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I. INTRODUCTION 

A particle beam in a circular storage ring will experience kicks turn by turn 

due to fluctuations of field strengths in the lattice elements. These fluctuations can 

come from the movement of the la,ttice elements due to ground motions, intentionally 

perturbed field current such as Jostlein’s beam centering scl~eme,~ as well as uninten- 

tional perturbations such as field current and volt,a.ge noises. All these fluctua.tions 

may eventually lead t,o the growth of transverse emittaxes’ as well as longitudinal 

emitt,ance. The growth is caused by smearing, mainly due t,o momentum spread 

plus chromaticity and by the nonlinearity of the forces in both the transverse and 

longitudinal phase spaces. 

Here, we are going to emphasize on perturbations with long correlation time CII 

nonrandom and low frequencies. Jostlein’s beam centering scheme is a sinusoidal 

perturb&on on the current in scme dipoles and therefore falls into such a category. 

The ground motions at tunnel depth at the SSC site due to a crossing tra~in above 

and quury blasts 9 miles away had been measured by Hennon and Hennon. We see 

from Fig. 1 that the displacement waveforms are quite periodic and from Fig. 2 that 

their spectra, consist of contributions from some definite frequencies. These motions 

are perturb&ions with long correlation time and low frequencies. 

II. EFFECTS OF CHROMATICITY AND MOMENTUM OFFSET 

II.1 Single-particle Motion in Transverse Phase Space 

Assume that the kicks occur at only one point along the ring where the momentum 

dispersion vanishes. Let, us look at the position of the particle just before that point 

in a t,ransverse plane. The normalized coordinates (X,pX’+aX) writ1.a as a complex 

number are used, so tha,t betatron motion will be a circle in phase space. Here, p 

a,nd a are the Twiss parameters at the point of observation, and X and .Y’ are the 

t.ra,nsverse displacements and the transverse angular displa,cement. 

If the particle is originally at & and receives a kick of 

s.2, = (0,6,/q (2.1) 
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Figure 1: The approximate displacement waveforms obtained by integrating the geo- 

phone signals of (a,) a quarry blast and (b) a train crossing above. The average 

geophone calibration constant has been applied. 
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Figure 2: The vibration amplitude spectra obtained by a fast Fourier transform of 

the signals of (a) a quarry blast and (b) a train crossing above. 
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a,t the first turn, when it comes back at the next turn, the transverse position is 

2, = (co + 6i,) e?*y ) (2.2) 

where I+ is the average bet&on tune of the particle in the first turn. Now, there is 

another kick 

6.2, = (0,&a) (2.3) 

When the particle comes ba,ck at the next turn, t,he position is 

jq2 = ((& + 6&) e-iasVl + 6&) e-i+ (2.4) 

Therefore, at the N-t,h turn, just before the (N+ I)-th kick, the position is 

Z1, = (. ((& $6.2,) eeiznul + 62,) e+2*y .) emiii”N , (2.5) 

or 
N 

2, = &,,-iz~~~~, ylr + 1 6~j,e-‘Mxj”L 
(2.6) 

‘Thus, the position at the N-th turn is just the linear superposition of the evolution 

of first-turn kick of the particle from the origin, the evolution of the second-turn kick 

from t,he origin, etc., plus the evolution of the original particle position &. 

II.2 Effects of Synchrotron Motion 

Without synchrotron motion the nominal beta,tron t~une is vu. With synchrotron 

motion turned on, the bet&on tune at the Lth turn is modula,ted according t,o 

vk = u. + 4v sin(2rv,le -t pp.) , (2.7) 

where v, is the synchrotron tune, up. is the initial phase of the particle in the longitu- 

dinal phase space and 4u is the tune modulation amplit,ude which is rela.ted to the 

chroma.ticitg f and the fractional momentum offset 6, by 

4v = (6, (23) 

The posit.ion of the particle at t,he Wth turn in the transverse phase space is therefore, 

according to Eq.(2.6), 

2, = a’@ -iZn~Nua+A”~~~, sin(2nk”.+v.)] 

