
e Fermi National Accelerator Laboratory 

FN-442 
2320.000 

Organizing, Maintaining, and Distributing 
Software Products* 

P. Heinicke, T. Nicinski, P. Constanta-Fanourakis, D. Petravick, R. Pordes, 
D. Ritchie, and V. White 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

October 1986 

*Submitted to the Proceedings of the Digital Equipment Users Society, San Francisco, CA, October 6.10, 1986. 

eralad by Unlversitier Research Association Inc. under contract with the United States Department of Energy 



Organizing, Maintaining, and Distributing 
Software Products 

Peter Heinicke, Tom Nicinski, 
Penelope Constanta-Fanourakis, Donald Petravick, 

Ruth Pordes, David Ritchie, Vicky White 

Fermi National Accelerator Laboratory 
Computing Department / MS120 

P.D. Box 500, Batavia, IL 60510 

ABSTRACT 

The Computing Department at Fermilab develops and maintains software used 
at more than 30 different sites. A general methodology has been devised 
to keep track of and distribute the software at these different sites. 
Experience over the past year has proven the usefulness and efficacy of 
the method. 

1 Introduction 

The Fermi National Accelerator Laboratory (Fermilab) 
is a facility dedicated to basic research in the 
field of high energy physics. This research takes 
the form of “experiments”, which are conducted by 
groups of physicists. The experiments are highly 
computerized; there are usually one or more 
minicomputers devoted to the tasks of data 
acquisition and analysis of the experimental data. 

Most experiments have at least one VAX or MicroVax 
computer, as well as one or more PDP-11 computers, 
and possibly various programmable microprocessors. 
There are many different experiments either actively 
taking data or preparing to do so at any one time. 

The Data Acquisition Software Group of the Fermilab 
Computing Department provides software support for 
the experiments. The Data Acquisition Software 
Group’s role is to develop a wide range of useful 
software for data acquisition and analysis. 
Experimenters use the software to perform the 
required online data acquisition and analysis for 
their experiment. In some cases, the software is 
used in a turnkey manner; more often, however, it is 
used as the basis for more elaborate and 



experiment-specific software. In the latter case, 
the experimenters obtain the basic package and then 
do their own software development to customize it to 
their particular needs. 

Software is targetted for PDP-11 or VAX computers; 
the target operating system environment is 
RT-ll/RSX-11M or VMS . Other targets are 
microprocessors, such as 68020’s, etc. These target 
computers are located at approximately 30 different 
sites scattered over the 6800 acres of Fermilab. 
The VAX’s and MicroVAX’s at these sites are 
connected to one another via DECnet. These VAX’s 
(or the Central Facility VAX Cluster) are used by 
the experimenters for software development in 
enhancing the supplied software as well as for 
online data acquisition and analysis. Software is 
transfered to these machines via DECnet from the 
Data Acquisition Software Group’s Development VAX. 
It is also transferad via magnetic media to the 
computers not connected via DECnet. These include 
the PDP-11’s (not connected mainly due to memory 
limitations) and the microprocessors. 

Additionally the software may be transfered to the 
collaborating universities and research institutions 
which participate in Fermilab experiments. This 
transfer occurs so that the experimenter may 
continue software development activities for a 
Fermilab experiment while residing at the home 
institution or so that the experimenter may test 
apparatus under construction with components of the 
software intended for the experiment. 

With so many sites and so much software in use at 
these sites, we quickly realized that some 
systemization of the task of organizing, 
maintaining, and distributing the software was 
mandatory. Keeping track of the software at the 
various sites, although a formidable job, is 
nevertheless a necessary one--we must be able to 
offer assistance with the current version of the 
software at hand. 

A requirement on the systemization was that it must 
support having different versions of the same 
software at different sites or even at the same 
site. 

While it might be possible in principle to arrange 
the same version of the software at all sites, in 
practice it does not occur. One of the most 
important reasons is that an ongoing experiment does 



not necessarily want to avail itself of the latest 
enhanced version of a piece of soft;;;:; bugs or 
side effects may be introduced might 
complicate the primary task of monitoring the 
experiment. Even when an experiment decides that 
the new features outweigh any risks of complication, 
it is extremely important that the experiment be 
able to switch back to the previous version as 
quickly as possible. The motivation may be to 
retreat from a software enhancement because it 
itself was found to have problems or because one 
wishes to rule out software changes as a cause of 
changes in the data being monitored. When the 
latter occurs, one then wishes to go forward again 
to the latest version. 

