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CHAPTER 1

INTRODUCTION

1.1 Motivation

Certain elementary particles change their flavor as they travel. A well known example is

neutrino oscillations, in which some of the electron neutrinos emitted from the sun transform

into muon or tau neutrinos on their way, as a periodic function of time [1]. The phenomenon

of oscillations is also associated with some other particles such as neutral K and B mesons.

This interesting feature of elementary particles is a consequence of mixing of quantum

states. The mixing of quantum states occurs in neutral K and B mesons because their

mass eigenstates are not the same as flavor eigenstates. In fact, the mass eigenstates can

be expanded as linear combinations of flavor eigenstates. For example, a B0 meson and

its antiparticle B̄0 can combine in a symmetric or anti-symmetric manner to give two new

states with slight differences in their masses and lifetimes. In Dirac notation (assuming CP

conservation),

|BH〉 = 1√
2
(|B0〉 − |B̄0〉) or |BL〉 = 1√

2
(|B0〉+ |B̄0〉),

where |BH〉 is the heavy state and |BL〉 is the light state. Another choice is to define the

mass eigenstates in terms of lifetimes, such as |KS〉 (short lived) and |KL〉(long lived). This

choice is standard in neutral K mesons.

Mixing of quantum states gives rise to non-vanishing off diagonal terms in the Hamil-

tonian of the time dependent Schrödinger equation, which leads to B0-B̄0 oscillations [2].

The oscillations in neutral K mesons also occur in a similar manner. In analogy with ob-

served B0-B̄0 and K0-K̄0 oscillations, D0-D̄0 oscillations also should occur. However, the

oscillations of D0 mesons are strongly suppressed by CKM factors.

D0-D̄0 mixing is of particular interest for two reasons. Firstly, the standard model

predicts D0-D̄0 oscillations as a small effect, difficult to observe in current experimental
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reach. If we observe this effect in the current experiments, it will be an indirect signal for

new physics such as a fourth quark flavor or contributions from supersymmetry. The second

reason is that mixing is also a crucial ingredient in the phenomenon of CP-violation and as

CP is not conserved in new physics, observation of CP violation in D0-D̄0 mixing would be

an unambiguous sign of new physics [3, 4, 5], hence of great interest.

1.2 D0 Mesons

In general, D0, D+, D∗ and their antiparticles are called D mesons. In D mesons, a charm

quark (c) combines with a quark of different flavor (down, up, strange) and so they are

generally referred to as charm particles. For example, a D0 meson is composed of a charm

quark and an anti-up quark. Two spin 1/2 quarks can combine to give a spin triplet or

singlet combination. D0 particles have spin 0 due to the singlet combination whereas D∗

particles have spin 1 due to the triplet combination. The D∗s are called spin excited mesons.

D mesons have extremely short lifetimes. The mean lifetime of D0 mesons is 410.3 ± 1.5

×10−15 s. The D∗ lifetime is given by the decay width Γ which is related to the mean

lifetime τ by

τ =
h̄

Γc2

where h̄ is Planck’s constant. Table 2.1 summarizes some of the important properties of D

mesons.

Particle Antiparticle Mass Mean Lifetime τ Mass Width Γ
(MeV/c2) ×10−15(s)

D0(cū) D̄0 (c̄u) 1864.1 ± 1.0 410.3 ± 1.5
D+(cd̄) D− (c̄d) 1869.4 ± 0.5 1040 ± 7
D∗0(cū) D̄∗0 (c̄u) 2006.7 ± 0.5 ≤ 2.1 MeV
D∗+(cd̄) D∗− (c̄d) 2010.0 ± 0.5 ≤ 96 ± 4 ± 22 KeV

Table 1.1. Important properties of D mesons (Particle Data Group average values).
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1.3 D0 Decays and Search for D0-D̄0 Mixing

The D mesons are too short-lived to be directly observed using the CDF II detector and

their existence must be inferred from the observations of more stable particles to which they

decay. To get an idea, the transverse distance between the points at which the D0 mesons

are produced and decay can be estimated from transverse momentum, τ and invariant mass.

The CDF experiment at Fermilab requires a minimum transverse momentum pT =5.5 GeV/c

due to online filtering [6]. Assuming total momentum p = pT , we get γ = 3.115 which in

turn gives transverse distance = 0.0365 cm. At CDF II, the beam pipe diameter is 2.2 cm

[7]. In the proton anti-proton collisions, D mesons are produced very close to the collision

point and it can be seen from the above calculation that they decay inside the beam pipe.

Therefore, the reaction is observed in terms of final decay products such as kaons and

pions. The trajectories of these particles are traced back to their origin to obtain the point

at which the D meson decays as shown in Figure 2.1. This idealized representation (effects

of magnetic field are ignored and the drawing is not to scale) of the detector shows the point

at which a D0 particle decays. The invariant mass of fleeting D mesons is then calculated

from the energies and momenta of kaons and pions using statistical methods.

D mesons decay through weak interactions in which W bosons are emitted or absorbed

by constituent quarks. One of the hadronic decay modes has the end products of a kaon

and a pion. Weak interactions also give rise to semileptonic processes in which the final

decay products are neutrinos and other leptons along with hadrons. The weak interactions

which lead to D0-D̄0 mixing can be understood with the idea of “quark mixing” due to

Cabibbo. According to Cabibbo’s hypothesis, d and s quark states combine as

|d′〉 = |d〉cosθC + |s〉sinθC and |s′〉 = |s〉cosθC − |d〉sinθC

where θC is the Cabibbo angle. The idea of d and s quark mixing extended to include the

bottom quark results in the CKM matrix, allowing the mixing between d, s, and b quarks.

Due to Cabibbo quark mixing, the “cdW” vertex in the weak interactions is suppressed

relative to the “csW” vertex by a factor of tanθC. The decays which involve “cdW” vertices

are called “Cabibbo-suppressed” decays. Similarly there are “Cabibbo-favored” decays

which involve “csW” couplings.
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Figure 1.1. Idealized representation of a pp̄ interaction in the transverse plane. The z-axis
is along the direction of the beam pipe and the dotted circle shows the inner radius of the
beam pipe. Short-lived D mesons decay quickly before they can be observed, and their
existence is inferred from their decay products by backtracking the trajectories of kaons
and pions.

The Cabibbo-favored decay is explained at quark level in the following Feynman diagram

(Figure 2.2). The reaction involves a “csW” vertex. The final decay products, ū and s

quarks, combine to give a K− and u and d̄ quarks give a π+. The Cabibbo-favored decay

is also called right-sign (RS) decay. The probability of occurrence of D0 → K−π+ relative

to all decay modes is approximately 5 percent.

�W+

ū

c

ū

s

d̄

u

Figure 1.2. Cabibbo-favored D0 decay. It is also called right sign decay.

The weak interaction for D0 → K+π− involves both the “cdW” and “usW” vertices.

