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ABSTRACT 

We derive the Hamiltonian which describes a system under the action of the isolated 

nonlinear resonance 2 generated by the sextupole term x3. This is accomplished by 

successive canonical transformations. Expressions for the island width and the island 

tune are given in terms of the sextupole configuration. Because of the large influence of 

the third-integer resonance, we have this resonance included also in the analysis. The 

validity of this calculation is checked against single particle tracking calculation and the 

results are satisfactory. 



I. INTRODUCTION 

In the E778 experiment[I] performed at the Tevatron, five islands were observed when 

the horizontal tune was set near v = 19.40. It is clear that these islands are the result of 

the firing of the set of special sextupoles. In this paper, we are going to describe these 

islands using a perturbative Hamiltonian approach. To have the t resonance terms, third 

order in sextupole strength is necessary. For the islands to exist, however, a detuning 

term is also required. This is the usual second-order tune-shift term. The perturbation 

is carried out by successive Moser transformations. This process is, in fact, equivalent to 

an expansion in the parameter 

x - X.5~ , (1.1) 

where z is the normalized horizontal displacement of the particle bunch and sk is the 

sextupole strength defined in Eq. (2.15) below. 

In Sec. II, two successive Moser transformations are performed to arrive at the third- 

order sextupole terms. This appears to be a very tedious derivation. It turns out, 

however, that the second Moser transformation is not actually necessary. Formulas for 

island width and island tune are derived. 

In Sec. III, the Hamiltonian derivation is compared with the tracking results of an 

actual E778 experimental setup at the Tevatron. Direct comparison with experiment is 

not possible, because the Tevatron transverse beam size was found to be larger than the 

island width. Because of the proximity of the islands to the third-integer separatrices, 

the third-integer resonance has also been included in the analysis. The inclusion of two 

resonances has been possible because these two resonances happen to occur in different 

orders of the perturbation 

II. DERIVATION OF THE ISLAND WIDTH AND ISLAND TUNE 

II.1 The Hamiltonian in Action-angle Variables 

The oIle-degree-of-freedom Hamiltonian which describes the motion of a single beam 

particle in the presence of a normal sextupole field is 

H = +2+K(a)XY]+ 1%X3 , (2.1) 



where I’ is the canonical momentum conjugate to the horizontal displacement X, and I< 

is proportional to the restoring force due to the ring’s curvature and the field gradients 

of the normal quadrupoles. The term [B:/6(Bp)]X3 g ives the normal sextupole poten- 

tial with (Bp) denoting the magnetic rigidity of the particle. We perform a canonical 

transformation to the Floquet space using the generating function 

Gl(x, P; s) = - PX+p’& 
4Po 

w4 

where p is the beta function at distance s along the ideal orbit, /& is a reference beta, 

and p’ = dp/ds is the derivative with respect to the ideal path length along the ring. 

The new Hamiltonian becomes 

In the above, the independent variable s has been changed to the more convenient 6’ = 

s/R, where R is the average radius of the storage ring. The canonical variables (X, I’) 

have been transformed to the normalized (z,p). 

This Hamiltonian is now solved exactly to zeroth order in the sextupole strength by 

canonical transformation to the action-angle variables (I, a). The generating function 

Gz(a,p;@ = ;h2cot[$(0)-v@+~] (2.4) 

is used to obtain the transformation 

z = (2Ipo)“~COS[~(B)-v~+n], (2.5) 

/30p = -(21/&)“‘sin [g!(O)-dta] , G-3 

where pop = du/d$ and is denoted by x’ below. In the above, v is the betatron tune and 

(2.7) 

is the Floquet phase at the location s. After the transformation, the new Hamiltonian 

becomes 

Hz = VI+ - ~4~(21~)3~~{cos3[~(8)-vBtrr]+3cos[3(8)-vO+a]} (2.8) 
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We note that the expression 
RB” 2(21p)3Dei(+4 
BP 

is periodic in 8; it can be expanded into harmonics. So we get 

Hz = VI + (21)3’*@~‘2 x(3A1, sin qlm $ AZ,,, sin qsm) , 
m 

where the angles are defined by 

(2.9) 

(2.10) 

qh = a - mQ + farn , (2.11) 

Q3,,% = 3a - d + w3m , (2.12) 

and the Fourier coefficients are 

A 1me talm = _ i cw 
i(+d+m8)t 

24n k , (2.13) 

(2.14) 

The summation in Eq. (2.10) is over all integers or harmonics from -XI to foe. The 

summations in Eqs. (2.13) and (2.14) are over all sextupoles at positions 6’k around the 

ring. The normal sextupoles are assumed to have infinitesimal length & with stren,gths 

Sk = (2.15) 

In Eqs. (2.13) and (2.14), the harmonic amplitudes Altn, Asm and the phases a~,,~ and 

aAm are real numbers. 

