated lepton
is illustrated in figure 5.3(c). Events like the one shown in figure 5.3(d) fake a single-
top event structure due to semi-leptonic bottom quark decays. We won’t discuss the
Monte Carlo samples used to model the different backgrounds in this thesis. A detailed
description of these can be found in [73, 74].
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Figure 5.2: Exemplary Feynman diagrams of background processes to single top-quark production:

(a) Wbb, Wcc, (b) Wc,

5.2 Signal and background estimate

The expected number of events for the different signal and background processes are
derived from the so-called Method II, which is a procedure to calculate the normaliza-
tion of processes in the SecVtx tagged lepton plus jets data set. Method II assumes
that all processes, contributing to the lepton plus jets sample, are known. In case of the
single-top analyses these are, tt, single-top, electroweak, QCD and W+jets processes.
Below, we give a short description of the Method II procedure. Details can be found
in [67].
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Figure 5.3: Exemplary feynman diagrams of background processes to single top-quark production:

(a) WW , as an example for the diboson background (b) Z+jets, (c) QCD-multijet background, where

a gluon jet can be misidentified as an isolated lepton, (d) QCD-multijet background from semileptonic

heavy quark decays.
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5.2.1 Expected single top-quark events

In general the number of expected signal events is calculated by

Nsignal = σ · ǫevt ·
∫

L dt , (5.3)

where σ is the single-top production cross section given in section 1.2.2, ǫevt is the
event detection efficiency and

∫

L dt the integrated luminosity. The event detection
efficiency cannot simply be calculated by the ratio of the number of selected events and
the number of generated events from Monte Carlo samples, because trigger, b-tagging
and lepton identification efficiencies are different for meaured and simulated samples.
Hence, ǫevt has to be calculated via

ǫevt = ǫMC
evt · ǫBR · ǫ

data
z0

ǫMC
z0

·
ǫdata
leptonidreco

ǫMC
leptonidreco

·
ǫdata
tag

ǫMC
tag

· ǫtrigger . (5.4)

Here ǫMC
evt is the event detection efficiency derived from Monte Carlo. The branching

ratio for the leptonic decay of the W bosons is taken into account by ǫBR = 0.3257 ±
0.0028 [2].

ǫdata
z0

ǫMC
z0

incorporates the z-vertex cut efficiency, for data ǫdata
z0 = 0.958 ± 0.002

as given in [68], for Monte Carlo ǫMC
z0 is taken from simulated events. The differences

in the identification and reconstruction of leptons for each trigger are included by the
ǫdata
leptonidreco

ǫMC
leptonidreco

factor. These factors are determined by averaging over the numbers for the

different run ranges shown in [66, 69]. Different b-tagging efficiencies are introduced

via SFtag =
ǫdata
tag

ǫMC
tag

which is different for events with one tag, two tags and three tags

respectively. The value for single tag events is given in subsection 3.3.4 and a method
for calculating numbers of double and tripple tag events is explained in [65]. Finally
the last factor in eq. 5.4 incorporates the trigger efficiencies which are different for
each trigger [70, 71, 72, 66]. Again a value averaged over different run ranges is used.
The estimated number of single-top events in 2.2 fb−1 is listed in table 5.1.

5.2.2 Estimation of expected background events

The estimation of expected background events is done in three steps. First the number
of electroweak (WW, WZ, ZZ, Z + jets) and tt events is calculated in the same way
as the number of signal events in the previous subsection, since their cross section
can be calculated theoretically. Furthermore, the contribution of the QCD-multijet
background to the sample of events, to which no secondary vertex algorithm has been
applied, is determined by fitting the E/T distibution of a QCD-multijet template and
a W+jets Monte Carlo sample to data. In the tagged sample the whole expected
background (excluding QCD-multijets) and the QCD-multijet model are fitted to the
E/T distribution, to evaluate the QCD-multijet background fraction. In both scenarios
the number of QCD-multijet events is simply calculated by

NQCD = FQCD ·Nevt . (5.5)
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The number of expected W+jets events in the pretag sample, Npre
W+jets, can be cal-

culated by substracting the number of QCD-multijet (Npre · (1 − F pre
QCD)), electroweak

(Npre
ewk) and top quark (Npre

top) events in the pretag sample from the number of pretag
events:

Npre
W+jets = Npre · (1 − F pre

QCD) −Npre
ewk −Npre

top . (5.6)

To obtain the number of expected W+jets events in the tagged sample one has to
differentiate between W+heavy flavor (W+hf) and W+light (W+lf) flavor processes.
The contribution of W+hf events is calculated via

N tag
W+hf = (Npre(1 − FQCD) −Newk −Nsingletop −Ntt) · fHF ·K · ǫtag , (5.7)

where K is the scale factor mentioned in section 4.3 and fHF is the fraction of W+hf
events in the pretagged sample which is derived from Monte Carlo simulations. The
tagging efficiency ǫtag is different for Wbb, Wcc and Wc processes leading to a different
amount of events for these three backgrounds. Using again the model for light quark
jets explained in subsection 3.3.4, the number of W + lf events can be calculated by

N tag
W+lf =

N+
light

Npre

· (Npre −Npre

tt
−Npre

QCD −Npre
W+hf −Npre

ewk −Npre
singletop) , (5.8)

where N+
light is the number of light jets with a positive tag. The results of the back-

ground estimate for 2.2 fb−1 are shown in table 5.1.

5.3 Multivariate analyses for the single-top search

In this section we give a short introduction to the different single-top analyses. The
main ideas of the analyses technique are explained and the discriminants which are
finally used to separate single top-quarks from the background are shown. In a first step
all analyses measure the combined single top-quark production cross section, i.e. the
cross section of s-channel and t-channel together. Nevertheless also the cross sections
of the different channels can be measured separately. The treatment of systematic
uncertainties and the statistic interpretation are the same for all analyses. Since they
are also the same in our combination method, they are discussed in chapter 6. The
results of the different analyses are also given in chapter 6 together with the results of
the combination.

5.3.1 The Likelihood Function method

This analysis combines different variables with a likelihood function in order to build
a discriminant which can be used to discover a single top-quark signal. Two different
likelihood function discriminants have been developed, one for events with two jets as
well as one for events with three jets. In both cases the discriminant is optimized for
finding single-top t-channel events [73]. As input to the discriminants basic quantities,
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Process Number of Events
2–jet–bin 3–jet–bin

1–tag–bin 2–tag–bin 1–tag–bin 2–tag–bin
tt̄ dilepton 30.6 ± 4.3 8.4 ± 1.4 24.1 ± 3.4 8.1 ± 1.3
tt̄ non–dilepton 64.2 ± 9.0 12.7 ± 2.1 180.0 ± 25.1 52.2 ± 8.6
total tt̄ 94.8 ± 13.3 21.1 ± 3.5 204.1 ± 28.5 60.3 ± 9.9
Wbb̄ 376.2 ± 113.4 49.7 ± 15.5 106.7 ± 32.2 17.6 ± 5.5
Wcc̄/Wc 361.4 ± 111.4 4.8 ± 1.6 92.7 ± 28.5 2.4 ± 0.8
total W+heavy flavor 737.6 ± 224.8 54.5 ± 17.1 199.4 ± 60.7 20.0 ± 6.3
Mistags 308.3 ± 51.1 1.2 ± 0.4 88.6 ± 14.8 0.9 ± 0.3
Non–W 55.8 ± 22.3 1.5 ± 0.6 21.3 ± 8.5 0.2 ± 0.1
Diboson 52.4 ± 5.2 3.2 ± 0.3 16.7 ± 1.7 1.1 ± 0.1
Z+jets 19.1 ± 2.8 0.9 ± 0.1 7.1 ± 1.0 0.5 ± 0.1
total background 1268.0 ± 319.5 82.4 ± 22.0 537.2 ± 115.2 83.0 ± 16.8
t–channel 50.6 ± 7.4 1.4 ± 0.2 13.1 ± 1.9 2.1 ± 0.3
s–channel 26.3 ± 3.7 7.6 ± 1.2 8.2 ± 1.2 2.7 ± 0.4
total single–top 76.9 ± 11.1 9.0 ± 1.4 21.3 ± 3.1 4.8 ± 0.7
total prediction 1345.0 ± 231.9 91.3 ± 17.6 558.7 ± 68.8 87.8 ± 11.6

Table 5.1: Summary of predicted numbers of signal and background events in the selected data
sample (2.2 fb−1).

like the ET of a jet, as well as quantities of reconstructed objects, like the top quark
mass, are used. Therefore a method that resolves reconstruction ambiguities has been
developed, the so-called kinematic solver.