This is a doubly Cabibbo suppressed decay (DCS). It is explained in the following Feynman

diagram (Figure 2.3). The final state products, s̄ and u quarks, give K+ and d and ū

quarks give π−. The DCS decay is also called wrong-sign (WS) decay. The probability of
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occurrence of D0 → K+π− decay is approximately 0.004 percent.

�W+

c

ū

u

s̄

d

ū

Figure 1.3. Direct DCS D0 decay. These decays are called wrong-sign decays.

The D0 can also give K+ π− final states through mixing. The following figure (Fig-

ure 2.4) shows the Feynman diagram for DCS decay through mixing.

�d
W+

W+

d

W+

c

ū

u

s̄
d

ū

Figure 1.4. The D0 meson can also decay through mixing. The quark level Feynman
diagram shows that D0 first decays to D̄0 which in turn decays to K+π−.

Experimentally, D0-D̄0 mixing can be observed in multiple ways. One way is to study

D0 → Kπ decay. It is also possible to study semileptonic decays. In this work, we focus on

D0 → Kπ decay.

The usual method to identify CF and DCS decays is to tag the charged pion in the

decay sequence D∗+ → D0π+ or D∗− → D̄0π−. In the CF decay, the pions from D0 and

D∗ are of the same sign and in DCS decay, they have opposite signs. The mixing is studied

as a ratio of DCS to CF decays. The search is complicated by contributions from direct

DCS decay. Since the two sequences, D0 → D̄0 → K+π− and D0 → K+π− have the same

final state, one needs to separate these two contributions using the time-dependent decay

rates. The time dependent decay rate is discussed in the next section.

1.4 Time Dependent Decay Rate

In this section, we apply basic concepts of quantum mechanics to understand the D0-D̄0

mixing qualitatively. Here we give a brief review of the formalism; a complete treatment of
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D0-D̄0 mixing is discussed in the PDG review [1].

In the following discussion, we shall measure time in the rest frame of the D meson.

Assuming CP is conserved1, at t = 0, i.e. when the particle is produced, the initial mass

eigenstate can be written as a linear combination as below;

|DH〉 =
1√
2
(|D0〉 − |D̄0〉)

|DL〉 =
1√
2
(|D0〉+ |D̄0〉).

At this point, |DH〉 and |DL〉 are simply labels. The inverse of the above equations will

give |D0〉 as a linear combination of |DH〉 and |DL〉. The states evolve according to the

Schrödinger equation. Then, at a later time t,

|D0〉(t) = 1√
2
(|DH〉e−imH t + |D̄L〉e−imLt)

where mH and mL are the rest masses of DH and DL particles. To ensure the exponential

decay, we must multiply the absolute probability ||D0〉(t)|2 by e−t/τ , where τ is the mean

lifetime. This is equivalent to multiplying each mass eigenstate by the factor e−ΓH,Lt/2,

where ΓH and ΓL are the decay widths of |DH〉 and |DL〉 respectively. The equation then

becomes

|D0〉(t) = 1√
2
(|DH〉e−imH te−ΓH t/2 + |D̄L〉e−imLte−ΓLt/2)

We define aα(t) = e−imαte−Γαt/2, where α stands for the subscripts H or L, and write

|D0〉(t) = 1√
2
[aH(t)|DH〉+ aL(t)|D̄L〉]

Let the initial flavor state be |D0〉. To find the time-dependent probabilities of D0 and D̄0

at time t, we define,

A(t) = 1
2 [aH(t) + aL(t)] and Ā(t) = 1

2 [aH(t)− aL(t)],

so that

|D0〉(t) = A(t)|D0〉+ Ā(t)|D̄0〉 and |D̄0〉(t) = A(t)|D0〉 − Ā(t)|D̄0〉
1We assume CP conservation through out this work.
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Then the probability of finding a particle in a state |D̄0〉 is

|Ā(t)|2 =
1
4
[e−ΓH t + e−ΓLt − 2e−(ΓH+ΓL)t/2cos(δmt)]

=
1
4
e−ΓH t[1 + eδΓt − 2e−

1
2
δΓtcos(δmt)]

where δm = mH −mL and δΓ = ΓH − ΓL. It can be seen that a particle initially in state

D0 would transform into D̄0 at a later time t and its amplitude depends on mass difference

δm. This is analogous to K0-K̄0 or B0-B̄0 mixing. However, unlike K and B mesons, the

mass difference δm is very small in the case of D mesons and so the oscillations are very

slow.

Two dimensionless quantities play important role in the theory and experiments,

x =
δm

Γ
and y =

δΓ
2Γ

,

where Γ is the average width (ΓH+ΓL
2 ).

Following the formalism discussed in the PDG review [1, 2, 3], the time-dependent WS

decay rate relative to the integrated RS decay rate is given by

r(t) =
1

N0
RS

dNWS(t)
dt

= e−Γt[RD +
√

RDy′Γt +
(x′2 + y′2)

4
(Γt)2], (1.1)

where N0
RS is the total number of RS decays integrated over all time. NWS(t) is the number

of un-decayed wrong sign events at time t. x′ and y′ are related to x and y by

x′ = xcosδ + ysinδ, y′ = −xsinδ + ycosδ.

δ is the strong phase difference between WS and RS amplitudes. In equation (1.1), the

first term RD is due to the DCS amplitude and is determined experimentally. The world

average value of RD is 0.362 ± 0.029 % [1]. The middle term is due to interference between

the two processes and the last term due to mixing [3].

The time integrated WS to RS ratio is then given by
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R =
∫ ∞

0
r(t)dt = RD +

√
RDy′ +

x′2 + y′2

2
. (1.2)

Hence, large values of x′ and y′ correspond to large mixing.

1.5 Past Results and Current Research

Various experiments have measured RD, x′ and y′ of equation (1.2) to obtain 95% confidence

level intervals on these parameters. The results of two experiments, the BABAR detector at

the PEP-II e+e− collider and the Belle detector at the KEKB e+e− collider, are summarized

in Table 2.2. These experiments construct the D0 signal from kaons and pions and use

the pion from D∗+ to identify WS decays. The general strategy to determine the mixing

parameters is to fit the RS and WS data simultaneously. These experiments do this analysis

both by assuming CP conservation and allowing for CP violation. The 95% CL contours

for the BABAR experiment are shown in Figure 2.5.

Experiment WS decays Parameter 95% CL interval
(×10−3)

BELLE 845 ± 40 x′2 x′2 ≤ 0.81
90 fb−1 y′ -8.2 ≤ y′ ≤ 16

RD 2.7 ≤ RD ≤ 4.0
BABAR 430 x′2 x′2 ≤ 2.0
57.1 fb−1 y′ -27 ≤ y′ ≤ 22

RD 2.4 ≤ RD ≤ 4.9

Table 1.2. Summary of the results from the two experiments with no CP violation. The
95% CL intervals are obtained using maximum likelihood fit.