This paper describes how we have organized our 
software development and support efforts to satisfy 
these considerations. In what follows, we describe 
the organization of our software into “Products”, 
how these Products are created, maintained and 
versioned, and how this Product organization is used 
in the distribution of software to the target VAX 
computers, and from there to other target computers 
when necessary. 

1.1 What Is A Product? 

A Product is an arbitrary group of logically 
connected directories and files (stored on a VAX/VMS 
system) and referred to by a Product name and 
optionally by qualifying names, such as the Version 
number, target operating system, or hardware 
interface. The Product name is a printable ASCII 
string describing the group in a mnemonic way. For 
each Product name there is a single development 
version of the product and/or one or more 
distribution versions. It is not necessary that a 
Product be developed by the Computing Department to 
participate in this scheme. However, the Product 
(the directories and files which comprise it) must 
be organized in a prescribed way. The constraints 
are relatively minor because we wanted the ability 
to include all kinds of software as products--not 
just those developed at Fermilab. 

An example of a non-Fermi Product is KERMIT, a 
communications package. KERMIT VMS is the Product 
name for the VMS version of KERMIT. 



4 

When the source code contained in the development 
version of a Product is updated, either for 
maintenance or enhancement reasons, a new sV*rsion’ 
of the Product is generated. This may occur even if 
the source code of the Product is unchanged. For 
example, if a Product is rebuilt using new 
‘versions’ of code on which it depends (such as an 
object I ibrary), but which is not a part of the 
Product itself, a new version of the Product is 
still generated. A Product version is used to 
inform the user, developer, and Product maintainer 
of not only which level of source code of the 
product it contains but also the entire state of the 
Product, its dependent i es on other software 
Products, etc. 

As a simple example of a Product with different 
Product versions, consider the KERMIT product for 
RT-11, where each version reflects the update level 
and the language. 

Version V1.0 of the KERMIT RT Product refers to the 
first Pascal version of- RT-11 KERMIT. When the 
MACRO-11 version became available, the users needed 
to decide whether to keep supporting the Pascal 
version. If they had, they could have renamed it to 
be the “KERMIT PASCAL” product (and call the other 
version the KERMIT MACRO RT product Vl .O) . 
Otherwise, they could have chosen to supersede it 
with V1.l of KERMIT-RT. 

Products come in two flavors: wsimple” and 
“compound.” A simple Product consists of a 
collection of software which is expected to be used, 
upgraded to a new version, and distributed to target 
sites independent of the state of other software 
Products. The decision to organize a product as a 
“simple” one is basically that of the developer; it 
is a statement that this Product is somehow basic 
and not further made up of Products. 

This does not necessarily mean that the Product was 
not dependent upon other software external to the 
Product when it was “built” (compiled, linked, 
etc .) . Nor does it necessarily mean that the 
Product requires no other software Product in order 
to function. 

For example, many of our Products are written in 
FORTRAN. These are definitely dependent upon the 
FORTRAN compiler and the FORTRAN Run Time 
Library--both of which are external to the product 
and which (in the case of the Run Time Library, at 



least) are required in order for the Product to 
function. 

A compound Product is a collection of different 
;~~~~~~~;yt”,,~~~~~~ahe!either simple or compound), 

These Products do not 
necessarily have to be dependent upon each other 
although in many cases they are. They may be 
grouped together only for ease of distribution of 
many small Products which change infrequently. 
Alternatively, they may be grouped together because 
of dependencies on each other; hence, a change in a 
component Product would indicate that a new version 
of one or more of the other components is either 
necessary or desirable. DEC’s ALL-IN-l system is an 
example of something that is structurally similar to 
a compound Product. 

1.2 Goals 

The Data Acquisition Group is primarily responsible 
for designing, developing, and maintaining software 
as well as supporting the end users of the software. 
The distribution and installation of the software is 
only a peripheral activity. To permit us to spend 
more time on software development, we have devised a 
Product Specification and specialised procedures, 
whose goals are: 

o Provide a Uniform Product Specification. 

The Product specification is meant to provide 
system management tools and the user with a 
uniform interface to the software we are 
responsible for. The specification includes 

o the directory structure of the files in a 
Product (defined to be a tree structure) 

o a list of required and optional files, 
o the naming conventions for these files and 

directories, 
o how logical names should be used. 

o Keeping Track of Product Versions on a System. 