It is clear from Eq. (2.10) that the Hamiltonian has the dimension of the action I or 

[length], and the perturbative parameter is 

X N (21/30)“2A1, or (2~P0)“~A3,n , (2.16) 

as was mentioned in the previous section. In below, the second-order terms can therefore 

be referred as the I’ terms, the third-order terms the 15/* terms, etc. 



II.2 First Moser transformation 

We now perform a Moser transformation from (I, a) to (J, b) such that the new Hamil- 

tonian is solved exactly up to first order in sextupole strength. The generating function 

is 

G3(a, J, 6’) = aJ - (2J)3’*p;‘z 5 (2 cos qlm + & cos qzm) (2.17) 

This new transformation implies 

IX, (2.18) 

b=$ (2.19) 

and 
dG3 

Explicitly, we have 

f&(6 J) = Hz@, J) + ae (2.20) 

I = J + (2J)““/3;‘“Q(a) , (2.21) 

where 
Qca) = F [2 sin qlm(a) + 2 sin (i3dai] , (2.22) 

and qim(a) =ja-mB+aj, with j = 1, 3. From here we can calculate the term (2I)3/* 

by expanding Eq. (2.21) in powers of J 

(2I)3’2 = (2J)3’2 t 3(2J)‘P”‘Q(a) t ;(2J)5i2@&(a) + “. (2.23) 

The new angle variable b can be calculated from Eq. (2.19) 

b = a - 3(2J)1/*&‘zQl(a) , (2.24) 

where 

&l(n) = F [~cosq&x) t &cosqzm(a)] 

Hence the new Hamiltonian (2.20) becomes 

(2.25) 

H,(b J) = v[J + (2J)3’2/9’20] 

; ( (2J)312 + 3(2J)“&+ ~(2J)“z~OQ2} p;‘” 

x C(3A, sin qlm t Asrn sin qan) 
m 

-(2J)3/‘4:‘*&m (ssinqlm + &Sinqh) (2.26) 
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Or, if we collect all the terms of the same power of J together, 

Ha(b, J) = vJ+ 

(2J)3’z/$‘z~ (3A1, sin am (A + 1 - &) 

t&, sin qzrn ( & +1-m 
m-3V >I 

t3(2J)‘/&Q x(3A1, sin qlm + Asm sin qzm) 
7n 

3 
+~(2J)5’zj$‘zQz x(3A,, sin ql,,, $ A3m sin qzm) 

m 
(2.27) 

Notice that the terms proportional to J3/’ vanish as expected. Since we would like to do 

perturbation up to 0(X3) only, we can substitute a by b in the last term of Eq. (2.27). 

However, for the second last term we need to expand qjm(a) to one order in A. From 

Eq. (2.24), we get 

a = b + 3(2J)1’2~;‘zQ~(b) (2.28) 

Therefore, for j = 1,3, 

sinqj,(a) = sin(ja-m&aj,) Y sinqj,(b) +3j(2J)‘/2&‘2Q,(b)cosqj,(b) (2.29) 

Using Eq. (2.29), the second last term of Eq. (2.27) can be separated into a second-order 

term (5’ term) and a third-order term (J 5/Z term). The Hamiltonian becomes 

Hs(b, J) = vJ+ 

3@7)% c, (2 sin qlm t $& sin qzT,,) (3A1,, sin qlml + Azmf sin qzmS) 

+ “3rd.oG:r terms” , (2.30) 

where the third-order terms are 

“3rd-order terms” = 

27(2J)5’*P3’2Q~C [ (2 cos qamt 2 COST,,) (Azm, sinq3mt+3A1,t sin qlml) 
,TfX’ 

3A1m 
+ (2 sin am t m--v sin qln) (Aw cos qzml + 3A1,, cos ql,-,)] 

+~(2J)5/2&@Q2 c (3A1,t sin qlrnl + Azrn’ sin qaml) 
711’ 

(2.31) 
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Note that the second-order term and the first of the third-order terms come from the 

second last term of Eq. (2.27). In Eqs. (2.30) and (2.31), all the qj,‘s, 6J and ‘&?I are now 

explicit functions of the angle variable b. 