A large number of WS decays with less background can give better results. The Belle

collaboration (with 430 WS decays) and the BABAR collaboration (with 845 WS decays)

have reported the best measurements of mixing parameters so far. The CDF collaboration

has reported 2100 WS decays at the integrated luminosity of 0.35 fb−1 in pp̄ collisions with

center of mass energy
√

s = 1.96 TeV. To incorporate the background, we calculate an

equivalent wrong-sign signal using N0
WS = [NS/

√
NS + NB]2, where NS is the WS signal

(=2100) and NB is the background. From the D0 signal plotted as a function of mass
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Figure 1.5. 95% CL regions from the BABAR experiment, reproduced from [5] .

difference ∆m = m(K+π−π+)−m(K+π−)−m(π+)[6], we take NB = 6950. This gives us

the equivalent number of wrong-sign events equal to 650.

In this work, we estimate the accuracy for measuring x′ and y′ using the CDF detector,

under some simplifying assumptions. We simulate the ratio of WS to RS decay rates using

equations (1.1) and (1.2), with WS decays as estimated above and no CP violation. We

construct the 95% confidence interval contour for x′2 and y′ from the fit. In the next chapter

we discuss the simulation.
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CHAPTER 2

SIMULATION OF TIME DEPENDENT DECAY RATE RATIO

2.1 Introduction

In this chapter, we simulate the ratio of wrong-sign decay rate to right-sign decay rate. The

time dependent WS decay rate relative to the integrated RS decay rate is given by equation

(1.1). For a small time interval ∆t,

N(∆t) ' −dN(t)
dt

∆t.

With this and expressing the time in units of τ , we write

NWS(t) = N0
RSet(RD +

√
RDy′t +

x′2 + y′2

4
t2)∆t. (2.1)

From equations (1.2) and (2.2) we write the WS and RS decay rates in terms of the

total number of WS decays (N0
WS) as follows.

NWS(t) =
N0

WS

RD +
√

RDy′ + x′2+y′2
2

e−t(RD +
√

RDy′t +
x′2 + y′2

4
t2)∆t (2.2)

and

NRS(t) =
N0

WS

RD +
√

RDy′ + x′2+y′2
2

e−t∆t. (2.3)

The equations (2.3) and (2.4) are used to simulate the time dependent ratio of WS to RS

decay rates.

2.2 Simulation Technique

We use the random number generator in the ROOT system to generate the distributions.

The wrong-sign distribution is generated using equation (2.4) in 50 bins and for the time
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range 0 to 10. We take the total number of wrong sign events N0
WS = 650, and set the

values of x′2 and y′ from Figure 2.5 to 0.5 × 10−3 and 0.0 respectively. The fit function is

the same as equation (2.3) with x′2 and y′ treated as adjustable parameters. Similarly, we

generate the right-sign distribution using equation (2.4). These distributions are shown in

Figures 3.1 and 3.2. We take the ratio of these two distributions to plot a third histogram.

We fit this distribution with a polynomial of second order. Figure 3.3 shows this histogram.

The box in the figure shows χ2, the goodness-of-fit. The parameter ‘ndf’ in the box stands

for “number of degrees of freedom” which is equal to the number of data points minus the

number of adjustable parameters of the fit function. The second parameter in the statistics

box ‘Prob’ stands for probability and is related to the χ2 distribution.

t
0 1 2 3 4 5 6 7 8 9 10

(t
)

W
S

N

0

100

200

300

400

500

600

(t)WSN

Figure 2.1. Simulated WS decay rate from equation (2.3). The time is in units of proper
lifetime of D0 mesons and the fit function is the same as equation (2.3) with x′2 and y′ as
adjustable parameters.

2.3 Confidence Level Contour

In the polynomial fit, the function p0 + p1t + p2t
2 is applied to the simulated r(t) distri-

bution. The first parameter p0 corresponds to RD and the error in p0 gives the error in

RD. The second parameter p1 corresponds to
√

RDy′. The error in y′ can be obtained
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t
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160
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(t)RSN

Figure 2.2. Simulated RS decay rate using equation (2.4). The curve is the exponential fit.
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Figure 2.3. The ratio of wrong-sign to right-sign decay rates, corresponding to r(t) of
equation (2.1). The fit function is a polynomial of second order.
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by differentiating the equation y′ = p1/
√

RD with respect to p1. We get δy′ = δp1/
√

RD.

Similarly, the third parameter p2 is equal to (x′2 + y′2)/4. Differentiating the equation for

x′2 with respect to p2 and y′ gives the error in x′2, δ(x′2) =
√

16δp2
2 + 4y′2δy′2. We obtain

the equation of an ellipse using terms from the 3× 3 error matrix, corresponding to a 95%

confidence interval, as
x2

σ2
x

+
y2

σ2
y

− 2ρxy

σxσy
=

(1− ρ2)(1.642)
2

,

where x corresponds to x′2, y corresponds to y′, and σx and σy are the errors in x′2 and y′,

respectively. ρ is called the correlation coefficient and is given by ρ = covariance(x,y)/σxσy

[9]. The factor 1.642/2 gives the 95% confidence interval [1]. Figure 3.4 shows the ellipse

plotted in the x′2 − y′ plane. The ROOT programs for this analysis are given in Appendix

C.

2x’
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-310×
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-0.01

-0.005

0

0.005

0.01

95% C.L.

Figure 2.4. 95% C.L. with no CP violation.

2.4 Result and Conclusion

In summary, we estimated the accuracy of the CDF II detector for measuring the mixing

parameters. We used WS decay events observed in the CDF Run II experiment at
√

s = 1.96

TeV and 0.35 fb−1, equal to 2100. To incorporate the background, we took the total number



14

of wrong-sign events equal to 650. We simulated the ratio of wrong-sign decay rate to right-

sign decay rate and fit the distribution to a polynomial of second order. From the error

matrix, we obtained the 95% C.L. ellipse.

We find x′2 ≤ 0.6 × 10−3 and −0.0035 ≤ y′ ≤ 0.0035. The result is considerably more

restrictive in x′ as compared to the results from the BABAR collaboration and the Belle

collaboration (Table 2.2). With continuous improvements in the CDF Run II luminosity

and in calibration and analysis softwares, it is possible to obtain the world’s best limits on

the mixing parameters.
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CHAPTER 3

DECAY TIME DISTRIBUTION

3.1 Introduction

In this chapter, we validate the CDF data by analyzing the lifetime distribution of D0

mesons, which is necessary to measure mixing. The mean lifetime of D0 mesons was precisely

measured in the past experiments. The PDG world average is τ = 410.3±1.5×10−15 seconds

or cτ = 0.01230± 0.000045 cm, where c is the speed of light.