The Kinematic Solver

The χ2, resulting from a reconstruction method called the kinematic solver, is one of
the input variables to the likelihood function. Here, the masses of the reconstructed
W boson from the top quark decay (Mlν) and the mass of the top quark (Mlνb) are
constrained to 80.4 GeV and 175 GeV respectively. Additionally the lepton momentum
vector, the pT of the top quark and the direction and invariant mass of the b-jet, coming
from the top quark decay, are constrained to their measured values. The output from
the kinematic solver is a set of neutrino and b-jet four-vector solutions, which are used
to reconstruct kinematic variables. Also provided is the χ2 output mentioned above,
which indicates how far from the measured values of the b-jet energy and the E/T the
solver found its solutions.

Likelihood function technique

In a first step each variable i is filled in a histogram with ni bins. The number of entries
in each bins is denoted by fijk whereas j is the bin number and k is the event class.
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There are five possible event classes: The signal has k = 1 and the backgrounds Wbb,
tt, Wcc/c and mistags have event classes of k=2,3,4 and 5. Furthermore the histograms
are normalized, i.e.

∑ni

j=1 fijk = 1 for all i and all k. The likelihood function for an
event is computed by evaluating in which bin ji the event falls in the distribution of
variable i, and computing

pik =
fijik

∑5
m=1 fijik

, (5.9)

which is used to calculate the likelihood function

Lk({xi}) =

∏nvar

i=1 pik
∑5

m=1

∏nvar

i=1 pik

. (5.10)

t-channel likelihood function, 2 and 3 jet bin

The likelihood function (Ltchan2jet) for events with two jets uses the single-top t-channel
process as signal. The outcome of Ltchan2jet for events with two tagged jets is set to
zero because only 1% of the t-channel events are expected to have two tags. In the
following the seven input variables used for the likelihood are listed:

• HT: the scalar sum of the transverse energies of the two jets, the lepton, and the
missing transverse energy, HT =

∑

jetsET + pl
T +E/T, where

∑

jetsET is the sum
of the transverse energies of the jets.

• Ql · ηlj : lepton charge times pseudorapidity of the untagged jet

• χ2
t : the χ2 value of the kinematic solver

• cos Θ(l, lj): cosine of the angle between the lepton and the untagged jet in the
top quark rest-frame

• Mj1j2: the invariant mass of the two jets.

• log(MEt−chan): the logarithm of the MADGRAPH matrix element computed us-
ing the constrained four-vectors of the bottom quark, the lepton and the neutrino.
This matrix element is a weighted average of ub → dt matrix element (weight
2/3) and the same matrix element with reversed lepton sign (weight 1/3), in
order to simulate the db→ ut.

• the KIT Flavor Separator output

Ltchan3jet, the likelihood function for events with three jets, is computed with ten dif-
ferent input variables:

• Mlνb: the reconstructed top quark mass

• the KIT Flavor Separator output

• the number of jets with a SecVtx tag
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• Ql · ηlj

• the smallest ∆R of any two jets

• Mjj of the two jets which are assigned not to stem from the top quark decay

• cos Θ(l, lj)

• ET of the jet with the lowest ET

• η of the reconstructed W boson

• ET of the jet which has been chosen to be the b-quark jet from the top quark
decay

Figure 5.4 shows the output distributions for the two likelihood functions on a loga-
rithmic scale.
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Figure 5.4: Output of the two likelihood discriminants, on the left hand side the one for events with
two jets, on the right hand side the one for events with three jets. The number of events is shown on
a logarithmic scale and the different processes are normalized to the standard model prediction.

5.3.2 The Matrix Element method

The main idea of this analysis is to calculate from a given set of variables (the 4-vectors
of the lepton and the jets) the event probability densities that these variables results
from a given underlying physical process (signal or background). Therefore the fully
differential cross section of all kinematic variables has to be calculated on an event-by-
event basis for the signal and the background hypothesis [75]. In general a differential
cross section is given by

dσ =
(2π)4|M |2

4
√

(q1 · q2)2 −m2
q1 ·m2

q2

dΦn(q1 + q2; p1, ..., pn) , (5.11)
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where |M | is the matrix element, mq1(2) the masses and q1(2) the momenta of the
incident particles. The n-body phase space is represented by

dΦn(q1 + q2; p1, ..., pn) = δ4(q1 + q2 −
n

∑

i=1

pi)

n
∏

i=1

d3pi

(2π)32Ei
. (5.12)

Since not all momenta of the inital and final states can be measured, e.g. pz of the
neutrino, the event probability is not simply Pevt ∼ dσ

σ
(σ is the total cross section).

Rather the differential cross section has to be folded with the parton distribution
functions f(x1(2)) and integrated over all particle momenta which can’t be measured.
The mapping between the particle variables (y) and the measured variables (x) is
established with the transfer function, W (y, x). All this leads to the following equation
for the event probability density:

P (x) =
1

σ

∫

2π4|M |2 f(x1)

|Eq1|
f(x2)

|Eq2|
W (y, x)dΦndEq1dEq2 (5.13)

Event probabilities are calculated for single-top s- and t-channel processes as well as
for Wbb, Wcc, Wc+jets, W + gg and tt backgrounds. The probability densities for the
two single-top processes are added to form a single probability density. These event
probabilities and the output of the KIT Flavor Separator (b), scaled to 0 ≤ b ≤ 1 are
used to construct a discriminant variable for each event:

EPD =
b · Psingle−top

b · Psingle−top + b · (PWbb + Ptt) + (1 − b) · (PWcc + PWcj + PWgg)
(5.14)

Figure 5.5 shows the EPD distribution for events with two and three jets together.

Matrix elements and transfer functions

The matrix elements, |M |2 are calculated at leading order perturbation theory with the
HELAS (HELicity Amplitude Subroutines for Feynman Diagram Evaluations) package
[76]. Subroutines for the different processes are derived from MadGraph.
The transfer function, W (y, x), represents the probability of measuring the set of ob-
servable variables (x) corresponding to the set of produced variables (y). Hence, the set
(y) incorporates all final state particle momenta at the particle level, whereas the set
(x) incorporates the measured momenta (of the corresponding objects) with the CDF
detector. For well measured momenta, like the one of the lepton, the transfer function
is taken as a δ-function, i.e. the measured momenta are used in the calculation of the
differential cross section. If the detector resolution is not good enough, W (y, x) is a
Gaussian function. For particle momenta that cannot be measured at all, the transfer
function is unity. A detailed description of the calculation of transfer functions is given
in [75].
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Figure 5.5: EPD output distributions for signal and background events, normalized to the predicted

number of events for 2.2 fb−1

Non triggered muons

The Matrix Element method is currently the only single-top analysis that includes
events with leptons of a further lepton type, called loose muons. All analyses relying
on the identification of muons in the final state are limited by the acceptance of the
two high-pT muon triggers. Also using muons of the well defined loose muon categories
would increase the sensitivities of those analyses, but unfortunately there are no high
efficiency triggers for the selection of this events. The loose muon events used in this
analysis are selected with the missing transverse energy trigger by requiring addition-
ally two jets with ET > 25 GeV. One of these jets has to be a central jet, i.e |η| < 0.9
[77]. These trigger requirements are reasonable, because the E/T at trigger-level is un-
corrected. Therefore the minimum ionizing muons can enhance the E/T of an event
over the true E/T due to the neutrino escaping the detection.

