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Introduction

Recently there has been some interest in using the magnetic fleld
inside a current-carrying cylindrical conductor to focus particle beams.!™®
Applications include focusing targets and lithium lenses. The calculations
described 1in this report Were done 1in connection with the design of a
1ithium lens to focus antiprotons juast downstream of the production target
for the pPp collider at Fermilab. However, many of the results are
generally applicable for any pulsed cylindrical conductor.

For the simple case of a cylindrical conductor of radiusg ro carrylng
e

total current I with uniform current density J the magnetic induction B
inside the conductor can be found from Ampere's Circuital Law. Using the

International System of units (SI} this law can be written

$5-d5 = vfi-da

where the magnetic permeability u for a 1linear material is glven by



= uruo, with p,. being relative permeability and with B, = 4y x 1077

henry/meter. Applying the Law results in the expression

_ Wl r
B(r) = H;o_, (1)
or
B(r) = B(r ) . (2)
0 r

¢

where B(r ) 1is the value of the field at the surface of the cylinder.
0
> -+
Since the material is assumed to be linear (B = pH) equation (2) can also

be written

H(r) = H(r ) -

0
For many appllications the Joule heating from direct current 1is
prohibitively large. To minimize heating these devices are often pulsed
with a sine-like unipolar pulse whose width 1/2 is small compared to the
time between pulses. For the pulsed device an expression describing the
magnetic intensity ﬁ as a function of radial position in the conduector and
time can be derived by solving Maxwell's equations with appropriate
boundary conditions. A solution applicable to a pulsed 1lithium lens with

I-= Iusinwt for 0 < t < 7/w 1s given in reference §. This paper assumes

the cylindrical conductor is a component in an RLC eircuit and has a pulse



shape modified by a damping factor e‘ut where a = R/2L. The mathematieal

-ab singt for 0 ¢ t < 7/ where

description of the pulse form i3 I = Ioe
w=2n/t and I = 0 between pulses,

The paper l1s presented in three parts. In part 4 an expression for
ﬁ(r,t) 13 derived and the time during the pulse corresponding to maximum

linearity 13 calculated. In part B an expression for the current density

J, 1s derived and a method for measuring J, at the surface of the conductor

13 discussed. Part C describes Joule heating, including the radial

dependence of temperature and the total heat deposited per pulse,

A, Magnetic Field Intensity in a Pulsed Conductor
Thls sectlon desc?ibes a derivation of an expresalon for the nagnetle
field intenaity #1in a pulsed cylindrical conductor. The time at which the
field is most linear and the gradient at that time are also calculated.
Assuming that the displacement current 1is negligible the appropriate

Maxwell's equations are

> + =+ e >

J=9xH (3) J = oE (6}

e - & - +

VxE =298 (4) B = H n
at

+ o+

V*H=20 (53

where ¢ i3 the conductivity and t is the time.



Taking the curl of both sides of (3) and using (6) gives

- -+ - &> -
Vx (VxH =V x 0E (8)

Using appropriate vector identities and (4), equation (8) becomes

>

> &

ha H

VH-o‘um_'_ (9)

Assuming that the cylinder 13 coaxial with the z axis, that ﬁfhas only an
-5
azimuthal (4) component and that the magnitude of H depends only on r and

t, equation (9) simplifies to

3°H 1 03H H =UuaH €10)
5% ¢ I r T
where H is the azimuthal component of H. The boundary conditions are
H(r,0) = 0; H(O0,t) =0 (1)
and H(r_,t) = Hoe*atﬂe{ie'th} (12)

where Ho i3 the maximum value of H for an undamped pulse. The problem is
inhomogeneous because the right-hand-side of (12) is nonzero. A general
solution to (10) can be found by solving the homogeneous problem with
H(ro,t) = 0 and then adding a particular solution satisfying {12). The
homogeneous problem 1s an eigenvalue problem which 1is solved using the
separation of variables technique. A solution to the homogeneous problem

is



2
Hy(r,t) = Zj:aj.y1(xjr.)e-x3t/au (13)

Where J,(x) is a first order Bessel function with a real argument, Xjro is
a root of J1(x) = 0 and the a.j are coefflicients to be determined from the
boundary conditions at t = 0.

