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Abstract 

The phase dynamics 3f small amplitude synchrotron 

oscillations in the vicinity of the txnsition energy is discussed 

,with 'kinematic n~nlineari~ies Y Included. We introduce a 

syncbrotron amplitude function analogous to the betatron amplitude 

funct'on and solve analytically the time evolution of bunch 

shapes, where the kinematic nonlinearities result 111 unsymmetric 

bunch shapes. 3 addition, the above synchrotron oscillation ls 

singular at transition crossing because of the kinematic 

nonlinearity. From this simple fact, we identify an inherent 

source of bunch diffusion. A method for estimating its size is 

presented. ‘vihen this theory is applied to the case 3f the ?'NAL 

Mail1 Ring, the predictions are in good agreement with numerical 

simulations and are not inconsistent with experimental results. 



§ 1. Introduction 

The effect of nonlinear kinematic terms /1,2,3,4/ is studied 

t-or energies below and above transi.',isn energy. ?hese nonlinear 

kinematic terms are stronger the !,arrower the bunches. The 

momentum height of the bunch passes ;:hrough a maximum at 

transition and the kinematic terms therefore have a maximum at 

transitix. They can ditort the particle orbits in different 

ways, and they may lead to longitudinal emittance blowup. 
IS/ 

111 recent experiments in the FNAL Main Ring, bunch lengths 

were measured at two energies, 14 GeV and 19.7 GeV, below and 

above transition, at an average intensity of 2.6*10" protons per 

bunch ( total Main Ring intensity 2.8*1013 protons per cycle). 

Values for the longi.tudinal emittance at the two energies have 

been derived from these measurements. ?he results jiere 

0.22 eV-set at 14 GeV and 0.28 eV-set at 11.7 GeV, indicating an 

emittance increase Ln the region of transition. Inch lengths 

were also measured at transitCon (17.6 GeV), jrhere they become 

"WY narrow (about 2.5 nsec). Furthermore, in order to clarify 

the reasons which lead to this longitudinal emittance blowup at 

transition crossing, many extensive computer simulations have 

been performed independently by several people, including the 

present author. The simulation results, which strongly imply that 

the effects of the nonlinear kinematic term are large, are 

surprisingly consistent with the measurements. 

It is the purpose of this paper to calculate the effects of 



nonlinear klnemati.c ,wm 3 the ru~ge wound the transition 

energy and compare to results of computer simulations and real 

machine studies. 

This paper Is divided in four main parts: I!1 the first 

part (6 2.3) we jerive difference equations for acceleration in an 

explicit form and transform them into an differential form, which 

enables us to construct a Hamiltonian formulation for longitudinal 

motion. Here we shall restrict ourselves t3 small amplitude 

oscillation. 51 addition, only the lowest-order nonlinear 

kinematic term will be retained in this formulation. In the 

second part (5 4), introducing the notion of a synchrotron 

amplitude function, we construct the fl linear classical theory 'I 

of transition in a form analogous to betatron oscillation, where 

the nonlinear ::inematic term is neglected. In the third 

part : 5 5), "sing the perturbation theory, ~a calculate increments 

of the longi'"dinal ,emittance as nn effect af the nonlinear 

kinematic term ,311 '. hear motion. We identify this effect as a 

reason of the unsymmetric bunch shape just at transition that has 

been recognized in the computer simulations. In the fourth 

part ( P 61, from a general ooint of view with respect to 

time-reversability, It will be shown that only such nonlinear 

kinematic terms can accumulate to give net effects over transition 

crossing. Finaily, a theoretical for formula for the emittance 

blowup ratio will be presented. 

In 'he present discussions, effects of longitudinal 

space-charge fortes/6/ and timing error of the phase-jump at 



transition /7/ 17s !!ot rncluded, because t'la former 1,- negl'gible _j _ 

at least f or the present situat;on of the FNAL Hain King and exact 

information about the l~?t,ter has not been obtained. 

5 2. DiffererlCe and Differential Equations FO? Acceleration 

The theory of longitudinal phase motion, describing the 

energy and phase oscillatios that occur uhen a particle passes 

repeatively through one or more "aCcelerat.illg cavities" situated 

at localized pints around the accelerator ring, is well hnown. 

Since the oscillations normally are at a relatively low frequency, 

it is often legitimate as well as convenient to analyze them 

theoretical1 ,wIth differential equations derived by spreading the 

accel.erating field uniformly around the orbit. In reality, the 

energy changes experienced by a particle we better represented by 

difference equations nnd depend on the sine ;,F F,'le +leCtriCal 

phase wgle + at. vbich the particle traverses the cavity. The 

corresponding equations of motion are therefore both rlonlinear and 

discrete. 

We consider here the case of synchrotron osctllations during 

acceleration stage. TO obtain the actual transformation, we 

consider a short cavity system operating at a harmonic number h, 

an angular frequency WV)(t) and a peak voltage V(t). Xe assume 

that C&j(t) and 'l(t) are independently controlled during 

acceleration. The quantities denoted by F" and 4" ore, 



“espectfvely, t’le ?!?e.rgy alld tie electrical ?hase alg1.e ~xith .whicb 

3 particle enters the cavity 3t the time Qf transit. 

ilonll-ear trax3formatisn may 55 writt3 in the form 

E 
n+fl = E” + e V(n) sin +“, 

“+I + = I 
w.fh”~) 
4Jurt c-j 

9” + Wqrnt’). 
2K 

1 uJ(l?+) ’ 

where aV(n)sinc$” is the er~ergy gain at the !I-th transit 

revolution period is described in the form 

The!? the 

:2-:a1 

C2-lb) 

md the 

C [ I - ( )H~c~/E*~~)~]‘~ 

where C,is the !.ength af the closed orbit corresponding t3 the 

synchronous energy I E, c is the velocity of light, aoc’ is the 

proton test :i:>ergy ( 5 i the momentum levi.at iorl ??Orn the 

synchronous momentum, arId dp :s the momentum compaction factw. 