II.3 Second Moser Transformation 

Now we want to perform another Moser transformation so that all the second-order 

terms in Eq. (2.30) disappear. Before doing so, let us rewrite the second-order terms 

using the relation 

The result is 

sin AsinB = k [cos(A-E) - cos(A+B)] (2.32) 

H,(b, J) = vJ+ 

cos [-(m-m’)0 + (cY*m-cYlm’)] - 
3&n&n~ 

cm Ql m-v 

+ 
&n.bn~ 

cos Q2 - 
A~m&m, 

cos Qz + 
3&mA1m~ 3&mA1,, 

m-v ?i-" m-3v 
cos Q4 - 

m-3u ~0s Q5 

+ 
&m&m~ 

m-3v 03s [-(ml-m)0 t (a3*~-a3m)l- 
&n&rn~ 
m-3v 

cm Qs 

+9(2J)5’2pyzn,, {. .} + $2J)5W c {. .} (2.33) 
mln’m” 

The quantities Q1 to Q6 are defined as follows 

&I = 2b - (m+m')Q t (al,+mn,~) , (2.34) 

Qz = 26 - (d-m)@ + (a3,n-al,) , (2.35) 

Qa = 4b - (m+m’)Q t (al,+aw) , (2.36) 

Q4 = 2b - (m-m’)0 + (CY~~-CYM) , (2.37) 

QE = 46 - (mtm')o t (wntmn,) , (2.38) 

Qs = 6b - (m-d)8 t (azmtaw) , (2.39) 

and the triple sums in the last line of Eq. (2.33) are the third-order terms. 

We shall transform from (J,b) to (1,a). T o avoid proliferation of the notation, we 

have chosen to call the new variables (I, a) again. We need a generating function 

G&I, I; 0) = bl $ &(b, I, 0) , (2.40) 
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with 
ac, J=Itdb, (2.41) 

such that in the new Hamiltonian we have 

ac, ac, 
UK+ dB + 2nd.order term of Eq. (2.30) = 0 (2.42) 

at least up to second order. This will not be possible, however, because when m = m’ 

there are two terms in Eq. (2.33), 

3W80 c (2 + A) , 
m 

(2.43) 

which are independent of 0 and b. Note that c!?, must be of second order; therefore (25) 

has been replaced by (21) in above. Aside from these terms, G4 can be found readily, 

Gd(h 1; 0) = i(21)2Po c { - ~m~v~~~~~~~2,1 sin &I 
,,’ 

-im-3v;~~;“&6r,l sinQ6 I 
-~(WO,~~ { -,,,“_4:i:rk,, sin [-(m-m’)0 t (al,-a,,,)] 

p(m-Z$77y-m) 
sin[-(m’-m)8 + ((~~~~-a~~~)] 

I 
(2.44) 

The prime in the last summation signifies that the situation of m = m’ has been excluded. 

The new Hamiltonian becomes 

~~(a, I) = VI + :(21)~@,, z [ 2 t &] + “3rd.order terms” (2.45) 

Note that the third-order terms are intact as in Eq. (2.30) except for the substitution of 

(2J) by (21) and b by a. In fact, this is a general result. That is, in the second Moser 

transformation, G4 is always of second order. Therefore, the substitution of (J, b) for this 

transformation into the second-order terms of Eq. (2.33) will produce only second-order 
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terms and fourth-order or still higher-order terms, and no third-order terms. For this 

reason, the third-order terms of the result of the second Moser transformation can be 

read off directly from Eq. (2.30) with the old actionangle variables replaced by the new 

ones and without actually performing the transformation. The second Moser transfor- 

mation generates only the detuning term [Eq. (2.43)], which can also be read off easily 

or obtained L21 by averaging the phase of Eq. (2.30). In other words, the second Moser 

transformation can actually be avoided. 

II.4 Evaluation of Third-order Terms 

The two third-order terms of Eq. (2.31) can be evaluated easily, by expanding the 

trigonometric functions with the use of the Eq. (2.32) and 

sinAcosB= i[sin(A+B)+sin(A-B)] (2.46) 

Since we are interested in the 5 resonance, we keep only those terms which will produce 

an argument of 5a in the final sine or cosine. This can be easily tracked, because each 

qj, contains ia (i = 1 or 3). 

Let us take up the second of the third-order terms. First we evaluate Q’(a) defined 

by Eq. (2.22), 

In the above, terms involving cos(qs, - ~a~,,) and cos(plm - qlml,) have been dropped, 

because they will not lead to an argument of 5a eventually. The second of the third- 

order terms then gives 

~(2~)5izljU’2Q2 C(AS,~~ sin qsm, + 3A1,, sin qlm,) = 
,’ 



2A1m&m~Aw 
+(m-v)(m"-33u) si4q3m~+q3m~~-41m 1 

6A1mA1rn,Asrn,, 

-(m-u)(m"-33v) sin(qh+qhf+qh~,) , 
1 

where only the relevant terms have been included. 