A particular sclution i3 found by separating variables and assuming a

damped sinusoidal time dependence. Thus

Hy(r,t) =H(r) T(t) (13)

where T = Ce~ Yt and Yy = o + iw. This leads to the equation

s 2 - L - et (15)

where B2 = ouy = opla + iw). Letting ows = 2/6%, the expression i1wou
becomes 21/8%. The variable § is commonly called the skin depth. Thus B2

can expressed in terms of the attenuation coefficlent o and the skin depth:

B2 = opa + 21/82

Equation (15} takes the form

d2H dH.
;éla FE’P' -_,) H,= 0 (16)

This i3 a Bessel equation having the solution



H(r) = AJI(Br) (n

where J (Br) is a first order Bessel functlion of complex argument.
1
Applying the boundary condition (12) to (17) and substituting the result

into (14} gives the particular solution

J1(BI‘)

) -yt (18)
Hp(r'st) = Hﬂ ——(———Y'I-J1 B-I‘o e |

A general solutlon to (10) is the sum of expressions {13) and the real part
of (18).

2
i Y (19)
H(r,t) = HD Re {__J..-Jl...__fj‘_i—. e"Yt} + ?aj J1(kjr') a A o

J4¢Br )

The a; coefficients are evaluated using the boundary condition H(r,0) = O.

At ¢ = 0, equation (19) becomes

J
1{fr)
0==-H Im -
o m J1(8P0)+ %:aj Jl (J\jr').

Applying the orthogonality properties of JI(AJP) leads to

2H 5, J (gr)
aj = 0 J'P J (ljr') Im —— dr.
r 2[J (A,r )12 ! J (Br )
o 2 Yo 1o

Evaluating the integral gives
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T kJro 1

o §2 [(xj-aua)r-glz + u(rafﬁ)" Jn(kdro)

aj = «UH

The timerdependence of the penetration of the field into the conductor 1s
illustrated 1in Figure 1 which shows H/H° vs r/ro for various values of pt
with Glro = 0.5. Fig. 2 presents the same information in a different way,
with H/Ho plotted vs yt for various values of r/ro.

The time at which the field is most linear depends on §/r and g. This
0

time can be calculated as follows.9

(AH)? = [H{r,t} - G(t) rl? (20)

13 a measure of the deviation of the field from linearity and the

expectation value of (AH)? is

27
<(AR) 2> = 12 ff"(mz rdrds (21)
hired
0

The value of G corresponding to a mimimum expectation value 1is found by

solving the equation

3 > = 0
3G

or

) Lo
- _14_ f r2H(r,t) dr + 3G frsdr =0 (22)
4 r-oz 0



from which

1Yt Jp(6r) A %t/ou
"7 HRetTg J(Br)}zl‘”"j")e
(23)

A measure of the goodness of fit to a straight 1line i1s found by
substituting (23) into (21) and performing the integration. Some results
are presented in Fig. 3 whieé ahows the deviation from linearity as a
function of time for \Glrozo.S with =0 and a=1000 sec'l. The case where
6/}0=1.0 1s shown for comparison. The results of evaluating (21) for
various values of &/ry are given 1in Fig. 4 which shows the time
corresponding to maximum linearity vs 6/r0, For G/po > 0.7 the summation
over J in (23) becomes negligible and one can derive an expression for
(wt)g, the time corresponding to maximum 1linearity as follows.

Substituting the first term of (23) into (21) leads to the expression

r
H?2 o) .

<(AR) %> = ;9—-2— e-—2atf [-Re fze-21u>t + ff*] rdr
o o (24)

where
_ Jl(Br) Ay Jz(Bro)
- - Z

Jl(Bro) r B Jl(Bro)




The optimum value of wt is found by differentiating (24} with respect to wt

and setting the derivative equal to zero. This leads to the result

Xy
.g InfZrdr

tan 2(mt) b=

(25)
Ref?rdr

The error introduced by this approximation increases as G/ro decreases,
ranging from 2° at &/r, - 0.5 to 8° at §/ry = 0.3. The values shown in

Fig. 4 were caleculated using the complete expression (23) rather than the

approximation. Fig. 5 shows H/HO vs r/r, when the fleld is most linear.