3.2 Data Taking and Online Filtering

The Collider Detector at Fermilab is a multi-purpose experiment to study proton anti-

proton collisions at the Fermilab Tevatron collider with center of mass energy
√

s = 1.96

TeV [7, 10, 12]. In Run II, the Tevatron operates with 36 bunches of protons and anti-

protons each, with a bunch crossing interval of 396 ns. In online filtering, the events are

selected by applying constraints to certain quantities associated with particle tracks, such

as four momentum (pµ), azimuthal angle (φ), polar angle (θ), and y-intercept (y0). In

the cylindrical coordinate system of the CDF detector, the origin is at the center of the

detector and the z-axis is along the direction of the beam. The azimuthal angle is the

angle between the track and the x-axis in the transverse plane and the polar angle is the

angle between the track and the z-axis. From the track parameters, other quantities are

calculated. These include transverse momentum (pT ), impact parameter (d0), invariant

mass (m), and the opening angle between the two tracks in the transverse plane (∆φ). The

transverse momentum is the component of momentum vector in the transverse direction to

the beam (the x-y plane). The impact parameter d0 is the distance between the particle

track (which is a helix due to the presence of magnetic field in the detector) and the origin

at closest distance of approach and is given by the formula
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d0 =
ẑ · (r× pT)

|pT| ,

where r is the vector pointing from the origin to the helix at minimum distance of approach

and ẑ is the unit vector along the z-axis. The invariant mass is defined by m2c4 = E2−p2c2,

where E and p are the total energy and momentum.

Hadronic decays of heavy flavor particles are acquired with online filters as shown in

Table 4.1.

Quantity Filters requirement
χ2 ≤ 25
d0 0.1mm ≤ d0 ≤ 1.0mm
pT ≥ 2.04 GeV
∆φ 0o ≤ ∆φ ≤ 135o

Scalar sum of pT s of tracks ≥ 5.5 GeV

Table 3.1. Examples of online filtering.

3.3 Data Analysis

The ROOT system is used for data analysis. It stores the data in a file format called a

tree file, which has extension .root. The data is stored in the form of a tree structure,

with branches and leafs [11]. Typically the variables are defined as leafs. For example, the

transverse momentum of a D∗ is stored in a leaf called DS PT. Each leaf is an array of a

certain data type such as integer, float, double, etc. Appendix A describes the ROOT file

used for decay time distribution analysis.

3.3.1 Standard Cuts

The D0 signal is reconstructed from kaons and pions. The initial cuts are applied to reduce

the combinatorial background from improper combination of tracks and from mis-identified

D0 tracks. Table 4.2 lists the standard cuts optimized to increase the DCS significance for

the mixing analysis [6]; the same cuts are used for this work. The term χxy in the table
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is the goodness-of-fit, Lxy is the distance between the z-axis and the vertex (the point at

which two or more tracks meet) and σ is the error in the Lxy measurement.

Parameter Cut
χxy for D∗ ≤ 10

Lxy/σ for D∗ ≤ 15
Lxy/σ for D0 ≥ 5

Impact parameter for D0 ≤ 0.01 cm

Table 3.2. Standard cuts.

3.3.2 Preliminary Analysis

We first look at the mass vs ct scatter plot for D0 particles (Figure 4.1). It is a two

dimensional histogram with mass of the D0 on the x-axis and ct on the y-axis. There are

100 bins on each axis. There is no data beyond the range of 1.7 GeV/c2 to 2.0 GeV/c2

due to offline filtering. Also, we see that the particle density decreases rapidly in the ct

range from 0.0 cm to 0.25 cm, as the D0 mesons obey the exponential decay law. For our

analysis of the decay time distribution, we choose the mass range between 1.84 GeV/c2 and

1.88 GeV/c2 and the ct range between 0.0 cm and 0.20 cm, where we expect to find the

maximum signal.

To investigate further, we divide the ct range 0.0 cm to 0.20 cm into five equal parts and

plot the mass histogram for each of these regions. Figure 4.2 shows all these histograms.

3.3.3 Removing Trigger Bias

Figure 4.3 is the ct(D0) distribution with the standard cuts applied. This distribution does

not represent exponential decay due to trigger bias. In order to remove the trigger bias

(approximately) and retain only the exponential part, a minimum value of ct (=0.038 cm)

is subtracted. Figure 4.4 shows the ct(D0) distribution with trigger bias removed. This

histogram is plotted for the mass range of 1.865 ± 0.030 GeV/c2. It has 25 bins of bin size

0.004 cm each. The standard exponential fit is applied. The error bars correspond to the

square root of the number of entries in each bin.
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Figure 3.1. ct(D0) vs mass(D0) scatter plot. D0 mass is on the x-axis and ct on the y-axis.
The scatter plot shows the data points concentrated between the mass range of 1.84 GeV/c2

and 1.88 GeV/c2. The data points are dense in the ct range between 0.00 cm and 0.1 cm.

3.4 Background Subtraction

In order to estimate the background in the mass distribution for D0 mesons, we examine

the histogram (a) in Figure 4.2. It can be divided into three parts. The central part of the

histogram shows the peak at approximately 1.865 GeV/c2, which is close to the mass of

D0 mesons and hence represents the D0 signal. The data on the left and right sides of this

interval is from the other sources of kaons and pions. Thus, the mass distribution contains

signal plus background. We estimate the background in the central region as approximately

equal to the average of the integrals of the left and right side distributions. The ROOT

system can give the integral of a selected range of a distribution. Using this functionality, we

calculate the background as follows. We divide the total distribution into three equal mass

ranges: 1.775 GeV/c2 to 1.835 GeV/c2 (range 1), 1.835 GeV/c2 to 1.895 GeV/c2 (range 2)

and 1.895 GeV/c2 to 1.955 GeV/c2 (range 3). Each range has 25 bins in it. We take the

sum of integrals of range 1 and range 2 and divide it by 50, to get the average background

per bin. The total background in the range 2 is then approximately equal to 25 times the

average background per bin. The ROOT program to do this is given in Appendix B. We
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Figure 3.2. D0 mass distribution for various ct intervals. (a) 0.00 cm ≤ ct ≤ 0.04 cm. (b)
0.04 cm ≤ ct ≤ 0.08 cm. (c) 0.08 cm ≤ ct ≤ 0.12 cm. (d) 0.12 cm ≤ ct ≤ 0.16 cm. (e) 0.16
cm ≤ ct ≤ 0.20 cm. The vertical scale is events per 2 MeV/c2.
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Figure 3.3. Measured ct(D0) for the mass range 1.835 GeV/c2 to 1.895 GeV/c2. The odd
shaped non-exponential distribution is due to trigger bias.
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Figure 3.4. The ct distribution for the mass range 1.835 GeV/c2 to 1.895 GeV/c2, with
trigger bias removed. The curve shows the exponential fit.
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find that the background in the central mass range is approximately 180 entries.

3.5 Mean Lifetime

The background for each of the 25 bins of the ct distribution is equal to the average of

number of entries in each bin of range 1 and range 3. The background subtracted ct

distribution is shown in Figure 4.5. We apply the exponential fit given by the exponential

decay law,

N(t) = N0e
−λt, (3.1)

where N(t) is the number of remaining particles at time t, N0 is the proportionality constant

and λ is called the disintegration constant which is related to the mean lifetime by the

relation τ = 1/λ and has unit of inverse time. The fit parameter λ gives the mean lifetime.

