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Abstract

We present the Deprit-Hori-Kamel recursive algo-
rithm for carrying out canaonical transformations
that eliminate non-secular terms of a Hamiltonian.
The method is illustrated in the context of accel-

erator theory by application to three sample
problems.



How Alexander wept when he had no more
worlds to congquer. everybeody knows --- or
has some rteason to know by this time, the
matter having been rather frequently
mentioned.

~—— Charles Dickens,
Bleak House (1853)

1. INTRODUCTION.

Like many other good ideas. the one which accelerator physicists
call "Moser’s transformation“l was in fact developed and studied in

some detail by Poincare. According to Jupp (p. 313},

"In his Methodes Nouvelles de la Mechanique Celeste, Poincare (1893)
describes techniques to ‘eliminate’ successively non-resonant periodic
terms from the Hamiltonian of a dynamical system. Each elimination is
achieved by means nf a canonical transformation of variables, which is
constructed using & generating function depending upon the ald angle
variables and the new momentum variables. After all the periodic terms
have been removed in this way, the final Hamiltonian is purely
secular. ™

The method was modified by von Zeipel in i716 and is called., by the
rest of the world, %the "Poincare-von Zeipel preocedure". Even so, it had
antecedents. Giacaglia (pp.55,47) writes, somewhat ambiguously,

"It is a recognized fact, although several times not mentioned. that
the averaging methods were introduced by Lindstedt (1882}, though it is
not clear whether his ideas stemmed from the efforts of Euler (1750) in
the solution of the problem of motion of the moon. ...In his celebrated
‘Methodes Nouvelles’, vol. 2, [Poincarel developed a canonical analog of

F5 96 35 36 35 36 35 6 36 3 S St st

1. /But not the superconvergent procedure
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Linstedt’s method which: even a¥ter a superficial look. proves to be a
very elaborate generalization. However, it is cbvious that the main
idea of Poincare’s development comes from Delaunay and some remarks of
Tisserand on Delaunay’s Lunar Theory [Theorie du Mocuvement de la Lune,
1B&71. ¢

This work of Delaunay’s cuilminated an effort that appears superhuman by

modern standards. Deprit, Henrard, and Rom {(p. 156%) state that

"Delaunay worked at his theory without any assistance, by hand, for
some 20 years continuvously (sic); his literal calculations cover two
volumes in quarto of 400 pages each; he alone proofread them.

Altheough he is not frequently mentioned outside celestial mechanics.
Delaunay’s influence on the physics of his age was considerable. Among
his ather acctomplishments. he seems to have been the one whe invented

action—angle variables. According to Lanczos (pp.254,245),

“"Delaunay invented a besutiful method #for treating separable systems
which satisfy the additional condition that the stream lines of the
separated phase plianes (qk:pk) are closed lines. He considers a
canonical transformation whose position coordinates are the "action
variables"” J, defined by the areas anclosed by the stream lines. The J
are constants for the actual motion while the negatives of the
conjugate momenta. the “"angle variables® W, change linearly with the
time t. The partial derivatives of E with respect to the J; give n new

03

constants which are the frequencies 32/ of the motion. ... At first
sight Delaunay’s theory seems Tather technical and involved. Yet it was
this procedure ... which opened the eyes of physicists to the power of

the Hamiltonian methods. ©

Somewhere in history this association was reversed. We now think of the
action variable as the "momentum®, although a vestige of the original
ordering may be contained in the terminology "action-angle“. rather
than "angle-action”.

It has been remarked by many authors that the Poincare-von Zeipel

procedure suffers from a serious disadvantage. Because the generating



function is writfen in s mixed system of variables, the transformation
from the new. "averaged” variables to the old. "exact” variables is
only defined impiicitly. Practically., then, carrying out the
transformation to better than lowest order is accomplished more in
principle than in practice. Beginning with a theoretical paper by Haori
(1946), Lie transforms provided a new, alternative "averaging"
procedure in which transformation equations were explicit and could be
developed recursively to any order. Further, the algorithm was written
completely in terms of nested Poisson brackets, explicitly providing
invariance under canonical transformations and thereby assuring that it
could be implemented without alteration using any convenient system of
conjugate variables. Finally, the new theory possessed the almost
unique distinction of being “not known to Poincare., a thing hard to
discover in perturbation theories“a'J indeed in dynamics as a whole.
That alone would serve to make it exciting.