+g6ije 
-2s 

i 
uo(N-j+l)tCfij A~5in(2~kv,+qa) 

I. (2.9) 
j=l 
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The bunch r&&s in the transverse phase space and is kicked every turn. Since 

we want to observe here only the spread of the bunch due to synchrotron motion, 

we need to subtract away the transverse position of the corresponding longitudinally 

synchronized particle (Au = 0), which is denoted by 

AT; = c&e -i27~~N + 5 6X’,e-&ru0(N-j+l) (2.10) 
j=l 

Therefore, the spread of the vector 

for a particle having maximum momentum excursion but with different initial phase 

p. will give the growth of bunch emitta,nce at the N-th turn. 

II.3 Evaluation of spread for small chromaticity 

The summation of the sine in the exponent of Eq. (2.9) can be performed to give 

ZN = e -iZruo(N+l)eiA’cosjn”.(2N11)L~.] x 

(2.12) 

where 
aAv 

A’=_--= 0.259 , 
sm X”, 

(2.13) 

if we take chromat.icity [ = 5, maximum fractional momentum spread I$ = 6.0 x 10m5, 

synchrotron frequency fa = 4 Hz, and revolution frequency j0 = 3440 Hz. We try to 

expand E,q. (2.12) and keep only the first order term in A.‘. Since E,q. (2.12) resembles 

Lhe integral representation of Bessel functions with ugumrnt A’, the expansion should 

t,urn out to be better than expected, although A’ is not, too small. In the above, the 

term involving the initial point F& has been dropped for convenience, because as is 

evident, from Eq. (2.6) or (2.9), th’ t IS erm does not contribute to the emittanw growi~h. 

Let us consider a sinusoidal kick 

62; = ia,p sin Zrv,j (2.14) 
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for the j-th turn with frequency equal to v,JO and angular amplit,ude equal to a,. 

Keeping only up to first order in A’ and subtrwting away the position of the syn- 

chronous particle, we obtain 

j, = e -~*““~~N+‘~ia,A’{S~cos[?ru.(2hT~ l)+po.] - s,> , (2.15) 

where, wit,h vi = vg * m, 

so _ c sin 2xv,jei2”wj _ ?&~Y!&Yei~~+(N+l) ~ ;~s~~~. ,iru-(N+1) , (2.16) 
j:, + 

and 

A' 
Sl = Csin 2w,j cos(2nv.j+ip,~~u.)r”2~~~j 

j=l 

_ sinT(ut+v.)N in(“+t”~)(N+l)+i(~.~*u.) 
4isinr(v++vs) 

+Sin?r!v~~~“d!Ne’“(~+~“.)(‘Y+‘)~ii~~~~u.) 
42sm7r(vi.-v,) 

~ (v+ --t v-) (2.1 !7) 

We lean from Section II.1 that this expression is in fact a superposition of thr 

individual evolution due to synchrot,ron oscillation of a particle being kicked at each 

turn. Since we start out as one point in the t,ransverse phase space with the longitudi- 

nally synchronous particle, all nonsynchronous parlicles should spread out and return 

to one point in N turns, where N is nearest to an integral number of synchrotron 

periods, OI 

N = n/v, +. E , (2.18) 

where n is an integer and ~~1 < l/2. Th’ IS ran be checked by substitut,ing Eq. (2.18) 

into Eq. (Z.li), giving 

s, = S~COSrp, ) (2.19) 

where Ye and EV. have been dropped as compared to unity. This approximation is 

just.ified since the typical value of ua is S./f0 = 1.16 x 1O-3. It is then easy t,o see from 

Eq. (2.15) that the sprad does contract bwk to a point after an integral number of 

synchrotron periods. 
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We believe the maximum spread will occur at half a synchrotron period and 

therefore evaluate Eq. (2.1~5) h w en N is equal to the closest integer of (27~~ 1)/2u.. 

After that we again set I/. = 0. The result is 

k, = A’cos~~e -iZnuo(N+l) x 

si= rut N eiTv+psl) ~ _ 
2 sin 7rv+ 

icosxv+h ei”“+(N+l) ~ (u+ ~ um) 
Zsinnv- 

(2.20) 

Since the kicking frequency is typically less than 20 Hz (v~,, < 5.81 x 10m3) and the 

b&&on tune v0 should never be too close to an intrgerl ar can further simplify 

Eq. (2.20) by expanding in terms of II,, giving finally 

j, = .~~a~~~~~s~~e~‘Z”uO(Ar+l) 
2 sm xv+ sm TV- 

(2.21) 

