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I. INTRODUCTION

A particle beam in a circular storage ring will experience kicks turn by turn
due to fluctuations of field strengths in the lattice elements. These fluctuations can
come from the movement of the lattice elements due to ground motions, intentionally
perturbed field current such as Jostlein’s beam centering scheme,! as well as uninten-
tional perturbations such as field current and voltage noises. All these fluctuations
may eventually lead to the growth of transverse emittances? as well as longitudinal
emittance. The growth is caused by smearing, mainly due to momentum spread
plus chromaticity and by the nonlinearity of the forces in both the transverse and

longitudinal phase spaces.

Here, we are going to emphasize on perturbations with long correlation time or
nonrandom and low frequencies. Jostlein’s beam centering scheme is a sinusoidal
perturbation on the current in some dipoles and therefore falls into such a category.
The ground motions at tunnel depth at the SSC site due to a crossing train above
and quarry blasts 9 miles away had been measured by Hennon and Hennon.* We see
from Fig. 1 that the displacement waveforms are quite periodic and from Fig. 2 that
their spectra consist of contributions from some definite frequencies. These motions

are perturbations with long correlation time and low frequencies.

II. EFFECTS OF CHROMATICITY AND MOMENTUM OFFSET

II.1 Single-particle Motion in Transverse Phase Space

Assume that the kicks occur at only one point along the ring where the momentum
dispersion vanishes. Let us look at the position of the particle just before that point
in a transverse plane. The normalized coordinates (X, 83X '+oX) written as a complex
number are used, so that betatron motion will be a circle in phase space. Here, 3
and a are the Twiss parameters at the point of observation, and X and X' are the

transverse displacement and the transverse angular displacement.

If the particle is originally at @, and receives a kick of

6X, = (0,6,8) (2.1)
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Figure 1: The approximate displacement waveforms obtained by integrating the geo-
phone signals of (a) a quarry blast and {b) a train crossing above. The average

geophone calibration constant has been applied.
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Figure 2: The vibration amplitude spectra obtained by a fasi Fourier transform of

the signals of (a) a quarry blast and (b) a train crossing above.




at the first turn, when it comes back at the next turn, the transverse position is
‘fl = (&:0 + 5‘2‘1) e—-{z‘m}] N (2.2)

where 1 is the average betatron tune of the particle in the first turn. Now, there is

another kick

§X, = (0,8,8) . (2.3)
When the particle comes back at the next turn, the position is
Xy = ((do + 8X,) e72™ 4 6X,) 2™ . (2.4)
Therefore, at the N-th turn, just before the (N + 1)-th kick, the position is
Xy = (o ((Go+ 6X,) e + 6X,) e ) e (2.5)
or
= 2n SN L
X, = doe i 4+ Y X e S (2.6)
=1

Thus, the position at the N-th turn is just the linear superposition of the evolution
of first-turn kick of the particle from the origin, the evolution of the second-turn kick

from the origin, etc., plus the evolution of the original particle position dy.

I1.2 Effects of Synchrotron Motion

Without synchrotron motion the nominal betatron tune is . With synchrotron

motion turned on, the betatron tune at the k-th turn is modulated according to
vy = vy + Avsin(2rv,k + @,) (2.7)

where v, is the synchrotron tune, @, is the initial phase of the particle in the longitu-
dinal phase space and Aw is the tune modulation amplitude which is related to the
chromaticity ¢ and the fractional momentum offset §, by
Av = b, . (2.8)
The position of the particle at the N-th turn in the transverse phase space is therefore,
according to Eq.(2.6),
/i; — aoe~i2W{Nw+Aqu:] Sin(Z‘!(kV_,-}-tp,”
N

N : - N i i
=1



The bunch rotates in the transverse phase space and is kicked every turn. Since
we want to observe here only the spread of the bunch due to synchrotron motion,
we need to subtract away the transverse position of the corresponding longitudinally

synchronized particle (Avr = 0), which is denoted by
— . N - . .
X, = e AN 4 Y §X ;e o N-it1) (2.10)
=1
Therefore, the spread of the vector

X, =X, - X (2.11)

for a particle having maximum momentum excursion but with different initial phase

v, will give the growth of bunch emittance at the N-th turn.