Different sites use different versions of a 
Product creating a need to maintain a database 
of which Products and versions reside on a 
particular system. This functionality is 
provided by a system management tool we call 



SITE-PRODUCTS 

o Simplification of Product Distribution. 

We need to automate the distribution of 
versions of Products to remote sites (making 
use of DECnet) and the installation of the 
Products on the target site. Such automated 
procedures are needed both for efficient use of 
our time and to minimise the risk of errors or 
omissions. 

o Transportability to External Sites. 

Although restrictions are placed on a Products 
structure and interaction with users (how the 
Product is distributed and how the system 
manager treats it), it is still necessary to 
permit the Product to be easily installed and 
used on systems which do not follow our 
methodology. 

o Permit Switching Between Product Versions. 

In order to maintain and improve existing 
Products, and have the new releases accepted by 
experimenters, there is a need to allow the use 
of the latest version of a Product, but also to 
instantly and transparently “switch” to using a 
previous version residing on the same system. 

The ability to switch between versions on the 
same system is also important for Product 
developers and maintainers. A user may 
discover a bug at a previous release of the 
Product - and the Product maintainer is then 
able to check for the bug in that release just 
by switching to it. This capability is 
provided by PRODUCT SETUP and the database of 
Products and their -versions (maintained by 
SITE-PRODUCTS) . 

o Permit the Composition of a Product to be Known 
Precisely 

We make extensive use of DEC CMS (Code 
Management System) and MMS (Module Management 
System) to control the source code release 
level of a Product and to automate the 
construction of that product from its sources 
and any other libraries etc. it may be 
dependent on. However in situations where a 
Product may be dependent on libraries in other 



Products - the specific version of the 
library-related Products used must be both 
controllable and forever known. The 
time-stamps of the individual files as used by 
MMS are not sufficient to contra I such 
inter-dependencies. 

The procedures which we call BUILD permit the 
dependencies of one Product on another, either 
as a part of a compound Product, or just as a 
required but separate piece of software, which 
must be present in order to build the Product, 
to be expressed in a formal way. From this 
formal specification the order of creation of 
the component parts can be determined and the 
business of creating a very large software 
Product can be automated in a foolproof way. 

1.3 The Results 

All the management tools we have developed are 
wr i tten as DCL command procedures. DCL command 
procedures were chosen because of speed of 
implementation, and because we underestimated the 
full extent of the project we were undertaking. 

The remainder of this paper will discuss the 
concepts and management tools introduced above which 
together allow us to achieve the goals outlined in 
the previous section. These include: Specification 
of a Product, use of the BUILD procedures, the 
SITE PRODUCTS, DISTRIBUTE and 
proc<dures. 

PRODUCT-SETUP 

2 Specification Of A Product 

The Product Specification provides system management 
tools and the user with a uniform interface to the 
software. We have written a 50-page specification 
of a Product including the mandatory and recommended 
requirements thereon. The Product Specification 
addresses three areas: 



o Directory tree structure and the files in a 
Product. 

o Logical names to be defined (associated with 
the Product). 

o Required and optional command procedures and 
how they are used. (definition of parameters). 

2.1 Directory Tree Structures 

Products reside under rooted directories. Actually, 
two rooted directories are associated with a 
particular Product. The “Version” Root is the 
rooted directory for a particular version of a 
Product. This is the rooted directory that a user 
will see when using a Product. Version Rooted 
directories reside under an Wnbrel la” Rooted 
directory. The Umbrella Rooted directory contains 
all the versions of a Product. However more than 
one Product and its versions can reside under the 
same Umbrella Root. For example: 

[KEYq 

[KERMIT+] 

[KEk4IT_RSTS] [KERMIT!RTl [KERkT-RSX] 

Figure 3-1 

The leaves are products, whi le [KERMITJ is the 
Umbrella Root. The Version Roots for the Products 
are [KERMIT VMS], [KERMIT RSTS], [KERMIT RT], and 
[KERMIT RSfl. The di recxory [KERMIT PDF] is an 
intermediate directory, which could aIs; represent a 
Product, or an Umbrella Root (the interpretation is 
up to the Product developer). 

For each Product version, there is a set of required 
and optional directories: 



9 

[CAM, . . . [MA&T, . . . [SYATEM] 

Figure 3-2 

The [PRODUCT] directory is the Version Rooted 
directory, while [COM] and [SYSTEM] are required, 
and [MAINT] is an optional directory. Beyond these 
directories, the developer can use any tree 
structure (under the Product’s version rooted 
directory). 