The box in the figure shows the fit parameters. The first parameter χ2 is the goodness-

of-fit, in this case it is given by

χ2 =
25∑

i=1

[
N −Npredicted

σ
]2

where N is the number of entries, Npredicted is the number predicted from the fit function

and σ is the error equal to
√

N . The parameters ndf, Prob, N0 and, λ, are as defined

earlier. Small probability indicates a poor fit. To improve the quality of fit, we set σ =
√

Nsignal + Nbackground instead of σ =
√

Nsignal. This gives χ2/ndf = 31.77/16 and Prob

= 0.01071, which is still a poor fit. Further investigation is required, but for the current

analysis, we use this fit.

We calculate the mean lifetime τ from the fit parameters as follows. From τ = 1
λ , if the

error in λ is δλ then the error in the lifetime τ is

δτ =
dτ

dλ
δλ =

1
λ2

δλ,

and so the lifetime τ is

τ =
1
λ
± 1

λ2
δλ.
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Figure 3.5. RS D0 lifetime in cτ for the mass range 1.835 GeV/c2 to 1.895 GeV/c2, with
background subtraction.

From the measured fit parameters (Figure 4.5), λ = 77.04± 4.48, and so,

τ = 1
77.04 ± 1

77.042 × 4.48 = 0.01298± 0.00075 cm.

3.6 Conclusion

In summary, we analyzed the decay time distribution of D0 mesons using the CDF data. The

data was collected with 0.35 fb−1. After reducing the background, we applied an exponential

fit and measured the decay constant λ. From λ we calculated the mean lifetime. We find

that the mean lifetime of D0 mesons cτ = 0.01298±0.00075 cm which is comparable to the

PDG world average 0.01230± 0.000045 cm. This result can be refined further by including

systematic errors. The result shows that the CDF data can be used for mixing analysis.
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Appendix A

DESCRIPTION OF LEAFS

The ROOT file used for the decay time distribution analysis is called “dstar 01 1.root”.
In this file, the folder called DFINDER under the module name “DStarD0p1AnalModule”,
has all the leafs required for the D0 decay time analysis. The following is the list of leafs
with description.

Leaf name Description
DS Chi2xy χ2

xy(D
∗)

DS Chi2 χ2(D∗)
DS C2xy D0 χ2

xy(D
0)

DS C2 D0 χ2(D0)
DS Mass right-sign m(D∗)
DS Mass D0 right sign m(Kπ)
WS Mass wrong-sign m(D∗)
WS Mass D0 wrong-sign m(Kπ)
DS Pt transverse momentum of D∗

DS Pt D0 transverse momentum of D0

DS Ip D0 impact parameter
DS Lxy distance between z-axis and the vertex
DS eLxy error in Lxy for D∗

DS Lxy D0 Lxy for D0

DS eLxy D0 error in Lxy for D0

DS ct decay time for D∗ in cm
DS ct D0 decay time for D0 in cm
DS px x component of momentum vector for D∗

DS py y component of momentum vector for D∗

DS pz z component of momentum vector for D∗

DS Ptot total momentum for D∗

DS px D0 x component of momentum vector for D0

DS py D0 y component of momentum vector for D0

DS pz D0 z component of momentum vector for D0

DS Ptot 0 total momentum for D0

Table A.1. Description of Leafs in DStar 01 1.root file.
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Appendix B

ROOT/C++ Programs for Decay Time Analysis

B.1 ROOT Program to Generate ScatterPlot

/***************************************************************

* Module Name: scatterplot.c

* Author: Nagesh Kulkarni

* Date: June 2005

* Last modified: April 3, 2006

* Copyright:

*

* Purpose: This program generates the mass vs ct scatter plot.

*

****************************************************************/

void scatterplot()

{

gROOT->Reset();

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

TChain chain("DStarD0piAnalModule/DFINDER");

chain.Add("dstar_01_1.root");

gStyle->SetOptStat(kFALSE);

TCut cut1("DS_Chi2xy <= 12");

TCut cut2("abs(DS_eLxy) <= 15");

TCut cut3("abs(D0[2])<0.08");

TCut cut4("DxPPi[2] <2.25");

TCut cut5("DS_Lxy_D0/DS_eLxy_D0 >= 5");

TCut cut6("DS_ct_D0 > 0.00");

TCut cut7("DS_ct_D0 < 0.04");

TH2F* h = new TH2F("Scatter plot of D0_ct Vs D0_Mass",""

,100,1.7,2.0,100,0.0,0.25);

h->SetFillColor(kGreen);

h->SetLabelSize(0.03,"x");

h->GetXaxis()->SetTitle("D^{0} Mass (GeV/c^{2})");

h->GetYaxis()->SetTitle("ct (cm)" );

h->GetYaxis()->SetTitleOffset(1.20);

chain.Draw("DS_ct_D0:DS_Mass_D0 >> Scatter plot of D0_ct Vs D0_Mass",

cut1 + cut2 + cut3 + cut4 + cut5);

}

B.2 Program to Generate D0 Mass for a ct range

/***************************************************************

* Module Name: D0Massfor_ct_range.c

* Author: Nagesh Kulkarni

* Date: June 2005
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* Last modified: April 3, 2006

* Copyright:

*

* Purpose: This program generates the D0 mass distribution for.

* various ct intervals.

*

****************************************************************/

D0Massfor_ct_range()

{

// Clean the global objects.

gROOT->Reset();

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

// The required leafs for data analysis of D0 mesons are in the folder DFINDER.

TChain chain("DStarD0piAnalModule/DFINDER");

chain.Add("dstar_01_1.root");

gStyle->SetOptStat(kFALSE);

// Apply standard cuts.

TCut cut1("DS_Chi2xy <= 12");

TCut cut2("abs(DS_eLxy) <= 15");

TCut cut3("abs(D0[2])<0.08");

TCut cut4("DxPPi[2] <2.25");

TCut cut5("DS_Lxy_D0/DS_eLxy_D0 >= 5");

// Generate all histograms.

TString llimit = "0.04";

TString ulimit = "0.08";

TString s1 = "DS_ct_D0 >" + llimit;

TString s2 = "DS_ct_D0 <" + ulimit;

TCut cut6(s1);

TCut cut7(s2);

TCut cut_1("DS_ct_D0 > 0.00");

TCut cut_2("DS_ct_D0 < 0.04");

TCut cut_3("DS_ct_D0 > 0.04");

TCut cut_4("DS_ct_D0 < 0.08");

TCut cut_5("DS_ct_D0 > 0.08");

TCut cut_6("DS_ct_D0 < 0.12");

TCut cut_7("DS_ct_D0 > 0.12");

TCut cut_8("DS_ct_D0 < 0.16");

TCut cut_9("DS_ct_D0 > 0.16");

TCut cut_10("DS_ct_D0 < 0.20");

Int_t numberofbins = 150;

Axis_t xmin = 1.7;

Axis_t xmax = 2.0;

Float_t tempfloat = (xmax - xmin)*1000/numberofbins;

cout << "One bin =" << tempfloat << "MeV" << "\n";

TString numofevents;

numofevents += tempfloat;

TString name = "DStar_Mass_D0";

TString title = "RS D^{0} Mass with" + llimit + "< ct <" + ulimit;