5.3.3 The Neural Network method

The neural network analysis uses the Neurobayes R© package, introduced in section 3.1.1,
to combine the information of many kinematic or event shape variables to a powerful
discriminant. Overall four different networks have been trained, one for events with
two or three jets and one or two tags, respectively [74]. All networks have been trained
with 50% background and 50% signal events whereas the background is composed like
it is predicted. The signal samples have been built only of t-channel events except
of the neural network for two jets and two tags, which is trained only with s-channel
events.
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For all neural network trainings mentioned above, three categories of input variables
are used: some are directly measured in the detector, others are reconstructed out of
measured properties, and a few are calculated by advanced algorithms like the KIT
Flavor Separator. For this purpose the top quark four-momentum is built out of the
reconstructed W boson and a jet defined as b-jet. For the networks trained with t-
channel events the tagged jet is used as the b-jet from the top quark decay. For the
network trained with s-channel events, the jet with the largest product of the charge
of the lepton and the jet pseudorapidity, Q · η, is assigned as the b-jet from the top
quark decay.

Table 5.2 lists the five most significant input variables of the individual networks.
In the following a more detailed describtion of these variables is given:

rank 2jets-1tag 2jets-2tags 3jets-1tag 3jets-2tags

1 Mlνb Mlνj1j2 Ql · ηlj Ql · ηlj

2 KIT Flav. Sep. MT,W KIT Flav. sep. Mlνbb

3 Mj1j2 MT,lνb HT pT,lνbjj

4 Ql · ηlj cos Θ(j, j) Mj1j3 Mj1j2

5 MT,lνb Mlνb Mlνb cos Θ(l, lj)

Table 5.2: The five most significant input variables of the four different neural networks. The
abbreviations are explained in the text.

• Mlνb: mass of the reconstructed top quark

• KIT Flav. Sep.: output of the KIT Flavor Separator for the b-quark jet from
the top quark decay

• Mj1j2: invariant mass of the two most energetic jets

• Ql · ηlj : lepton charge times pseudorapidity of the untagged jet

• MT,lνb: transverse mass of the reconstructed top quark

• Mlνj1j2: invariant mass of the lepton-neutrino-jet-jet system

• MT,W : transverse mass of the reconstructed W boson

• cos Θ(j, j): cosine of the angle between the two jets in the top rest-frame

• HT : the scalar sum of the transverse energies of the two jets, the lepton, and the
missing transverse energy, HT =

∑

jetsET + pl
T +E/T, where

∑

jetsET is the sum
of the transverse energies of the jets.

• Mj1j3: invariant mass of the system first and third leading jet
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• Mlνbb: invariant mass of the reconstructed top quark and second bottom quark,
which corresponds to

√
ŝ of s-channel single top-quark events.

• pT,lνbjj: the transverse momentum of the combination of the reconstructed top
quark and all additional jets

• cos Θ(l, lj): cosine of the angle between the lepton and the untagged jet in the
top quark rest-frame

The output distributions of the four different networks are illustrated in figure 5.6.
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Figure 5.6: Output distributions of the four different networks: (a) 2jets-1tag network, (b) 2jets-

2tags network, (c) 3jets-1tag network, (d) 3jets-2tags network. The different processes are all normal-

ized to the standard model predictions.



Chapter 6

Combination of single-top analyses

In this chapter we report our studies concerning the combination of the three indi-
vidual single-top analyses, explained at the end of the previous chapter, using the
NeuroBayes R© package. Since the three analyses are not 100% correlated, i.e. the
analyses use different information for the identification of the single top-quark signal,
a combination of the individual discriminants can improve the separation of signal and
background processes.
In the following we first explain the statistic interpretation, since we optimize training
parameters of the neural network training based on the sensitivity. We then explain
how the neural networks used for the combination are trained.
Finally, we give an overview over the systematic uncertainties, the results of the indi-
vidual analyses and the results of our combination.

6.1 Statistical interpretation

The statistical interpretation explained in the following is the same for all individual
analyses and for our combination method. Two different methods are used for the
measurement of the single top-quark production cross section and the determination
of the sensitivity and observed significance of the analysis, respectively.

6.1.1 Measurement of the single-top production cross section

For the template fit of the discriminant output distributions to the observed distribu-
tion a likelihood function is applied. It is built up of different terms which we explain
step by step below.
The first term is a Poisson distribution for the content of each bin in a fitted histogram,
yielding to

L =

B
∏

k=1

e−µk · (µk)
nk

nk!
, (6.1)

80
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where B is the number of bins, k is the bin index, µk is the mean value of the predicted
number of events in bin k and nk is the number of observed events in bin k. Furthermore
the mean value µk depends on the predicted number of events of each individual physics
process,

µk =
A

∑

j=1

µjk =
A

∑

j=1

βj · ν̂j · αjk , (6.2)

where j is the index of a physical process, A the number of physical processes and
µjk is the expectation value of the physical process j in the bin k. µjk itself depends
on βj which represents the ratio of the measured number of events and the predicted
number of events for process j. βj can also be interpreted as the ratio of the measured
and the predicted cross section for process j and is one of the parameters we fit for.
Moreover ν̂j is the number of expected events for process j in the given data set and
αjk is the relative fraction of events of process j in the bin k. Hence the αjk fulfill the

normalization condition
∑B

k=1 αjk = 1.
The second term in our likelihood function implements Gaussian constraints to the
background rates. This is reasonable, because the knowledge about the background
fractions from the background estimate is thus included. Also it is not practicable to
perform a free fit of all background parameters, because there is not enough discrimi-
nation power among the various background processes. Hence the likelihood function
with the Gaussian constraints is given by

L =
B

∏

k=1

e−µk · (µk)
nk

nk!
·

A
∏

j=2

G(βj,∆j) =
B

∏

k=1

e−µk · (µk)
nk

nk!
·

A
∏

j=2

1
√

2π∆2
j

e
−

(βj−1)2

2∆2
j , (6.3)

where the ∆j are the relative uncertainties on the predicted number of background
events of the processes j. The values of the ∆j used in the single-top analysis are
listed in table 6.1. The product in the second term starts at j = 2, because the signal
is per definition labeled with j = 1.

process ∆

tt̄ 12.4 %
Wbb̄ 30.0 %
W charm 30.0 %
mistags 16.6 %
Z+jets 10.8 %
diboson 1.9 %
QCD 40.0 %

Table 6.1: Relative standard deviations used for the gaussian constraints of the background rates

The last term in our likelihood function incorporates the influence of systematic



82 CHAPTER 6. COMBINATION OF SINGLE-TOP ANALYSES

uncertainties. Three different types of systematic uncertainties are included: Un-
certainties which affect the rates of a particular signal or background process (rate
uncertainty), uncertainties which influence the shape of the templates used for the fit
(shape uncertainty) and bin by bin uncertainties which are due to the limited number
of simulated events and which are only included for the calculation of the sensitivity
(see the following subsection). The systematic effects, which we account for in the
single-top analyses, are discussed in detail in section 6.3. These uncertainties enter the
likelihood function by shifting the expected mean of every process j in every bin k.
Therefore the formula for the mean values µjk changes to

µjk = βj · ν̂j ·
{

S
∏

i=1

(1 + |δi| · (ǫji+H(δi) + ǫji−H(−δi)))
}

·αjk ·
{

S′

∑

l=1

(1 + |δl| · (κ+
jlkH(δl) + κ−jlkH(−δl)))

}

, (6.4)

where the δi,l represent the strength of an uncertainty i, the ǫij are the relative rate
uncertainties, the κ±jlk are the relative shape uncertainties, S is the number of system-
atic rate uncertainties and S ′ is the number of systematic shape uncertainties. If a
systematic effect causes both, rate and shape uncertainties, δi and δl have the same
value. H(x) denotes the Heavyside step function. The κ±jlk are derived from normal-

ized, systematic shifted histograms (α+
jlk and α−

jlk) which take different scenarios of a
systematic uncertainty into account, e.g. the changes of the discriminant shape if one
assumes more or less of a systematic effect. They are calculated via

κ±jlk =
α±

jlk − αjk

αjk
, (6.5)

and fulfill
∑B

k=1 αjk · κ±jlk = 0. Some uncertainties cause only one systematic shifted

histogram, e.g. if there is only one alternative model. For these uncertainties only κ+
jlk

or κ−jlk is incorporated.
The strength of a systematic uncertainty δi,l is again constraint with a Gaussian dis-
tribution, centered at zero with a standard deviation of one. Hence the final likelihood
function is given through

L =
B

∏

k=1

e−µk · (µk)
nk

nk!
·

A
∏

j=2

G(βj,∆j) ·
S

∏

i=0

G(δi,l; 0, 1)

=

B
∏

k=1

e−µk · (µk)
nk

nk!
·

A
∏

j=2

G(βj,∆j) ·
S

∏

i=0

1√
2π
e−

(δi,l)
2

2 . (6.6)

The measurement of the single-top cross section is done by calculating the maximum
of reduced likelihood function Lred(β1) which only depends on β1. There are two main
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possibilities for obtaining the reduced likelihood function. The method of “marginal-
ization” is used for the measurement of β1 in observed events. Here, the original
likelihood function is integrated over all “unwanted” parameters (also called nuisance
parameters), i.e. β2-βA and δ1-δS. After that, a scan over β1 is performed to determine
the maximum of Lred(β1).
A second method, called “profiling of the likelihood”, calculates the minimum of the
negative log-likelihood function, with respect to all nuisance parameters, for a fixed β1

value, using the MINUIT [78] package, which results in a one dimensional distribution
Lred(β1). Profiling is used for the determination of the sensitivity and the observed
significance which is explained in the next subsection.