Although it is ftrue that the current renmaissance in Lie
transforms can be %traced to Hori, it was not until Deprit‘s work. three
or four years later, that the world toock notice that something new had
come on the scene. Working independently, Deprit (1949) wrote his own
algorithm, and:. in 1970, he and his collaborators linked it to a modern
computer algebra program (MACSYMA) and reproduced Delaunay ‘s monumental

ctalculations. (The dramatic result of this double checking was that in
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2. /Giacaglia, p. 144,



twenty years of effort Delaunay had made only one mistake ——-— amounting
to writing 147-90+2 = 46 —-— at the Pth order, all other errors
resulting from its propagation through other terms. } Deprit‘s method
was studied further by Kamel and Dewar, and recently it has been used
in plasma physics by Dewar. Kaufmann, Littlejohn, and Cary

Also vusing Lie operators in plasma physics, Abarbanel recently
has exhibited perturbation series free of small dencminators (1980) and
has worked on calculating diffusion in phase space for chaotic systems
(1982). His ideas are exciting and may prove useful for accelerator
problems, but we shall not consider them here, as they have not yet
been crystallized ints an algorithm

In accelerator theory, Dragt and his coworkers. using a different
approach, have been systematically exploiting Lie transforms #for
constructing transfer maps through accelerators with monlinear
elements. A version of PROGRAM MARYLIE, the first fruit of their labor,
is now available for general use and is rapidly gaining acceptance by
accelerator physicists. Although the underlying theoreticai framework
of this program is that of the ceiestial mechanics and plasma physics
work, the application iz very different: MARYLIE constructs a
symplectic mapping which is to be iterated while the others generate an
averaged hamiltonian which operates in continuous time.

When the dynamics are integrable, Deprit‘s algorithm is a simple,
systematic procedure for generating invariant KAM surfaces to any

desired order. These surfaces pravide a useful tool for sglving the



dynamic aperture problem when the fundamental iimitation comes #from
distortion of elliptically cross-sectisned emittance tori.9 Uf course,
nonlinear systems are almost never integrable, and in lieu of major.
unforeseen breakthroughs, fast numerical tracking algorithms {coupled
with goed interactive graphics) will be essential for detailed
dynamical studies. Even in such cases: however, it may prove useful to
strike a3 balance between "analytic"™ and "numerical” methods so as to
increase the useful information obtained per computational cycle. As an
example of this, consider numerical quadrature, where it is frequently
good practice to smooth the integrand by a judicious choice of
variables befere entering a numerical procedure. By tailoring the
problem to the algerithm in this way one can sometimes achieve
increased accuracy with fewer computational steps.

In this memo we shall consider briefly Deprift‘s algorithm in the
context of accelerator theory. The method is presented in Sec. 2, and in
Bec. 2 1t is appiied fto three simple, familiar examples by way of

illustration. Sec. 4 contains a few irresponsible cencluding remarks.

o R e R

3. /For =xample, see F. Willeke, "Determination of the Dynamic Aperture
of Circular Accelsrators by the Perturbation Theory Methad®, Proc.
S8C Workshop, U. of Michigan., Ann Arbor, Dec. 12~-17,1983.



2. PERTURBATION THEORY AND THE LIE TRANSFORM.

In this section the symbols 1z, :* and v will denote a generic

set of 2N conjugate phase space variables.

2, X, u = (i’) or (j) or whatever

-

We are confronted with the problem of solving the presumably

complicated dynamics generated by a Hamiltonian H(z:gﬁi E 1.

d=z* _ g 3H(z% d50) = o;i)
3 "L . D=5

Because we look toward applications to circular accelerators the
independent variable ¢é is taken to be cyclic; H is periodic in gﬁ with
period 2-7t. This attribute is not esgential, however:. and in most
applications the independent variable is interpreted as {(non-cyclic}
time. The variable E is a contrel parameter, the "small parameter® on
which the perturbation series will be built. Everything must behave
smoothly in 3 neighborhcod of £ =0; no catastrophes are allowed in %he

phase space region of interest. In particular, the limiting hamiltonian

H, = 1lim H
° ESQ

is well defined, and its arbits are presumed known.



Although an crbit of H may be very complicated we assume that its
behavior can be sveraged, in a sense to be made more precise. The
expectation is that this "averaged" orbit will be easier to solve, or
at least to study. Its development alse is governed by a hamiltonian,
say K.

éfi = H:'ézhi(z3¢53€:)
d oz

Further, by slicing state space at constant values of ¢ we get a one—
to—one correspondence befween points z on the K-orbits and points z* on
the H-orbits. This mapping z ~% z™, which Dewar (1978) calls the
"clothing transformation” in analogy with renormalized quantum field
theory, 1s needed to solve the exact dynamics from the averaged
dynamics.

A Lie transform gets at the clothing transformation by defining a
new dynamics using £ as the independent variable, with ¢ held fixed.

For a hamiltonian system., :tg equation of motion 135 written

dw _ 7 S (w; b €)
Jde Ju
The fundamental problem is to find a generating function S such that if
we apply the boundary condition w(E =0} = z, then vl &) = %,
In perturbation theory § is constructed by expanding everything

in powers of € about € =0. The algorithm presented below has been

derived or explained i1n various ways by Deprit, Kamel, Nayfeh, Cary,



and others. The cevelopment in Mayfeh is recommended, although perhaps
less formally elegant %than the others, in that he treats Hamiltonian
dynamics as a special case of the more general prablem of solving first
order ordinary differential esquations. We will lay out the procedure
without derivation and then describe briefly two methods for solving

the linear partial differential equation which it spawns.