Since we assume the guiding nagletic field of H type, the betatron 

acceleration can be neglected here. ?he synchronous particle is 

defined by the equations 

ET = ES” + d(n), (2-31) 

‘urj cnb % t wy(“+‘l. 
(2-3b) 



where 

A(n) = eV(n) sin+:, 
(2-3~) 

la&-:, 
L+(~‘)E hdE;)-t- 

I A(n) sin - 
eV(n) 

_ SiKl A(+-) 
2n eV(,,-,) . (2-3d) -1 

Note that A(n) is determined by the change in the external guide 

field a(t). Now the momentum compaction factor dp/4/ may be 

written in the form 

dp 
= JO’ + dypIf+ d”‘( tn+y+ O~W”~)‘), (2-4) 

where O(( a”” 7 1 is the Landau symbol. Expanding the right-hand 

side of Eq.(Z-2) with respect to I”*‘, we have the expression 

2u 
co -- 

WE’“‘) CpCE,““) [ 
1 + ?%+l)a”“+ p(jp)z+ ?“‘(z!“-): ---I 

(2-5) 
/ 

CIJ 2?c 2ah 
= - = 

q(E:*o kl (Esrn”) wr+ rn+t-l ’ 

where 

q'"'(ntt) = d 
co 1 

- l/r?E:*) ld% 1/r;) , (2-&i) 

$I’ (n+l) = d 



:ie note t!lat all parilzle simulatFons f3r a real acceleration mode 

stated in the Iatroduction have been performed by f allowing the 

difference squations :2-la) and (2-lb). 'Yhe pair 0 and C@ is 

recognized not to be canonical because of the time dependence of 

the frequency. Ye 17-e interested in small-amplitude oscillations 

around the synchronous point ( +; ,E: ) as a guiding kzenter. 

Setting 

En = E--E:, 

7L” = w’ -c, 

(2-7~1) 

(2-7b) 

we may write the difference equations for A small anplltude 

oscillation as 

E 
Vl+, = c'" t ev<n'l ( sinc+Y- s;wg) 

L -. cn :2-&l) 

M+I 
x = 

i 

w’+ bw 1 
- 7~” +[lnh +~ii;L$+:,- siG's,]x 
QJ,cCm) 

where 

r"'(n+l) = 
?co)Cn+4 ) 

(J'Lq) E>,"" 7 

;ii;,(.,l) = 7f"(Ht1 ) 

[ p'&* 1 Ey J' * 

(2-9~1) 

!2-9b) 



To write down C?1e difference equations i!l '.'-e fxx~ of exact 

differential ones we 3ay use 3 S -F,mction: 

i = 
2lt e V(t) cos+Jt~ 

T,(t) 
x S,,q ‘2-10a) 

. 
;L-- Wqlt) Tt bnh +TrW$&] 

W++(t) -lXt I j3?t+ ~‘h’i](2-,0b) 
, 

where TS(t) is the period of the synchronous particle and one 

iteration of the mapping. %re t'= fi(t)t+t' ; fl(t)=2K /TS(t) 

and the g -f~mctiou sf period 2X is given by the Fourier 

expansion 

g,(t’) = & ( I + 2 F co5 nt’ bl=, )- (Z-11) 

After r?eglecting rapidly oscillating terms in Eq.(2-lOa), '~8 have 

i = 
evct ) cos+slt~ x 

-&It) 
, 

(2-12a) 

* (2-12b) 
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3. Hamiltonian ?srmalism 

Vnder ihe assumption that the damping term in Eq.(2-;Zb) is 

negligible in the short period of 'rsnsition crossing, ire can 

const?uct 3 Xaniltonian fomalism for small-anpl.itude 

oscillations. Neglecting the damping term, ;re find (X,E ! to 

be a canonical pair that yields the Hamiltonian 

H Cz ,e :t) = +rh +T,lt)iW] [ ; ;r”~,~, EL + 4 7”‘&] 

e V(t) m+,lt) 
XL. 

(3-l) 

z Tslt) 

We shall assume that the synchronous phase angle +S jumps 

discontinuously at t.=O in such a way that sin+S is constant and 

S%" ( CDS 4s ') = - sg" (t) 

We shall measure : from this instant. Now we introduce :x scale 

change of the independent variable t by 

-L 
I [- 

eVlt) CbS+s ct) 
P-et) = 1 dt 

0 T&t) (3-2) 

Note that the new independent variable 'Y has dimension of 

energy . i?ith the above origin for the time t, 7 is always 

positive at all t, namely, 

t + 0-CappFoachlng transition), then "f A o+, 

0+ --) t (1eavCng transition), then 0+ 3 +f. 
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Such a scale znange yields the new %,~miltsn',an 

H’cx, 6 ; r)= - 
[zrh t TsN&itJ] 

e V(t) coS+rit\ c ; 7':td + f p(r) E3 3 
(3-3) 

