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ABSTRACT 

We examine beam-breakup effects of a 100 nC source bunch with 1 mm rms length 

inside a cylindrical dielectric waveguide, with dielectric t = 2.65 filling the radius bn- 

tween 7.5 and 9.0 mm. We find that only - 78% of the bunch with an initial transverse 

(or radial) offset of 0.3 mm survives the passage of the 3.75 m waveguide. The loss is 

mainly due to the slowing down of some particles to nearly zero velocity. As a result, 

quadrupole focussing of any sort will not help. However, if the waveguide is shortened 

to 3.3 m, the loss reduces to only 5.5%. 



I. INTRODUCTION 

Dielectric-lined waveguides which generate wakes through Cerenkov radiation are 

very promising candidates of wakefield accelerators. This is because their structure is 

rather simple and, for the model to be built at the Argonne Advanced Accelerator Test, 

Facility (AATF),l an acceleration gradient as high as - 50 MeV/m can be expected. In 

order to generate the required wake, the source bunch is designed to be of rms length 

0 = 1 mm carrying a total charge of 4 = 100 nC. The vacuum part of the waveguide has 

a radius of b = 7.5 mm. In a circular ring, the head and tail of a bunch a,re interchanged 

due to synchrotron motion. Here, however, just as in a linac, such an interchange does 

not take place. The wake force from the head of the bunch will cause its own tail to 

continuously lose energy and be deflected transversely, leading to eventual particle loss 

or beam breakup. In this paper, we analyse the stability of the source bunch, estimate 

the growth of transverse (or radial) deflection, and finally compute the deflection and 

beam loss numerically. 

II. WAKE FORCES 

Consider a particle of charge Q traveling along a cylindrical dielectric-lined waveguide 

of inside and outside radii b and a, respectively. The region between b and a is filled wit,h 

a dielectric having a dielectric constant t. The Cerenkov wake forces produced have 

been computed. 2,3 When the charged particle is at a radial offset ~0, the longitudinal 

and transverse (or radial) wake fields acting on a point s behind at radial offset T can 

be written, respectively, in terms of reduced quantities as2 

eq 7-0 m r m ^ 
F*,x(r, s; To) = -- - 1 I a2 a [I a Fzm~ ~0s sg , 

eq T-0 ln T m--l A F,,x(r,s;ro) = - - - a2 a a F,,xsin sg , [ 1 [I (2.2) 

where m and X designate the azimuthal and radial mode numbers. The characteristic 

frequency fmx for mode (m, X) is related to the reduced frequency x,x by 

fmx = +mX 
2naJ;=T (2.3) 
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The reduced longitudinal and transverse (or radial) wake forces for mode m, X are 

defined as 

kzmx = 8Z,> ; 0 
2m p,(x,x)~,(~,x) 

pn(Gnx) ’ 

kd = ~*mx 
ln~ 

ZmA ’ 
where pm, rm, and ‘DD, are some polynomial of products of Bessel functions, and are 

defined in Ref. 2. As an example, the design of AATF consists of a waveguide with inside 

and outside radii 6 = 7.5 mm and a = 9.0 mm, the dielectric having E = 2.65 filling the 

radius between b and a. The first longitudinal mode is zol = 5.516 corresponding to a 

frequency of A = 27.34 GHz, and the reduced longitudinal wake force is $z2,, = 4.11. 

‘The reduced frequencies and wake forces for this and other low-lying modes are listed 

in Table I. 

III. THE EQUATIONS OF MOTION 

Fig. 1. A source bunch moving down the waveguide. 

Consider a particle inside the source bunch at a distance s from some reference 

point of the bunch, which has moved a distance z down the waveguide (Fig. 1). The 

longitudinal momentum p, and radial momentum p, propagate with time according to 

“$ *) = F,(s, z) , (3.1) 

““$ z, + FQ(Z)T-(s, 2) = F,(s, 2) , (3.2) 

where FQ denotes the focussing force of the quadrupoles placed along the waveguide. 

Note that the wake forces F, and F, also depend on the instantaneous radial position 
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5.5 4.12 

20.7 0.88 

38.7 0.28 

57.2 0.13 

75.9 0.08 

94.6 0.04 

5.2 7.39 1.83 

10.6 3.41 0.41 

20.7 2.41 0.15 

28.7 0.56 0.03 

38.7 0.80 0.03 

47.4 0.21 0.01 

6.2 8.67 3.57 

11.3 6.66 1.51 

21.5 5.08 0.61 

29.0 1.41 0.12 

39.2 1.92 0.13 

47.6 0.54 0.03 

Table I: Reduced frequencies and wake forces for the low-lying modes. 