I11.3 Evaluation of spread for small chromaticity

The summation of the sine in the exponent of Eq. (2.9) can be performed to give

v _ — 27 (N +1) 1A' cos{mu (2N +1)+p,
X, = ¢ 2

N X
N —
x ZEXjEiL’m/oj—z'A’cos[wu,(2j--])+w,] ’ (212)
i=1
where A
A= 20 0259, (2.13)
sin Ty,

if we take chromaticity £ = 5, maximum fractional momentum spread &, = 6.0 x 1072,
synchrotron frequency f, = 4 Hz, and revolution frequency fp = 3440 Hz. We try to
expand Lq. (2.12) and keep only the first order term in A’. Since Eq. {2.12} resembles
the integral represeniation of Bessel functions with argument A’, the expansion should
turn out to be better than expected, although A’ is not too small. In the above, the
term involving the initial point €y has been dropped for convenience, because as is

evident from Eq. (2.6} or (2.9), this term does not contribute to the emitiance growth.

Tet us consider a sinusoidal kick

5);"_7- = ta,fsin2nvny (2.14)



for the 7-th turn with frequency equal to v, fy and angular amplitude equal to a,,.
Keeping only up to first order in A’ and subtracting away the position of the syn-

chronous particle, we obtain
X, = e 2moNii, A'{Sycos[r, (2N +1)4¢,] — S1} (2.15)

where, with vy = vy £ m,

N

. L . sinwv, N sintv_N .
Sg = Z sin 2rp,jetmed = T TTF T gimea{NA1) 2T DT pimen (N1 (2.16)
e Zisin Ty, sinwy_
and
AF
5 = Z S10 27 1y § CO8(27 1,7 + 0, —TI'V,)(?“TVOJ
i=1

sinw(vy +v,)N e A v (N + 1) (a0

disinw(vy +v,)

sinm(vy — VN o, LN ilpa—mr)

47 5in :rr(u_}._—u,)
—(vy —m ). (2.17)

We learn from Section II.1 that this expression is in fact a superposition of the
individual evolution due to synchrotron oscillation of a particle being kicked at each
turn. Since we start out as one point in the transverse phase space with the longituds-
nally synchronous particle, all nonsynchronous partiicles should spread out and return
to one point in N turns, where /N is nearest to an integral number of synchrotron

periods, or

N=n/v,+¢, (2.18)

where n is an integer and {e| < 1/2. This can be checked by substituting Eq. (2.18}
into Eq. (2.17), giving
5, = Sgcos, , {(2.19)

where v, and ev, have been dropped as compared to unity. This approximation is
justified since the typical value of v, 1s f,/fo = 1.16 x 1072, Tt is then easy to see from
Fq. (2.15) that the spread does contract back to a point after an integral number of

synchrotron periods.



We believe the maximum spread will occur at half a synchrotron period and
therefore evaluate Eq. (2.15) when N is equal to the closest integer of (2n+1)/2v,.
After that we again set v, = 0. The result is

—

X, = A'cos e eV H1) o
w J_=n WU+NEm+(N+1) _tcosmuy N ™),y )Y (2.20)
2sin T, 2sin -

Since the kicking frequency is typically less than 20 Hz {v,, < 5.81 x 1072) and the
betatron tune vy should never be too close to an integer, we can further simplify
Eq. (2.20) by expanding in terms of v, giving finally

o TmAmATCOS Py ama (v | (2.21)