•t -$ z=* 

For later 2snvenience, let change the notation of the canonical 

variables to 

z= P, 

E 5 --r, 

Thus we obtain the Hamiltonian in the simple form 

Hwkp;n()= +p’ + ; 71.(^oxL- 4 it, wx3, (3-5) 

(3-4a) 

(3-4b) 

where 

~&tTJ&,,l [ci'" ~/rfw 

', ~3-6~) 

. 

il,Pcl- - 
Ml+ -%,) Fct) = _ [ski Tsa$ [dr”+2%] 

I 
eVtt> cos+Jt) C~;~t~Ellt,3aevct~~os~*ct) 

(3-6b) 

The form of Eq.(3-5) reminds us of the betatron oscillations in a 



transport li!!CZ *ritbl 3 :lonlLnear XI"lDOlie2t. Tn 3Ji310gy 53 

Gerturbed betatron oscill~ti~r~s, we separate the r’ght-hand side 

>f Eq.(3-5) into unperturbed and perturbing terns 

pet, p ; 7) = + PZ t + ;L,wr~ 

p CY, p : 7) = -J x,trlX3. 

: 3-7.3.) 

(3-7b) 

In the next section, we shall discuss the phase dynamics in 

the vicinity of transition by studying the above linear 

Hamiltonian KfO’. 
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4 4. Linear Motion 

We consider the 1.i:lear z;lstem described by 

K”‘cz. p ; r-l = 4 [ p2 + AJwc2]. (4-l) 

We nake the assumption Chat the peak 3F voltage md the 

synchronous phase ,mgle we cons tan t near transitian. 4t the 

transition energy, the qumt;ty 

d(oi - 1/r:(t), 

vanishes. Then, in the vicinity of this energy this quantity can 

be approximated by the first term in a Tayler series expansion of 

Eq.(3-6a) for deviations of 2- from r- . We can therefore write 

i\.(T) h - 
4nh Cr,ct)- s-,-l 

B~ro,FIlo)eVf~)co~~,l~~~~ - 

Further, the quantity iT,(t)- a, can be wrttten in terms of 

YJ(t)- ry = i-St 

evs:n = 4s t 
W,C’TS 

=- 
Si4,hJ) 

Luoc’ tos+,lo) 
“(. 

(4-2) 

(4-3) 

Substitutton or Eq.(4-3) into Zq.(4-2) yields 
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7ic(T) -2 4rrh si'~+s 

$ E: a;;V rc&& 
7 : 4-4) 

3ere all quantities are evaluated at transition. For the sake of 

later simplfcity we set 

R= = 
+-rrh sin+, 

pj Ei f;eV f0&& ’ 

Xe point out that the system represented by Eq.(4-1) has an 

exact dynamical invariat, which is ,lesioated 3s the 

"Cowant-Snyder invariant" /5,9/ 

1 CY, P : r) = -J- 
2 S(T) 

{ y’+ [+&Ix- sk)13]zj, (4-5) 

where 5 (7) satisfies t‘?Le auxiliary differential equat.'.on 

+s 2 - a S’ + il~(r~s=: 1. (4-b) 

!Jhen il,CcC 1 .s constant, the invariant I iS identical Lo the 

action variable of the system if we take the initial conditlln 

s(tOdl = i/G) f S(+co) = 0. (4-7) 

In the followtng, Sty) 'will be called a synchrotron amplitude 

function. For a time-varying fun&in &.(r), from Eq.(4-5) we 



how that an infinite sequence of phase points that have a certain 

const&?t value of T at an arbitrary ike behaves as a deformable 

;novi.ng Slil>SCZ in the phase space Cx,p;l > after that time. The 

form of such 3 ellipse, :?alled 311 “invariant curve” in the 

following , is ‘uniquely determined by the auxiliary differential 

equation (4-6) alone. Ue consider the invariant curve described 

in terms of 

T (7, P ; rc ) = IO (4-E) 

with constant I,. The quantity I is equal to the value of the 

action variable of the infinite set of phase points that comprise 

the invariant curve, as mentioned above. 

We may characterize the elltpse by two parameters $ , S 

which are lulctions of S(Y 1 and SC Y 1 

!4-9a) 

(4-9b) 

They are the maximun extent of the ellipse in x and 2, 

respectively. 

If we 3ssume iiat a11 parameters change adiabatically after 

7 q 71, :we can choose the approximated initial conditions 



S(*r,) = l/J1 ) s(T)= 0. (4-10) 

At PI ='Y, , the ellipse begins to move, followirlg the time 

evolution of s(T) which is determined by Eq.(4-6). If we IalOW 

the values 3: SC7 1, S(T) at Y 10, which is the transitton 

time, we can evaluate exactly the maximum upper (3~ lower height 

from the synchronous energy $,(O) and the half $nase spread 6(O). 