T(S, z) of the particle under consideration. Therefore, Eqs. (3.1) and (3.2) are coupled 

for all modes except rn = 0. For example, the longitudinal force is given, according to 

Eq. (2.1) by 

F,(s,z) = -~~~o~~~“ds’P(c’,I)~~oi [Toyp]mco* “xAS) 1 (3.3) 

where p is the particle distribution inside the bunch 

IV. THE MONOPOLE MODE 

When only the monopole mode m = 0 is included, the transverse wake force F,. of 

Eq. (3.2) vanishes and there is only the longitudinal wake force. We change the time 

variable t for the center of the bunch to its distance along the waveguide z. As will 

be shown below, the center of the bunch will remain ultra-relativistic,. It is accurate 

enough to assume z = ct, where c is the velocity of light. We can then rewrite Eq. (3.1) 

as 

nlc2~ = F,(s) ( dr 
where m is the electron mass and /?c the particle velocity. Note that the longitudinal 

wake force is now a function of only S, the position inside the bunch. For a Gaussian 

bunch shape 

p(a) = &e--w , (4.2) 

where 0 is the rms bunch length, F,( ) s can be computed exactly in terms of the complex 

error function W(Z). Then Eq. (4.1) can be integrated easily to give 

-g(s,z) = ($qj - 2a;;,2 g E;,oXe-S2’*02 l&w 
( 

~XOh 
AdI a&q + i&i ) (4.3) 

For initial -yi = 300 and CT = 1 mm, this is plotted in Fig. 2 at the end of a waveguide 

of lengt,h L = 3.75 m, with 6 radial modes included. We see that y drops down t,o 

a minimum of - 100 at lr~, showing that the beam particles are relativistic for t.he 

total passage, so that longitudinal mixing of particles does not occur. This justifies the 

assumption of Eq. (4.2) that the particle distribution is independent of z. This behavior 

will be modified to a large extent when higher azimuthal modes are included, because 

those longitudinal wake forces depend strongly on transverse displacements, We will 
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see in Sect. VII that some particles will actually be slowed to rp < 0. Nevertheless, 

the above estimation does tell us that the lowest rP occurs around 1~. 

t! I I I / I I ,I, I I I I, I I I I I I I I I I <- I I I I I I I I I I I I I I L 
-4 -4 -2 -2 0 0 2 2 4 4 

Longitudinal Position Inside Bunch in 0 Longitudinal Position Inside Bunch in 0 

Fig. 2. y@ distribution inside a bunch at the exit of a 3.75 m waveguide. 

Here, only monopole modes are ixluded. 

V. DIPOLE MODE 

For the uimuthal mode m = 1, Eq. (3.2) can be written as 

m&g + m2gg + F&)1. = F,(s, z) , 

where the dipole transverse or radial wake force is 

F,(s, 2) = 5 Acl lm ds’p(s’, z)Pylh+ sin “rg’ 

(5.1) 

(5.2) 
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Fig. 3. The transverse wake force per unit displacement of the source bunch uder 

consideration. Here, only the mode m = 1, X = 1 has been taken into account. 

The radial wake force per unit radial displacement of the source is plot in Fig. 3. We 

see that it only affects the tail of the bunch and peaks at - 3~. We can therefore 

approximate the bunch by two macro-particles, with the ‘front particle’ acting as the 

source which sends a wake to the ‘tail particle.’ Thus, we have 

Fv(s, 2) - yqf ; ) 

where we have approximated the particle density p by i. Assuming a smooth focussing 

force FQ, we can introduce the betatron-oscillation wave number kp. The equation of 

motion of the ‘tail particle’ is then 

eq F,,, T” + k;r = -~ 
2s ymc= 

I’0 cos kpz : 

where the ‘prime’ denotes differentiation with respect to z and +a is the betatron- 

oscillation amplitude of the ‘front particle.’ This is a resonance equation. For small 
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varia,tion of y with z, the solution can be written as 

T(Z) = ?O [cos kpt + viz sin kpz] , (5.5) 

with the transverse growth per unit distance given by 

eqF,ll 
” = 4a3ymczki? 

