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ABSTRACT 

In order to have a usable acceptance of the beam momentum spread 
CAP/P), synchrotrons must have at least two families of correction 
sextupoles which are generally placed at locations where the momentum 
dispersion function is large. These sextupoles are often called chro- 
maticity correction sextupoles since their function is to eliminate 
(or to change in the most desirable manner) the dependence of the 
tunes of betatron oscillation on (Ap/p) caused by the chromatic aber- 
ration of quadrupoles. This report describes various harmful effects 
arising from these sextupoles and suggests possible cures. In parti- 
cular, it is emphasized here that the second-order effects be mini- 
mized in order to prevent a potentially disastrous reduction in the 
transverse acceptance of the ring even when the tunes are considered 
to be safely away from the lowest-order (i.e., third-integer) reso- 
nances. The terms responsible for the dependence of tunes on the 
betatron oscillation amplitudes are explicitely given as a function 
of the five integrals representing the resonance-driving terms of the 
lowest-order Hamiltonian. The expression involves sums of infinite 
number of Fourier components but they can all be computed analytically. 

INTRODUCTION 

As the energy range of interest in nuclear physics is extended 
beyond 2. GeV level, many nuclear physicists are seriously considering 
synchrotrons as their main tool of research in the near future. The 
importance of synchrotrons is also obvious as a storage device for the 
beam cooling and as a collider which are certainly popular topics now 
for nuclear physicists. There are already several plans for designing 
and building synchrotrons by those accelerator builders whose practi- 
cal experiences have been limited so far to the world of cyclrotrons. 
The basic equations describing the particle motion in an external 
electromagnetic field are of course identical for any type of accele- 
rators but the actual procedures used to design a machine and also the 
emphasis on specific aspects of beam dynamics are not always shared 
by the cyclotron builders and the synchrotron builders. One can prob- 
ably argue that the beam dynamics for cyclotrons is more "involved" 
than the one for synchrotrons. Certainly there exist situations in 
which synchrotron designers (at least some of them) may look incred- 

* Operated by Universities Research Association, Inc. under contract 
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ibly naive to cycltron builders. One example of this may be seen in 
the calculation of tunes for relatively small synchrotrons (such as 
rings for the synchrotron light source or for the storage and cooling 
of antiprotons) where the bend angle of each dipole is of the order 
of a few degrees instead of a few milliradians and the momentum ac- 
ceptance is measured in percents instead of 10b4. The standard com- 
puter programs for the synchrotron design such as SYNCH or PATRICIA 
may or may not give the right answer depending on how the field be- 
haves near the edge of magnets. In the same way, there are a few 
tricks of the trade in the design of synchrotrons whfch must be kept 
in mind by cyclotron builders but the habit of many accelerator 
physicists to publish their important works only as an inromal tech- 
nical memo (which often remains unaccessible outside the author's 
own institution) is a definite hindrance to the mutual leanings. 
One purpose of this note is to ameliorate this situation albeit to a 
very limited extent. 

Unlike the magnetic field in cyclotrons with its flutters and 
spirals on top of the isochronous requirement, the ideal field for 
synchrotrons is extremely simple consisting of dipole and qnadrupole 
types only. Moreover, it is more fashionable nowadays to have dipoles 
and quadrupoles as separate elements (Fermilab main ring, CERN SPS) 
than to combine them as a gradient-type bending magnet (Brookhaven 
AGS, CERN PS). I" reality, of course, both dipoles and quadrupoles 
have higher-order multipoles (i.e., sextupoles, octupoles, etc.) and 
for some machines such as the Fermilab main ring and Tevatron, a very 
elaborate system of correction magnets is essential in order to make 
them work properly. Nonlinear fields are especially hard to avoid in 
superconducting magnets for which the field shape is almost totally 
dependent on the conductor placement (in contrast to the pole shape 
for conventional iron magnets). At low excitation level, the sextu- 
pole field created by the persistent current in the superconducting 
filament is particularly nasty and this more than anything else de- 
termins the injection energy of a large superconducting machine such 
as the proposed 20 TeV ring SSC. Although it is an importnat issue 
for designing synchrotrons, the subject of this report is not some- 
thing associated with these unintended nonlinear fields but rather 
difficulties caused by sextupoles that must be installed in any syn- 
chrotron as its essential elements. The necessity of them arises 
from the chromatic aberration of quadrupoles whose effective focusing 
strength is naturally weaker(stronger) for particles with positive 
(negative) values of Aplp. The effect is usually measured in terms of 
"chromaticity" defined as 5 E Av/(Ap/p) where AV is the deviation 
of the tune for particles with the momentum deviation (Aplp) from the 
tune corresponding to (Ap/p)=O. Generally speaking, 5 is not too far 
from the value of tune itself (with the negative sign) but its magni- 
tude can be substantially larger for colliders with special low-0 
insertions or for rings with unusual lattice structures. Since the 
action of a> chromaticity-correcting sextupole is proportional to 
the dispersion function at that location, the strength required can 
be large when it is difficult to find a suitable location in the ring 
with a reasonably large value of dispersion function. For such cases, 
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one must certainly be aware of the second-order effects in addition 
to the standard precaution of avoiding the lowest-order (i.e., third- 
integer) resonances. 