For the present &('Y 1, !we lknow the general solution of 

Eq.(4-6) earl be written in the terms of SeSSel 

functions (see Appendix A), 



where a and b are wblirary coeff'cients t:hat must be determined 

by the initial cmdi?ims (4-lo), and 

After mathematical manipulation lsee Append2 B), we have the 

coefficients 

a = fz,J&J + 3 2e,NGh,) rqpLJh(~~~+ +i] 

- *~6N;(I,)L~l~~~~Nblll~+ $3, 
' 3 

b 
3 

= $ a, h+J t - 
231 pt, 

qyJ~,(?J+ $I2 

P, = % fti 7, 

(4-12aa) 

(4-12b) 

(4-13) 

The coefficients a and b have been uniquely detemined 'by the 

initial conditions and we now 'mow the exact time evolution of the 

invariant CurYe. In particular, we are interested :n the 

invariant curve Jast at kransiti.on* 't , L ?epresents a bunch 

SllVelOpe. From Eq.(4-11) we obtain the values of s('K) and 

, 

'j(T) at ? -0 (see A?peudLx C: 
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S(o) = ; ($)Qf--!-) , 

S(O) = yy-; + (ah- 2)&J. 

l2-14a) 

(4114b) 

Introduction of Eqs.(4-14a),:4-14b) into Fqs.(4-4a),(4-4b: Zcads 

to analytical ~XpreS3iOIlS ?or the maximum upper or lower height 

from the synchronous energy alid the half spread airound the 

synchrollous phase at trarlsii:on, 553.t Is, 

$co,= 1 Pr,~~zy& 
(4-153) 

S(o) = &(r,J [I +2&q Sfr,~/SlO)~ J ~~~~ 

h'e consider the case z-i" -1 the bnitial cond<tions at 7, q +m 

where ‘t:le linear 7 -dependence of A.( “I ) still nold to good 

approximation. 4t such a region, the Bessel and Neumann functions 

become sinusoidal with equal mplitude and quadrature phase 

relationship, :iamely, 

also 

JY, (LJ 0) = 2/T& (0s f2,- 5K/l’), J- 

NP3(H*)= JLI*z, 51’*1(3,- mXz), 

J_q3&,)= JJxz cos(~t+x/~~) 
(4-16) 
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Substitution of Fq.(4-16) >L::to Eqs.iJL12a) and !4-12b) yields 

a = 5 = 3/h. (4-17) 

From Eq. (Q-171, ‘de c~.!I obtain a universal relationsh<p between $ 

and g 

.$CO)S(O) = $fl,,S(r,) [j •t -f$J" 

=& $l?,Mf%). 
(4-18) 

Equation (4-18) is equivalent to the result obtained by 

Hereward Ill/. 

Predict<ons of the li:~ear theory we not discussed in detail 

here. Nevertheless they are in very zood agreement ;~ith numerical 

simulations. T!xse simulations have been performed Following the 

exact :napping equation3 !2-la) and !2-lb) where :lonlFnear 

kinematic terms we not included in order to verify the validity 

of the linear theory. 70 additiou ,. the 1 inear theory discussed 

here which provides exact time evolution of bunch shapes can 

r-e-establish the well-‘mown story /8/ associated with transition 

crossing. 

4 5. Nonlinear Motion 



The ::nnl iner :<inematic term ‘&S L-een distinguished as a 

?erturbing tern in Eq.!3-7b). It gives unignorable effects to the 

1iea.r oscill~?tion o:?ly during a very short period when a partfcle 

ct-asses ‘he i?S.llSitiOn energy. In ,?rder ts aSSeSS its 

quantitative i zffects. it i s convenient tc2 use the action-angle 

formalism. 

Under the 1 inear canonical t-ansformation 

Q = P-lx, 

P = -4x* ?P, 
(5-l) 

20 

where 9 (“c ) = J Sk) satisfies the auxiliary equation 

‘p’ t A,(7) p = p-3, (5-2) 

t!~e !kwil.tonian C3-5) reduces to 

K(Q,P; PC) = P-‘[; P’+ ;Q2 - $,ry)~~] - :5-3) 

Tf 3 change of independent variable 

&I = rJ: P-?Y) d Y + & , 

Is made, the Hamiltonian (5-3) becomes 

K’co,p; e> = 4 c P=+ Q’) - +dQ: 

(5-4) 

(S-5) 
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Furthermore, i:ltroduc'ion of the action-angle variables I +,J, 

(5-6) 
P = JZJ COSqJ, 

yields the Hamiltonian 

G(y,zr;e) 5 J - g (5-7) 

From Eq.(5-71, we derive the canonical equations 

+‘+ =l % - ?s21(7) (2Y) SiH3qJ, (5-8a) 

aG 
f--z = (5-8b) 

If the perturbing Lerr, Ln E‘q.(5-8a) LS much less i;i~ai~ '.he 

'mperturbed term, that is, mall compared wfth unit, we obtain to 

first order 

et71 

-s(e(y)) '1: ‘J(efm)l -t [2ww)j9 ?5f7)~~(7~s;~e('T)fo~ef7) ^flg, 

ilsing the relation (j-4), ve have 3. more convenient <ntegra1 

expression 
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Y 

JC~) e T(T,) + [z,(~~#\ &r’, &~Y)sI’H%z~ox~(T) d? ‘~‘0) 

where the lower boundary of the integration will be determined in 

the following considerations. 

iie note that the period of phase oscillation has the Same 

notation as the synchrotron amplitude function s(Y) because the 

oscillation frequency Ls described by 

v= ;-(5) = -& . (S-11) 

From Eq.(5-8b), the typical modulation period of the perturbing 

term is S(co/2. GeIIerally, the value of s("1,)/2 is much 

smaller than 7, . This fact means that the effects of the 

perturbing twm are averaged out , at least, .at the early stage of 

non-adiabatic notion CO<< 'Y $TI 1. So it is reasonable for IUS to 

take S(O)/2 33 the typical :ower boundary 7, .xhell the 

perturbation begins to retain net er^fects. Fortunately, '.:I many 

real situations, '7, is sufficiently sinall so as to satisfy the 

condition 

a(G) = ; f;$ 4-c 1 . (5-12) 