When the initial position C& is included, we get 

j, = e-iZnvoN cos lpaAl 
1 
-2iri0 + ~ 

iw, 
sin 7rv+ sin KV- 

e~-i2TTug I. (2.22) 

The above describes the breathing oscillation of the bunch a,s illusdrated in Fig. 3. 

iVe can see that the first exponential describes just the N-turn beta,tron oscillat,ion of 

t,he synchronous particle and can therefore be dropped. The first term in the squared 

brackets is always perpendicular to radial vector cZO from the bunch cent,er. It, describes 

the synchronous oscillatory spread in the azimuthal direction and therefore does not 

contribute to the expansion or contrxtion of the bunch in the transverse phase space. 

The second term can give a spread radi$ly and therefore contribute to the emittanre 

growth. Equa.tion (2.21) shows that X, = 0 for particles wit,h initial synchronous 

pha,se $9. == s/2. This does not imply that these particles do not spread out. In 

fact, t,hese particles spread out to a, maximum at a quarter synchrotron period and 

contract back to the initial point at. half a synchrotron period. These expansions and 

contractions a,re illustrated for some special cases in Fig. 4. 

Thus a. point bunch in the transverse phase space will develop int,o a circle of 

radius 

~ I j, _ .mp*PII.. 
v. sm xv0 ’ 

(2.23) 

and contract back to a point after an integral number of synchrotron periods. Here, 

Eqs. (2.8) and (2.13) have been used. However if the betatron tune is dependent, on 



X 

Figure 3: The circle is a bunch in the transverse phase space being kicked off-centered. 

The breathing motion is illustrated by the arrows. 
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Figure 3: Simulations of the expansion from and contraction t,o a point in the trans 

\‘erse phase space. 
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a.mplitude and if the tunespread is large enough, the contmction will not come hack 

to a. point,, resulting in a growth of emittance. Note that the growth is proportional 

to the incremental kick per turn asexpected physically. If we start out with a hunch 

occupying a circle of radius lir,l, lx’,.1 d escrihes the breathing of a displaced bunch. 

‘The displxed bunch itself will be treated in Section III. 

II.4 Applications 

1. Jostlein’s Beam Centering 

In Jostlein’s beam-centering scheme,’ one beam is rota.ted about t.hr ot.her at an 

interaction point, and the resulting variation in luminosity serves to measure the 

amount and direction by which the two beam centers miss each other. In this situa- 

tion, exh beam acts on the &her like a moving quadrupole to first order. With the 

head-on beam-beam tuneshift Avab = 0.004, and the bet&Ion function at the interx- 

tion point Do = 0.5 m, the corresponding focal length of the equivalent quadrupole is 

f, = fl,,/4?~A1+,* = 10 m. Note that in this considemtion only the linear bea,m-bean 

effect has been taken into account. When one beam rotates in a circle [in the vertical 

plane) with a radius b, and a frequency fm = vmfO, the other beam is equivalent to 

being kicked periodically by an amplit,ude a, = b,/f, according to Eq. (2.14). With 

a. frxtional bet,atron tune of 0.5 and a rotat,ing frequency of 20 Hz, the maximum 

radially displacement is 

2.36 x 104b, (2.24) 

Since the perturbed amplitude b, should be much less than the rms t,ransverse size 

of the beam (uO = 5 p), this breathing of emittance is negligibly small. 

2. Ground Motions 

For the quarry approximately 9 miles away from the SSC rings, the vertical ground 

displacements due to its blasts measured at tunnel depth are shown in Fig. 2. The 

spectrum shows essentially a narrow resonance at, 1 Hz and a, relatively broader one 

a,t 3 Hz. Integrations were made sound the two peaks to give the vertical ground 

displacemrnts at the two frequencies. The result is 
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Frequency fm Displacements b, 

1 Hz 1.4 /l 

3 Hz 0.1 /l 

Each SSC collider ring consists of 90” cells of length L = 228.5 m. The focal lengt,hs 

of the quadrupoles are therefore f, = L/4sin45’ = 80.8 m and p = 390 m at the 

F quad. If the quadrupole is displaced by b,, the kick wnplitude on the beam is 

a 77L= bm/fn. We obtain by adding up the effect of -1000 quadrupoles randomly, 

I$,~ = 
0.040 b, 1 Hz 

0.119 b, 3 Hz, 
(2.25) 

which is pretty small compzed with the rms bunch size of no Jpz/po = 63.6 p, 

especially the horizontal ground displacement b, is believed to be about one-trnth of 

the vertical displacement. 