(2.48) 

Similarly, the first third-order term in Eq. (2.31), 

27(21)5’2P~‘2Q~ C ( ““,?TtLm’ sin(qs,+qs,,) -t 3A1mA1m’ sin(q,,+qlmf) 
mm’ m--v 

t ‘km!;; L-3 sin(q,,-q,,,) t 6 sin(qzm t qw)] 

t 
hn&rn~ 

m--v [-4q3d-q1,) t 2sin(qh + G%n.)l) , (2.49) 
becomes, after the substitution of Q, from Eq. (2.25), 

227(W”12P~‘2m~m,, { - c~~~v~~~;;‘l’~v, sin(q3,-qh( tqsm~~) 

6A1mA~rn~Aw 
+(m-v)(mtf-v) 

8A1m&rn~.&rn~~ 
sin(qh+qh~+h~~) + (m-V)(m,,-3v) sin(q3dtq3d-qh) 

21AlmAlm~A3m~~ 

+(m-u)(m"-33v) *in(yl.,.tri,,.~ltq~~~,)} (2.50) 

Summing up Eqs. (2.48) and (2.50), the new Hamiltonian becomes 

&(a, I) = VI + ;(21)% -5 [j& t mAJ;,] 

t;(21)5iz#2 (234S1 + 69S2 t 102& - 27&} , 

where 

(2.51) 

SI =,Fm,, (~~u$~~f~3'~) sin[5a-(mtm'tm")B t (almtalm+a3m~~)] , (2.52) 

Sz =,Fm,, (~$$~~) sin[5a-(mtm'tm")B t (ah+ah~taI,~f)] , (2.53) 

s3 =,Fm,, (;:v$;2& sill[5a-(m-m'tm")B + (cY~,,G+cQ,,~~-cY~,)] , (2.54) 

sin[5-(m-m'tm")O t ((Y~~+cY~~~~~-cY~,~)] (2.55) 
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II.5 The Detuning Term 

The expression in Eq. (2.43) is called the detuning term because it consists of a 

constant multiplied by 12. This constant is one half of the detuning c, which can be 

expressed as 
3A2 A;,, 

c=36pgc a+- 
1 m-3v 1 m m-v 

(2.56) 

The harmonics can be readily summed 121 31 using the formulas 

x -e.-mJb+4~-~)1 0 < 0 < zT 
sin TV 

-7r cot TV 8’ B=O 

to give 

(2.57) 

(2.58) 

where the distortion functions are defined as 

Bl(11) = 2si~~v~~cos(I~~-~l-irli) 0 5 5 27r!J I$?-41 , 

B3(3G) = 2si;3Tv T ~cos3(1+tiI - 7rv) 0 I 5 27rv I?&$1 (2.59) 

II.6 The Triple Sums of the Resonance Terms 

Next we are going to calculate the triple sums of Sr, 5’2, Ss and S.,, and express the 

S’s in a closed form. We shall demonstrate the way to calculate 5’1 and give the results 

for the other three sums. First we rewrite it as 

r,, = Im c (Almeso1,)(Al,,~eia,,r)(A3,,,e’a,”,”) eiL5a++m,+m,,)81 , 

(m-v)(m”-3u) 
(2.60) 

mrn~rn’J 

where the expressions 
,$&i% j=1,3 (2.61) 

are given by Eqs. (2.13) and (2.14). From the above sum, we will keep only the slowly 

varying terms, that is, terms of the form e i(5a-978) , since the tune of the machine is close 

to 19.40. 
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Hence the above triple sum ~ over m, m’ and m” - is actually constrained by the 
condition 

m + m’ $ rnfl = 97 (2.62) 

Eliminating m’, we obtain 
s1 = &g&5*-978) (2.63) 

where the complex number $ is defined as 

j, = c (Ahe ial~)(A1(97-m-m,,),ia~c~~-,-,rf))(A3m,,e”~~m”) 

(m-v)(m”-3v) 
(2.64) 

mm” 

Substituting Eqs. (2.13) and (2.14) into Eq. (2.63), we get 

3 
il = & c SklSk?Sk3,;(~-~s+g7s),, x 

( > k, kzks 

xc 
,ih-4, +4&-b, )I eiwk, -3h3 frn”(8k, 4, )I 

(2.65) 
m m---v 5 m”-3v 

The two sums over m and m’ can now be performed exactly using the formulas given by 