TSin T, Sin T
When the initial position @g is included, we get

Y - e-izmalN P Vm
X, =

gl (2.22)

cos p, A" | —21dy + — -
sin v, sin mv_

The above describes the breathing oscillation of the bunch as illustrated in Fig. 3.
We can see that the first exponential describes just the N-{urn belatron oscillation of
the synchronous particle and can therefore be dropped. The first term in the squared
brackets is always perpendicular to radial vector @y from the bunch center. 1t describes
the synchronous oscillatory spread in the azimuthal direction and therefore does not
contribute to the expansion or contraction of the bunch in the transverse phase space.
The second term can give a spread radially and therefore contribute to the emittance
growth. Equation (2.21) shows that X, = 0 for particles with initial synchronous
phase ¢, == #/2. This does not imply that these particles do not spread out. In
fact, these particles spread out 0 a maximum at a quarter synchrotron period and
contract back to the initial point at half a synchrotron period. These expansions and

contractions are illustrated for some special cases in Fig. 4.

Thus a point bunch in the transverse phase space will develop into a circle of

radius

X

7Vm€by

.3 [
vV, SIN° Ty

N = @m (2.23)

and contract back to a point after an integral number of synchrotron periods. Here,

Eqgs. (2.8) and (2.13) have been used. However if the betatron tune is dependent on
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Figure 3: The circle is a bunch in the transverse phase space being kicked off-centered.

The breathing motion is illustrated by the arrows.
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amplitude and if the tunespread is large enough, the contraction will not come back
to a point, resulting in a growth of emittance. Note that the growth is proportional
to the incremental kick per turn as expected physically. If we start out with a bunch
occupying a circle of radius |d|, |X | describes the breathing of a displaced bunch,
The displaced bunch itself will be treated in Section III.

I1.4 Applications

1. Jostlein’s Beam Centering

In Jostlein’s beam-centering scheme,! one beam is rotated about the other at an
interaction point, and the resulting variation in luminosity serves to measure the
amount and direction by which the two beam centers miss each other. In this situa-
tion, each beam acts on the other like a moving quadrupole to first order. With the
head-on beam-beam tuneshift A, = 0.004, and the betatron function at the interac-
tion point Fy = 0.5 m, the corresponding focal length of the equivalent quadrupole is
fo = Bo/4m Ay = 10 m. Note that in this consideration only the linear beam-beam
effect has been taken into account. When one beam rotates in a circle (in the vertical
plane) with a radius b,, and a frequency fm = v fo, the other beam is equivalent to
being kicked periodically by an amplitude a,, = b,/ f, according to Eq. (2.14). With
a fractional betatron tune of 0.5 and a rotating frequency of 20 Hz, the maximum

radially displacement 1s

b,. 30 “_zwmfﬁ

[wr— = 2.36 x 105, . (2.24)
Q 8

o
A | =
} N

Since the perturbed amplitude b,, should be much less than the rms transverse size

of the beam (oy = 5 ), this breathing of emittance is negligibly small.

2. Ground Motions

For the quarry approximately 9 miles away from the SSC rings, the vertical ground
displacements due to its blasts measured at tunnel depth are shown in Fig. 2. The
spectrum shows essentially a narrow resonance at 1 Hz and a relatively broader one
at 3 Hz. Integrations were made around the two peaks to give the vertical ground

displacements at the two frequencies. The result is

10



Frequency f,,  Displacement b,

1 He 1.4
3 Hz 0.1 p

Each SSC collider ring consists of 90° cells of length L = 228.5 m. The focal lengths
of the quadrupoles are therefore f, = L/4sin45° = 80.8 m and 5 = 390 m at the
F quad. If the quadrupole is displaced by b,,, the kick amplitude on the beam is
Gm = b/ f,- We obtain by adding up the eflect of ~1000 quadrupoles randomly,

= 0.040 b,, 1 Hz
| Xy = (2.25)

0.119 b, 3 Hz,

which is pretty small compared with the rms bunch size of cro\/E;,E = 63.6 pu,
especially the horizontal ground displacement b,, is believed to be about one-tenth of

the vertical displacement.