For a train crossing the ring, t,he measured ground displxements at, tunnel depth 

are shown in Fig. 2. Integration around the two peaks gives: 

Frequency fm Displacement b,, 

3 Hz 0.51 @ 

7 Hz 0.58 /1, 

Due to the a,ttcnua,tion of the ground signal, we assume only IO neighboring qua,dru- 

poles are affected and i,bey contribut,r equally a.nd construct~ivrly. Then 

I,?, 1 = 
0.009 b, 3 Hz 

O.O17b, 7Hz, 
(2.26) 

which will only lad to negligible growth in emittance. 
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III. TUNE DEPENDENCE ON AMPLITUDE 

111.1 Hamiltonian 

In this section, we turn off the synchrotron motion. Let us describe motion of a 

single p&i& in the transverse phase space by the Hamilt,onian4 

(3.1) 

where z = X/g is t,he normalized Floquet t,ra.nsverse displacement, p the canonical 

momentum, a,nd $ = Sds/v& the Floquet phase advance a,s well as the independent 

‘t,ime variable. The periodic perturbing force is 

F($) = 1 dv,,,ii,@vo sin vm$ E S(yt - 27rn) : 
n=o 

(3.2) 

where &,, is the angular kick on the beam per unit v,. We next, perform a canonical 

transformation t,o the action-angle variables (J,$) with the aid of the generating 

function 
1 

F,(z,qs) = - 5 vo2tan~. (3.3) 

The transformed Hamiltonian is 

4J2 
H=voJpapp 

VII 

The second term a,dded to Eq. (3.4) introduces tune drprndrnce on amplitude, which 

is, in the absence of the perturbing force F(Q), 

aH 
V@ = .yj F(~l-o = “0 - aAZ , 

~vhere the betatron amplitude is given by A = @J/r+ and a is the detuning. 

III.2 New Invariant Curves 

(3.5) 

In the absence of the perturbing force F(4), tl vz Hamili,onian is an invariant, 

implying that the palicle stays on invariant curves in the z-p phase space. These 
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curves are, in fact, circles of constant radii J. With the perturbing force having a,n 

amplitude very much less than the betatron amplitude, or 

we assume that the syst,em remains integrable, at least approximatrly. We try to 

solve for the new invariant curves for each perturbing frequency II,,,. For this, wr 

define the integrated perturbing amplitude for this particular frequency as 

a, G ii,dv, , (3.7) 

which is exactly the same a, as in Eq. (2.14). The equat,ion of motion for J is 

Since only solution up to first order in a, is required, we need to solve equation of 

motion for 4 
dd 6’H -=- 
dqb aJ 

=v,+O(l~~;~@) , (3.9) 

to zeroth order only. At t.he sune t,ime, the nonlinear tunesprad due to det,uning 

Aup, which is assumed to be small compued with the nominal tune v,,: is dropped 

also. Thus, approximately, 

4 = &I t 4l+ 

Son Eq. (3.8) can be integmted ea.sily to give 

(3.10) 

\p$ $2 = ~ 2 a,&sin(& + 2TNq,) SiIj 2aNvm 
n:o 

= $5 [cos(do- 27rnu_) ~ cos($flo+2~n.v~)] ) (3.11) 
n=O 

where Jo and J, are; respectively, the actions of the pwticle after the 0.th and A-th 

turn, and WC ha,vr defned v+ = vO f v,. To find the invariant c~~rvcs, WC should look 

at the position of the puticle every perturbation period sta.rt.ing from the no-th turn. 

In other words, there is a set of inva,ria,nt curves for every no. Therefore, we let 

NZQ+n ?L an integer 
v,n 

(3.12) 
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Summing the cosine series, Eq. (3.11) becomes 

(3.13) 

Where 

i 1 
= sin2Kmv,[sin(& t 27rl\‘ui~)(cos 2xuo-cos2rrv,)tcos(~o+2?rNvo)sin 2xv,] 

- COS ZT%v, sin 2nv, sin(&+2xNv0) + sin &sin 2xv, (3.14) 

If we look at the invariant curves every l/urn turns starting from turn zero (7~ = 0), 

Eq. (3.13) simplifies to 

lz,, ~ fi7,’ 
’ %7 

,iyu = P~$$,~~~[sin 4 - sin ooj , (3.15) 

where we have substit,uted d, 5 40 in 2xNvo according t,o Eq. (3.10). 