The focussing force FQ can be constructed as FODO cells, each of which is of length 

e. We can then introduce an energy independent focussing strength G given by 

B’I! /3FQe 

G=ypBp=- me2 t 

where 2 is the length of the quadrupole. For example, 5 kilogauss pads placed with 

alternating poluity every e/2 = 10 cm will give G N 1200 m-‘. For FODO cells, the 

phase advance per cell p is given by 

so that the betatron wave number is 

2 eG 
ko = 14 = -sin-’ - 

e e 4riO 

For the above focussing configuration and assuming y = 300, !?G/4y = 0.2. Thus, 

The increase in transverse deflection for a waveguide of length L is therefore 

q1L = 
&LLP 
2a3mc2G ’ 

(5.10) 

(5.11) 

which turns out to be 6.9 for a total charge of q = 100 nC, waveguide length L = 3.75 m, 

and when only one mode @,.11 = 1.83 is included. However, Eq. (5.11) is incorrect 

because rP of the ‘tail particle’ does drop to a very low value at the exit end of the 

waveguide. In fact, when !G/(47/?) > 1, the FODO focusing will become divergent 

instead. For this reason, the strength of the quadrupoles needs to be tapered towards 

the exit end of the waveguide. One possibility is to hold G/y@ constant. Then the total 
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growth can be obtained by integrating v1 of Eq. (5.6) along the waveguide. The result 

is 

J 
L 

qldz = 
e&d %Pi ln 2 

0 2a3mc2Gy;--yf ?I ’ 
(5.12) 

where G is the initial focussing strength while the subscripts i md f denote initial 

and final values of the ‘tail particle.’ Note that, through the expansion of the sin-’ in 

Eq. (5.9), the integrated growth of Eq. (5.12) IS insensitive to the cell length !. Putt,ing 

in yi = 300 and yf = 100, the total growth is 11.4 times. Assuming an initial transverse 

deviation of 0.3 mm, the final growth can exceed the 7.5 mm aperture of the waveguide 

if y drops down to below 8.9. As will be seen in Sect. VII, this will indeed happen when 

higher azimuthal longitudinal modes are included, 

VI. QUADRUPOLE WAKE 

If we apply the two-particle model to the quadrupole wake, the equation of motion 

of the ‘tail particle’ is 

T” + k;r = (6.1) 

where only the X = 1 mode has been included. Again for ~0 we substitute ?O cos kps. 

Unlike Eq. (5.4), this equation cannot be solved exactly. For an initial offset of PO = 

1 mm, (?~/a)’ N 0.012. Therefore, we can try to solve the equation perturbatively. The 

lowest-order solution is 

r(z) = l’o [cos koz + q2.z sin kD.z] , (6.2) 

where the total growth for a length L is 

r)zL= N 0.0356 , (6.3) 

for a focus&g strength of G = 1200 m-l. The smallness of the growth implies that 

the perturbation treatment is justified and also that the effect of quadrupole modes can 

be neglected. For higher azimuthal m, the growth will be proportional to (?0/a)2m-*. 

Therefore, all the higher azimuthal modes can be dropped. 
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VII. NUMERICAL SOLUTION 

We now attempt to solve Eqs. (4.1) and (5.1) numerically. The bunch is made to 

propagate through the waveguide by small steps of size AZ. The derivatives of the 

mdial deflection with respect to z can be approximated by differences: 

T’(S, 2) = 
r(s,r+Az) - r(s, Z-AZ) 

2Az 

T”(S, t) = 
r(s,r+Az) + r(s,z-AZ) - 2r(s,z) 

AZ2 
Substituting into Eq. (5.1) and eliminating ($3)’ by Eq. (4.1), we obtain 

(7.2) 

r(s, z+Az) = 1 + 2 PCs> zF’z(st 2) -’ I{ At’Ws> 2) AZzFQ(Z) - 
2 n&/(s, z) mc*y(s ~) + r(s,z) 2 

m+-Y(s, 2) 1 
-qs r-AZ) 1 _ nZP(s, Z)Fz(% 2) 

2 mcZy(s,z) (7.3) 

Knowing P(S, z), we can compute F,(s, z), and F,(s, 2) from Eqs. (3.1) and (5.2), and 

solve for r/3(,, z) from Eq. (4.1). Then the deflection at the next step, r(s, r+Az) can 

be computed using Eq. (7.3). 

The bunch shape is taken to be Gaussian trunc~ated at +3~, and is divided lon- 

gitudinally into 30 bins of size 0.2 mm. When the particles in a particular bin reach 

17.5 mm they are considered lost by hitting the dielectric and are removed. When 

r/3 of a bin becomes less than 4, the particles there are assumed to have too small a 

velocity and trail behind and get lost. The bin that becomes empty is denoted by an 

asterisk in the plots. 