2.2 Logical Names 

To keep Products site-independent, logical names are 
used to point to different files. All logical names 
should be defined in terms of one logical name: 

‘product’SROOT 

which is the rooted logical name pointing to the 
PRODUCT’s Vers i on Root. changing 
‘product’SROOT’s definition (with PRO%CT SETLlP) a 
user can easily “switch” between differeiit versions 
of a Product. In the example in Figure 3-1, the 
rooted logical name for HORSE is 

3 SHOW LOGICAL KERMIT RTSROOT 
“KERMIT-RTSROOT” z sdisk:[KERMIT. 

KERMIT-PDP.KERMIT-RT] 

2.2.1 Logical Name Tables 

Some Products require a large number of logical 
names to be defined. Ideally, users should only see 
logical names that they require, which implies that 
they should be process logical names. But, defining 
many logicals can be quite time consuming. The 
solution to make the logical names system wide was 
rejected for aesthetic and performance reasons, in 
that the system logical name table 
(LNMSSYSTEM-TABLE) would become cluttered as the 
number of Products grew. 



10 

Instead, shareable (system wide) logical name tables 
are created for each Product. When a Product is 
started up, it defines its logical names in the 
table created for it. This makes the logical name 
tables (and the logical names) invisible unless they 
are required. 

Keeping a Product’s logical names within its own 
logical name table keeps the system clean and allows 
for easy switching between logical names defined for 
different versions of a Product. It also helps when 
looking for all the logicals associated with a 
particular Product when you are on a large system 
with many logicals defined. 

To use a Product, a user invokes PRODUCT-SETUP 
(described later) to “link” the logical name table 
into his/her logical name table search list. 

2.3 Required Files 

The Product specification requires that each product 
provide two command files, of defined names, to be 
implicitly invoked at system bootstrap time and when 
a user wants to use the Product. All products must 
provide these files in a particular directory for 
the Product version. The specification also 
recommends a Help file to be provided with each 
Product; this is automatically included in the 
general Product Help library when the Product is 
entered into the SITE PRODUCTS database. 

[COM]SETUP.COM is used to define logical names and 
symbols on a per process basis. That is, the 
user invokes SETUP.COM (normally at login time) 
if there is a need to use the Product. 

[SYSTElj] PRSTARTUP . COM i s used during system boot 
;;;p,, rroduct startup) to define shareable 

names in the logical name table 
generated for the Product, and to perform any 
other operations which affect the Product 
system wide (such as INSTALLing files, loading 
device drivers, starting a queue, etc .) and 
other privileged initialization functions. 



3 BUILD And Developing The Products 

The BUILD procedure is used to construct a Product 
based upon its dependencies on other Products. 
BUILD takes into account that a Product may: 

o Depend on other Products. 
o Depend on specific versions of other Products. 
o Incorporate other Products totally within it. 

The construction of a Product consists of compiling 
and linking the software comprising the Product. 

A Product developer uses a Product Maintenance 
Language (PML) file to describe how a product is 
dependent upon other products. Only the immediate 
dependencies need to be described, since BUILD 
recursively uses the dependent Product’s PML files 
to generate a final list (a Product Maintenance 
Output (PMO) file) which sequentially describes the 
order in which Products should be built (to satisfy 
a I I dependenc i es) . 

For example, 
“BUILT” : 

the product KERMIT-W6 is to be 

o KERMIT-VMS is dependent upon an another 
product called GET-PORT 

o KERMIT PDP is dependent upon KERMIT-RT, 
KERMIERSX, and KERMIT-RSTS. 

BUILD would determine that the Products would need 
to be built in the following order: 

GET PORT 
KERMIT VMS 
KERMIT-RT 
KERMIT-RSX 
KERMIT-RSTS 
KERMICPDP 

BUILD then will construct the Products in the 
appropriate order to generate the final Product. To 
save time, BUILD will not construct a Product if the 
required version already exists. 



12 

The actual details of construction of each of the 
component pieces are left up to the component piece 
of software. We normally use DEC CMS and MMS 
wherever possible. This is especially useful in 
conjunction with our methodology of one development 
version of a Product and multiple distribution 
versions. By having a single CMS library in the 
development version of each Product and creating 
classes for each source release level we avoid the 
need to keep the sources with or for each version of 
the Product. We can always recreate any version at 
any time. This saves disk space and also provides a 
centralized record of who changed the software and 
when. 