Some necessary considerations in arranging sextupoles in storage 
rings were discussed by D. Edwards and others' and examples were 
given when the phase advance per cell is 90'. Subsequently, 
H. Wiedemann presented an extensive discussion on the undesirable 
side efgects of correction sextupoles in connection with the design 
of PEP. For the second-order effects of sextupoles, Wiedemann fol- 
lowed the earlier work by F. Cole3 but the formulars were limited to 
one degree of freedom only. More recently, there have been renewed 
interests in the analytical understanding of the reduction in trans- 
verse acceptance4 although it is still too early to say unequivocally 
that something original has been accomplished. In what follows, the 
main results of these works will be summarized and, when it is felt 
to be necessary to do so, further discussions will be presented. 

EFFECTS ON THE LINEAR LATTICE PARAMETERS 

An elementary but nevertheless practical advice should be given 
here before going into the discussion of main subjects. Whenever 
strong nonlinear elements are present in a ring, it is very impor- 
tant to minimize the deviation of closed orbit in the two transverse 
directions in order to prevent the "feeding-down" effects. For ex- 
ample, a horizontal closed-orbit deviation within a sextupole element 
will effectively create a quadrupole (as well as a dipole) field and, 
depending on the spatial distribution (i.e., Fourier components) of 
relevant quantities, 
haviors. 

one may experience totally unexpected beam be- 
When the deviation is in the vertical direction, the quad- 

rupole field created is of the skew type and this may often confuse 
the beam diagonosis even when the beam quality itself is not affected. 

When one talks about the change (and ways to minimize it) in the 
linear lattice parameters, 5' s and CL'S of Courant and Snyder5 and the 
momentum dispersion function Xp caused by a group of sextupoles, it 
is useful to distinguish a situation which may be called global 
from the one called local . In the global situation, sextupoles are 
distributed around the ring so that one cannot really talk about the 
"inside" and "outside" of the sextupole group. Furthermore, one is 
interested in minimizing the change in lattice parameters everywhere 
in the ring. The report by Wiedemann' treats a situation of this 
type. Compared to the global case, the local situation is in princi- 
ple easier to handle since the goal is to reduce (or often completely 
eliminate) the change only at a specific location in the ring. When 
the group of sextupoles under consideration is localized and a non- 
trivial fraction of the ring circumference is "outside" the group, 
the perturbation caused by the group canbetotally confined so that 
the "specific location" is now any point outside. This happens in 
large colliders when a group of strong sextupoles must be installed 
near low-B insertions in order to cancel particularly nasty chro- 
matic effects created by the nearby quadrupoles . 



Almost all the formulas that are needed to calculate the changes 
in linear lattice 

F 
arameters can be found in the classical paper by 

Courant and Snyder even though they do not mention the effect of non- 
linear field explicitely. Because of the page limitation imposed on 
this report, it is necessary to assume here that the reader is fami- 
liar with their work, at least Sections 4. (a) and (b). More speci- 
fically, the formulas are 

change in the momentum dispersion function 

Eq. (4. 7), p.18 for local, 

Eq. (4.12), p.19 for global, 

cahnge in the betatron oscillation parameters I? and a 

Eq. (4.50)*, p.26 for local, 

Eq. (4.53), p.26 for global. 

Throughout this report, the integrated strength of each sextupole 
(divided by the particle rigidity Bp,) will be called s, s : (BY/BP). 

(a) change in the momentum dispersion function Xp 

The function X 
7. 

is simply the closed-orbit deviation for the 
unit value of (Aplp Therefore, the change in Xp can be found from 
the formula for closed-orbit deviations. When the lowest-order change 
in X is written as (AX,)(Ap/p), the driving term of the equation for 
CAX,P is -%SXp2 . It is convenient to use the normalized complex 
quantity AZ, 

(AZ)o 5 (AX,),/JBb + i fio(AX; + $ AX,) 0 (1) 

where the prime denotes the derivative with respect to the path-length 
coordinate. The subscript o indicates that one is considering the 
change at the origin of the path-length coordinate from which, for 
example, the phase advances are measured. For the local situation, 
this choice of origin does not lead to any loss of generality. Fr0lll 
Eq.(4. 7) of Courant-Snyder, one finds for sextupoles k=l,Z ,....N, 