B. Current Density in a Pulsed Cylindrical Conductor
An expression for the current density may be derived using Maxwell's
> -+ - >
equation J = V x H. The curl of the expression for H(r,t) given in (19) has

only a z component

2

BJ (Br) A t/U'Ll

= -yt
Jz(r,t) = HORe [ie T (Br )] + :E: j r)e (269

Fig. 6 shown J_  va r/ry for various times during the pulse. Fig. 7
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contains the same information with JZ vs Wt for various values of r/rg. The
curve describing J_ at the surface of the conductor vs Wt 1s of particular
interest because it 1s related to the potential difference between two
points on the surface of the conductor via the equation V = IE-dE = pfj-di
where p 1s the electrical resistivity of the conductor. Consider a line
segment of length L, parallel to the axis of the eylinder and having as its
endpolnts two points on the surface of the cylinder, The potential
difference between these polints at time t is Lsz(pO’t). Measurement of
this potential difference provides a sensitive test of whether or not the

actual device is producing the expected field.10

C. Joule Heating in a Pulsed Cylindrical Conductor
An expression for heating due to ohmic losses canbe found by evaluating
the 1ntegral f31E-dth. This will be done assuming constant resistivity
during the pulse and then a method for taking into account a changing

resistivity will be given. The radial distribution of heat is given by
T/w

= 2
q (r) p‘!szt

Using (26) for J, one obtains

2

H,? B2J X(Br ) 81 (8r )|
-0 0 1 0 ] =2an/w_
qo(r) = 40. [RE(Yle(BrO))_ a Jl(Bl‘o) (e 1)
H J (Br ) _a.A.J (A1) )
0 L J 30 j -n{ot+r,*/ou)/w
Ay A 3 )
j n )tj+)‘n 0 j 0 n

(27)
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The units for q, are Joules/m® and the temperature rise AT(r) can be

calculated from (27) by dividing q,(r) by the heat capacity ¢. The total

heat generated per pulse unit length is given by

I,
Q0 ?Jho(r)ZHrdr

The result of this integration is

Q =

Hom (Brg)® (34" (Bry) + 1) e2molu_y,
J, % (Brg)

2 - *
H0 o Ba* e 2an/w BJO (BIO)

-1
T e e Gy !

4a Y

~m(atrZ/on) /v
.\ 41rH0r0 e 1322 s JO(?\er) 1+e 3j
g 3 373 B® - Aj‘ y+l§/du

(28)
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Both (27) and (28) were derived assuming a constant resistivity. An
approximation which can be used to take into account the temperature
dependence of resistivity 1s given by Knoepfel.11 The resistivity can be

parameterized by

= po(1+bQ)
where b 13 the heat factor and Q the increase of heat content relative to

0°C. In the solid phase

Q = c AT,
In the case of lithium, one uses the slope of a p va T curve and the value
cv=2_ox10‘ Ju~3/°C to calculate b=2.Ux10~% m3/J. If Qy 1s the heat per unit
volume calculated in (28) then the "ecorrected" value is

ebQ o-1

Q = — (29)

Fig. 8 shows the total heat deposited during a single pulse of a 1 cm
radius 1ithium eylinder with I,-500 KA. The dashed curve 1s the result of
evaluating (28) and the solld curve includes the correction specifled in
(29). Fig. 9 shows the radial distribution of heating including the

corraction for changing reslstivity.

D. Some Conelusions

In designing a foecuging target or a lithium lens it 1s necessary to

optimize several parameters. Linearlty is improved by increasing the pulge

length but the longer the pulse the greater the demands on the cooling
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systen. For 1lithium, which melts at 180°C one must decide whether to try
to prevent melting or to operate with the lithium in the liquid state. The
volume expansion upon melting stresses the vessel so an effort should be
made to keep the lithium in one state or the other. For G/PO values around
0.5 the maximum linearity occurs 20-30° after the current peak (Figs. 2 and
4). To achieve the required gradient at that time during the pulse, the
peak current may have to be scaled up. Thus, increased linearity requires
increased power and heat load. Finally, the optimization for linearity was
calculated assuming a uniform distribution of particles impinging on the
lens. For a focusing target where the incident particles are concentrated

on the axis the optimum time could be different from the one given here.
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Fig. 8 Joule heat deposited during one pulse. See equations
(28) and (29).



10

I8

16

4

I2
"=
.

w 10
i
S5
O
2

— 8
<{
w
o

6

4

2

Fig. 9

HEAT PER UNIT VOLUME

(]
B PER PULSE VS RADIUS ATlC)
FOR I,= 500 kA
—_—a=0 ~—{ 80

| _ __ a= 1000 sec

l l ] I

0 2 4 .6 .8 .o r/r,

Heat per unit volume per pulse vs radius for a lithium
eylinder of radius 1.0 em. The AT scale was calculated
assuming T=0°C at the start of the pulse and c,=1.88x10%Jm™3/°C.