4 SITE-PRODUCTS - System Management Of Products 

SITE PRODUCTS was developed to keep track of which 
v*rsTons of which Products reside on a system. It 
not only maintains a database of Products and their 
versions, but it schedules the starting up of 
Products at system boot time (or any other time) and 
the shutting down of Products. SITE PRODUCTS avoids 
the need for the system manager to crange the system 
specific startup command procedure (SYSTARTUP) every 
time a Product or a version of a Product is added, 
modified, or removed. 

Products are made “known” to SITE PRODUCTS (this 
should not be confused with the known files of the 
VAX/VMS INSTALL Utility). The “Known Product Lists 
file, maintains this information. 

For each known product, SITE PRODUCTS maintains a 
“Product Version Lists file which resides under the 
product Umbrella directory. The Product developer 
is able to add, modify, and remove Product versions 
without requiring privileges (O”lY access to the 
particular Product’s area is required). 

The SITE-PRODUCTS procedures point to the Known 
Product List using a logical name. Users can use 
SITE PRODUCTS to maintain their own Known Product 
Lists and Product Version Lists. This can be 
extended for use on a VAX Cluster system, where a 
common Known Product List is used to startup 
(shutdown) all Products common to all nodes in the 
Cluster. Then, by redefining the logical name, a 



13 

node-specific Known Product List can be used to 
manipulate software Products licensed (or useable) 
only for that particular machine. 

SITE PRODUCTS allows the addition, modification, and 
remova I of Products and Versions. These operations 
only modify the Known Product List and Product 
Version Lists, not the actual files of the Products. 
When a Product version is declared to be the default 
version on a system, its Help file is included in a 
general Product Help library (if one exists) and 
also a Bulletin is posted on the system (if the 
Bulletin Product is available). 

For each Product, the Known Product List maintains 
the Product’s name, the specification of the 
Umbrella Root! and other miscellaneous information. 
Associated with each Product version in the Product 
Version List is a directory path from the Umbrella 
Root to the rooted directory for the Product 
version. 

When a Product is started up by SITE-PRODUCTS, a 
shareable (system wide) logical name table is 
created to contain logical names defined by the 
Product. Then the Product specific startup command 
procedure is invoked. This procedure usua I ly 
defines logical names, device drivers, starts up 
queues, installs privileged images, etc. 

5 PRODUCT-SETUP - Using The Products 

The final stage of any Product is its use. 
PRODUCT SETUP is 
by a user. 

used to “setup” a product for use 
It also allows a user to choose which 

version of a product to setup. Setting up a Product 
involves the definition of logical names and symbols 
required for using the Product. 

A symbol by the name of SETUP is used on all systems 
to invoke PRODUCT SETUP. Users of a software 
Product such as our Example KERMIT-VMS simply type 

SETUP KERMIT-VMS 

to use the default version of the Product and all 
its component sub-Products. 



14 

The ability to switch transparently between Product 
versions is provided by the logical name tables 
created for the Product. When switching between 
Product versions, PRODUCT SETUP creates a new 
logical name table (which oveTrides the old table) 
and defines the logical names for that particular 
version. Therefore, different Product versions are 
not required to use the same logical names. 

6 DISTRIBUTE - Distributing The Products 

DISTRIBUTE provides a system manager on a remote 
machine the ability to copy Products, from an 
“Archive machine,,, and install them. Most of the 
time, DISTRIBUTE is used over DECnet, but it also 
provides a tape mode, which permits Products to be 
distributed and installed at external sites using 
Magnetic tape as a transfer medium. 

DISTRIBUTE interactively queries the user for the 
information it needs. The questions are self 
explanatory, so that no documentation 
requ i red 

is normally 
in order to obtain a Product. Besides the 

Product name and version, DISTRIBUTE asks where the 
Product should be placed (the disk and Umbrella 
Root), and whether the Product and its version 
should be declared to SITE-PRODUCTS. 

When a Product is selected by the user, DISTRIBUTE 
uses that Product’s Product Maintenance Output (PMO) 
file (generated during a BUILD) to determine which 
Component Products need to be copied over as part of 
the chosen Product. This provides all sites with a 
complete and consistent view of a Product. Products 
which are not constructed with BUILD and therefore 
have no PM0 file can also be distributed - all files 
in the directory tree stemming from the Product 
version rooted directory will be taken to comprise 
the Product version. 