-inv N 
(AZ)o = e C fk v’??~ ei’k 2 sin(w) 1 "local" (2) 

where fk ‘,-! SXp2 at the k-th sextupole, Qk is the phase advance 
from the orlgln to the k-th sextupole and v is the tune. It is often 
possible to place a group of sextupoles at equivalent locations in the 
ring, that is, locations where both B and Xp take the same values. 
The condition that the change (AZ) be zero outside the sextupoles 
is then simplified to N 

F sk eiJik = o “local” (3) 

* Here a minus sign is missing in front of the integral and the argu- 
ment of cosine function should be ZV(~+@~-$J) instead of Zv(n++@l). 
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If there are more than one group, this condition should be satisfied 
by each group separately. For global cases, one obviously cannot 
limit the consideration to the change at the orign alone. According 
to Eq.(4.12) of Courant-Snyder, 

a 
(Ax,) at @ = mr 2 z 2 &““2 ei”@ 

n v 
“global *, (4) 

where @3$/v and an (n=-- to fm) is the n-th Fourier component of 
the driving term, 

a n = (l/Znv) ; fk ak e-i"@k (=-n = ="*) (5) 

In order to reduce AXp substantially at many locations around the 
ring, it may be desirable to control several an's with n near v 
although no more than two are usually important. 

(b) change in the betatron oscillation parameters 

Since the change in a is related to the change in a, 

1 d ~- Aa = - 2(vB) d$ (AS), 

one can generalize Eq.(4.50) of C our-ant-Snyder for (AB) to an equation 
for the complex quantity 

(AQ)~ : (AB/B)o - i ( Aa - i A0o (7) 

2i7iv 
(AQlo = - ' 2 Sin(hv) k 1 (SXp)k Bk e 2iQk.(Ap/p) "local" (8) 

Under the condition that reduceo the relation (2) to the simpler one 
of (3), one can again eliminate the change AQ outside the sextu- 
poles by simply satisfying the relation 

c Sk e*iQk = 0 “local” (9) 

If the change caused by sextupoles is to cancel out the change created 
by nearby quadrupoles, one must use the condition 

N 
(x,'@ $ sk e 

Zi$j "local" (10) 

where (X,.B) is assumed to be common to all sextupoles k = l,Z,...N 
but Pj'S are generally quite different at different quadrupole loca- 
tions j = l,Z,...M. Such a situation arises in a collider with low- 
L? insertions with a number of strong insertion quadrupoles. Note that 
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this condition must hold in the two transverse directions separate- 
ly. that is, one with (6 = B,, $ = I&) and another with (I? = O,, $ = 
$,) while other quantities including the dispersion function Xp are 
kept the same in two conditions. For the global situation, one must 
express (AO/O) at general locations in terms of the Fourier compo- 
nents J, (n = - m to + -) , 

J" = i (sxp)k Bk e -i"@k , (11) 

(A@/B) at $ = -; (Ap/p); 4U:,, 
- n2 

eW "global" 

(12) 

How many J 's should be controled depends on many factors but it is 
unusual to"see more than four families of sextupoles in a ring. The 
minimum number of family is two since one must control Jo for vx and 
Vy independently: 

AU 
x or y = 2 ; (SXp)k’@k), Dr y’ CAP/P) (13) 

(plus sign for x, minus sign for y) 

RESONANCES AND THE SECOND-ORDER EFFECTS 

It is well-known that the normal sextupole field By=%B"(x2-y2) 
and G=B"xy can drive third-integer resonances of the form 

3.V, = n and " x?2.v =n Y (14) 

If the sextupole field is periodic around the ring with the period N 
(for example, the lattice period), n must be integer multiples of N 
and one usually tries to choose tunes such that any of these reso- 
nances is at least one-quater unit away from the design operating 
point. This however is not always possible when special correction 
sextupoles are needed and one must never take it for granted that a 
particular arrangement of sextupoles in the ring is "safe" simply be- 
cause the resonance width computed from the standard formula' is small 
compared to the distance to the resonance. Since this issue has been 
discussed throughly elsewhere,' only the main conclusion will be re- 
stated here: Even when the operating point is believed to be safely 
away from all third-integer resonances, one must try to minimize cer- 
tain first-order expressions in order to prevent undesirable sextu- 
pole effects such as distortions of the beam shape in phase space and, 
for some instances, even non-negligible reductions in the transverse 
acceptance. One customarily relies on time-consuming numerical beam 
trackings by computers for studying the effects but they are often 
hard to use effectively as a design guidance. 
analytical approach to this problem3" 

A simple summary of the 
is therefore presented here as 
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something complementary to the purely numerical approach. 