Eq. (2.57). We obtain 

” = 
-i 

(24)3 7r sin 7r~ sin 3rv 
cos 7rv cos 3x11 c & 2(% --5%) 

h 

t cos =I/ c s;zsk3 e@I-z+% -56% -3flv) $ cos 31rI/ c sk,s22 ,i(v”&+41Lk, -56&, -*“) 
kz kz k,lCZ 

(b#b) (*1#*2) 

+ c sklskzsk3,“(~‘:,+~*?+3~~,-5ss,,-4~”) 1 , (2.66) 
klkh (%“3#k*) 

where use has been made of the following notations: 

a=.-;, 
and 

4; = 

‘$‘k ok > ok2 

$'k t 2nv ok < ok2 

(2.67) 

(2.68) 
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The expression for S1 appears to be rather lengthy and complicated, the reason being 

that we need to separate the various situations when some or all of ICI, ka, and kg are the 

same. 

Similarly, the triple summations in S 2, &, and 5’4 can be performed. We define 

further, for j = 2, 3, 4, 
s. = & s’. i(Sn-978) 

3 3e (2.69) 

and the other three complex numbers 

+ s* = (24)3;s;n* ?T” 
i 
co2 TV-g s~2ei(5~*2-~w 

+2 cm ?Tu c S~2.sk3e~(4*~2+% -5‘--vu) + c sk,sk~sk~~i(lL:l+3~pz+~.;J-5~Q*~--arry) , 

k>ka 
Ck#h) 

hkzks C%k3#%) 
(2.70) 

23 -4 = 
(24)3 T sin ?TV sin 3~v 1 

cos 7rv c.os 3nu c s~2ei(5~~2-5~Qd 
kz 

+ 0,s 7,-l, c &Sk3 82’k2+3% -‘% -3nu) + cos 3?rv 1 ski a;2 ,i(-$;l+6$k, --5&Z +a~) 
kz ks PS#k2) 

k, k 
(h#b) 

+c 3 sk, Sk,Sk ,i(-*& +Wk,+W& -568+ -27~) 1 > (2.71) 
k, kzks 

(%.*32X2) 

cog 3TJ/ c s;, p~,-~%) 
k, 

+2 cos 3~~~s:zSk3~i(*~k2+3~;J -5sQli2 -3rru) + c sk,skzskge+!‘l;l -~k,+31(1~3-56Qk2-6~u) 
kzka (b#h) h ks ks (~II~3#kZl I 

(2.72) 
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So the Hamiltonian now has the following form 

H4(I,a) = VI + id2 + t15/‘sin(5a - 978 + 9) , (2.73) 

where the detuning c is given by Eq. (2.58), and the real numbers t and up are defined by 

d+ zr ;25i2P;‘2[234~~ + 69$ + 102& - 27$] 

Here, we are not going to give the explicit expression for E because it is extremely compli- 

cated. In the actual computation for an array of sextupoles using a computer, however, 

the evaluation of t is in fact pretty simple. 

The expressions for ,?i are obviously dependent on the absolute locations of the sex- 

tupole configuration. However, E needs to be independent of the absolute sextupole 

locations. If there is only one sextupole, there is only one term in each of ~j. The phase 

of each of these terms is the same and therefore does not contribute to t at all. The 

absolute sextupole location goes into the phase (o. The situation of two sextupoles can 

also be worked out easily, and we find that t depends on i$r -& only. It is then not hard 

to convince oneself that t indeed does not depend on the absolute sextupole locations. 

II.7 The Fifth-order Resonance 

Starting from the sextupole Hamiltonian, we have arrived at a form which clearly 

describes a system under the action of the $ resonance. Following the traditional tech- 

nique, we make a canonical transformation to a rotating system in phase space with the 

generating function 

Then 

F2= a-;,.; Il. 
> 

!p=a-97~+P 
5 5 ’ 

I=I1, 

H.@‘, 11) = 61, + $ ~1,” + ~I;‘~cos (5’P) , 

with 6 = v - 9’. 5 

(2.75) 

(2.76) 

(2.77) 

(2.78) 
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In order to have a resonance, the tune must reach a at a certain amplitude. Since 

we start with a base tune of v = 19.415 which is above 7, we expect the detuning c to 

be negative. One usually defines a resonance action 1, by 

161 - IclI, = 0 (2.79) 

The fixed points are given by 
a& OHS o 
al,=a\ll= > (2.80) 

or 
sin5q = 0 , 

6 + CII + ;I;‘” cos 5a = 0 
(2.81) 

To check whether a fixed point is stable or not, we ca,n expand the Hamiltonian around 

the fixed point by substituting 

i 

I,=I,+AI, 
(2.82) 

‘P=2,n+A’I’ n an integer , 

with ln satisfying Eq. (2.81), and get, after dropping the constant terms, 

(Al)’ F ~t1~‘2(A@)Z for cos5@=&1. (2.83) 

We can then conclude that the action I, (rU) at th e s a e unstable) fixed point satisfies t bl ( 

161 - ICII,,, f $If!y = 0 (2.84) 

Therefore, 

I s,o x I, f #I;112 ) (2.85) 

so that I, < 1, < I,. As is defined in Eq. (2.74), E should be positive. Here, however, we 

stick to the more general situation that t can be negative. 

