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ntroduction

In this paper, we derive & general formula for the luminos-
ity from two colliding beams. The two Deams are assumed Lo
cross at some small angle with unequal cross sections. Also,
ooth beams are taken t£o be not necessarily round. Saussian
distribution is assumed 1in any direction. The following cases:
(a) bunched beam vs. unbunchea beam, and (b) two unbunched beams,
are given special consideraticn.

An applicaticn is made to the case where the cross section
of the beams i1ncreases guadratically with the distance. The
effect of the dispersion is also taken into account for cne
special case. The behavior of the luminosity is finally discussed,
The main parameters in the discussion are: the interaction length,
the crogssing angle and the ellipticity of the interaction eross

sectlion.

General Analysis

. o . . . .1
The basic feormula for the luminosity per crossing is

L = N N_fF (1)

where F 1s the overlapping integral

i

—V_lg, (F,¥,,0)e (F,7_,t).  (2)

— R e =
F —J dtdxdydz dv dv_|[v,

-

dt is the element of time, dxdydz 1s the element of volume, 7 and
v are the position and veloclity vectors of a particle. The signs
+ and - are used to distinguish between the two beams. The dis-

tribution functions are normalized to unity, i.e.

le, (7,%,,t)dPav, = 1.
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We ngve three cases:

(a) Both beams are unbunched. The tctal number of particies
in each beam is Nt. The frecuency 2 enccurter f is the lowest
revoluticn freguency.

(b} Cne beam is unbunched (+) and one btunched (-). N+ ig
the total number of particles in the unbunched beam, ¥ <the
number <f rartlicles in each bunch of the bunched beam. £ is the

frequency of encounters hbetween the unbunched beam and the bunches
of the other beam.
(e¢) Both beams are bunched. The number of particles in each

bunch Zz I,. f is the frequency cf encounters between bunches.

Each beam (%) is moving in the direction s_ {(see Fig. 1).

The angle between the two directions is a<<l. All the particles

are assumed to have the speed of light c. The transverse coor-
dinates are x, and z . We chose x = X, = X to be the direction
perpendicular to the nlane of crossing. It 1s also assumed that

around the crossing point there is a space of total length & free
of any magnet.

Let us take gaussian distributions of the particles in the

transverse planes, l.e. in x,, 2, X, ané %_.. We have
o BysB, . 0(8,7¢) B (s zet)
S+ T 22 T2 L VELFC ’
To0 0, ,C
x Z -
- - .2 2 +.2 y T
1 X§+(Bx¢ e 2,4 (Byy o) !
exp - - + ! (3)
2 2 2
Tt Oz+ —

where the o _'s are the standard deviations cf the gaussian distri-

cutions. They are functions of s_.
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The relation between x,, z s, and the main reference frame

coordinates x, z and y are

X, = X_ = X
o Lo

S, = Y cos= £ 7 sins
* v 2 2

z, = 7 cosg F Y sin
+ 2t 2

In the folleowing, since we are assuming the crossing angle a

is very small, we shall approximate COS% ~1 and sin% ~%.
H, is the lcengitudinal distribution functlion. We have two
cases:

(a) Unbunched beam, for which we take a unifcrm distribution.

H, is a constant equal to the inverse of the main orbit circum-

ference 2ﬂR+.

{b) Bunched beam. We take a gaussian distribution

1 (si;ct)2
SXP |t TTr
02¢

H,(s,%ct) 7
(2ﬂ)2 Tos

where Tps is, cbviously, taken to be a constant.

At this peint, the following approximation, valid in the limit

of small c¢rossing angle, is made

lv,-v_ | = 2c,

+

- -
ana v . We obtain

. . >
This approximation allowed the integration cver v,

i H+(s+—ct)H_(s_+ct)

¢
= , dtdxdydez
2w2 - Tx+79%-%z4%z -
r f X2 XE 22 Z2 =
: + — - - :
eXp<}“% - e e a

: J X
i Lox+ X- z+ Z= )
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The integraticn over x is also easily done

1
2
2¢ ' (O§+ + Gi-)
B = 7 _ T
: T I T o H (s -ct)H_(s_t+ct)dtdydz
5 z + 7 -
{2m)*“ -
B T
ex : _.:]; I _..i-...._ + ____- :
. px‘ 2 igE 62 j ;
o LTz+ Z— 4

When we are perferming the integraticn over the time t, we

zgain have fo consider the three cases.

(a) Two unbunched beams. The integration is rather trivial.
We obtain o 5
1 z z
-5 _l + +

(02 + 62 ) 2l o2 02 )
F o= 2 X+ X- 7+ Z - y
= 5 ' = 5 e dydz (4)

5 j z+ zZ-
(2m) RO .

where RO i3 smallest between R+ and R .