2.1 Recursive algorithm for hamiltonian systems.

Begin by expanding H, K, and S as power series in E.

o
> P A n n
2 En, £k, 5= E g
nl n! 0l N
n—= n=¢ n=o

The functions H, are known, it is required to #ind all K, and §  order

by order. The initial step is ftrivial.

Qth order: K. = H

Now, define an operator D, acting on real valued functions over

state space.

= DE/Jp + L £, H
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where { , > is ths Foisson bracket,
o 33 1 2b
{8, 0} = —— Y ————
oz a3z

Tne +#irst order =2quation is then written as follows.
1st ogrder: DS

There are two unknown functions. K1 is determined by requiring a
bounded solution for S,, unbounded solutions doing violence to the
convergence of a perturbative series. (This will bhecome clearer in
Section 3 when we consider some concrete examples. )

Far n ) 2, the nth order equations are constructed as follows.

" K
DS, + K, = Hp+ S+ D> (ta)

w2
P =Z(md,){ Honr 8,0 (1b)
L ¢ B
b 2l e -
En =Z(m_i)Kn-—M,m {lc?
m=,
Kij = 4 Kj ; 51 ¥ (1d)
i=-1_.
1—1) .
= - * 5 ’ S
Ky = {K;,8;) mil(m-l By ns Sty inz (le)

For example, at the fourth aorder, we first #ind K‘3; K, and Kz,

12

by evaluating the Poisson brackets of functions constructed at lower



i1

orders, according Tto the prescription of Eq’s. (id,iei. These are then

K H
put together to form SZ:H. sz‘fis built gsimilariy. and the two are

combined with H, to write the partial differential equation. For future

reference and in order to see the pattern that emerges, the sequence of

steps through siith crder sre displayed below.

Oth order.

st order.

3Jrd order.

4th order

Znd order.

DS, + K, = H, (1$)

K, ={%,, S}

DS, + K, = H1+-{H,,S,§+ K. (ig)
P<VL = {k<1 3 Sl }
K, = {K'"K“ > Sz}
'D€3+ K3=-H3"F{H1,€,}+—1{H,,Sz}
+ K, o+ 2K, (1)

PN
W
|

1K, 5,5

Ka = (KpiSy) = (Ry,.8y]

Ko, = (Bp,S3) - 20K;1,8,) - {K,;.8,)

DS, +K, = H, +{H,, S} + 3{H,, S}

+ 3{H,,S3} + K, (1i)
+ 3K, + 3K,



5th order:

6th order:

14
23
32

41

DS

15

24

~ =

33

=

42

51

DS

12

{Kq,s }
{Kl,S4} - 3{Kll,S3} - 3{K21,52}
Ko = He + {H4 sl} + 4{H3 52} + 6{H2,s3}

+ 4{H1,S4} + K41 + 4K32 + 6K23

+ 4Ky, (13)
{KS,Sl}
{K3,53} - 2{Kl3,52} - {K23,Sl}
{KZ,S4} - 3{K12,53} -~ 3{K22,82}
{Kl,SS} - 4{Kll,84} - 6{K21,s }

- 4{K31,s2} - {K =N }

K_=H_ + {HS,Sl} + 5{H4,82} + 10{H3,s3}
+ lO{H2,54} + 5{H1,55} + K + 5K

+ lOK33 + lOK24 + 5K15

51 42

{1k)



Storing the intermediate array K, requires a memory that grows

J
guadratically with the order of the calculation. It is possible to
redesign the algorithm for linear growth by making the calculations in
each order call uvpon previous selytions only., not upon intermediate
results. To this =nd it i1is useful to introduce a frequently used
operator notation. 7o any real valued functionm f over phase space we

associate the operator L{#f). itself acting on real valued {functions

over phase space, defined by

Lif)g

N
Fa]
F=]
“+ts
L

These operators are derivations,

L{#)gh = (L{figih + g{L{f}h)

i

and in fact are called Lie derivatives. Mote in passing fthat

D =03/3¢+ LiHy).
Now introduce the operators O, defined recursively as follows.

0, = LBy
! 1 m={

- - ‘m-1
O = LSy} Z \ k-1 )L(Sk)om-—k

k=
O O S 3R 3E S S 4 3 - SR IE

M /For whimsical reasons of his own, Y. I.Arnold calls them fisherman’s
derivatives. Dragt’‘s unique notation for ‘L{(f)’ is ‘. ¢ °



It 15 easy fto prove by induction that

Making this substitution in Eq. {ic) leads to the rnew desired form. For

example, at fifth order, and with the condensed notation Loyi= LIS

S = LK,
+6 (L, - LIk,
+ 4 (L, L, (L, Li) - 20L,L )K,
1@y -y - L, - 1) - 2L,L.)