TString hist = "DS_Mass_D0";

TString units = "MeV/c^{2}";

//Fill the chain to draw

c = new TCanvas ("c","My canvas",200,10,800,700);

c->Divide(2,3);

TH1F* h1 = new TH1F("h1","a",numberofbins,xmin,xmax);
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TH1F* h2 = new TH1F("h2","b",numberofbins,xmin,xmax);

TH1F* h3 = new TH1F("h3","c",numberofbins,xmin,xmax);

TH1F* h4 = new TH1F("h4","d", numberofbins,xmin,xmax);

TH1F* h5 = new TH1F ("h5","e", numberofbins,xmin,xmax);

h1->SetFillColor(kGreen);

h1->GetXaxis()->SetTitle("D^{0} Mass (GeV/c^{2})");

h2->SetFillColor(kGreen);

h2->GetXaxis()->SetTitle("D^{0} Mass (GeV/c^{2})");

h3->SetFillColor(kGreen);

h3->GetXaxis()->SetTitle("D^{0} Mass (GeV/c^{2})");

h4->SetFillColor(kGreen);

h4->GetXaxis()->SetTitle("D^{0} Mass (GeV/c^{2})");

h5->SetFillColor(kGreen);

h5->GetXaxis()->SetTitle("D^{0} Mass (GeV/c^{2})");

c->SetGridx();

c->SetGridy();

c->cd(1);

chain.Draw(hist + ">>" + "h1", cut1 + cut2 + cut3 + cut4 + cut5 + cut_1 + cut_2);

c->cd(2);

chain.Draw(hist + ">>" + "h2", cut1 + cut2 + cut3 + cut4 + cut5 + cut_3 + cut_4);

c->cd(3);

chain.Draw(hist + ">>" + "h3", cut1 + cut2 + cut3 + cut4 + cut5 + cut_5 + cut_6);

c->cd(4);

chain.Draw(hist + ">>" + "h4", cut1 + cut2 + cut3 + cut4 + cut5 + cut_7 + cut_8);

c->cd(5);

chain.Draw(hist + ">>" + "h5", cut1 + cut2 + cut3 + cut4 + cut5 + cut_9 + cut_10);

}

B.3 Program for Decay Time Distribution

/***************************************************************

* Module Name: DecayTime.c

* Author: Nagesh Kulkarni

* Date: June 2005

* Last modified: April 3, 2006

* Copyright:

*

* Purpose: This program generates Decay time distribution.

*

****************************************************************/

void DecayTime()

{

/*

This program is to generate histogram for ct distribution.

We create three ’ct histograms’ for the following ranges of masses.

ct1 for m(D0) = 1.775 to 1.835 GeV

ct2 for m(D0) = 1.835 to 1.895 GeV

ct3 for m(D0) = 1.895 to 1.955 GeV

Each of the ct histogram has 25 bins in it.

To subtract background we subtract average of bincontents of ct1

and ct3 from the bincontent of ct2

Then generate ct4 as a ct distribution without background

The same program can be used to generate with bkg and bkg

subtracted histograms, by just toggling the integer bkgsubtract .
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*/

gROOT->Reset();

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

TChain chain("DStarD0piAnalModule/DFINDER");

chain.Add("dstar_01_1.root");

gStyle->SetOptStat("");

gStyle->SetOptFit(1111);

TCut cut1("DS_Chi2xy <= 10");

TCut cut2("abs(DS_eLxy) <= 15");

TCut cut3("abs(D0[2])<0.056");

TCut cut4("DxPPi[2] <2.25");

TCut cut5("DS_Lxy_D0/DS_eLxy_D0 >= 4");

TCut cut6("abs(DS_Ip_D0)< 0.01");

TCut cut7("DxPK[0] < 1.2 ");

TCut cut_1("DS_Mass_D0 > 1.775");

TCut cut_2("DS_Mass_D0 < 1.835");

TCut cut_3("DS_Mass_D0 > 1.835");

TCut cut_4("DS_Mass_D0 < 1.895");

TCut cut_5("DS_Mass_D0 > 1.895");

TCut cut_6("DS_Mass_D0 < 1.955");

TH1F* ct2 = new TH1F("ct2","",25,0.000,0.1);//central mass range

ct2->GetXaxis()->SetTitle("ct (cm)");

ct2->GetYaxis()->SetTitle("Events/0.004 cm");

ct2->GetXaxis()->SetLabelSize(0.04);

TH1F* ct1 = new TH1F("ct1","",25,0.00,0.1);//Left mass range

TH1F* ct3 = new TH1F("ct3","",25,0.00,0.1);//Right mass range

//Fill these histograms with real data.

chain.Draw("DS_ct_D0 - 0.038 >> ct1",cut1 + cut2 + cut3 + cut4

+ cut5 + cut6 + cut7 + cut_1 + cut_2);

chain.Draw("DS_ct_D0 - 0.038 >> ct2",cut1 + cut2 + cut3 + cut4

+ cut5 + cut6 + cut7 + cut_3 + cut_4);

chain.Draw("DS_ct_D0 - 0.038 >> ct3",cut1 + cut2 + cut3 + cut4

+ cut5 + cut6 + cut7 + cut_5 + cut_6);

TH1F* ct4 = new TH1F("ct4","",25,0.00,0.1);

//Central mass range-this will be filled with bkg subtracted data .

ct4->SetLabelSize(0.02,"x");

ct4->GetXaxis()->SetTitle("ct (cm)");

ct4->GetYaxis()->SetTitle("Events/0.004 cm");

ct4->GetXaxis()->SetLabelSize(0.04);

//ct4->SetFillColor(kBlue);

Float_t N1,Nav;

for(Int_t i =1; i<26; i++)

{

N1 = ct2->GetBinContent(i);

Nav = ( ct1->GetBinContent(i) + ct3->GetBinContent(i))/2;

ct4->SetBinContent(i,N1-Nav);

}
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Int_t bkgsubtract = 0;//0 means no subtraction

if(bkgsubtract ==0)

{

gStyle->SetOptStat(kFALSE);

gStyle->SetOptFit(kFALSE);

f1 = new TF1("f1","[0]*TMath::Exp(-[1]*x)",0.00,0.09);

f1->SetParameter(0,170);

f1->SetParameter(1,80);

ct2->Fit("f1","R + I");

ct2->Draw("e");

}

else

{

f1 = new TF1("f1","[0]*TMath::Exp(-[1]*x)",0.00,0.09);

f1->SetParameter(0,170);

f1->SetParameter(1,80);

f1->SetParName(0,"N_{0}");

f1->SetParName(1,"#lambda");

ct4->Fit("f1","R + I");

ct4->Draw("e");

}

}
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Appendix C

ROOT/C++ programs for Simulation of D0 − D̄0 Mixing

C.1 Program to Generate Wrong-sign Distribution

/***************************************************************

* Module Name: NWS.c

* Author: Nagesh Kulkarni

* Date: June 2005

* Last modified: April 3, 2006

* Copyright:

*

* Purpose: This program generates wrong-sign distribution.