The relation (5-12) enables us t3 describe ?(T ) or- s:'t) by 
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elementary Cxctions. In srder to do this. I t is !?ecessary '2 

halow the %ssel function for small .:3lue of z. In Ref.13 we 

observe that 

3!,k’, = J- gy, 
r I4i3 1 (5-13a) 

Nl/>(” > = s& [ rs ($f- $) &‘“I. %l?b) 

Considering Eqs.(S-13a) and (5-13b), we obtain to first order with 

respect to “[ 

s(~J= YYTI= (+)‘(--%7 f r) (5-14) 

where 

(5-15a) 

!5-15b) 

Further substitution of the above result (S-14) into (5-4) yields 
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tf(r) = ;,', l/'str') dy' -t 8, 

(5-16) 

=&$l [Jq ($c-artr) - Jog I-;)&+r)] .+ 6, . 
311 the other hand, I,( 1) can be expanded with respect to r, -Ir, 

and CO first order 

;1 
I 
(K)~ _ mh Ldn ef:/2] 

pP ( b4aSeVfor+, ti,' 
[ 

, + 4l-+s *( 

"OC' l-7 1 f (3-17) 

xhere d,kd’@? is the nonlinear lattice parameter. Using 

Eqs.(S-14) and (5-17) , we write the perturbing integration in 

Eq.(5-10) in terms of 

AS = [~Jhi&t,k$‘+o) j (I- +&It ~~~,9’2)r~~Bh,~.lBh)dr 
ra 

^[2~(&&.,&.,i [,+(;d; _ ~~~]r:*‘b(~~ror(,(7)dr. 
72 (5-18) 

Yere we set 

3,= 
4-b4s 3B-- -- 

t..OC=VT a- I 

6, (K) = 3 190$ (+& f 83 ) * 7%’ 

(5-19) 

(S-20) 

where 
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lJsing the identii:r 

with together (5-191, <5-20), we have 

b4$‘9O&~~,h~J L - (OS3kL J”dj~‘z~i~~~jdr(5-2,) 

We are interested in the value of A J at r =O. This value Is 

evaluated in the following way. 

The integration to be performed is 

1 = ~d’+jtr~\ (odg,Joa(;+j,)+i5.j- i.ni[8-Ja[~~L~~~5-22’ 
TL L 

change of the i:lteigrstron variable t? 

-0 = IL Jo 2 (f2 + a,) t -E;,. 

leads to 

3;. w2 w 

c 

F’. 
I=;% dwc+ (I- %‘j~~~*+,~.~-~e 4% ) x (5-23) 

where 

C(OSW - tor3w ), 



26 

w’ = ah-j r+ + 33) t B, = 0.3 , (5-24a) 

w2 = $2 101 a, + s.: jJOJ [~,/[+~J+s, . c5-24b) 

The iztegration of Eq.(S-23) Ls ~ivial. ile obtain 

- idS/6r 
T:e < (,-~.~J,)~ -q,“q+w + sh)~“2 

I/g;+ 1 1 w, 

’ p 
~~s:+~ 

(+3lv + 35:+P)/wyf 

a,a,p”ldq& , 1 <w/f, +,, ‘t c Aw) 1; 
I 

’ 
4 /a,= f 9 (~~w’y+s3w t3rA3w wy 5-25) Jb . 

Some of the intermediate steps in the calculation are explained i,n 

Appendix D. The r^;nal resu;ks are 

T- aLa 3(1-a.%& J 
,ta,' ~.c-SA&jIm@- 8L(&?,+J)JML 

t [ (OS&J-k gzs:*@ - rc/q2 t 1) 3 wj 

_ u,cl-a&a3~ 
I + 9 3&L i [- 6313 t 3~,ros3fJJ -3gz(l/++I) J sr’*38~ 

-t [CDS 30 -t 3&S& - Cl/z&t 1 ) -J ros3eej- 
+ da,’ 

4-32’ 4 
[- 2s:~8 + f,(m@ - a+ (I/ZJ,+I Y J s,l~oc. 

i [ zcor@ -t g i 5:-u - 2 Cl/+*+ I )’ -J rorfqo ) 
- $03: a: 

4-( { [- rs:*>t?t 3grmG9- 3 yJr/q,+If -j s,‘,jf& (5-26) 

i [ rrorsu t 3grcorsC) -~a/qa+c,=J ~0s 3eej 

where 



( 5-27) 

The value of I is dependent of the 1niti.a.l phase & . Tf ‘he 

maximum ad ainimum values of -: are denoted by Imax( > 0) al,d 

IminC<O), 7e can write the positive snd ::egative changes of the 

action variable in terms of 

ATE = 4 
&lo) 2%) 1 “al Min J 

C 5-28) 

where the suffix symbols of the left-hand side do not always 

correspond to those of the right-hand side because of the negative 

sign 3f &CO). We define the emittance increase parameter, which 

is independent of the initial emittmce (the initial value of the 

action variable) of a particle, by 

kl = ; h,bl Ao, I-. 
“(I’* - (5-29) 

It is assumed that there are no net effects of the perturbing term 

up to “I = 7, and we can take the value of J: 7, 1 as J! Yz 1. Then 

31%) [I + Kjzs(r, J 5 30) $ Jk)C I t k+/-+. (5-30) 

Thus incohereat changes of the a&Ion variable gLve an unsymetric 
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ellipse 13 the ph.33~ ::~psace. Tn particuIar, we can obtain 

expressions for the maximum upper ,ud lower height from the 

synchronous energy and the maximum and ninimum excursion from the 

synchronous phase as 

P(o) p$ - s (VI ) J- fg [It b(r&-Jt (5-3lb) 

where the value of S(O)/ SC "c, ) has already been derived In the 

previous section. 