2
-3L. (L., - -
2 (Ly = LD 3L,L,)K,
Although conserving memory, this form of the algorithm wastes
time by duplicating previous computations. For example, the function
2 . . . b\ L3 .
(L2—L1)K2 which appears in the expansion for stas previously

K
computed as the second term appearing in \ZH .

Solving these equations yields the averaged hamiltonian and the
generating function, but the dressing transformation itself must still

be written out. That also is done systematically, order by order.



¥ = Z :zn(z;ctt) (2a)
W=
Oth order: z,(zi¢p) = z , (2b )
ist order: z,(z; &) = I-BS‘;(z;q’: '/ Oz {(2c?
For n 2 2:
n-—
S, 0
z, =1 >=2 +“Z(m )zm‘n_m. where (2d}
1 '—-’
:, - =4{z..5,} {(2e}
'JJ o
-1 .
N o 4 N[t o - e
zi,j = {zJub‘-} Z(mﬂ){z;_m,‘.}, 8.7 (2F)
=y

This looks very much like the algorithm for constructing the 8p,'s with
the important difference that only one S,, appears in Eq. {ie) while all
previously constructed §_,'s appear in Eg. (2f).

2.2 Constructing solutions.

To find the functions 8, we must solve partial differential

equations of the form

DS, (2,6} = rhs (2, ¢h). (3)

Two methods will be considered: integration along orbits and expansion

in eigenfunctions.



2.2. 1 Integration aleng orboits.

The differential operator D is, by Hamilton‘s equaticns, the
total derivative along the direction of the local H°~orbit. Solutions
to the partial differential equations can be obtained therefore by
integrating the inhomogenecus term along these orbits. This approach is

actually an instance of the method of characteristics

Let 3_(23¢; qu,) be the orbit that passes through z at ¢>= ¢i'

g_g_—(r,d&)»ﬁ;) - Baiq(“’,ﬁﬂ

n = 3_(7_ ;¢;¢;)
-gr(ﬁLHGbi 7¢£ ) = Z

We then have the following

ASSERTION: The general solution to the partial differential sguation

(3} is
b
Salzip) = Jda” rhs, (glz5¢59),¢")

+ Tlh\, constant

of H, motion

The proof of this is easy and will be omitted. There is about
this integral a whiff, albeit subdued and disguised: of resonances and

small demnominators. For:. suppose that /3,.possesses a periad in 96
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commensurate with Z+1. Then the integrand would be a pericdic function
of ¢). Wnless K 6 be chosen fo annihilate the integral over one period,
the solution would grow indefinitely with increasing gﬁ

The arbitrary ‘constant of Ho—motion’ is fixed by demanding that
the solution have the appropriate 2y periodicity in ¢. in the
particular case
oF
0

13
i’(_.:_
Il

Ho (Y v Jd ) = FW)

1

the solution is specialized to
P
S,AY 2#) = Jap ek (14 @ B=8), 45 47)

-+ s‘-uwcki‘"‘ ‘5‘:(‘.1395 ’ ‘J )

o

where “func’ represents that function which will make Ba periodic.
2. 2.2 Expansion in 2igenfunctions.

Like all linear operators., D possesses esigenfunctions. By using
these as a basis, the differential equations (3) can be expanded and
solved algebraically. We will specialize considerations of this section
to the unperturbed hamiltonian

330 38 b 4 30 3 S IE S I

5./4 small warning: this vieclates the crucial hypothesis of the KAM
theorem, det hess Ho # 0.



HOQ\_")-:J_ ‘J([i) = 2. \i

Our operator D then becomes

P>, )
= —— 2 e —
D 52 + 2 v

acting on the space of functions perisdic in (b and in all the 3.'s.

The eigenfunctions of D on this space are the complex exponentials

where m is an integer, and p is a list of integers. {(Note that D is an

anti-Hermitian operator. ) Written in compenent form, Egq. (3) becomes

tw e zep) S0 (D) = rhs ()

n: -
VA =

where we formally acknowledge that the components depend on the action

variables, J.

Foer all m and p that satisfy the tesonant condition m +%.p =0

we must choose the (m,p} component of K, so that rhsn_m; Q. Even in

the absence of non-trivial resonances, we must at least chocse the

average term Kn'¢ according to this criterion.
60
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To use this representation in the solution algoerithm that was

laid out in Eq. (1) and Eq. (2}, we must cbtain the components of Poisson

brackets. Since we will always be dealing with polynomials in the

action variables, it is sufficient to consider brackets of the

following form.