For a train crossing the ring, the measured ground displacements at tunnel depth

are shown in Fig. 2. Integration around the two peaks gives:

Frequency f,,  Displacement b,,

3 Hz 0.51 p
7 Hz 0.58 p

Due to the attenuation of the ground signal, we assume only 10 neighboring quadru-

poles are aflecled and they coniribute equally and constructively. Then

z 0.009 b, 3 Hz
(2.26)

E_fiy —
Xl 0.017 b, 7 Hz,

which will only lead to negligible growth in emittance.

11



II. TUNE DEPENDENCE ON AMPLITUDE

I11.1 Hamiltonian

In this section, we turn off the synchrotron motion. Let us describe motion of a

single particle in the transverse phase space by the Hamiltonian®

1 1
H:§P2+§V§‘”2—"3F(¢)z (3.1)
where z = X/4/3 is the normalized Floquet transverse displacement, p the canonical
momentum, and ¢ = [ ds/vpf3 the Floquet phase advance as well as the independent

‘time’ variable. The periodic perturbing force is

F(y) = /dvm&m\/éuo sin v, 3 i &(¢ — 2mn) (3.2)

where a,, 1s the angular kick on the beam per unit v,,. We next perform a canonical
transformation to the action-angle variables (J,¢) with the aid of the generating
function )
Fi(z,¢) = — 2 voz’tan ¢ . (3.3)
The transformed Hamiltonian is
4J? 2J
H=wd —a— — [— cos ¢F (1) , (3.4)
Vo Vo
The second term added to Eq. (3.4) introduces tune dependence on amplitude, which
is, in the absence of the perturbing force F{v),
_ 8H

Uﬁ = éj = Vg — (1442 ; (35)

F(3)=0

IT1.2 New Invariant Curves

In the absence of the perturbing force F(v), the Hamilionian is an invariant,

implying that the particle stays on invarianl curves in the z-p phase space. These

12



curves are, in fact, circles of constant radii J. With the perturbing force having an

amplitude very much less than the betatron amplitude, or

/dt/mam 8« \/i (3.6)

we assume that the system remains integrable, at least approximately. We try to
solve for the new invariant curves for each perturbing frequency v,,. For this, we

define the integrated perturbing amplitude for this particular frequency as
O = CdVn, , (3.7)
which is exactly the same a,, as in Eq. (2.14). The equation of motion for J is

dJ aH /ﬁ
v = -2 = —V -—— sinpF(y) . (3.8)

Since only solution up to first order in e, is required, we need to solve equation of

motion for ¢

dp OH 28

L= =+ O Avg, —" ), 3.9
dy ~ aJ " ( Y4 ) (3.9,
to zeroth order only. At the same time, the nonlinear tunespread due to detuning
Awvg, which is assumed to be small compared with the nominal tune v, is dropped

also. Thus, approximately,
@ = ¢o + o . (3.10)

Now Eq. (3.8) can be integrated easily to give

TR S
V : V[?_ _ v‘ e L Z ﬂm\f sin{¢g + 27 Nvy) sin 21 Ny,

Yo n=0

a N
= 2V feos(o - 2rno) — cos(do 2w )], (3.11)

where Jy and J,, are, respectively, the actions of the particle after the 0-th and N-th
turn, and we have defined v4 = vy + v,,. To find the invariant curves, we should look
at the position of the parlicle every perturbation period starting from the ng-th turn.
In other words, there is a set of invariant curves for every ny. Therefore, we let

N =ng+ i n an integer . {3.12}
Ve

13



Summing the cosine series, Eq. (3.11) becomes

W _ amV/B f) (313
~ 4sin T, sin Ty ’ ’

where

{- - } = sin 2ol [sin(dp + 27 Nyg)(cos 2m g — cos 2 vy, ) + cos( g + 2 N g ) sin 2y

— €08 2T NgVpy, i 271y, sin(Po+ 27 Nig) + sin o sin 2ms, . (3.14)

If we look at the invariant curves every 1/u, turns starting from turn zero (ny = 0),
Eq. (3.13) simplifies to

/7JN [2;.70 . am 3 sin 2w,

\* Vo \ vy dsinfyy sinwy_

sin ¢ — sin ¢ , (3.15)

where we have substituted ¢ &~ ¢y + 27 Ny according to Eq. (3.10).