To check the existence of invariant curves when the t.unespread L!.v~ in Eq. (3.9) 

is included, we perform a lurn-by-turn simulation according to Eq. (2.6) with the 

kick at the j-th turn given by Eq. (3.2). W e o f 11 owed four paticles which were 

placed init,ially on the unit circle in the phase plane, at, phases & = 0, 7r/2, x, and 

3~12. The nominal tune was v0 = 0.4. The pert,urbing frequency was fm = 20 Hz, 

or “nL = l/172 for the SSC collider whose revolution frequency is f0 = 3.440 kHz. 

Tbr kick amplit,ude was taken as a, = 0.1 unit, and thr det,uning varied from 0.00 

to 0.01 unit. The amplitude-phase plots are displayed in Fig. 5a after tracking for 

5 x 10“ turns. The plots demonstmte the existence of the inmriance curves for the 

four particles even when the tunespread and higher-order of a, me included. Also 

the results are as ape&d from Eq. (3.11). Th ese invariant curves are plott.ed in the 

phase plme in Fig. 5b. 

Of course, the existence of new invariant curves does not necessarily imply the 

increase in emittance. It is the sprmd in beta.tron tune Ihat leads to a smear and 

then the emittmce increase. The eventual emittemce will be given by the area of the 

closed invarimt, curve of particle 4 (see Fig. 5b). Wl len pa,rticle 1 leads particle 4 by 

slightly more t.han r/2 arriving a.t point A with particle 4 rema,ining at thr original 

posit,ion, the fractional increase in area, u-ill reach roughly half the maximum. The 
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lb) 

Figure 5: Invariant curves for particles 1, 2, 3; and 4 are plotted amplitude-versus- 

phase in (a) and in the z-p phase plane in (b). The particles are marked on the dotted 

unit circles in (b) representing the initial invariant CUIW for all the 4 particles. 
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number of t,urns N; required is given by 

AI+= *AA N 
1 

dA + i-4, (3.16) 

where AAL is the amplitude difference between particles 1 and 4. With the aid of 

Eq. (3.5), ’ 

N, - ~ 
1 

7 8aAo~lA~ 
(3.17) 

I 

The maximum fractional increase in emittance (or area,) can be obtained from either 

Eq. (3.15) or Eq. (3.13) for all no, by integrating AA’ over i d4 and dividing by xA$ 

At a, sin 27~4 
- 5 -------------- 

t 2A. sinZxvo ’ 
(3.18) 

where II* in the denominator has been replaced by ~0. These predictions ha,d been 

confirmed by a simulation for 10’ turns. We want to point out that the fmctional 

growt,h in emittancr, as depicted in Eq. (3.18), is in fxt proportional t,o the incre- 

mental kick per turn a,,,“,. 

The invariant curves for different values of no are given by Eq. (3.14). Take for 

example the sit,uation of largest kick, ng = 1/4v,. The shift in amplitude becomes 

p-~= arrLdPc~~(ew) 

2sinxuo ’ 
(3.19) 

where we ha,ve replaced I& 2 2rNv0 by 4. The shift in amplitude in Eq. (3.15) when 

no 10 is of 0(a,&&). However, when 7~0 = 1/4v,,,, the shift is of (7(a,fi) which 

is I/v,,, times bigger. 

III.3 Applications 

1. Jostlein’s Beam-centering Scheme 

One bean rotates in a, circle with radius b,n. The other beam has an initial 

amplitude il0 = X,,,.,/& where A’,., is the maximum t,ransverse radius of the 

bunch. The fractional growth in emittance from Eq. (3.18) becomes 

AC b, p. sin2rv,,, 

e -L.¶x 
(3.20) 
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which is indeed very small since we must choose b, < .“r,., in practice. The param- 

eters given in Section II.5 had been used. If the Jostlein’s modulation is snitched 

off abruptly, say, at turn number corresponding to ng = 1/4v, when the modulation 

amplitude is largest: the beam will eventually smear out, due to nonliwzar tunespread. 