In terms of the action-angle variables (Ix y;a,,y) and the inde- 
pendent variable 8:siaverage machine radius, oni writes (z = x or y) 

J2I 
z = qTz sin FZ; dz/ds = y (cos F - a BZ z z si" Fz) (15) 

where F : Q + a = (I& - " Cl) + a . 
periodic'in B 'with'the p$riodz2rr, 

The quantity Q , which is 
is's measure of the slternating- 

gradient focusing. In the presence of sextupole fields Sk=(B'iP,/B@)k, 
the Hamiltonian to be used for the equations of motion 

(daz/d8) = (aH/aIZ), ~(dI=/de) = -(aH/aaZ) 

can be written as 

H(= x,=y.I,.Iy;e) = $& + VyIy + (21,) 3'2iZ A3mcos(3a,-me+a3m) 

- 3 ~Almcos(=x-mefcclm)~ + (21y)~,t~2~Blmcos(a,-m8+01,) 

- &,,co~(=x+2=y-m8+&,,,) - CB-,cos(a,-2ay-mtl+fi,)j (16) 

in which Z's are all from m=--m to +m. Fourier components of the 
five driving terms of the third-integer resonances are 

(17.1) 

(17.2) 

(17.3) 

(17.4&5) 

Based on this Hamiltonian and the equations of motion, one can devel- 
op the standard treatment of third-integer resonances 
2Uyf". 

3v,=n and "x 3 
When the operating point is far away from these resonances, 

as Indeed it should be unless one is dealing with special situations 
such as the resonance extraction, this first-order treatment gives 
a rather meaningless result since one of its fundamental assumptions 
is not valid. 7 The second-order Hamiltonian is obtained by the canon- 
ical transformation (a,,y;I X.Y ) + (b,,y;J,,y) with the generating 
function 

S(=,,J,ay,Jy) = =,J, + ayJy + (25,) 3’21-z t’yv 
x 

si*(q3m) 

- 3x* 2Blm 
x 

sin(ql,)J + (2Jy)J2J,tZ WVx si*(pl,) 

%ll B 
- z- m-v+ si*(p+,) - z ,I: si*(pmm) I (18) 

where "t = v,tzv y, q3m=3a,-me+23m, qlm=ax-me+qm. plm==,-mO+B1,, 



-8- 

p+, =a,i2ay-“0+B+, . The new and the old variables are related in the 
usual manner, _ 

b = 7. aS/aJ z and I z = as/a= z (19) 

The new Hamiltonian is 

K(b,,by,J,,Jy;8) = H + aS/ae 

= vxJ, + vyJy + t(21,)3'2-(2J,)3'2~~~A3mcos~q3m)-3~Alm~ns~qlm~~ 

When this is expanded as a power series in the sextupole strength S, 
the lowest-order terms are Sz and they are composed of numerous reso- 
nance-driving terms of the sixth-, fourth- and second-integer types 
as well as terms independent of a.11 angle variables. The derivation 
is straightforward but certainly very tedious; if written explicitly 
several pages are needed to list them all. In many cases, the most 
important terms are the ones independent of angles bx, by or e since 
they are responsible for the dependence of tunes on the oscillation 
amplitudes: 

2 2 2 

AK = (2J,)2.(;){C & 
Aim 

x + 3c ~ 
4Blm 

1 + (2Jy)'($Z __ m-v, 
2 x 2 

B2 
t c- t: 1 

+ 
+ (2Jx)(2Jy).2{ I: 12 - Z&= 

t m-v 

-62 AlmBlm 
m-V cos(u 1m-%m)~ x 

In principle, one must find a.11 Fourier ~components (m=-m to +m) from 
Eqs.Cl7.1 to 5) although one often replaces the phase factors with 
quantities independent of m: 

(3Qx+mk + (3&dk? (Q,+mk + (&)k, 

(Q, izQyhe)k + ($, +2$y)k (22) 

These substitutions are justified in Eqs.(l8) and (21) because of the 
denominators. Even when this is not allowed, one can perform the 
infinite sum over m analytically using the relation 

i(mf3+b) 
EL= il -ii=(n-81-b) for o<e<211 
m m-a sin(na) e 

= -71 cot(na) e ib 

Summations over m in Eq.(18) are then 
over k (index for sextupoles) and, in 
double summations over pairs of k's. 

for G= 0 (23) 

replaced with finite summations 
Eq.(21), they are replaced with 
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When a group of sextupoles are all at equivalent locations (0, and 0, 
independent of the index k) and the approximations (22) are valid, 
one can minimize the sextupole effects by satisfying the conditions 

=k eic3*x)k = zsk ei(@x)k = csk ei($,+2+y)k = 0 (24) 

These and the similar conditions (3), (9) and (10) are further sim- 
plified when the phase advance from the k-th to the (k+l)th sextu- 
poles is constant throughout the entire group. This happens when 
sextupoles are placed always near the horizontally-focusing or verti- 
cally-focusing quadrupoles of the regular cells. Note also that the 
condition (24) applies to all sextupoles while (3), (9) and (10) are 
only for those where the dispersion function is not zero. 
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