To check the existence of invariant curves when the tunespread Aws in Eq. (3.9)
is included, we perform a turn-by-turn simulation according to Eq. (2.6) with the
kick at the j-th turn given by Eq. (3.2). We followed four particles which were
placed initially on the unit circle in the phase plane, at phases ¢y = 0, 7/2, 7, and
37/2. The nominal tune was 1y, = 0.4. The perturbing frequency was f,, =~ 20 Hz,
ar vy, = 1/172 for the SSC collider whose revolution frequency is fy = 3.440 kHz.
The kick amplitude was taken as a,, = 0.1 unit and the detuning varied from 0.00
to 0.01 umt. The amphtude-phase plots are displayed in Fig. 5a after tracking for
5 x 10* turns. The plots demonstrate the existence of the invariance curves for the
four particles even when the tunespread and higher-order of a,, are included. Also
the results are as expected from Eq. (3.11). These invariant curves are plotted in the

phase plane in Fig. 5h.

Of course, the existence of new invariant curves does not necessarily itmply the
increase in emittance. It is the spread in betatron tune thail leads o a smear and
then the emittance increase. The eventual emittance will be given by the area of the
closed invariant curve of particle 4 (see Fig. 5b). When particle 1 leads particle 4 by
slightly more than = /2 arriving at point A with particle 4 remaining at the original

position, the fractional increase in area will reach roughly half the maximum. The

14
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number of turns N, required is given by
2

1
-, 3.16
. (3.16)

where AA% is the amplitude difference between particles 1 and 4. With the aid of
E'q' (35)7

1
Ny~ — .
H S(IAQAA%

(3.17)

The maximum fractional increase in emittance (or area) can be obtained from either
Eq. (3.15) or Eq. (3.13) for all ny, by integrating A A? over J d¢ and dividing by mAZ:
Ae  apsin2wTv
2 MO (3.18)
€ 24 50Ty
where vy in the denominator has been replaced by 5. These predictions had been
confirmed by a simulation for 107 turns. We want to point out that the fractional
growth in emittance, as depicted in Eq. (3.18), is in fact proportional to the incre-

mental kick per turn a,,v,,.

The invariant curves for different values of ng are given by Eq. (3.14). Take for
example the situation of largest kick, no = 1/4v,. The shift in amplitude becomes
[20n 2J;_am\/_cos(¢+7rvo)

V o

— ) 3.19
- (3.19)

0 2sin Ty

where we have replaced ¢o = 27 Nvy by ¢. The shift in amplitude in Eq. {3.15) when
ng = 0 1s of Oa,,+/Bry,). However, when ng = 1/4v,,, the shift is of O(e,,+/8) which

is 1/1, times bigger.

I11.3 Applications

1. Jostlein’s Beam-centering Scheme

One beam rolates in a circle with radius b,,. The other beam has an initial
amplitude Ay = Anax/+/ 0o where Xy is the maximum transverse radius of the
bunch. The fractional growth in emittance from Eq. (3.18) becomes

b, By sin2wy,

Ac b,
26 Om S 10X 1073 (3.20)

€ KXinax 2f0 sin? 7y max

16



which is indeed very small since we must choose b, <€ Xy in practice. The param-
eters given in Section II.5 had been used. If the Jostlein’s modulation is switched
off abruptly, say, at turn number corresponding to ng = 1/41,, when the modulation
amplitude 1s largest, the beam will eventually smear out due to nonlinear tunespread.
The growth in emittance will therefore be derived from Eq. (3.19) instead, giving
Ae by Gy 1 b,

m R 0.026-
€ Xax fo sinmig Nmax

(3.21)

which 1s 26 times larger.