6.1.2 Ensemble tests and sensitivities

For the calculation of the sensitivity and the observed significance a likelihood func-
tion, slightly different from the one explained above, is used. Here, the systematic
uncertainties are not included directly in the likelihood function but taken into ac-
count in another way which we explain below. Thus the likelihood function is given
by the equations 6.2 and 6.3.
In order to compute the sensitivity and the observed significance of an analysis en-
semble test are performed. An ensemble test consists of a set of simulated, so-called
pseudo experiments. For each of these pseudo experiments first the number of events
of a particular process Nj is drawn from a Poisson distribution of mean ν̂ ′j . Systematic
rate uncertainties are incorporated via

ν̂ ′j = ν̂j ·
{

S
∏

i=1

(1 + |δi| · (ǫji+H(δi) + ǫji−H(−δi)))
}

, (6.7)

where the strength of the systematic uncertainties, δi, are drawn from gaussian dis-
tributions which are centered at zero with standard deviation one. After that, Nj

random numbers are drawn from the template distributions α′

jk of the j physical pro-
cesses. Here, the systematic shape uncertainties are included by

α′

jk = αjk ·
{

S′

∑

l=1

(1 + |δl| · (κ+
jlkH(δl) + κ−jlkH(−δl)))

}

, (6.8)

where the δl are again drawn from Gaussian distributions which are centered at zero
with standard deviation one. If the α+

jik and α−

jik histograms mentioned above rep-
resent maximum deviations from the default values, these Gaussian distributions are
truncated between −1 and 1. Additionally the uncertainty due to the limited number
of simulated events is incorporated by fluctuating the number of entries in each bin k
of the αjk templates with a Gaussian distribution, centered at the original value with
a standard deviation that represents the statistical error on the number of entries.
The Nj random numbers are filled into j histograms which represent the discriminant
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values for a process j. The single-top cross section of each pseudo experiment is cal-
culated by profiling the likelihood function as explained in the previous subsection.
Two different ensemble tests are performed. One including single top-quark events
and one without any single top-quark event. For this purpose β1 is fixed at 1, i.e. the
standard model single top-quark production cross section or, 0 respectively. For the
calculation of the sensitivity of an analysis two different hypotheses are tested. The
hypotheses H0 assumes that no single top-quark production exists, while the hypoth-
esis H1 assumes single top-quark production with the cross section predicted by the
standard model. To be able to claim an observation of single top-quark production the
hypothesis H0 has to be rejected at the 99.999% C.L.. The hypotheses test is based
on the Q-value which is defined by

Q = −2 ln
Lred(β = 1)

Lred(β = 0)
. (6.9)

The Q-value distributions for the different hypothesis are called q0 and q1, respectively.
With these distributions the probability for H0 to be true can be quoted. For this
purpose the so-called p-value is defined via

p(Qm) =
1

Aq
·
∫ Qm

−∞

q0(Q
′) dQ′ , (6.10)

where Aq =
∫

∞

−∞
q0(Q

′) dQ′ and Qm is the measured Q-value, in case of observed events,
or the median of the H1 Q-value distribution, in case of pseudo experiments. Hence,
the meaning of the expected p-value (p̂) is the following: Under the assumption that
H1 is true, one expects to observe p < p̂ with a probability of 50%.

6.2 Training of the neural networks

Four different neural networks are trained for the combination of the three single top-
quark analyses, one network for events with two jets and one or two SecVtx tags,
respectively and one network for events with three jets and one or two SecVtx tags,
respectively. For this purpose we use the outputs of the individual discriminants as
input variables for our neural networks. Typically, the samples used for the network
trainings are composed of the relevant physics processes, which are mixed with ratios
predicted from the standard model. Since the number of expected single top-quark
events is much smaller than the expected number of all background events, this is
not feasible, because the neural network would not be able to separate signal from
background events. Hence, training samples with different mixtures have to be used.
For each network, trainings with different training sample compositions are performed.
The composition which leads to the best discrimination of signal and background events
is selected utilizing ensemble tests. For this, pseudo experiments are drawn from eight
different network output distributions which represent the following physics processes:
Single top-quark production, Wbb, Wcc+Wc (W charm), mistags, WW+WZ+WW
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(diboson), Z+jets, QCD-multijets and tt production. The output templates for WW ,
WZ and WW are added together according to their predicted ratios. The selection
of the most discriminating network itself, is based on the so-called “o-value” which is
defined by

o =
|q1(Q) − q0(Q)|

√

∆q2
1(Q) + ∆q2

0(Q)
, (6.11)

where q0,1(Q) is the mean of the Q-value distribution of the H0,1 hypothesis and ∆q0,1

represents the “Root Mean Square” (RMS) of the two Q-value distributions. While for
the calculation of a p-value at least 50 million pseudo experiments are necessary the
o-value is already numerically stable for roughly 100000 pseudo experiments yielding a
tremendous decrease in the needed computing time. Finally, the four networks with the
highest o-values are used for the combination. This is reasonable, because the larger
the separation of the Q-value distributions for the two hypothesis H0,1 the higher is the
o-value. Since a large separation of the Q-value distributions yields in a small p-value,
i.e. a large sensitivity, one can in summary say that the higher the o-value, the higher
the sensitivity.
In subsection 5.3.2 it is mentioned, that the Matrix Element analysis uses additionally
non-triggered muon events. These events are not included in our combination.

The network using two jets and one tagged jet

In a first step a neural network is trained using the outputs of the three individual
analyses as input variables. After preprocessing the following correlations between the
analyses are found: The correlation between the Likelihood Function method (LF)
and the Matrix Element method (ME) is 81.3%. Furthermore the correlation is 89.0%
between the LF method and the Neural Network analysis (NN) and 82.4% between
the ME analysis and the NN method. From these input variables, the Neural Network
method shows the largest correlation to the target. Because of the high correlations
between the three analyses we decided to use the LF and the ME output a second time,
i.e. as two further input variables, but this time preprocessed with the “independent
correlation option (ICO)” (see subsection 3.1.1) with respect to the NN method out-
put. Thus, these two variables dominantly incorporate only the excess of information
given by the LF and ME method in comparison to the NN analysis.
Furthermore neural networks for eighteen different compositions of the training sam-
ple are trained. First the signal-to-background ratio is varied from 50:50 over 40:60 to
30:70. For this the background processes are mixed according to their predicted ratios.
For each signal-to-background ratio six different mixtures of the signal sample are per-
formed. The following s-channel single-top to t-channel single-top ratios are realized:
10:90, 20:80, 30:70, 34:66 (predicted by the standard model), 40:60 and 50:50. For the
network trained with a signal-to-background ratio of 30 : 70 and a s-channel single-top
to t-channel single-top ratio of 10 : 90 the largest o-value has been found. Table 6.2
lists the input variables ranked according to their relative significance and the correla-
tion to the target of each input variable for this neural network. After preprocessing
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a 3σ cut on the relative significance has been performed (illustrated by the horizontal
line in table 6.2). Only two variables have passed this cut and have been finally used
for the network training. The network output distributions for the different physics
processes are illustrated in figure 6.1(a). Figure 6.1(b) shows the output distributions
normalized to the standard model prediction.

rank input variable correlation to target [%] relative significance in σ

1 NN 63.2 198.3
2 ME 59.1 38.8
3 MEICO 45.5 2.3
4 LF 58.2 1.4
5 LFICO 46.2 1.7

Table 6.2: Ranking of the input variables for the network using two jets and one SecVtx tag. The
horizontal line represents the 3σ cut on the relative significance.
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Figure 6.1: (a): Shapes of the output distributions of the network using two jets and one SecVtx

tag for the different processes. (b): Output distributions normalized to the number of events which

are predicted by the standard model for the different processes. Within the plot, the output region

NN combi > 0.3 is zoomed.