*

****************************************************************/

void NWS()

{

gROOT->Reset();

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

c1->SetFillColor(18);

//define these variables for readability.

Float_t xmin = 0.0;

Float_t xmax = 10.0;

Int_t bins = 50;

Float_t binwidth = (xmax-xmin)/bins;

Float_t xprime_sq = 0.5/1000;

Float_t yprime = 0.00;

Float_t otherterms = sqrt(0.0036)*yprime + (xprime_sq + yprime*yprime)/2;

//define formula for N_WS(t).

//we use FixParameter() function because TF1(--)

//does not allow variables.

//It takes only constant and x as only one variable.

f1 = new TF1("f1","(650/(0.0036 + [2] ))*exp(-x)*(0.0036 +

sqrt(0.0036)*[1]*x + (([0] + [1]*[1])/4)*x*x)", xmin,xmax);

f1->FixParameter(0,xprime_sq);

f1->FixParameter(1,yprime);

f1->FixParameter(2,otherterms);

//Generate random distribution for N_WS(t) using f1.

TH1D* h1 = new TH1D("h1","N_{WS}(t)",bins,xmin,xmax);

cout << "bandwidth =" << binwidth << endl;

cout << "Integral =" << f1->Integral(xmin,xmax) << endl;

Float_t randomh1 = f1->Integral(xmin,xmax);

randomh1 = randomh1/binwidth;

cout << "randomh1 =" << randomh1 << endl;

h1->FillRandom("f1",randomh1);

//Fit the distribution using the same fit function

f2 = new TF1("f2","(650/(0.0036 + [2] ))*exp(-x)

*(0.0036 + sqrt(0.0036)*[1]*x + (([0] + [1]*[1])/4)*x*x)", xmin,xmax);

f2->SetParameter(0,xprime_sq);

f2->SetParameter(1,yprime);

f2->FixParameter(2,otherterms);
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f2->SetParName(0,"x’");

f2->SetParName(1,"y’");

gStyle->SetOptStat(kFALSE);

gStyle->SetOptFit(kFALSE);

h1->GetXaxis()->SetTitle("t");

h1->GetYaxis()->SetTitle("N_{WS}(t)");

h1->Fit("f2","B + R + I");

h1->Draw("E");

Int_t n = h1->Integral()*binwidth;

cout << "Number of events=" << n << endl;

}

C.2 Program to Generate Right-sign Distribution

/***************************************************************

* Module Name: NRS.c

* Author: Nagesh Kulkarni

* Date: June 2005

* Last modified: April 3, 2006

* Copyright:

*

* purpose: This program generates right-sign distribution.

*

****************************************************************/

void NRS()

{

gROOT->Reset();

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

c1->SetFillColor(18);

//define these variables for readability.

Float_t xmin = 0.0;

Float_t xmax = 10.0;

Int_t bins = 50;

Float_t binwidth = (xmax-xmin)/bins;

Float_t xprime = 0.5/1000;

Float_t yprime = 0.00;

Float_t otherterms = sqrt(0.0036)*yprime + (xprime*xprime + yprime*yprime)/2;

//formula for N_RS(t)

f1 = new TF1("f1","(650/(0.0036 + [0]))*exp(-x)", xmin,xmax);

f1->FixParameter(0,otherterms);

//Generate random distribution for N_RS(t) using f1

TH1D* h2 = new TH1D("h2","N_{RS}(t)",bins,xmin,xmax);

Float_t randomh1 = f1->Integral(xmin,xmax);

randomh1 = randomh1/binwidth;

h2->FillRandom("f1",randomh1);

f2 = new TF1("f2","[0]*TMath::Exp(-[1]*x)",xmin,xmax);

f2->SetParameter(0,(650/(0.0036 + otherterms)));

f2->SetParameter(1,1.0);

f2->SetParName(0,"N_{0}");

f2->SetParName(1,"#lambda");

gStyle->SetOptStat("");

gStyle->SetOptFit(1111);
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h2->GetXaxis()->SetTitle("t");

h2->GetYaxis()->SetTitle("N_{RS}(t)");

h2->Fit("f2","B + R + I + Q");

h2->Draw("E");

Int_t n = h2->Integral()*binwidth;

cout <<"Constant=" << (650/(0.0036 + otherterms)) << endl;

cout << "Number of events=" << n << endl;

}

C.3 Program to Generate WS/RS Ratio

/***************************************************************

* Module Name: Rt.c

* Author: Nagesh Kulkarni

* Date: June 2005

* Last modified: April 3, 2006

* Copyright:

*

* Purpose: This program generates r(t), the WS/RS ratio.

*

****************************************************************/

void Rt()

{

// Reset global variables.

gROOT->Reset();

Float_t xmin = 0.0;

Float_t xmax = 10.0;

Float_t xprime_sq =0.5/1000;

Float_t yprime = 0.00;

Int_t bins = 50;

Float_t binwidth = (xmax-xmin)/bins;

Float_t otherterms = sqrt(0.0036)*yprime + (xprime_sq + yprime*yprime)/2;

//Formula for wrong-sign distribution

f1 = new TF1 ("f1", "(650/(0.0036 + [2]))

*exp(-x)*(0.0036 +

sqrt(0.0036)*[1]*x +

(([0] + [1]^2)/4)*x*x) ",xmin, xmax);

f1->FixParameter(0,xprime_sq);

f1->FixParameter(1,yprime);

f1->FixParameter(2,otherterms);

//Formula for right-sign distribution

f2 = new TF1 ("f2", "(650/(0.0036 + [0]))*exp(-x)",xmin, xmax);

f2->FixParameter(0,otherterms);

TH1D* h1 = new TH1D("h1","T(t)(ws)",bins,xmin,xmax);

TH1D* h2 = new TH1D("h2","T(t)(rs)",bins,xmin,xmax);

TH1D* h3 = new TH1D("h3","R(t)",bins,xmin,xmax);

// Generate WS and RS distributions

Float_t randomh1,randomh2,h1Integral,h2Integral;

randomh1 = f1->Integral(xmin,xmax);

randomh2 = f2->Integral(xmin,xmax);

randomh1 = randomh1/binwidth;

randomh2 = randomh2/binwidth;

h1->FillRandom("f1",randomh1);

h2->FillRandom("f2",randomh2);
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h3->Sumw2();

// Take a ratio

h3->Divide(h1,h2);

h3->GetXaxis()->SetTitle("t");

h3->GetYaxis()->SetTitle("R(t)");

// fit using polynomial of second order

f3 = new TF1("f3","pol2",xmin,xmax);

f3->FixParameter(0,0.0036);

f3->SetParameter(1,sqrt(0.0036)*yprime);

f3->SetParameter(2,(xprime_sq + yprime*yprime)/4);

h3->SetMaximum(0.05);

h3->SetMinimum(0.00);

//Draw the histogram.