We can estimate the growth time. For the S5C, a typical value for nonlinear
detuning is # = 48.0 m~? found by Yan® in simulations using a full spectrum of
random errors. If we use § = 390 m, a value at the F quad, this translates into our
detuning o = p3 = 1.87 x 10* m~!, At 20 TeV, the rms bunch size is about 0.12 mm
at the F quad, thus Ag = 6.07 x 10~%mz. However, this smearing time is extremely
long. According to Eq. (3.14), it takes roughly (a4pAA)™! = 1.1 x 10® X (Nppax/bm)
turns or 9.0 x {X,ax/by) hours. Therefore, the offset bunch can always be kicked
back easily to the ideal closed orbit by an active kicker and no emittance growth due

to nonlinear tunespread will occur.

2. Ground Motions

H we use the ground displacement due to quarry blasts as listed in Section IL.5,

the beamn modulation amplitudes for the SSC are, respectively, for 1 Hz and 3 Hz,

Gmy/ B =

b8 _ { 3.50 x 10~ m (3.22)

fa 2.64 x 10°7 m

Rl 83

According to Eq. (3.18), the fractional growth in emittance 1s 0.0060, where a factor
of /1000 has been included to account for the ~ 1000 guadrupoles in the collider
ring. The time required to reach half maximum, estimated from Eq. (3.17), gives
1.2 x 10® turns or 9.7 hours. Both the ground-wave peaks ai 1 Hz and 3 Hz have a
full width of about 1 Hz, corresponding to a correlation time of 7 ~ 2 sec, for which
the growth is extremely liny. The quarry blast usually lasts for only 30 sec. The total
growth is still negligibly small.

17



However, at the end of a correlated wave, the beam can be kicked off-center,
resulting in emittance growth due to nonlinear tunespread. If we average over the
ng in Eq. (3.12), the average amount of off-center shift after the abrupt end of a

correlated wave is

(ad) =% VB V1000 = 6.50 x 107° m? | (3.23)

T sin Ty

which is of the same order of magnitude as Ag, the original size of the bunch. The
smearing time is found to be 4.8 x 10° turns or 140 sec. Thus, an active damper
can always be used to kick the beam back to its ideal orbit avoiding any nonlinear

sImearing.

For the train, according to the measured displacements listed in Section 11.5, the
fractional growth in emittance is 0.0023, where a factor of 10 has been included 1o
represent the assumption that 10 nearby quadrupoles are affected by the train and
they contribute equally. Tt takes 3.12 x 10® turns or about 25 hours to reach half
maximum. A one-mile train traveling at 30 mph will take about 120 sec to cross the

ring. As a result, the growth should be negligibly small.

The peak at 1 Hz has a full width of 1 Hz and the one at 7 Hz has a full width
of 12 Hz. The correlation time for the two frequencies are therefore 2 and 0.17 sec,
respectively. Again abrupt stopping of a correlated wave will throw the beam off-
center. But because of the small nonlinear tune spread, smearing can he avoided by

an active damper.

IV. LONGITUDINAL EMITTANCE GROWTH

IV.1 Nonzero Momentum Dispersion

We now consider the situation when the kicked quadrupole is located at a place
where the momentum dispersion is nonzero and see how the horizontal kick will affect
the longitudinal phase space.® The periodic kick (amplitude b,,) on a quadrupale (focal
length f;) at the j-th turn produces the angular kick on the beam

b . .
#; = —sin2mv,) . (4.1)
7

18



The incremental kick from the (7 — 1)-th to j-th turn
A, =0; -8, 4 (4.2)
leads to a change in revolution orbit length of
AC; = A8;D (4.3)

for the j-th turn, where D is the momentum dispersion at the quadrupole. The

synchronous particle will arrive at the rf cavity late by the rf angle

AC; 2whD
Adpy = = =
¢ ’\rf C‘O

where A is the rf wavelength, A the rf harmonic, and Cy is the ideal orbit length. If

A6 (4.4)

this late arrival accumulates, is it possible that the bunch area will increase and the

bunch particles will eventually go out of the rf bucket?