The network using two jets and two tags

Since there is no Likelihood function discriminant for events with two jets and two
SecVtx tags, only the ME and the NN outputs are incorporated for the training.
The correlation of these two analyses is 75.3%, the Matrix Element method output
is showing the highest correlation to the target. Hence the NN output, preprocessed
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with the ICO is included as a further input variable.
For six different compositions of the training sample a neural network is trained. Again
the three signal-to-background ratios mentioned above are realized and the background
processes are mixed according to their predicted ratios. The signal template consists
purely of s-channel single-top events or is mixed of s-channel single-top and t-channel
single-top events according to the standard model ratio. A maximum o-value has been
found for the network which is trained with a signal-to-background ratio of 40 : 60
and with a signal template that consists purely of s-channel single-top events. Table
6.3 gives an overview of the significance and the correlation to the target of the three
variables. A 3σ cut on the relative significance after the preprocessing reduces the
number of input variables. Hence, the final network has been trained only with two
input variables. Figure 6.2(a) illustrates the output distributions for the different
physics processes. In figure 6.2(b) these distributions are normalized to the standard
model prediction.

rank input variable correlation to target [%] relative significance in σ

1 ME 50.6 72.1
2 NN 45.3 15.6
3 NNICO 41.8 1.7

Table 6.3: Ranking of the input variables for the network using two jets and one SecVtx tag. The
horizontal line represents the 3σ cut on the relative significance.
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Figure 6.2: (a): Shapes of the output distributions of the network using two jets and one SecVtx

tag for the different processes. (b): Output distributions normalized to the number of events which

are predicted by the standard model for the different processes.
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The network using three jets and one tag

The input variables to this network are similar to the ones used for the training of
the network using two jets and one SecVtx tag, i.e. additionally to the outputs of
the three individual analyses the LF and ME output, preprocessed with the ICO with
respect to the NN output, are included. For events with three jets and one SecVtx
tag the analyses are less correlated than for the two cases already discussed above.
The correlation between the Likelihood Function analysis and the Matrix Element
technique is 48.6%, while the correlation between the LF analysis and the NN method
is 83.2% and the correlation between the ME technique and the NN method is 51.0%.
Fifteen different compositions of the training sample are realized: The three already
mentioned signal-to-background ratios and different mixtures of the signal sample (s-
channel single-top to t-channel single-top = 10:90, 20:80, 30:70, 38:62 (SM ratio) and
50:50). For each composition a neural network has been trained. The neural network
for which the largest o-value has been found is trained with a signal-to-background
ratio of 40 : 60 and with a s-channel single-top to t-channel single-top ratio of 50 : 50.
In table 6.4 the input variables are ranked according to their relative significance. Four
of the five input variables passed to NeuroBayes survive a 3σ cut on the significance
after the preprocessing. The network output distributions for the different physics
processes are illustrated in figure 6.3(a). Figure 6.3(b) shows the output distributions
normalized to the standard model prediction.

rank input variable correlation to target [%] relative significance in σ

1 NN 40.9 92.1
2 ME 33.1 32.1
3 LF 37.7 11.0
4 MEICO 30.2 5.6
5 LFICO 27.3 2.4

Table 6.4: Ranking of the input variables for the network using three jets and one SecVtx tag. The
horizontal line represents the 3σ cut on the relative significance.

The network using three jets and two tags

In contrast to events with two jets and two SecVtx tags, a Likelihood Function dis-
criminant exists for events with three jets and two SecVtx-tags. Hence, the outputs
of all three single-top analyses can be used as input to the neural network. The ME
analysis shows the largest correlation to the target. Therefore, the NN and LF outputs,
preprocessed with the ICO with respect to the ME output, are used as two further
input variables. After preprocessing, the following correlations between the different
analyses are found: LF method - ME analysis 40.4%, LF method - NN method 63.2%
and ME analysis - NN method 44.5%.
For six different compositions of the training sample a neural network is trained. Again
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Figure 6.3: (a): Shapes of the output distributions of the network using three jets and one SecVtx

tag for the different processes. (b): Output distributions normalized to the number of events which

are predicted by the standard model for the different processes.

three different signal-to-background ratios, 50:50, 40:60 and 30:70, are realized. For
each signal-to-background ratio two different compositions of the signal sample are
tested: s-channel single-top and t-channel single-top events mixed according to the ra-
tios predicted by the standard model (56:44) and an s-channel single-top to t-channel
single-top ratio of 70:30. The network reaching the largest o-value has been trained
with a signal-to-background ratio of 40 : 60 and with a standard model mixture of
the signal sample. For this network, table 6.5 gives an overview of the significance
and the correlation to the target of the five input variables. A 3σ cut on the relative
significance after the preprocessing diminishes the number of input variables. Figure
6.4(a) illustrates the output distributions for the different physics processes. In figure
6.4(b) these distributions are normalized to the standard model prediction.

rank input variable correlation to target [%] relative significance in σ

1 ME 38.2 37.5
2 NN 35.3 20.1
3 LFICO 30.1 7.2
4 NNICO 34.6 1.6
5 LF 31.4 1.0

Table 6.5: Ranking of the input variables for the network using three jets and two SecVtx tag. The
horizontal line represents the 3σ cut on the relative significance.
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Figure 6.4: (a): Shapes of the output distributions of the network using three jets and two SecVtx

tag for the different processes. (b): Output distributions normalized to the number of events which

are predicted by the standard model for the different processes.

6.3 Systematic uncertainties

Uncertainties in the modeling of physics processes or detector effects cause systematic
uncertainties on the measurement results. For the single-top analyses three different
types of systematic uncertainties are incorporated: Uncertainties which affect only the
rate of particular processes, uncertainties which affect the shapes of the discriminant
templates for particular processes and bin by bin uncertainties which are due to the
limited number of simulated events and which are only included in the calculation of
the sensitivity. For sure, most of the systematic effects cause both, rate and shape
uncertainties.
The following sources of systematic uncertainties are considered: the uncertainty on
the jet energy scale, the uncertainty in modeling initial-state gluon radiation (ISR)
and final-state gluon radiation (FSR), the choice of the parameterization of the parton
distribution functions (PDF) used for the event simulation, the choice of the Monte
Carlo event generator, the uncertainty in the event detection efficiency, the uncertainty
of the output of the KIT Flavor Separator, the uncertainty in the factorization and
renormalization scale for the simulation of W+heavy flavor processes Q2, the modeling
of instrumental backgrounds, i.e. mistag events and QCD-multijet events, the uncer-
tainty in the luminosity determination and the uncertainty on the modeling of the
distributions of ∆Rj1,j2 for events with two jets and the η distribution of the softest jet
ηj, for events with two or three jets. The effects of these uncertainties are taken into
account by varying the corresponding processes within the uncertainties or by applying
an alternative model. This results in systematically shifted templates or relative shifts
in the event rates. In the following we explain the systematic effects in more detail.
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For each shape uncertainty the default and the shifted distributions in addition with
the relative differences of the varied templates with the default ones are illustrated. In
this thesis only the shape uncertainties for the network using two jets and one SecVtx
tag are shown. Table 6.6 gives an overview over the processes which are affected by
the different systematic uncertainties.

uncertainty single-top Wbb W charm mistags diboson Z+jets QCD tt
JES × × × × × × ×
ISR/FSR × ×
PDF ×
Q2 ×
mistag model ×
QCD flav. mixture ×
Flav. Sep. × ×
ηj × × × × × × ×
∆Rj1j2 × × × × × × ×