The boundaries of the stable islands are formed by trajectories joining the unstable 

fixed points. They are called separatrices and their equation can be easily found by 

the fact that the Hamiltonian is a constant on the curve. Setting the constant value of 
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the IIamiltonian equal to its value at the unstable fixed point, we get therefore for the 

separatrices, 

C5iO. 

This is illustrated in Fig. 1. 

8 I,,, 
I’ c n I/’ n n I n n i i 

Iahld ridth - 0.569 nun 

SkAble Flxd pointa 
* = 6.8511 mm 

i 
5 
2 5 
3 “natabk ?lId PhIla 
-s * - 6.8187 - 

$ 4: 
;d 
‘;i 
:: 
‘Z 
2 2- 

0 ‘,11’11”‘1111’,11”IIII 
0.0 0.2 0.4 0.0 0.8 

Phase Advance in Units of 2rr 

(2.86) 

0 

Fig. 1. Contours of the Hamiltonian describing motion under the action of a fifth-order 

resonance. The sextupole excitation is 25 amperes and the base tune is 19.415. 

The island width can be found by evaluating the action of the separatrices when the 

phase Q is at the stable fixed point, or t cos 5Q = +ltl. With the help of Eq. (2.79), we 

obtain from Eq. (2.86), 

IClIlL - ; ICII,” - I+;‘2 = jclI,I, - ; ICII,” + ltlr,5’* (2.87) 
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Noting that I, is very close to I,, we have 

(I, - I$ x 41c/fi:” 

Or, the island’s total width isF4. 5l 

AI,=4 ~ 
J 

~c/I,‘* 

ICI 
(2.89) 

A very fundamental concept of the resonance island structure is the frequency of 

the oscillation of a particle around the center of the island. This quantity can also be 

expressed in terms of the coefficients t, c and the resonance action I, which is defined by 

Eq. (2.79). The island tune &I can be read out I51 easily from Eq. (2.83): 

Q; = 521~t/I,5’2. (2.90) 

III. APPLICATION TO E778 - COMPARISON WITH TRACKING 

In this section, we will actually compute the island width and island tune for one 

of the experimental setup@] used in E778. Unfortunately, the island width was found 

to be bigger than the actual transverse size of the Tevatron beam. As a result, both 

the island width and island tune could not be measured directly from the experiment. 

Instead, we shall compare computed results with the prediction of single-particle tracking 

calculations. 

III.1 Resonance parameters 

We first calculate the coefficient c of the detuning term i cI*, with the use of Eq. (2.58). 

For the E778 sextupole configuration@] with sextupole excitation of 25 amperes and a 

tune of 19.415, the detuning is calculated to be 

c = -94.42 1nm-1 , 

where the reference Do has been taken as 100 m 

(3.1) 

The calculation of t is relatively straightforward although the explicit expressions for 

sj (j = 1, , 4) appear to be lengthy. For th e above experimental conditions, 6 turns 

out to be 

6 = 18.30 mm-s’* (3.2) 
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Finally we can calculate I,, the action at an unstable fixed point which satisfies 

Eq. (2.84), or 

ISI - IclI, - $I:/2 = 0 (3.3) 

This is a cubic equation in Ii” so it can be easily solved. Using the above values of c 

and to we find that the physically acceptable solution is 

I, = 1.579 x 1o-4 mm. 

The amplitude of the particle is related to the action approximately by 

do$Qi. 

(3.4) 

(3.5) 

Therefore, at the unstable fixed point it becomes 

A = 5.62 mm (3.6) 

III.2 Island Width 

Using the above resonance parameters and Eq. (2.89), the island width in terms of 

action is, 

AI, = 3.12 x 1O-5 mm ; (3.7) 

and in terms of amplitude, 

Ad, = 0.555 mm. (3.8) 

Figure 2 displays in action-angle representation, the single particle tracking results 

obtained for the same conditions as these of the above calculation. 
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Betatron Phase in Units of 2n 

Fig. 2. Action-angle representation of single particle tracking using the code EVOL. The 

sextupole excitation is 25 amperes, the kick amplitude is 5.25 mm and the initial tune 

19.415. Aaultr denotes a “possible” definition of the island width in this particular case. 

We see that the shape of the five islands is very different from that shown in Fig. 1. 