The turn-by-turn equations of motion for the 1f phase $; and fractional energy

offset §,; at the j-th turn are given by

deb.
‘qij' 2rnhbp; + 95,

dn
dépj _ 61}
E{ - *ﬁE‘q—!’J ’ (4-5)

where 7 is the phase-slip parameter, V' the rf voltage (for a stationary bucket), and
E the synchronous energy. In the above, the accumulated rf phase lag or mismatch

due to the kick is
QWhD

Z A'ﬂb:.' Ty J . (4'6)
0
We want to poini out that it is ¢, and not Ay; that enters into the first equation of

motion.

1V.2 Constant kick

Consider a misplaced quadrupole. It gives the beam a constant turn-by-turn kick
g. This just implies a new closed orbit with an extra length if AC = #D. Thus, for

every turn, there is an increase of phase lag

2nhD

S C

6. (4.7)
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But the focussing eflect of the rf prevents the phase lag from accumulating. Instead, it
shifts the synchronous center to a lower energy 6,. = ~4/27nh so as to accommodate

a shorter orbit length. This is illustrated in Fig. 6.

C

Figure 6: With a kick of the same size every turn, the previously synchronous particle
is driven into synchrotron motion aboutl a new synchronous center O which is ¢» /27 nh

below the original synchronous center 0. The point P is at a constant phase lag .

IV.3 Periodic kick

If we use time f as the independent variable, the equations of motion (4.5) becomes

dgﬁ) wghDA .

T = h

o nhweby, + Cof. sin{wml) ,

dé, _ eVwy

@ T TwE® (4.8)

with theinitial condition ¢ = ¢ and &, = b0 at £ = 0. Weintroduce the new variable

eV v,

2TFEV,¢ - ;}—hqb ’ (4.9)

&:
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so that the elliptic trajectory becomes circular. Using Laplace transform, we obtain

the solution in complex notation

((E)’ 6;0) = EOE—i%rV_,N + %Sinr(ymiyﬂ)NE—i%ru,N 7!:@(:05 ‘IF(Vm—Ll‘)N SiIl(Q?TV,N) ,

(4.10)

v, VU — UV, vV, 2v,
where
.  2wviDb,
vg = —————
0 H
WCqu

and the approximation that the perturbing tune u, is close to the synchrotron tune

(4.11)

v, has been used. In the above, the first term is the evolution of the initial position
do = {¢o, b0) of a particle in the bunch. The third term shifts the center of rotation
upward and downward, which is equivalent to the shift of the synchronous center in
the case of a constant kick discussed in the last section. The second term represents
the synchronous oscillation of the particle in the bunch with an amplitude due to the
periodic kick. This term can become very big because of the small denominator. If the
rf bucket is big enough, there is still no increase in bunch area. It is the dependence
of synchrotron tune on amplitude that smears out the bunch leading to increase in

bunch area,

IV.4 Estimation and Discussions

If we take b,, = 0.1 g for the horzontal kick amplitude due to ground motion
(quarry blast) at a frequency fi, = 3 Hz, with the frequency-flip factor 5 = 1.1 x 1074
rf harmonic h = 1.05 x 10°, and synchrotron frequency f, = 4 Hz, a point bunch in

the longitudinal phase space can smear to a size with

L TR
fq |fm*f5[
nh 3
Ap= —A6,=3.08x107" rf rad . (4.12}

8

For 1000 quadrupoles, jusi multiply the result by /1000.

We can draw the following conclusions:

(1) Unless the perturbing frequency is exactly the same as the synchronous frequency

and is locked on to it exactly, our estimation shows that there is not a continuous
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growth.

(2) I{ the perturbation is a continuum pfwy, }, which centers at the synchrotron fre-

quency w, and 1s narrow, the solution of the equations of motion (4.8) gives

: 2, .2
LT VqWy,

(q_ﬁ, 6,) = ,u,(w_,)e_iz”‘N . (4.13)

2w,

So there is no resonance with the synchrotron motion.

(3) If the perturbation is random, the above treatment does not apply and the kick

can be in resonance with synchrotron oscillation.

(4) With the synchrotron frequency dependent on amplitude, the story may be very
different.
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