The growth in emittance will therefore be derived from Eq. (3.19) in&ad, giving 

AC b, Po 1 -= ---- = 0.026-6” 
6 Xm,, f~ sin iwO -Ll.x ’ 

(3.21) 

which is 26 times la,rger. 

We can estimate the growth time. For the SSC, a typical value for nonlinear 

detuning is p = 48.0 mm2 found by Yan’ in simulations using a full spectrum of 

random errors. If we use p = 390 m, a value at the F quad, this translates into our 

detuning a = & = I .87 x lo4 II-‘. At 20 Tel’, the rms bunch size is about 0.12 mm 

a,t the F qua,d, thus 40 = 6.07 x lo-%nf. However, this smearing time is extremely 

long. According to Eq. (3.14), it t,akes roughly (cYA&.A)-* = 1.1 x lo8 x (X,,,/b,) 

turns or 9.0 x (-Ymax/bm) hours. Therefore, the offset bunch can always be kicked 

back easily to the ideal closed orbit by an xtive kicker and no emit.tance growth due 

to nonlinear tunespread will occur. 

2. Ground Motions 

If we use the ground displacement. due t,o quarry blasts as listed in Section 11.5, 

the beam modula,tion amplitudes for the SSC are, respectivelyj for 1 Hz and 3 Hz, 

(3.22) 

According t,o Eq. (3.18), the fractional growth in emittancr is 0.0060, where a, factor 

of A000 has been included to account for the - 1000 quadrupoles in the collider 

ring. The time required to reach half maximum, estimat,ed from Eq. (3.17), gives 

1.2 x lo8 turns or 9.7 hours. B&h the ground-nave peaks at 1 Hr and 3 Hz have a 

full width of about 1 Hz, corresponding to a, correla,tion t,ime of 7 - 2 set, for which 

the growth is extremely tiny. The qwrry blast usually lasts for only 30 sec. The total 

growth is still negligibly small. 
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However, at the end of a correlated wave, the beam can be kicked off-cent,er, 

resulting in emittance growth due to nonlinear tunespread. If we average over the 

no in Eq. (3.12), the average amount of off-center shift after the abrupt, end of a 

correlated wave is 

(AA) = 1 A,! 
7r s,n xv0 

x v5000 = 6.50 x 1om6 In:: , 

which is of the sa,me order of ma,gnitude as A 0, the original size of the bunch. The 

smearing t,ime is found to be 4.8 x lo5 turns or 140 sec. Thus, an active damper 

can alna,ys be used to kick the beam back to its ideal orbit avoiding any nonlinear 

smearing. 

For the train, according to the mea.sured displa,cemrnt,s list,cd in Section 11.5, the 

fract~iorral growth in emittance is 0.0023, where a factor of 10 has been included to 

represent the assumpt,ion that 10 nearby quadrupoles a,re a,ffected by the train and 

they contribute equally. It, takes 3.12 x 10’ turns or a,bout 25 hours to reach half 

maximum. A one-mile train traveling at 30 mph will take about 120 WC to cross the 

ring. As a result, the growth should be negligibly small. 

The peak at 1 Hz has a full width of 1 Hz and the one at 7 Hz has a full width 

of 12 Hz. The correlation time for the two frequencies are therefore 2 and 0.17 xc, 

respectively. Again abrupt stopping of a correlated wave will throw the beam off- 

center. But because of the small nonlinear tune spread, smearing can be avoided by 

m active damper. 

IV. LONGITUDINAL EMITTANCE GROWTH 

IV.1 Nonzero Momentum Dispersion 

We now consider the situation when the kicked quadrupole is located at a plxe 

where the momentum dispersion is nonzero and see how t,hr horizont,al kick will a,flect, 

the longitudinal phase space.” The periodic kick (amplitude b,) on a, qua,drupolr (focal 

length f,) a,t the j-th turn produces the angular kick on Ihe beam 

bm oj = _f, sin 2rum,,j (4.1) 
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The incremental kick from the (j - l)-th to j-th turn 

~Bj = Bj - Oj~l 

leads to a change in revolution orbit length of 

(4.2) 

aCj = a8jD (4.3) 

for the j-th turn, where D is the momentum dispersion at the quadrupole. The 

synchronous puticle will arrive at the rf cavity late by the rf angle 

2?rhD 
---‘A4 , co 

(4.4) 

where A,( is the rf wavelength, h the rf harmonic, and CO is the ideal orbit length. If 

this late arrival accumulates, is it possible that the bunch area, will increase and the 

bunch particles will eventually go out of the rf bucket? 