{J: {_Vf 196) ) pr ‘}kt’: ,ﬂbj}

a-1 bt
=iJ, J Z(kaP;—-aJ‘LFJ)‘Q‘m,?_, Yoot

The notation<<§: >signiFies a sum carried out over all m‘.m" p‘, p" such
I'HE - —
that m'+m"=m and p ‘'+p"=p. For one dimensional problems this expression

simplifies to

; J’ai-b"j Z (bF,.__ QF”) Q

(5}



3. EXAMPLES.

Te illustrate the Lie ftransform perturbation series, we shall
look at three sample problems in one dimension: (1) zeroth harmonic
sextupole and octupole terms (to 4th order’, (2) quadrupole field
errors (to 2Znd order), and (3) arbitrary sextupole and octupole terms
(to 2nd order). Our purpose here is certainly not to study these
systems ——— and we will by no means make a thorough job of them ——— but

only to use them as settings for realizing Deprit’s algorithm.
3.1 Zeroth harmonic sextupole and octupole terms.

The hamiltonian for an accelerator with zeroth harmonic

sextupoles and octupoles can be expressed in actign-angle form as

follows.

H= 2J + E_JV s'.mg‘\’ +

H, = 2J

3/

H-, = J sin Y

/
= J¥ (3— T s;HBY}

xI
n

2- K—~JL thtgf

-
I{Jz(-g'——.,_-_t‘,osz‘r +%wsqn”)



Introducing the parameter K is a device for expressing an intrinsically
two-parameter preoblem in 3 one-parameter formalism. For this to be
legitimate, X should not be tao large.

The first order esquation to be solved is

3/2
e +vs)S + K, = J (

3 - . i : :

- h -—— 5

T oY 7 Sin 37 )

Its solution can be written by inspection, but we will use trajectory
integration just to illustrate the method in this simple case. First of
all, there is no growth term --- that is, neither szinY nor sin 3Y has a
non-zero average ——— so we must choose K, = 0. Then wusing Eq. (4) we

write the solution for 51 as

¢
S, = f,w Ldsin(y +r2@-e)) =L sin 3(Y+ ¥ (¢'= )T x J
Pe

3/2

+ ¥unc (')“—7,-"':/."\ 5 J}
3/a

- (J /,;)[—-L"z(c,os\’ - eos(*{-:v‘95 +1)¢o))

+'-!{(c.os3Y—- cos (Y —2¢ +2¢,)) ]
+ &:unc (y— 24 ) J)

The arbitrary function is now chosen to cancel the unwanted terms and

to make S, periodic in ¢ias well as Y. We are left with



Y
n

Sf = (J:m/ﬂ)['% cosY + Jitos. -3\‘]

i
At the secend order. bHecause Ky = 0, Eq. {1g) is simplified to

(3-*¢+7/5%)32+K1= H,+ {H, s, } o)

The Foisson bracket is evaluated easily.

{#,,s} = lév 1("‘54— 5 o8 3Y osY + 3sn2¥ sinY )
= (34492 )(-F + & cos¥Y + conav)

K, must be chosen to cancel the average term on the Ths of Eg. (&),

because the presence of such a term would make Sz grow without bound.

&t

K_ = - @?/mwm¢

3v—
2 .6 T g VK )

The solution for 3, is written by inspection.
z ] 3
= J [w(g—ﬁ)g,nl\r +_51V'( + I-(,)Suh ‘I’Y]

Pushing on to third order, we first note that since K' =R,y =0

then KQJ = (0. The evaluation of Ktz is straightforward.



3 5/2,2. .5 -
K, = e (T 7T ( 5 ~ vk ) ( 3siny - sin3y )

The octher two brackets that we need are evaluated below.

s/,
{Hz )Sl} = E'K-; J (S;n sy + 35‘.};'1 37 — ,LJS/HY)

{f‘},, S.Z)S (J‘f/’/v'z)['é (67‘!‘( '-“7-?) Sim SY

+ (32 /16 ) sin 3Y

~ i3 ok - i35 ) sin Y J

Putting these into Eq. (1h) and solving yields the result.

S = (Js/'z. 7}3) [.3;0 (1')——-1‘-}1)1»{) Ces S

3
+ 2= (5 - 6vK) ces 3Y
) ‘ .
~ 37 (315 — 286;;.{) C»SP(]
Note that there are no average tevms to be cancelled. and thusl&3 = 0,

To see the next contribution to K we must go to fourth order.

The terms 4,3 and K4, vanish. The evaluation of Koag is tedious

but straightforward. We will only give the result here.
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K22 = (J3/v3) [(—%%E + I%ﬁ VK ) cos6y
+ %8+£ un—g—z(w)z)cosw
"'("%%%"%\m""% (\)K)Z)COSZY

The twe nonvanishing Poisson brackets which contribute to fourth order

are as follows.