§ 6. Applications 

The theoretical considerations are applied to an example that 

corresponds h the nominal acceleration mode in the FNAL Main 

Ring 112/. For this example, several parameters of acceleration 

are listed in Table 1. 

Table 1 Acceleration Parameters of the FNAL !+iain Ring 

%rmonics h=1113 

RF Voltage eV=-2. !MV) 

Synchronous phase +S=235.870 

Trawit<on gamma ‘6,=18.9 
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Transition energy E q i7.639(GeV) 

?Ionlinear lattice parameter d”)/d%o.14 CRef.11) 

We choose Y, as 

'Y; = (OS 'b(o) CE,la) - E,(r,)] 

= SS?.94rg M,V, (6-1) 

where E,(?,) is enough far from transition. Using the parameters 

in the table and the value f'w Y, , we get 

4Th I ~I’+@, I % 
%= 

E;llo) a: bs-+ I ev I 
- 4.6S9 I f,i4 (6-Z) 

then 
z, = $ $ + = 3.61~0 

SPY,)= ,/r+ = 103.3476 Me7 (6-3) 

Cram a table of Bessel r-unctions /14/, we read 

Jfib(zl)=-0.2736, N'/j(z1)=0.3172, ~+$zl)x.0.309. (6-4) 

Substitution of these values for z, ,J,~(z,),Nl~(z~), and J (2,) -x 
into Eqs.(4-1Za) and (4-12b) gives 

a q 0.4056 + 0.3296 + 0.1877 = 0.9229, 

(6-5) 

b = 0.5451 + 0.443 = 0.9881. 
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From Eqs.(6-2) and ::j-;) we get :;he value of the synnchrotron 

amplitude function at transitton 

S(o) = q 277.503 (MeV). (5-6) 

P(1/3) = 2.6801, f(2/3) = 1.3550, I-'(4131 = 0.39338 /15( 

The value of the coefficient x,(O) is 

(&WI= 
zxh [ cc”‘/d”‘+ 3(4 2d2 ] 

aPp~+io) ~w&eV(0~ms~+~fo) 

= I.2343$-' f$;6-7) 

The S(O) above leads to the value of the typical boundary 

1; = S(O)/2 = 138.7515 (MeV). (6-8) 

The parameters g,, 8, in the integration of Eq.(5-18) are 

‘$, = -0.8279/a = -0.8971 
, 

(5-9) 

3, = 3.6118 * IO-~ -$$)(f)‘/" z -5.66 * '6" 

then 

0 = a2 oq !I ’ I c* + ’ ) ] =-0.7312. (6-10) 

Substituting these values for j', , jl, 33, @ into (j-26), we 

obtain the integral I in the form 

I = (-39.1614)*sin(&) + (-72.9502)%0s(&.) 

+~71.984O)'sin(30),) + (-5.2259)*cos(3~,,~ (6-11) 



Thus hax z 96, Imin q -174. 
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(5-12) 

From Eq.(6-121, we have 

M+ ~1/2*0.9577"10-7*4622.7619*179 r :.95"10-,' 

(6-13) 

#- =-1/2'0.9577*1~?'*4722.7619*96 = -2.1241*10-: 

Finaly, substituting these value3 for S(O), SrlJ into 

Eq.(5-3la), we get 

e(O)4 $( ‘6 )+I.6386 l [ 1. + 3.7871*10-3$( 'r, ) t 

(6-14) 

$‘O)w,z 4 (“r, )*I.6386 l [ 1. - 2.0894"10-3~ (?, ) I'IL 

For several initial emittances which still allow linear 

approximations, results obtained from Eq.(6-14) are plotted in 

Fig.2. In the same figure, numerical simulation results are also 

given. We see quite good agreement. 

4 7. Remittance Blowup at Transition 

jihen a particle crosses the transition energy, the electric 

phase of RF is abruptly changed externally to X - 4s . Such a 

manipulation yields time-reversal of the phase motion for the 

dynamical system described by 

(7-l) 
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E(O)max 

& (7, ) 2.0 
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f(O)min I.1 

E(Tt) I.0 

5o < c-r,) [MeV] 

4 (O )max corresponds to the maximum momentum 

deviation fi just at transition 

E(O)min corresponds to the minimum momentum 

deviation h 

FIGURE 2. 
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because of the c+mge of sign of the cosine fmction i!\ 

will 

t 
rlt)= - 

! i 
evct1 fo4Jt) 7 4t 

0 -G(t) J ’ 

lead ta tine-reversing as Seen in Fig. 

Fig. 3 

t 

cc(t) 

(7-2) 

“2 ‘t 
Tranr;t;on 

while the sign of &,(Y), 

&,cT) - - 
4x I, c t-sit) - G] 

(32 ItI Es& ‘I eV(tj m~&t\ 5: ’ 
(7-3) 

still -emins unchanged due to sign changes of the denominator and 

llumerator. This holds even if all higher order terms with respect 

to phase are included. Consequently, emittance blowup during 

transition crossing can’t in principle be explained by synchrotron 

oscillation theory, which restricts itself to ordinary pendulum 

oscillations with adiabatically changing coefficients. 