The turn-by-turn equations of motion for the rf phase (6, and frxt.ional energy 

offset 6,j at the j-th turn are given by 

.%ti -- 
dn - 

2?rqh& + I,!I~ , 

ds,, 
dn (4.5) 

where 7 is the phase-slip parameter, V the rf voltage (for a stationary bucket), and 

E the synchronous energy. In the above, the accumulated rf phase lag or mismatch 

due to the kick is 

*j = $ A*j _ ??gEBj 
ikl (4.6) 

\I’e want to point out that, it is ~j and not A$j tha.t enters into the first equation of 

motion. 

IV.2 Constant kick 

Consider a, misplaced quadrupolr. It gives the beam a const,ant turn-by-turn kick 

0. This just implies a nrw closed orbit wit,h an extra length if AC = BD. Thus, for 

every turn, there is &II increase of phase lag 



But the focussing effect of the rf prevents the phase lag from accumulating. Instead, it 

shifts the synchronous center to a lower energy SPC = -+/2nqh so as to accommodate 

a shorter orbit length. This is illustrated in Fig. 6. 

Figure 6: With a kick of the same size every turn, the pr&ously synchronous particle 

is driven into synchrotron motion about a new synchronous center 0’ which is $/21rqh 

below the original synchronous center 0. The point P is at a constant phase lag $. 

IV.3 Periodic kick 

If we use time t as the independent variable, the equations of motion (4.5) becomes 

dd wr,hDA 
- = qhw& + ~ 
dt cc& 

sln(ht) , 

d6p eC’wo 

dt = 
--4, 27rE (4.8) 

with the initial condition C$ = $0 and 6, = Spa at t = 0. We introduce the new variable 

(4.9) 
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so tha,t the elliptic trajectory becomes circular. Using Laplxe transform, we obtain 

the solution in complex notation 

(J,~,) _ ,-,,-;h.~ + ~siniiv(~~VV”)N=-‘?““,~ pi$COsd~m-V~)N sin(2xv8N) , 

m a 2vs 
(4.10) 

where 
2 2xv,2 Dbm 

“” = ?JCofq ’ (4.11) 

and the approxima,tion that the perturbing tune v,,, is close to the sgnchrotron l,une 

u, has been used. In the above, the first term is the evolution of the initial position 

& = (&, CC,,) of a particle in the bunch. The third term shifts the center of rotation 

upward and downward, which is equivalent to the shift of the synchronous center in 

the case of a constant kick discussed in the last section. The second term represents 

the synchronous oscillation of the particle in the bunch with an amplitude due to the 

periodic kick. This term ca.n become very big because of the small denominator. If the 

rf bucket is big enough, there is still no increase in bunch area. It is the dependence 

of synchrot,ron t,une on amplitude that smears out the bunch leading to increase in 

bunch area. 

IV.4 Estimation and Discussions 

If we take b, = 0.1 p for the horizontal kick amplitude due to ground motion 

(quarry blast) at a frequency fm = 3 Hz, with the frequency-flip factor 7 = 1.1 x IO-*, 

rf harmonic h = 1.05 x IO’, and synchrotron frequency f. = 4 Hz; a point bunch in 

t.he longitudinal pha.sc space ca,n smear to a size with 

44 = *46, = 3.08 x lo@ rf rad 
v. 

(4.12) 

For 1000 qua,drupoles, just multiply the result by JIOOO 

We can dra,w the following conclusions: 

(1) Unless the perturbing frequency is exactly the sa.me as the synchronous frequent> 

and is locked on to it exactly, OUT estimation shows that there is not a cont.inuous 

21 



growth 

(2) If the perturbation is a continuum ~(w,,,), which centers at the synchrotron fre- 

quency w. and is narrow, the solution of the equations of motion (4.8) gives 

(4.13) 

So there is no resona,nce with the synchrotron motion 

(3) If the perturbation is random, the above trea,tment does not apply and the kick 

can be in resonance with synchrotron oscillation. 

(4) With the synchrotron frequency dependent on amplitude, the story may be very 

different.. 
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