This is not very surprising. The Hamiltonian Hs that we used to derive the islands 

contains only one resonance explicitly. In fact, the islands are situated very near to the 

separatrices of the third-integer resonance, as is shown in Appendix A and indicated by 

the tracking result in Fig. 3. The third-integer resonance driving term has distorted the 

phase space to a triangular shape on which the five islands are superimposed. 
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Fig. 3. Poincark plot generated by numerical tracking particles of various amplitudes. 

There has been always a difficulty to include more than one resonance in an analysis. 

However, such a difficulty can be avoided here. The f resonance starts occurring in 

the third-order perturbation only, while the third-integer resonance occurs in the first-, 

second-, third-, and higher-order perturbations. As will be shown in the Appendix B 

the 5 resonance is far away from all other resonances in the third-order perturbation, 

ilnplying that the third-integer in the third-order perturbation does not influence the 

$ resonance at all. This justifies the dropping of all the third-order terms in Hs when 

we discuss the $ resonance. On the other hand, the third-integer resonance in the first- 

order and second-order perturbations has already been taken care of exactly during the 

canonical transformations Gs and Gq of Eqs. (2.17) and (2.40). What we need to do is 

to work out the third-integer resonance content in the final action I,. 

The relation between amplitude and action given by Eq. (3.5) is only approximate. 

The correct relation is 

A = \lGdo , 

20 
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where Iord is the original action introduced in Eqs. (2.5); the subscript “old” has been 

added to distinguish it from the one defined in Eq. (2.40). This original action is related 

to the final action 11 through Eqs. (2.21), (2.41), and (2.77). If we keep only the third- 

integer resonance in its lowest-order sextupole strength, we need only Eq. (2.21) and 

arrive at 

d x & 1 + GF 2 rin(3o-mQ+crs,)] , (3.10) 

which clearly depicts a third-integer wave, into which the $ resonance islands will be 

imbedded. In the summation, the most important term is obviously m = 58. However, 

we can also perform the summation exactly to give 

3&, c- m m-3v 
(3.11) 

where Eq. (2.76) has been used, and the real numbers i and + are defined by 

(3.12) 

In the above, B is the location of turn-by-turn observation along the ring, which is an 

input of the tracking calculation. Thus, there is no free parameter at all. Unfortunately, 

some inputs to the tracking calculation are not available. Here, we assume the argument 

of cosine in Eq. (3.10) to be 3Q - r/2 and take only the m = 58 term with As, = 

0.0022 mm-‘. For each value of V!, the action 11 at the separatrices is solved from 

Eq. (2.86). It is then substituted into Eq. (3.10) to give a plot of amplitude A versus 

phase Q. The result, shown in Fig. 4, is now very similar to Fig. 2. The width of 

each island appears to be larger than the corresponding one in the tracking result. The 

maximum total island width in Fig. 4 is 0.66 mm. 
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Fig. 4. Contours of the Hamiltonian describing motion under the action of 

a fifth-order resonance. The distortion due to the presence of a third-integer 

resonance has been included. The sextupole excitation is 25 amperes, the 

kick amplitude is 5.25 mm and the initial tune 19.415. 

We need to point out that Eq. (3.11) d oes not describe the third-integer resonance 

completely. For example, it does not reproduce the third-integer separatrices. This is 

because so far we have kept only the first-order sextupole term in Eq. (3.11). For a 

complete description, terms corresponding to all-order-sextupole strength are required. 

If we only keep the Azm term with m = 58, the second-order sextupole term can be 

included easily. This amounts to the addition of 

+(2PoZ1) gA ‘, {5+cos2(3a-mCl+a.+J) 
4(m-3vy 

inside the squared brackets of Eq. (3.11). H owever, this term does not alter the plot in 

Fig. 4 appreciably. 
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III.2 Island Tune 

Let us now calculate the small amplitude tune Qr around the center of the island, 

Recall that Qr is given in Eq. (2.90) by 

Qf = 52h#“2 , (3.13) 

where 1, is given by Eq. (2.79). A gl ante at Fig. 2 showing the five islands located at 

different amplitudes may lead one to think naively that each island would have a different 

tune which varies with the amplitude to the $ power. This idea is incorrect. For a j 

resonance, a particle in one island will pop over to the second next island after one turn 

of the Poincare map. The fact that a particle will be popping over all the islands makes 

it meaningless to talk about the island tune of one island. Although the five islands 

center at different amplitudes, there is only one island tune. In fact, it is better to talk 

in the language of the final action Ii. Although the amplitudes for the five islands are all 

different, there is only one resonance action I, given by Eq. (2.79). The relation between 

the amplitudes of the five unstable fixed points and I, can be obtained from Eq. (3.10). 