34 

On the other iland, th? coef?icient of the nonI%near :::nematic 

term, 

27th I: d" + 
l.,(r) = - 

3p: w/L6Jtq 

Lgslt~E,It))LeVk) fo545lt) ’ 
(7-4) 

changes its sign lfter the phase-jump. The dynamical system 

including such a term is therefore no longer timereversible. In 

other words, synchrotron oscillations accompanied with kinematic 

nonlinearity are singular at transition. Just after passing 

transition, a bunch suddenly meets an unmatched bucket. This 

leads to actual emittsnce blowup. The mapitude of the blowup is 

proportional to the amount of emittance distortion due to the 

nonlinear kinematic term. Thus we may write the final emittance 

blowup ratio during transitisn crossing as 

R= I+ 2- #,- JG, (7-5) 

where J( 7,) is the emittance OP the value of the action vartable 

far below transition. The final blowup ratio R is plotted as a 

function of the initial emittance for the normal acceleration mode 

(h=1113) in FEg.4. Results of measurements are also gfven in the 

fLgre. The small overestimate seen nay imply that the exact 

Ilonlinear 'attice parameter is somewhat smaller than the value 

used in the present calculations. 
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R-l = 2K+3’5i7$ 
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FIGURE 4. EMITTANCE BLOW-UPS RATIO 
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6 8. I~oncl’usion 

A lizear classical theory of transiti.>n, srhic:? is equivalent 

t3 bhe .s3ual me ,?f :natrix fwn,/:l,l&' has been jeveloped by 

introducixg the synchrotron amplitude ?,mction. As 3 ?.atura1 

ext-:is ior! >f this linear theory, a ju...-.- ~-l-=-31 nethsd &ich relies on 

pert,x?bat;x techniqes to assess effects ;>f '.he 1.owest ,arder 

nonlinear 'Xoemat i-2 :erm is presented. When these theories are 

,applied t3 the case of the FNAL Main Ring, tney agree very iid1 

.Ji L '2 *\%uits of computer s<mulations and real measurements. This 

emphasizes the importance of the higher-order chromaticity 

control, which can be done by adjusting the n-th and Zn-th Fourier 

components of the sextuple nagnetic fields (no-horCzonta1 

betatron :une) /'A/. If &("r) is reduced by such higher wder 

chromat:city control, the e!nittance blowup discussed here will be 

inproved. 

'3e present analytical approach can be also Iused t3 derive 

?xoliciC zxpressi3ns fw emittance i:>crenents resulting from other 

llorll inean fxces ,w?nich become significant, in particular, Ian the 

vicinity of transition. 
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Appendix A General S31:lLlon 3f Auxiliary Equatisn 

When X,(T) -ind :c,!Y) we iinearly independent ,?>lut.tons of 

the time dependent Linear equation 

. . 
?r + itory)-* = 0, (A-1) 

we can write a genera1 3c31UttO11 zof its nodified nonlinear 

auxiliary equation (or envelope equation) 

p’ t Ylo(^o P = 
1 

PJ? (A-2) 

where p(T) is the square root function of S('?), in terms of x,(x ) 

and x,(‘C 1 as 

P(T) = ( cIx,,Lt CZYL2Z clx,zxy: (A-3) 

Squaring both sides of (A-3) and Differentiating with respect to 

the independent ‘?ariab:e 7 , we have 

2i=t 2?F 
'2 . . 

= 2Cl x, f ZCIX, x, t 2cr;Ir + ZCrY, Y, 

(A-4) 

From (A-1) and (A-21, Eq.(A-4) reduces to an equation including 

first time derivatives alone. F'urther, using (.4-3), :ge obtain 

LHS = (2GXl+,+ a7ri+ Cgi,Xt+ c,r,j;j+ 2 

2c c,;I,=t GtLt C,Z,X~ Cl z,'t c&t ClZX~ 

- 2A ("cl c GZoL t CL%= t C3ZYa I, 

pi-$ = 2CoilZt 2ca;.a+ 2C3<,& - LX(Y)cc,*02t czx2Lt SX,Yz) 

Equating both sides and eliminating terms, we find 

(A-5) 
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rrom :A-51, ‘he wbitrwy :Instant 7, ,Z2 , and ‘z3 Y-e !!ot 

Lndependent. Namely, c3 is detern;ned frxo C , and Cz 3s 

c3 = t d 4c,cr- 4 7 ’ !A-6) 

. . 
adhere 'W is the :Gronskian Z:, XL - ‘x,X2 , which is 3 constant. 

?n-lsequent1y, we can write the general solution of (4-5) as 

5(K) = c,7,1 (+d + GXzrl^r) - 2 r, Pt)r,fr) . ‘A-7) 

For the present case 

‘h(K) = %‘^c ) (~-8) 

the independent soLut.ions of the linear equation can be written in 

terms of Bessel and Neumann functions of order l/3, 

X,fT) = ‘h 7 VI,, c+ ez%), 

x4(K) = + &(ffi @). 

Thus the general solution becomes 

SIT) = 7 I: c4 u; ($4 )+ bJL:(+e4q -2&h x 

tq, (feds) Jj$ (+a$ 1, 

. . 
w = x,(O) x,(O) - x,(O) x,(O) = 3/x. 

i A-9a! 