3
K
{;F+1) S:z}-‘= J- e [}'E%I (117/K'" 7)) cos 6y
- 33:; (2w + 3) cos 4y
+ 5_3.»., (14 - 1) Ces Y
! _
- Tz (39 2k - 4S) ]

{H,,SBE =( .Jg/y-?)[ ;3;- (382K -47) cos bY

- &

28 (6 vk ="7) eos 4y

3
- 5‘_—’_"2_*('77-6 K = 743) cos 2y

-,
+ =(62vk-67)]



fd
w

Now choose K‘ftn cancel the average part of Eg. (1i}.

Ky = 3<CIH, 5D + 3<{H, S,3) + 34 KD

= - (J /v )[i;éﬁ - 675 ve + 2% (\JK)2]

2

It is ieft to the reader to finish the calculation for Sq trom the

expressions already given.

Putting the pieces together, then, the averaged Hamiltonian to

fourth aorder can be written:

/e
KD =2 dD1-5(5 -3 ) (&L )

; 'f2
_%(%'—15—— 637 VK +___(7)K) )(e J )4-

+ O (€°) ]
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3. 2 Quadrupole field errors.

The application of Deprit’s algor:thm to this linear problem is
going to be cumbersome and obscure in comparison to the elegant
treatment of Courant and Snyder., which takes no more thanm a few lines.
This is not surprising: linear problems are sglved best by linear
methods. Again, our purpose is only to observe the working of an
unfamiliar algorithm within a familiar setting.

Becavse we’'ll want to compare the results obtained in this
section to known, correct answers, let us start & little further back

chan in the previous section in order to establish the notation. Assume

a hamiltonian of the form

H(X1P;E;S) = ‘;:(Pl + G‘(S\Xz) + €7 §(S)X1

~
The #unctions G{(s) and g{s) are equi-periodic. We now (1) make a P
. s
Floquet transformation wsing the betatron functioens P and §U=-y¢)= J.~:

R

assoclated with Ho)and {(2) change the independent variable from s to

¢ . The transformation equations are given by

X = [zJ@ﬁgﬁ)]'hs;nf
Az 0 db, pE)
rZJ/P(C}MJ ({3 :';f simY + ¢os‘\’>

Y]
il



(%]
~J

and the new form of ihe hamiitonian is

H(v,Jse5¢) = wdli+ e 9@ g(@)siny ]

H ~
where g(¢(s)) = g{s). Because we are dealing with a purely linear

system we expect that

K(J) = (2 + ay) J
= (7 + av®” + a2 +--- ) J

where AV“‘L D(El‘). We shall evaluate A4) through second order.
To ease the notation, define the function
P
Fgid) = |do 2 9 B
®o

The parametric dependence of F on 42 will frequently be suppressed

Reexpress the hamiltonian in terms of this function

H o= 2

o
48
J c!g.':« Cl

J\'\,(Y,«M

eos 2Y )

I

H,

i
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In writing the first order equations, it is convenient to define

S, =Js, (v, ) amd M, = Jk, (v, 4>

so that Eq. (1f) becomes

( ¢+7’—)3 = 96 - CosS2Y )

We will break this up into two pieces. say 5, = s? + 5? ., where s° is
independent of Y

The solution for s? 15 wriftten easily by

s = F(G!);G'So) — "(1'(95'—4")
= \:Y_(qb)“i’e)

The constant &k

inspection.

y Must be chosen so that Fv_is periodic, and %thus

bounded. That is, we must have F_(@ _+ 2%: ¢, ) = 0. and therefore

'l'n‘I(‘ = F(é, + ’lm;qﬁo)
=z § o j<¢\pf<¢>

{(7a)

This gives us the first order tune shift arising from perturbations in

the gquadrupole fields.

&y

A = ek = %g&dsé €£9(#) [52(45)

(7b1}
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0

The differential equation for s,

B o b JdF
( ézz + ) ooy ) S, = — :;3: cos 2Y

could be solved by integrating along a trajectory and sdding an
appropriate null space function to make the solution periodic, as was
done in the last section. We shall short circuit this process and Just

write the final, =asily verified answer.

¢+Ln

b 1 0 ) < — ¢

S; = -3 de(cb )siw2[ v+ (=) - wv ]
V4

The function is represented as a Lebesque-Stieltjes integral with
pseuvdo-length dF(¢>). Periodicity is confirmed by using the boundary
condition dF( ¢ + 2% = dFigh).

Because F12= Q. the second order Eq. {1g) becomes

DS, = {H +n S} - K,
As before, we factor out the J dependence explicitly and define

S, = Jd, vy, K= Jkn,é)

Because k; is a constant, the second order differential equation gets

Tewritten as
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@ P2} oh, ;
(55 9505, = 55 = (h, « kD - &

rhs (Y, )

H

z

ill

Consider solving this by the method of integration along orbits.