Table 6.6: Processes which are affected by the different shape uncertainties

If the shifts caused by a particular systematic uncertainty represent maximum devi-
ations, the Gaussian distribution, from which the strength δi is drawn in the calculation
of pseudo experiments, are constraint between −1 and 1. This is done for the following
systematics: JES, ISR/FSR, PDF, Q2, KIT Flavor Separator output and the modeling
of mistags, QCD-multijets, ∆Rj1,j2, and ηj distributions.
The effects caused by the uncertainty in the jet energy scale (JES) is incorporated by
applying jet energy corrections which represent maximum deviations from the original
correction [49]. The rate uncertainties caused by the jet energy scale for the different
processes are listed in table 6.7. Differences in the shapes of the templates for the
different processes can be seen in figures 6.5 and 6.6.

process 2jets 1tag 2jets 2tags 3jets 1tag 3jets 2tags
single-top -0.8/0.2 % 1.8/-2.2 % -9.1/9.9 % -6.6/6.1 %
tt̄ 9.9/-9.4 % 8.2/-7.6 % 4.6/-5.1 % 5.4/-5.2 %
Wbb̄ 6.9/-7.6 % 10.7/-10.6 % 8.5/-8.4 % 10.6/-11.5 %
W charm 7.0/-6.3 % 11.3/-10.3 % 8.2/-6.9 % 13.9/-15.8 %
Z+jets -5.3/5.4 % 5.0/-5.0 % -10.8/14.0 % -5.9/7.2 %
diboson -2.7/1.7 % -2.9/1.4 % -12.4/11.7 % -12.0/12.0 %

Table 6.7: Systematic jet energy scale down/up rate uncertainties
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Figure 6.5: Shape systematics caused by the uncertainty on the jet energy scale. In the upper row

the shifts in the single-top (left) and the Wbb (right) template are shown. In the lower left corner the

uncertainties on Wcc+Wc are illustrated. The shifts in the mistags distribution is displayed in the

lower right corner. In addition to the particular distribution the relative deviations from the original

output are shown.

The effects due to more or less initial/final state radiation are modeled by producing
samples in which less or more gluon radiation in the parton shower is simulated [79].
Using these specific ISR and FSR samples of simulated events, alternative template
shapes are produced for single top-quark and tt events as illustrated in figure 6.7.
To include the uncertainties resulting from the choice of a particular parton distri-

bution function, weights obtained from 20 pairs of independent eigenvectors of the
CTEQ6M parton distribution are compared to the weights of the originally used
CTEQ5L PDF. The relative differences of the weights from CTEQ5L and from the
eigenvectors are added quadratically considering the particular sign. PDF uncertain-
ties affect only the shape of the single-top template, illustrated in figure 6.8(a), and
the rate of the single-top and top-pair processes.
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Figure 6.6: Shape systematics caused by the uncertainty on the jet energy scale. In the upper left

corner the shifts in the diboson template are shown. The uncertainties on the Z+jets output are

illustrated in the upper right plot. Beyond the particular distribution the relative deviations from the

original output are shown.
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Figure 6.8: (a): Shifts in the single-top output distribution caused by different PDF scenarios.

(b): Uncertainties on the Wbb template derived from different Q2 values.
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Figure 6.7: Shape systematics caused by different scenarios for initial/final state radiation. In the

upper row the effects due to more or less ISR are illustrated. On the left hand side one can see the

shifts in the single-top output distribution, the plot on the right hand side displays the shifts in the

tt template. In the second row the effects cause by more or less FSR are shown.

To account for the uncertainties due to the choice of the renormalization and fac-
torization scale in the production of W+heavy flavor events, two different scenarios
are realized. The default W+jets Monte Carlo samples are generated with a dynamic
scale µ2 = Q2. For the two alternative scenarios this scale is halved and doubled, re-
spectively. The influence of the variation of Q2 on the shape of the output distribution
of Wbb events is illustrated in figure 6.8(b).
Uncertainties in the rate of the single top-quark production are derived from a com-
parison of the distributions of different kinematic variables in NLO calculations and
the MadEvent Monte Carlo sample. The uncertainty in the modelling of tt processes
is determined by using events simulated with the Herwig program as an alternative
generator. Furthermore, the uncertainty of the event detection efficiency ǫevt includes
the uncertainties on the trigger efficiency, on the lepton identification and on the b-
tagging scale factor. The correction function applied to the mistag output of the KIT
Flavor Separator, is incorporated as systematic uncertainty by defining an optimistic
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and a pessimistic model. For the pessimistic scenario the correction function is applied
to the W+charm and the mistags output forcing both to be more signal like. For the
optimistic model both output distributions are used uncorrected, which leads to more
background like templates. The changes in the template shapes can be seen in figure
6.9.
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Figure 6.9: Optimistic and pessimistic model of the KIT Flavor Separator. On the left hand side

the correction function is applied to the Wcc+Wc template. On the right hand side the correction

function is omitted for mistag events.

The influence of the heavy flavor composition of the QCD-multijet sample is de-
rived by using samples with a different mixture. Studies with the KIT Flavor Separator
showed the following ratios of heavy flavor processes: 45% b-quark jets, 40% c-quark
jets and 15% light quark jets [80]. The alternative model uses an “extreme” composi-
tion of 60% b-quark jets, 30% c-quark jets and 10% light quark jets. Its effect on the
QCD-multijet output is shown in figure 6.10(a).

To evaluate the systematic effect on the shape of the mistag distribution which is
caused by the modeling of mistagged light-quark jet events, the default model is com-
pared withW+jets data, for which the jets are taggable but not tagged. The differences
in the template shape are illustrated in figure 6.10(b).
Moreover the possible mismodeling of ∆R between the two jets in simulated two jet
events and of the pseudorapidity of the second leading jet, ηj, in simulated events with
two or three jets is taken into account. This is done by reweighting the templates
using the distributions of the particular variable in the sideband of events which have
at least one taggable jet but no tagged jets. The shifts caused by these uncertainties
are shown in figures 6.11, 6.12, 6.13 and 6.14.
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Figure 6.10: Systematic effects caused by a different heavy flavor composition of the QCD-multijet

sample (a) and a different modeling of mistagged light-quark jets (b).
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Figure 6.11: Systematic uncertainties due to the mismodeling of ∆R. On the left hand side the

shift on the single-top template is illustrated. The plot on the right hand side shows the effect on the

Wbb output distribution.
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Figure 6.12: Systematic uncertainties due to the mismodeling of ∆R. In the upper left corner the

effect on the W charm template is illustrated. The plot in the upper right corner shows the shifts

on the mistags output. In the second row the uncertainties on diboson (left hand side) and Z+jets

processes are displayed. The last plot shows the effect on the tt template.
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Figure 6.13: Systematic uncertainties due to the mismodeling of ηj. In the upper left corner the

effect on the single-top template is illustrated. The plot in the upper right corner shows the shifts on

the Wbb output. In the second row the uncertainties on W charm (left hand side) and mistag (right

hand side) processes are displayed. In the lower left corner the impact on the diboson template is

illustrated. The plot in the lower right corner shows the shifted Z+jets output.
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Figure 6.14: Systematic uncertainties due to the mismodeling of ηj. This plot shows the effect on

the tt output distribution.

Additionally, the different rates of single top-quark and top-pair processes for dif-
ferent top-quark masses (170 and 180 GeV/c2) are included for the determination of
the sensitivity and the observed significance. This uncertainty is not included in the
measurement of the single top-quark production cross-section. Another rate uncer-
tainty (double tag), accounts for the differences of the uncertainties on the expected
number of mistag events with one or two SecVtx tags, respectively.
The relative rate uncertainties on the different processes are listed in the tables 6.8
(events with 2jets and 1tag), 6.9 (2jets 2tags), 6.10 (3jets 1tag) and 6.11 (3jets 2tags).