As was given by Eq. (3.13), there is only one island tune for a given base tune and 

sextupole configuration. 

The 2 2 power dependency on the action can, however, be tested. Both c and t cannot 

be changed because we do not want to change the sextupole configuration. The base tune 

v or 6 = L/-F can be varied by varying the quadrupole current. This will give rise to a 

different I,.. Such a single-particle simulation was performed using EVOL171. The results 

are plotted in Fig. 5, where each point corresponds to one base tune and the amplitude 

plotted is the “average” amplitude of the particle as it pops over from one island to the 

next. The tracking calculations suggest that 

&I = 3.8 x lo-sA,5”, (3.14) 
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Fig. 5. Single particle tracking results of the island tune &I, versus the 

resonance amplitude A, in mm, using the code EVOL. The sextupole 

excitation is 25 amperes and the base tune is 19.415. 

To compare tracking with the Hamiltonian theory, we substitute the values c and c 

into Eq. (3.13) and use Eq. (3.5) t o convert action into amplitude. The result is 

Qr = 4.9 x 10-5A;‘2 , (3.15) 

which is close to the tracking result. 

Here, we want to make some remarks about the result comparison. As was noted in 

the previous subsection, Eq. (3.5) 1s only approximate in converting action into ampli- 

tude. Equation (3.7) should have been used. However, we would also need to know the 

observation location along the ring and the phase p and I$ to work out the amplitudes at 

the island centers or the “average” amplitude. In the tracking, the “average” amplitude 

is also not easy to determine accurately because the particle is popping from one island 
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to another all the time. A better way to compare result may be to resort to the action 

I, instead of amplitude. However, the action is not a physically measurable quantity 

and it cannot be determined directly from the tracking result. For this reason, it is not 

surprising to see some discrepancy between theory and tracking. 

IV. CONCLUSION 

We have successfully derived the $ resonance through third-order perturbation in a 

Hamiltonian theory. We derive expressions for the detuning c and the resonance-driving 

coefficient t, in terms of which the island width and island tune are obtained. 

Since the $ islands are very near to the separatrices of the third-integer resonance, 

we have the latter resonance also included in the analysis. The inclusion of two reso- 

nances has been successful, because these two resonances occur in different orders of the 

perturbation: the s resonance in the third-order while the third-integer in the first order. 

The computed island width and island tune are compared with results of single- 

particle tracking and the agreement has been satisfactory. 
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APPENDIX 

A. THIRD-INTEGER SEPARATRICES 

Let us start from Eq. (2.10) and delete all sextupole terms except for Azm with m = 58. 

We then go to a stationary frame and derive the unstable fixed points and separatrices. 

We obtain for the unst,able fixed points: 

w30L,)1’* = & , 
where 6 = v-m/3. The separatrices are: 

(2p,Ip = 161 
61Ah sin($*r/3) ’ 

where li, is some convenient phase. Therefore, the closest amplitude of the separatrices 

is 

Atin = & = 6.31 mm, 
37n 

(A.3) 

where Azm = 0.0022 mm and v = 19.415 have been used. In comparison, the 5 resonance 

unstable fixed points have an amplitude of 5.62 mm. 

B. ISLAND SEPARATION 

There are numerous bands of islands, each of which corresponds to a resonance. In 

Sec. II, we retained only the 3 resonance but dropped all the others that occur in the 

third-order perturbation. This is justified only when the neighboring island bands are 

far away. In this section we want to check the validity of this assumption. 

The $ resonance action I, is defined in Eq. (2.79) as 

! I 
” - 1 - ICII, = 0 

m 

The next neighboring island series with resonance action Ii is given by 

1 I ” - 2 - IclI: = 0 , 

(B.1) 

(J3.2) 

26 



where 

or 
n’=nfl 

,‘=m (B.3) 

We therefore have, for island separation, 

AI, = 11; - 171 = iA (;) , 

where 

A(;) +-ii. 

With the aid of Eq. (B.3), we obtain 

(B.5) 

Using Eqs. (2.89), (B.4), and (B.6), the ratio of total island width to island separation 

is therefore 
AL 
~-&GE (B.7) 

Putting in n = 97, m = 5, as well as the other computed values for the resonance, we 

arrive at 
AL 

which is indeed small 

_ x 0.015 or 0.00063 , 
U 

(B.8) 
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