The number ky, must be chosen to eliminate unbounded growth of s The

2
troublesome term comes from the combination of circular functions in

bath h, and 5, -

oh, _ R o3,

t-Q'f'r'h r‘m

"E? B ' oY
— 1 ¢+1m
= dF (¢p”) 23 n 2Y s 2| Y+v(¢’> 4’)—?’))
:lS'n‘l 17"7) G‘¢
¢ + Lewosly cos L (Y+z)(¢/—cb)-r7*):l
g+
JdF /b .
= - — / ]JF(qé-’) cos [Lo(¢p = —m)]
Sivy Layp
&
Applying Eq. (4) produces the growth term)si_
& ¢”+—1ur
ST P = - JAFW’)PF@)m[’l»\# s=m)] - k (¢-4.0
o ¢$H

That this could grow indefinitely is demonstrated easily by noting that
the integrand is invariant under the diagonal translation ¢’~9~éﬂ + a7,
ﬁ"ﬂa>¢“ + 2m. Because of %this. éi(Vﬂbo +2mn) = n-si(f,ée +2). To

eliminate the growth we must make si periodic by choosing
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cb’/+-,21'{
.--——-———--1 e i . ol .
1w kz - - Sivi Lrru %dr"(‘f’”) jdl:(qb’) ces lv(qﬁ/-—- ¢ x (Ba)
¢//
We note in passing that
(2) { 2
AV - = T l(z (8b}

For completeness, we shall write the the full differential

equation for S,
@ 21t
dF /o> , .
E)EL, = - ;::fE;:;:fciFrﬁb ) ces 22 (¢ - ¢ -7 )

* & +2r

1

-+ m(—' + Lk )Sdl’&é") CDS’L[Y+1)(¢3 déﬂtjl

F
21 Eeisinay -k

b

The solution of this is

s, = S: +— gb + 3:_' ¥ ‘cunc. (y- v )

VAR
sP = —_— J (dF(@") + k dcb”)jd?(ct Y cos Ly +w(@-d-=n)]
" &
s§ = zjapfd:") F (") sim 2 (Y + ¢ =)

where func is chosen to make si_periodic



We now want fo compare our vesults to those of Courant and Snyder
(Eq. 4. 27). Written in our notation, their expression for the perturbed

tune is given below.

coes }-\ — C.o:’_‘,}'(c = ~& Sin2wv F'K')-T( ') 0)
’ ‘ 297

P
+ €2 . zf 4r=(¢“)5 dF (¢ Y amw(p - ¢s”}s;;a-;)(9.rr -(cbi-cb”))
O ¢/I

+ Oe?)

where 2wy = Hao and H= Sar (P + Azﬂn + Az)un+ cv»<« ). To make the

comparison, we must expand CGSP ~ cos M, to second order.
. iy
CoS | = ek, T — A sy A o AV
' z
- Irsin Lnv - au™® -5 c,oslm)-(l'n: 29

+ © ()

We can already identify the first order term using Eq. (7). The second

is given by the following.

" A (2 i - (Y22
- 27MSu2lny - AV — - ¢Os 211/ - (‘ZTI Av )
Zn 277

= g* JJF(¢"')J&F(¢‘\ [ees 20(67- é"—x) — ces 27w ]
O A
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where use has been made of the sine product formula. It is easily seen
that the terms involving cos 272 on both sides of this equation are

identical.

ar 2

- €% ces Lns S jﬁ dF (7)Y dF (Cﬁy)
P=o b=b”

A 2
= - et cos 2nw - L S S JECe’) 4= (&)
AR P

= —L cos 2w [E‘, F——(?_n',G\]l

- . , (e 2
= - ces 2wy ( 27 A2 )

incorporating this into Eq. (9) yields the result
27 2T
D 2rrd - Ap) < 525 S dF (") dF(#") tes 2 (¢~ b7~ 1) (10)
6 =0 £
This 1is equivalent to our previous result provided that the
double integral in Eq. (10) is half that in Eq. (8a). That demonstration

is 2asy. First note that

¢r1+ 21{ 2T '112 {'d’,
Y
&= B” &e g’ B=an

Then, all that is needed is the following line of development.
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27 &+ 21

v ng . dF(¢/,) CJF(ij) cvs 27 (é/—- qﬂil_- r()
=2n

21
< Jo S, 4B ARG cosan (B n)

&
an ®” . y
= L,  dF(gr) dIF(adY) tos 20 (&7~ ¢ + )
= o (ﬁ/’.‘__o

21 27 ) .
':f j dF (" )IF () coszv (B =" —x )
A= d{:‘p‘”
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3.3 Sextupoles and cctupoles with arbitratry harmonics.