Source single-top tt̄ diboson Z+jets
ISR less/more 1.9/2.1 % -2.6/-7.1 %
FSR less/more 4.8/-0.7 % -5.1/-2.6 %
PDF 3.0/-3.0 % 1.8/-1.8 %
MC generator 1.7/-1.7 % -2.7/2.7 %
ǫevt 3.6/-3.6 % 2.9/-2.9 % 7.6/-7.6 % 8.3/-8.3 %
Luminosity 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 %
Mtop 170/180 7.3/-6.2 % 7.8/-8.1 %

Table 6.8: Systematic rate uncertainties for events with 2 jets and 1 SecVtx tag.
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Source single-top tt̄ diboson Z+jets mistags
ISR less/more 0.4/6.7 % 0.5/-9.5 %
FSR less/more 7.5/0.8 % -8.1/-1.8 %
PDF 2.0/-2.0 % 1.7/-1.7 %
MC generator 1.2/-1.2 % 4.6/-4.6 %
ǫevt 8.9/-8.9 % 9.0/-9.0 % 9.8/-9.8 % 10.6/-10.6 %
Luminosity 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 %
Mtop 170/180 8.3/-7.0 % 9.9/-7.1 %
double tag 23.4/-23.4%

Table 6.9: Systematic rate uncertainties for events with 2 jets and 2 SecVtx tags.

Source single-top tt̄ diboson Z+jets
ISR less/more -3.3/-4.8 % -0.6/-4.5 %
FSR less/more -3.3/-3.8 % -3.5/-2.2 %
PDF 2.6/-2.6 % 1.8/-1.8 %
MC generator 1.7/-1.7 % -2.7/2.7 %
ǫevt 3.0/-3.0 % 2.5/-2.5 % 7.8/-7.8 % 7.8/-7.8 %
Luminosity 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 %
Mtop 170/180 8.3/-7.3 % 9.3/-8.4 %

Table 6.10: Systematic rate uncertainties for events with 3 jets and 1 SecVtx tag.

Source single-top tt̄ diboson Z+jets mistags
ISR less/more 5.8/-4.9 % -0.5/-6.6 %
FSR less/more 2.4/-2.2 % -3.4/-2.7 %
PDF 1.9/-1.9 % 1.7/-1.7 %
MC generator 1.7/-1.7 % 2.0/-2.0 %
ǫevt 8.9/-8.9 % 9.0/-9.0 % 11.0/-11.0% 11.1/-11.1 %
Luminosity 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 % 6.0/-6.0 %
Mtop 170/180 8.5/-7.6 % 9.3/-9.5 %
double tag 23.4/-23.4%

Table 6.11: Systematic rate uncertainties for events with 3 jets and 2 SecVtx tags
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6.4 Results of the individual analyses

In this section the results of the individual analysis are shown. We present the measured
cross section as well as the sensitivity and the observed significance.

Likelihood Function method

As can be seen in figure 6.15 the analysis has an expected p-value of 0.0035% which
corresponds to a sensitivity of 3.4σ. The observed p-value of 2.45% is in accordance
with an 2.0σ excess over the standard model backgrounds. The combined s- and t-
channel cross section is measured to be σs+t = 1.8+0.9

−0.8 pb.
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Figure 6.15: Expected and observed p-values of the Likelihood function method. The Q-value
distributions for single top-quark production at the standard model rate (black curve) and without
single top-quark production (blue curve) are plotted on a logarithmic scale and the observed Q-value
is indicated by the arrow.

Matrix Element method

The Matrix Element method measures a combined s-channel and t-channel cross sec-
tion of 2.2+0.8

−0.7 pb. As can be seen in figure 6.16, the probability that the observed
excess originates from a background fluctuation (p-value) is 0.03% (3.4σ) and the ex-
pected p-value in pseudo experiments is 0.0003% (4.5σ).
As already mentioned before, we do not include the non-triggered muons, used in this
analysis, in our combination study. Since there is no official result for the Matrix
Element method without the non-triggered muons, we simulated 50 million pseudo
experiments for this scenario. The obtained sensitivity for this scenario is 4.2σ.



102 CHAPTER 6. COMBINATION OF SINGLE-TOP ANALYSES

Test Statistic [-2ln(Q)]
-100 -50 0 50

P
se

ud
o-

E
xp

er
im

en
ts

1

10

210

310

410

510

610

M
ed

ia
n

)σObserved p-value: 0.0003 (3.4 
)σMedian p-value: 3e-06 (4.5  B

 S+B

O
bs

er
ve

d

-1
CDF Run II Preliminary, L=2.2 fb

Figure 6.16: Expected and observed p-values of the Matrix Element method. The Q-value distri-
butions for single top-quark production at the standard model rate (red curve) and without single
top-quark production (blue curve) are plotted on a logarithmic scale and the observed Q-value is
indicated by the arrow.

Neural Network method

The Neural Network analysis measures a combined single top-quark production cross
section of 2.0+0.9

−0.8 pb. Figure 6.17 illustrates the expected and the observed p-values.
The expected p-value of 0.00053% corresponds to an expected 4.4σ excess over the
standard model backgrounds. The observed probability, that the seen excess stems
from a background fluctuation is 0.063% (3.2σ).
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Figure 6.17: Expected and observed p-values of the Neural Network method. The Q-value distri-
butions for single top-quark production at the standard model rate (red curve) and without single
top-quark production (blue curve) are plotted on a logarithmic scale and the observed Q-value is
indicated by the arrow.
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6.5 Combination results

In this section, the application of the combination neural networks to measured events
is shown and values for the sensitivity, the observed significance, the measured single
top-quark production cross-section and for |Vtb| are quoted.

6.5.1 Dertermination of the sensitivity

Hundred million pseudo experiments are simulated to derive the sensitivity of our neu-
ral network combination method. The output distributions of all four neural networks
are included and finally fitted simultaneously. Figure 6.18 illustrates the obtained Q-
value distributions which are plotted on a logarithmic scale. The Q-value distribution
for single top-quark production at the standard model rate is drawn in red. Its me-
dian is represented by the dashed line. The expected p-value, i.e. the probability that
the signal stems from a statistical fluctuation of the backgrounds, is 0.000097% which
corresponds to an expected significance of 4.8σ.
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Figure 6.18: Sensitivity of the neural network combination. The Q-value distributions for single
top-quark production at the standard model rate (red curve) and without single top-quark production
(blue curve) are plotted on a logarithmic scale.

6.5.2 Application to observed events

Comparison with expectation

After the determination of the sensitivity the neural networks are applied to observed
events. In figure 6.19 the output distributions for the background processes and the
single top-quark production of the four combination networks are compared with the
output distributions of observed events. For this purpose the signal and background
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templates are normalized to the number of events predicted by the standard model for
the particular processes (see table 5.1).
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Figure 6.19: Comparison of the predicted and observed output distributions of the four combination

neural networks. In the upper left corner the output of the 2jets-1tag network is shown. Within the

plot, the output region NN combi > 0.3 is zoomed. The plot in the upper right corner displays the

2jets-2tags distributions. In the lower row the output distributions of the 3jets-1tag network (left

hand side) and the 3jets-2tags network (right hand side) are shown.

Fit results

For the calculation of the single top-quark production cross section, the output distri-
butions of measured events are fitted as explained in subsection 6.1.1. The combination
result is obtained from a simultaneous fit to all four neural network outputs. Further-
more, a separate fit to each single network is performed.
The reduced Likelihood function is illustrated in figure 6.20(a). As can be seen, its
maximum is located at σsingle−top = 2.2+0.8

−0.7 pb which corresponds to 77+26.8
−23.8% of the

single top-quark production cross section predicted by the standard model. Hence
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the measured central value is smaller than the one predicted by the standard model,
but, within the large uncertainties, both are still compatible. The observed Q-value is
determined as explained in subsection 6.1.2. In figure 6.20(b) the observed Q-value,
Qm = −24.31, is indicated with an arrow. The observed p-value, i.e the probability
that the observed excess results from a statistical fluctuation of the background is
therefore 0.004808%, which corresponds to an observed significance of 3.9σ.

single-top cross section [pb]
0 1 2 3 4 5 6

P
o

st
er

io
r 

P
ro

b
ab

ili
ty

 D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

-1CDF II Preliminary 2.2 fb

single-top cross section [pb]
0 1 2 3 4 5 6

P
o

st
er

io
r 

P
ro

b
ab

ili
ty

 D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

 pb-0.7
+0.8 = 2.2 

single-top
σ

 68%

-1CDF II Preliminary 2.2 fb

(a)