The quadrupoles are placed at the center of each section (!/2 = 10 cm) of the 

waveguide with interchanging polarity starting with an F quadrupole. The strength of 

the quadrupoles are tapered according to 

Wz) = FQ(W1 - $1 t (7.4) 

where < is the tapering factor. 

One of the best solutions is shown in Fig. 4. The initial focussing strength is 

G = 1200 m-l and the tapering factor is 0.75. The initial transverse offsets of all the 
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particles are set to 0.3 mm. The various plots show the radial deflections of zt-3~ of 

the bunch along the waveguide at the position of every quadrupole. The plots before 

z = 1.1 m are not of interest and are therefore omitted. In every plot, the dist,ribution 

of r,!Y inside the bunch is also shown as a dotted curve. We see that the bunch starts 

to lose particles at z = 2.1 m. At exit all particles > 0.8~ or 22% have been lost. 

We try to vary the tapering factor from 0.63 to 1.0 and find t,he same loss of 22% 

after z = 3.7 m. We also vary the initial focussing strength from 900 II-’ t.o 1500 rn-‘. 

The losses at exit are roughly the same. We even vary the initial offset of the bunch 

from 0.15 mm to 0.5 mm, the changes of the loss at exit are not significant. 

The source of the loss becomes clear when we examine the r@ curve carefully. The 

-y/? curve becomes negative in the region - 0.8~7 to N 1.50 when z > 3.5 m. The drop 

of y raises the F, term and FQ term of Eq. (7.3) tremendously but reduces the F, 

term to zero. This implies that the radial deflection will be increased by very much. 

These particles, if driven off the transverse aperture will be removed automatically in 

the numerical computation. Another implication of low + is that the pa,rticles in these 

bins will be slowed down by so much that they even travel in the opposite direction 

and leave the bunch longitudinally. Since this deceleration is the property of the wake 

forces, there is no way to improve the passage with the configuration of the focussing 

system. The only ways to reduce this 22% beam loss appear to be the shortening of 

the waveguide, the increase of the internal radius, the changing of the dielectric layer, 

or the reduction of the charge on the source bunch. 

If the length of the waveguide is reduced to 3.3 m, the loss occurs only after 1.6g 

or 5.5%; and for a length of 3.1 m, only after 2.20 or 2.4%. These losses will depend 

more sensitively on the focussing configuration. For example, if the tapering factor is 

E = 0.63, the above two losses become 15.9% and 0.3%. If the tapering factor is 0.99, the 

losses are both 5.5%. If we keep the tapering factor fixed at 0.72, and change the initial 

focussing strength to G = 900 II-‘, the losses are both S.l%, and for G = 1500 II-‘, 

the losses are, respectively, 15.9% and 1.4%. 

We also try to change the cell length of the FODO focussing st,ructure to e = 30 cm, 

but the change in the results is not significant, agreeing with the prediction of our 

analysis in Sect. V. 

Gai“ made a similar numerical solution recently. He actually tracked a Gaussian 

distribution of 400 macro-particles over a 3.75 m length of the waveguide. His results 

10 



show only 2% loss, very different from ours. In his computation, the bunch occupies 

only f2u, and only two radial modes of m = 0 and 1 are included. We also try our 

solution with two radial modes only and find particle loss only after 1.80 (3.6%). The r/? 

curve here never dips down to below 20 explaining clearly why the loss has been small. 

However, this solution is not correct, because the higher modes cannot be neglected. 

They are of shorter wavelengths and will deflect and decelerate particles much closer 

to the front of the bunch. As a result, the tail of the bunch will be deflected more and 

the 1~ region will be decelerated more. Needless to say, the two-particle model can no 

longer apply. 

VIII. DISCUSIONS 

Our analysis shows that the contributions of higher-order modes are very significant, 

and that beam loss of 22% at the tail of the bunch cannot be avoided by positioning 

quadrupoles along the waveguide if the guide is 3.75 m long. The reason is that the 

wake forces will decelerate the particles in the lo region to rP < 0, so that the particles 

will be (1) deflected outside the transverse aperture and (2) left trailing the bunch 

longitudinally. The only cure is to shorten the waveguide, reduce the charge density of 

the bunch, or change the configuration of the dielectric lining so that the wake forces 

can be reduced. If the waveguide is shortened to 3.3 m, however, the loss can be reduced 

to 5.5%, the main reason being that -y/? does not dip down to near zero. 
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