!A-9b) 

:A-101 

This is ill agreement with the result obtained by Lewis /la/. 
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Appwd::< ‘5 P.qrticul2.r Solution of the Auxil~iary Zquat,ion (4-6) 

Since the initial c,onditi~ms are 

srr,‘) = I/ Pry 
I 

i(r,j= 0, 

:B-la) 

(B-lb) 

we have inmediately two algebraic equations for a and b 

qb=t bJvL - lCsb- 

SI,I,N~~’ + bJJv’ - Cqb- of&+ 3,d)= -*&,, (B-2b) 

where 0 Ls l/3, the prime denotes derivatives with respect to z, 

and all aesse1 functions are to be given their values at 

zl=z( Y, :. From (3-2~~1, we hsve 

(ab- +p = QkJ? I,“::‘- 6/-rr% . (B-3) 
Y 

Substitution of (a-3) Into (EL2b) yields 

NddTo - hbSJ’) ‘T,(J,‘N,- JuN;) 
a+ 

2 

ZIJG 
---(a-41 

2Nv T’2,Tw h T?. 

using t?ie formula 

J,&’ - X’bJ” = 47cs I (a-5) 

we have 
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(E-6) 

If we subst::ute 13-6) W.to (S-31, square both sides, :and compare 

corresponding tetm.s, rwe obtain 

L 

b z +J,’ + -J- [;r 
a1-1,: 

J~~~+J.N;)tT&“t+ . 1 (B-7) 

Further, from a recursiou equation for Bessel functions 

L’ = T,-, - vi-’ 3”) 

and the relation (B-51, we find 

2 
I"'& -t T,N,: = Y"'r& + TV/Q + - c!l 

= 2(T"4 - $") hJ,+ ++& 
I * 

Introductisn of (B-9) into (a-7) leads to 

b= +v,’ T 3 
2 52, ?,’ (Q,-, N9’ s 

(B-8) 

(B-9) 

(a-10) 

Thus we also find 

G(L~, J,, hbt h) 

-KS I NJ= 
(B-11) 

Appendix C 3va1uation of S(O) and i(O) 

we set 
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s(o) = -PC- ($fz. [a hl;< h(7)) t b $Mll) - z(ab~~)%~~,!l,~,~~~z,~,~~~- 1) 2.90 
vhere z(y) is Using the formula 

tq7)= A-..- [ (05 3 * Tp) - J+(~) 3, 
r:ti,T/3 

(C-2) 

S(O) becomes 

If we retain only the lowest order term of the series expansion of 

the Bessel i’mctiom, we have 

Jy, f-e1 1 = (&$], 

J-I/ (3hl) = (g3-$) . 

(C-l(a) 

(C-4b) 

Substituting ;C-lla) and (C-4b) into (C-3) and taking its limit at 

7 =O, we obtain 

5fbo) = $ (g(fy&j , 

. 
S (0) can also be evaluated in a similar way. .if? set 

(C-5) 

-t 27 f. (C-6) 
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where dots denote derivatives with respect to "I , PH.QES .:enote 

derivatives zrith respect ',a '2, and all Ressel functions are 

functions of z(r 1. rJsing formulas :3-101, (C-Z), 2nd the 

recursion relation (B-9), wa have 

Ny ^I,: = 51 fT, - 2& )l q, t zJq,- + -t g T-l/J ), i7-7s) 

:C-7b) 

cc-7c) 

Retaining only the lowest-order term of the series expansion for 

.Jyj(z(Y)) and J-z,,(z(Y)), we have 

‘3121 ) = l--y /&, L:-8a) 

From 'Y z' = k'$ , the limiting values of the component terms at 

Y -0 In (C-6) become 
-r z /giT%-I 

& ri J&74 = -u_ d-:)‘-’ Fld31rt,,ll 7-0 = 0, 



Substit~~tion ot C-7) ixto K-6) yields 

Go 1 = ($,'{ ~$4 (3 J-l- +&(-;I, J.+t --$T~,+) 

44 

t I- - - 2(& 
P(+/1)W) 

Thus, we have 

SCo)= y [-& (ah- y&y]. (C-11) 

Here we use the relation 

rfqj) HI/j)= +. 

Appendix D Calculation of Perturbing Integration 

One of the four parts in the perturbation integration, 

- i%h* 
1,--e ( ‘-91w3 1 ew’y+ lOCU .d,,,I; ) , (D-l) 

‘l&at ’ 

is calculated as follows: 

L: ;1,rl-%943) ph2 [ w2/q1 4Jl 

’ -+ $a2 e ( fO%W, + gz 51iwwI)- eLw,~$,l:rW,~ 

= ~‘r~~o~~I,OIWI+~~(I~uUl*)-e~~~‘~~t’)(r.lw,+~.r.‘,w,)~ i-t gzL 
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where 

’ [ (osb’t$z G.&I -(-$,+I) ]mQ, j t 

@ = a= 40% ,h 0 

T’ne other three parts can be calculated ~II a similar way. 

(D-2) 
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Abstract 

The phase dynamics of small amplitude synchrotron 

oscillattons in the vicinity of the transit:on energy is discussed 

with kinematic nonlinearities included. We introduce a 

synchrotron amplitude function analogous to the betatron amplitude 

fmctton and solve analytically the time evolution of bunch 

shapes, where the kinematic nonlinearities result in unsymmetric 

bunch shapes. In addition, the above synchrotron oscillation is 

singular at transition crossing because of the kinematic 

nonlinearity. From this simple fact, we identify an inherent 

source of bunch diffusion. A method for estimating its size is 

presented. When this theory is applied to the case of the FNAL 

Main Ring, the predictions are In good agreement with numerical 

simulations and are not inconsistent with experimental results. 
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