DISTRIBUTE uses BACKUP save sets compatible with the 
VMSINSTAL utility (part of VAX/VMS). Because the 
Product conforms to the Product Specification, only 
one KITINSTAL file (used by VMSINSTAL) needs to be 
written for al I Products. This frees the Product 
developer from writing code used strictly for the 
purpose of installing a product. 



15 

A complete log of software distributed, date, 
version and to where is maintained on the Archive 
machine. 

7 Conclusions 

The organisation of products and the procedures 
described in this paper have been in use for more 
than a year now. Hundreds of Products have been 
distributed to target sites. The sacrosanct nature 
of a Product version once built has enforced a 
strict discipline on program development and aided 
immensely in tracking down complicated problems 
where any one of a number of hardware and software 
variables could have been at the root of the 
problem. The procedures described were first 
developed for software to be executed on a VAX(VMS). 
We have found them such a usef u I aid for 
distribution, maintenance and archiving that we 
extended the concepts to cover software for other 
operating systems in use. 

We have found the Standard Product specification to 
be extremely useful. Not only has it enabled us to 
write the management tools described but it has also 
helped enormously in the ease of understanding, 
maintaining and supporting our software. New 
members of the group and new users new to Fermilab 
can very quickly produce software to conform to the 
genera I specifications and obtain and use software 
that is available. It is much easier for any member 
of the group, regardless of particular area of 
expertise to be able to distribute, demonstrate, 
find bugs in, create a new version of any Product. 
New software Products produced elsewhere at Fermi lab 
or at other institutions or vendors can be quickly 
added to the set of available software and made 
available in the same uniform way to all the users 
on site (via the same SETUP command). We package 
all software according to our minimum standards - 
give it a Product name, a version, keep all versions 
under a single Umbrella directory and define all 
logicals relative to a single root logical name 
pointing to the specific Product version. Following 
software Product “standards” has saved manpower also 
in enabling us to write general procedures. For 
example, the arrival of Microvaxes with limited disc 
space created a need to trim Products. A general 



16 

procedure which om i tted all I ist, map and 
documentation files from a distribution version 
could be written because of the standards imposed, 
thus solving the problem in general for all software 
which we maintain or distribute. 

This entire program of work was undertaken without a 
proper realization of the size of it - really as a 
non-serious sideline, which people did a little work 
0” when the need arose. If we were doing it again 
we would better understand the benefits and scope of 
the project and would take it further than we have 
today. The database maintained by SITE PRODUCTS 
would be made extensible and easily accessTble as a 
database. Some of the system management procedures 
would have been written in a high level language 
instead of DCL, thus increasing both their speed and 
extensibility. 

8 Acknowledgements 

Contributions to the ideas, definitions and 
procedures have been made at various times by all 
members of the Data Acquisition Software and DEC 
Systems Group in the Computing Department at 
Fermi lab - which consist of the authors, David Berg, 
Eileen Berman, Andy Cohen Terry Dorries, Arkady 
Lubinsky, Carmenita Moore, Liz Quigg, Dave 
Chip Kaliher, 

Ritchie, 
Nancy Hughart and Steve Kalisz. We 

also acknowledge helpful feedback from various users 
of the system (DISTRIBUTE in particular) ranging 
from on-site local system managers to experiment 
participants distributing software over DECnet from 
Italy. 

9 References 

PN’s refer to Fermilab “Programming Notes”; IN’s 
refer to Internal Notes. Documentation is available 
from the Computing Department Program Librarian. 

IN 140 SITE PRODUCTS / Maintaining Known Products 
by Tom Nicinski. 



17 

IN 141 BULLETIN / Maintaining an Electronic 
BulletIn Board by Tom Nlclnski. 

IN 167 Data Acquisition Software Croup Product 
Speclf Ications 

edited by Ruth Pordes. 

PN 259 BUILD Procedure for Product Distribution by 
Penelope Constanta-Fanourakis. 

PN 261 Backup / Distribute Procedure for Product 
blstrlbution by Peter Helnicke. 

PN 262 Using VMSINSTAL with User-written 

b, via DECUSf R’chard Aurbach Of 
lcatlons courtesy 0 

PN 269 PRODUCT SETUP User’s Guide / Setting Up 
Products by Tom Nicinski. 