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

c1->SetFillColor(18);

gStyle->SetOptFit(1100);

gStyle->SetOptStat("");

h3->Fit("f3","B + R + I");

}

C.4 Program to Generate 95% C.L. Ellipse

/***************************************************************

* Module Name: CL.c

* Author: Nagesh Kulkarni

* Date: June 2005

* Last modified: April 3, 2006

* Copyright:

*

* Purpose: This program generates 95% CL ellipse in x’^2- y’ plane.

*

****************************************************************/

void CL()

{

// Clean all objects.

gROOT->Reset();

// The following variables are required in the equations.

Float_t xmin = 0.0;

Float_t xmax = 10;

Float_t xprime_sq = 0.5/1000;

Float_t yprime = 0.00;

Int_t bins = 10;

Float_t binwidth = (xmax-xmin)/bins;

Float_t otherterms = sqrt(0.0036)*yprime + (xprime_sq + yprime*yprime)/2;

//Equation (2.3) used to generate the wrong-sign distribution.

f1 = new TF1 ("f1", "(650/(0.0036 + [2]))

*exp(-x)*(0.0036 + sqrt(0.0036)*[1]*x +

(([0] + [1]^2)/4)*x*x) ",xmin, xmax);

f1->FixParameter(0,xprime_sq);

f1->FixParameter(1,yprime);

f1->FixParameter(2,otherterms);

// Equation (2.4) used to generate right-sign distribution
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f2 = new TF1 ("f2", "(650/(0.0036 + [0]))*exp(-x)",xmin, xmax);

f2->FixParameter(0,otherterms);

// Define the histograms to be generated

TH1D* h1 = new TH1D("h1","T(t)(ws)",bins,xmin,xmax);

TH1D* h2 = new TH1D("h2","T(t)(rs)",bins,xmin,xmax);

TH1D* h3 = new TH1D("h3","R(t) vs t",bins,xmin,xmax);

TGraph* dt = new TGraph(); // This is used to draw the ellipse.

//To generate random numbers....

Float_t randomh1,randomh2,h1Integral,h2Integral;

randomh1 = f1->Integral(xmin,xmax);

randomh2 = f2->Integral(xmin,xmax);

randomh1 = randomh1/binwidth;

randomh2 = randomh2/binwidth;

// Now generate the WS and RS distributions.

h1->FillRandom("f1",randomh1); // generate the distribution for formula f1

h2->FillRandom("f2",randomh2); // generate the distribution for formula f2

//Here we set the flag for the third histogram to specify how to calculate errors.

h3->Sumw2();

// Take the ratio

h3->Divide(h1,h2);

// Fit the ratio with polynomial of second order.

// Fit it for p0, p1 and p2 as adjustable parameters.

f3 = new TF1("f3","pol2",xmin,xmax);

f3->SetParameter(0,0.0036);

f3->SetParameter(1,sqrt(0.0036)*yprime);

f3->SetParameter(2,(xprime_sq + yprime*yprime)/4);

h3->Fit("f3","B + R + I + Q");

//Define a canvas to draw the ellipse.

TCanvas* c1 = new TCanvas("c1","c1",119,33,699,499);

c1->SetFillColor(18);

// Get the error-matrix for polynomial fit function.

fitter = TVirtualFitter::GetFitter();

TMatrixD matrix(3,3,fitter->GetCovarianceMatrix());

cout << "matrix:" << endl;

matrix.Print();

Float_t spy = sqrt(matrix[1][1]);

Float_t spx = sqrt(matrix[2][2]);

Float_t sxsyp = (spx*spy);

Float_t rho = matrix[1][2]/sxsyp;

/* Calculate the errors in x’^2 and y’ from the error matrix.

This gives sigma_x and sigma_y. */

Float_t p1 = f3->GetParameter(1);

Float_t p2= f3->GetParameter(2);

Float_t y_prime = p1/sqrt(0.0036);

Float_t x_prime_sq = 4*p2 -y_prime*y_prime;

Float_t error_in_p1 =spy;

Float_t error_in_p2 = spx;

Float_t s2 = error_in_p1/sqrt(0.0036);

Float_t s1 = sqrt(16*error_in_p2*error_in_p2 + 4*yprime*yprime*s2*s2);

TGraph*dt = new TGraph();

/*

The equation of ellipse is
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1 1 2*rho*x*y (1-rho^2)(1.64)^2

---- + ----- - ------------ = --------------------

sx^2 sy^2 sx * sy 2

using polar coordinates, calculate the points p(x,y) and plot by setting each point.

Divide 2Pi in 5000 divisions. For fraction of angle, calculate r and using

trigonometric relations, find x and y coordinates.

*/

Float_t xc,yc,u1,u2,r,phi,theta; //center

Int_t points = 5000;

Double_t x1,y1,dphi(2*TMath::Pi()/points);

xc = 0.0;

yc = 0.0;

Double_t LHS = (1-rho*rho)*1.64*1.64/2;

for(Int_t i =0; i< points;i++)

{

theta= i*dphi;

phi= atan2(s2*sin(theta),s1*cos(theta));

u1 = cos(phi)/s1;

u2 = sin(phi)/s2;

r = sqrt(LHS/(u1*u1 + u2*u2 - 2*rho*u1*u2));

x1= xc + r*cos(phi);

y1= yc + r*sin(phi);

dt->SetPoint(i,x1,y1);

if(i == 0)

{

dt->GetYaxis()->SetLimits(y1,y1);

dt->SetPoint(points, x1, y1);

}

}

// Set axis title and limits.

dt->GetXaxis()->SetLimits(0.0,0.0009);

dt->SetTitle("95% C.L.");

dt->GetXaxis()->SetTitle("x’^{2}");

dt->GetYaxis()->SetTitle("y’");

dt->GetYaxis()->SetNoExponent();

TGaxis::SetMaxDigits(3);

// Draw the ellipse now.

dt->Draw("AC");

//for debugging purpose, print these variables

cout <<"rho=" << rho << endl;

cout << "Error in p1="<< f3->GetParError(0) << endl;

cout << "Error in p2=" << f3->GetParError(1) << endl;

cout << "sqrt(Matrix[0][0])=" << sqrt(matrix[0][0]) << endl;

cout << "sqrt(Matrix[1][1])=" << sqrt(matrix[1][1]) << endl;

}
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We estimate the accuracy of measuring D0 − D̄0 mixing parameters in the

CDF II detector by simulating the ratio of wrong sign decays to Cabibbo-favored

decays. We fit the ratio distribution for x′ and y′ to obtain a 95% C.L. region in

the x′2 − y′ plane, assuming no CP violation. With the total number of doubly

Cabibbo suppressed decays equal to 2100, as observed at
√

s = 1.96 TeV and

0.35 fb−1, we find x′2 ≤ 0.6× 10−3 and −0.0035 ≤ y′ ≤ 0.0035. These expected

limits are more restrictive than the results from other experiments. We also

analyzed the decay time distribution of D0 mesons using the CDF II data. Our

value of mean lifetime is comparable to the accepted mean lifetime of D0 mesons.

This analysis shows that it is possible to establish the world’s best limit on the

mixing parameters using the CDF II detector.
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