Test Statistic [-2ln(Q)]
-250 -200 -150 -100 -50 0 50 100 150

P
se

u
d

o
-E

xp
er

im
en

ts

-110
1

10

210

310

410

510

610

710

810

910

1010
with single-top @ SM rate
no single-top

Test Statistic [-2ln(Q)]
-250 -200 -150 -100 -50 0 50 100 150

P
se

u
d

o
-E

xp
er

im
en

ts

-110
1

10

210

310

410

510

610

710

810

910

1010

-1CDF II Preliminary 2.2 fb

σ 4.76⇒:  0.00000097  expp
σ 3.90⇒:  0.00004808  obsp

Test Statistic [-2ln(Q)]
-250 -200 -150 -100 -50 0 50 100 150

P
se

u
d

o
-E

xp
er

im
en

ts

-110
1

10

210

310

410

510

610

710

810

910

1010

(b)

Figure 6.20: (a): Reduced Likelihood function obtained from marginalization. The blue band

represent the ±1σ uncertainties on the cross section measurement. (b): Observed sensitivity of

the neural network combination. The Q-value distributions for single top quark production at the

standard model rate (red curve) and without single top-quark production (blue curve) are plotted on

a logarithmic scale and the observed Q-value is indicated by the arrow.

The following single top-quark production cross sections are fitted in the different
jet and tag categories separately: σ2jets1tag

single−top = 1.7+0.8
−0.7 pb for events with two jets and

one SecVtx-tag, σ2jets2tags
single−top = 4.6+2.5

−2.2 pb for events with two jets and two SecVtx-tags,

σ3jets1tag
single−top = 2.9+2.7

−2.4 pb for events with three jets and one SecVtx-tag and σ3jets2tags
single−top =

8.2+4.4
−4.0 pb for events with three jets and two SecVtx-tags. In figure 6.21 the output

distributions of the four networks are normalized to these fit results, i.e. the background
processes are still normalized to the number of events predicted from the standard
model only the single top-quark template is scaled with the measured cross section.
The measured cross sections and their uncertainties are summarized and compared
with the standard model prediction in figure 6.22.
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Figure 6.21: Output distributions of the four combination neural networks normalized to the fit

values. The background processes are still normalized to the number of events predicted from the

standard model only the single top-quark template is scaled with the measured cross section. In the

upper left corner the output of the network using two jets and one tag is shown. Within the plot, the

output region NN combi > 0.3 is zoomed. The plot in the upper right corner displays the outyput

distributions of the network using two jets and two tags. In the lower row the output distributions

of the network using three jets and one tag (left hand side) and the network using three jets and two

tags (right hand side) are shown.

6.5.3 |Vtb| measurement

Due to the already mentioned proportionality of σsingle−top and |Vtb|2, a value for |Vtb|
can be derived under the assumption that Vtb ≫ Vts, Vtd via

|Vtb|meas = |Vtb|theo ·
√

σmeas
single−top

σtheo
single−top

, (6.12)

where |Vtb|theo is the Vtb value from equation 1.2, σmeas
single−top is the measured single

top-quark production cross section and σtheo
single−top is the sum of the standard model
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values for σs−channel and σt−channel, which are given in chapter one. In this manner
Vtb = 0.88+0.14

−0.12(exp.)±0.07(theo.) can be found. As expected, the quoted uncertainties
are too large for a verification or falsification of the unitary assumption of the CKM-
matrix.
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Figure 6.22: Summary of the combination cross section measurements for the different jet and tag
bins.



Chapter 7

Summary and Outlook

In the first part of this diploma thesis, the current version of the KIT Flavor Separator,
a neural network which is able to distinguish between tagged b-quark jets and tagged
c/light-quark jets, is presented. In comparison with previous versions four new input
variables are utilized and new Monte Carlo samples with a larger number of simulated
events are used for the training of the neural network. It is illustrated that the output
of the neural network is continuously distributed between 1 and −1, whereas b-quark
jets accumulate at 1, however, c-quark jets and light-quark jets have outputs next to
−1.
To ensure that the network output describes observed events correctly, the shapes of
all input variables are compared in simulation and data. Thus the mismodelling of any
input variable is excluded. Moreover, the b jet and light jet output distributions are
compared with the output of samples of observed events, which are enhanced in the
particular flavor. In contrast to previous versions, no b-jet output correction function
has to be calculated, because the agreement between simulation and collision data is
excellent for b-quark jets. For the light-jet output, correction functions are developed.
Different applications of the KIT Flavor Separator are mentioned. For example it pro-
vides a precious input to all three CDF single top quark analyses. Furthermore, it is
shown that the KIT Flavor Separator is a universal tool, which can be used in every
high-pT analysis that requires the identification of b-quark jets with high efficiency. As
it is pointed out, a further application is the estimation of the flavor composition of a
given sample of observed events.
In addition a neural network, which is able to separate c-quark jets from light-quark
jets, is trained. It is shown, that all three flavors can be separated in the c-net−Flavor
Separator plane. As a result, the uncertainties on the estimation of the flavor compo-
sition in events with one tagged jet are cut into half.
In the second part of this diploma thesis, a method for the combination of three mul-
tivariate single-top analyses using an integrated luminosity of 2.2 fb−1 is presented.
For this purpose the discriminants of the Likelihood Function analysis, the Matrix
Element method and the Neural Network analysis are used as input variables to a
neural network. Overall four different networks are trained, one for events with two or
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three jets and one or two SecVtx tags, respectively. Using a binned likelihood function,
the outputs of these networks are fitted to the output distribution of observed events.
A single top-quark production cross section of σsingle−top = 2.2+0.8

−0.7 pb is measured.
Ensemble tests are performed for the calculation of the sensitivity and observed signif-
icance, which are found to be 4.8σ and 3.9σ, respectively. Hence the improvement of
this combination is roughly 8% in comparison with sensitivities found by the individual
analyses. Due to the proportionality of σsingle−top and |Vtb|2 and under the assumption
Vtb ≫ Vts, Vtd, a value for |Vtb| is quoted: |Vtb| = 0.88+0.14

−0.12(exp.) ± 0.07(theo.). It can
be seen, that the given uncertainties are too large for a verification or falsification of
the unitarity assumption of the CKM-matrix.
Parallel to this combination a further combination method (NEAT-combination) has
been developed [81]. This combination uses a neural network trained with a neuro-
evolution technique, which optimizes the neural network architecture and weights
through the use of genetic algorithms. In this analysis an improvement of roughly
12% could be reached. In figure 7.1 the current situation for the measurement of the
single top-quark production cross section is summarized.
After collecting more data, CDF will be able to observe single top-quark production
with a significance larger than 5.0σ. Nevertheless, the cross section measurement will
still have large uncertainties on the level of 20%. Precise measurements on the few
percent level will only be possible at the LHC. Recent studies for the CMS detector
showed, that the t-channel cross section can be measured with an accuracy of 7% in 1
fb−1 of LHC data [82].
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Figure 7.1: Summary of the single top production cross section measurements.



Appendix A

A.1 |η| dependences for pass 1 vertices
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Figure A.1: facc
data/facc

MC distributions of |η| for all combinations of ET , Ntrk and
∑

ET , which are

not used in the correction function pass 1 vertices.
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Figure A.2: facc
data/facc

MC distributions of |η| for all combinations of ET , Ntrk and
∑

ET , which are

not used in the correction function pass 1 vertices.
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A.2 |η| dependences for pass 2 vertices
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Figure A.3: facc
data/facc

MC distributions of |η| for all combinations of ET , Ntrk and
∑

ET , which are

not used in the correction function for pass 2 vertices.
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Zunächst möchte ich Herrn Priv.-Doz. Dr. Wolfgang Wagner danken, der das Refe-
rat und die hervorragende Betreuung dieser Arbeit übernommen hat.

Des Weiteren danke ich Herrn Prof. Dr. Thomas Müller für die Aufnahme in seine
Top-Quark Arbeitsgruppe, sowie für die Übernahme des Korreferats dieser Arbeit.
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