hWe consider now a Hamiltonian with arbitrary sextupole and

octupole terms.
— . { z
H = )40 + € F41 + 5 € F*

2

3/ 3/2
H', = ﬂ(s‘b\ J shnly = ey J (“?T 3inY - 'q‘ 5‘1‘»137’)

- 3/2

= J 7 h (v,

H, = B(®)J sin"y

B J* (F - 5 cos2¥ + & cos #Y)

Jh, (v, é)

The transform equations will be selved by expansion in eigenfunctions -

-= that 1s, Fourier decomposition.
AD = Sa_e™?
e <
na
- Sraed _ ot
B = 52 b, e , b=k

C (et Y)
hkk’r,sﬁ):%l\k"mpe mE +P , k=,

b -k

L-)..-m _P \c)mF
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The onliy nonvanishing components of h, and h, are

u

b =+ 33,/8t , h,. , ., =Fa,/8i

i;m)a:t 5

]

3‘9;‘?)/8 ) L’l;r‘h,-t_z_ - L’m/q (11
h b,, /16

3
o)
3
L

i

if

zim)t%

The first order equation is

+ k\/l',nw-]:. = }413!T’P

?:.(W) *"VP) g13rh-P

We must choose K,joo:= H.,oo = 0. We shall also assume that no
]

Tesonance terms are important, so that m+yp vanishes only for m=p=0.

iherefore, K, , = 0 for all m,p, or more suvccintly

P

if we define S = J 3 » then the nonvanishing components are
14 m t-
)P TR
s = F3 2w
Ly, &1 & M+t
dm

ol —
3
H.
)

Sr%M,mS = *



Going to second order,

i(m+-.)f9) 513

The Poisson bracket

{Ph ’g'}3Wr

Again,

il

A,

)0(“

Note that

using Eg°‘s.

A/
=1J7h,

)

(m,

J ke o

305y

<M)P>

T VX

—
——
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s

p>

s

h

Mfr _+___‘)F//

>
we have used h, o p hU’“P'
{(11) leads to
2
& 0 T je W
170 o 1
‘}6 :E: k mT— 2

3 p

is evaluated using Eq. (3).

, }

1}1W’P’

}n“—ﬂﬁy

\jm

h,

projecting out the average fterm gives us K,.

JLEb -32 5 by 7]
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we must consider the equatiaon

Hamn T 1HO, S Y

A little further evaluation,

,)lamlz



When b, =0 this expression agrees with Eq. (5.&) of Cole (19&49)

special case is worth mentioning

P 1
™'

= tai. Then the sum can be done using

) 2X —
¢ = ——
ot 7y >

TC

le =)
The reasult is
3, 27)a)*
x<7_',“_-' Sbo - 6 (-—'(_foT'Z)—}*

Suppose that for some

iai, all

uf%w#)
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4. REMARKS.

Chief among the questions associated with any pérturhation theory
is that of convergence. As the Lie series is calculated to higher order
in &€, larger harmonics in ¥ are pulled into the generating function
and, as a consequence, into the clothing transformation. If the series
converges, then the magnitudes of these terms should decrease rapidly
with increasing order so that. for example, a Fourier spectrum of the
orbit would show only a few dominant frequencies. In general, however.
the interval of convergence in £ or J will be finite. Near its
boundary all the higher order terms become important and the spectrum
would be broadband. This is precisely the behavior one has come to
expect in approaching chaotic regions of phase space. It is tempting tc
speculate that divergence of the Lie series and passage through the
last KAM boundary coincide. Unfortunately, the situation is more
camplicated. Dewar {(1978) has constructed examples in which the Lie
transform is well defined and leads to integrable orbits past the
convergence interval of its power series expansion.

A second issue, not unrelated to the first, is the ambiguity
inherent to setting up a problem with several impartant nonlinear
terms, within 3 single parameter perturbation theory. The naive.
"natural” ordering blindly associates higher powers of J with higher
powers of £, usually in the combination Edtlz . This is naot

necessarily the best for all problems. There may be instances in which
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it would lead to a divergent Lie series whereas restructuring the
problem --~ changing the association of multipoles with powers of £ ;
perhaps even combining several multipoles inteo a single power of & ——-
would produce a convergent series. One ultimately would like to get
around the problem by generalizing to a multi-parameter Lie
transformatian.

At any rate. setting up problems correctly and interpreting the
results will, as always:, require judgment: these tasks cannot be
absorbed into the formalism. The perturbation series associated with
most nonlinear problems in fact almost always diverges, and yet their
finite partial sums generally provide useful (in the eyes of the
beholder) information. (Perhaps we should think of the Lie series as
"asymptotic” in some sense?)

The power of the Deprit-Hori-Kamel algorithm lies in its ability
to be automated easily. The examples done for this memo do not
sufficiently demonstrate its usefulness. We plan to exercise the methoc
morTe vigorously snd to write programs that apply it to more realistic

problems in four dimensional phase space.
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