(b) COne bunched beam and one unbunched beam. Alsoc in this
case, the integration is obvicus. In the 1imit the bunch length
202_15 very small compared to the circumference 2wR+, we have the

same resulft shown by (4) with RO = R

b
(c) Two bunched beams. The integration can be done also in
this case, though it is more complicated. We leave this case out

of the present analysis since it has alreadv received enough
attention1

We shall concentrate on the first two cases (a) and (b)),
which, as we have seen, have the same overlappine integral which is
given by (L4). Observe that the dependence of o, and c, onvy and z

prevents further integration in general. Nevertheless, in the 1imit
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¢t very small angle crossing, we can assume theyv depend cnly

on ¥. In this case the integration over z can be done =3 shown
ir ~ppendix A.
We have
2.2
-_ 9oV
+
/e 2{o i+0 <)
: dy e zZ Z-
I 1 ! * il 1 (5)
+ 2 _ : = =
. j 5 =
e R, o (g ;+GZ:)2 (ox +0x%)C
~/2
4 Srecial Case
Let us apply (5) to the following special case. TIntroduce
the beta-function 2(y) and the dispersion function 2(v) and let
us write
2 2
0% = £ 8(y) + [8-D(y)]
which applies for either x or z and for either + or -. 1we is the

emittance which includes 95% of all the beam (see Avpendix B),
and § is the standard deviation of the relative momentum (Ap/p)
distribution, which is assumed tc be gaussian.

Take the following expressions for B(y) and D{(y)

¥ + 2

g

w
3

*

D:D'y

where B* 1s the value at the crossing point and D' is a constant.

Intrcduce the average veam current, I = Nec/2mR, and the integral
n2u2
: (1)
R(E,n,0) = | —Seer = (6)
° (1+u°)° (l+w2u2)2
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then, finally, we have for the lumincsity, from (1),

I+I- K(E,ﬂ,w) (7)

L = 2 .
Te“c VA B
Xz

whers
/2
n=o/g
-7
/B_A
W o= X Z
Ve
X Z
R /?5
© 2 Vv A
z
and
* *
A - EvBy 4 ELBL
6
/8 4 e /8 2 >
£ E___ '
B= 1 2 + (D, +D )s°.

OUbserve that A is the quadratic sum of the beam sizes at the

crossing polnt, i.e.

1 !
Also, in the case D+ =D =0, B is the quadratic sum of the

divergences 1y (see Appendix B) at the crossing point, i.e.

$2 42
B o=y, + .

In the case both beams are round but not necessarily with the
same cross section, then w = 1. If, in addition, the two beams
have also the same cross sectlon and there 1s no dispersion

1

(D = 0), then
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n:a.@..*_ R g:—*—
a 2B
and
*2*
/AXBZ = 20 /B8 = e/3.

In this very special case, our expressicn for the luminosity
reduces to the one obtalined by E. Keilg.

Observe also that with our notaticn the interaction length 2
enters the expression of the luminosity (7) only at the upper
1imit of the normalized overlappling integral (6), and that the
crossing angle a enters the same expression at the shoulder of
the exponential inside the normalized overlapping integral.

We have already seen that, in the case of round and equal
beams, the quantity JK;E; at the demominator of the right hand
side of (7) 1s the beam emittance and, henceforth, an invariant.
This is closely true also for unequal and not-round beams. Thus
the behavior ¢f the luminosity is entirely described by the nor-
malized overlapping integral (6) with the three normalized param-
eters £,n and w. The first of these parameters, £, is the nor-
malized distance from the crossing point; the second one, n, is
the normalized crossing angle, and w 1s a2 measure of the "ellip-
ticity" of the interaction. We have seen that w = 1 for round
beams; also w > 1 when the cress section of the interaction is
wider on the plane of crossing than it is on the mid-plene, and
vice versa.

The "saturated"” luminosity is obtained by setting £ = «. Let
us call

K, = K(§ = @yn,w).

(o]
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This parameter is shown in Fig. 2, versus n for some values
of w. The lumincsity decreases monotoniesally with n and w.

The ration K/K_ is shown in Figs. 3, 4 and =, versus £ and
Jcr some values of w.

From the experimental apparatus point of view, an important
parameter is the actual length where almost all the luminosity
is concentrated. We define Ec to be the normalized full length
around the crossing point including 99.0% of all the luminosity.
£. is shown in Fig. 6, versus n and again for some values of .

c

The actual interacticn length decreases monotonically with n and w.
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Avpendix A

We assume that 9, and g, depend cnly on y. Ve want to

I

perform the integration over z at the right hand side of (4)

1 (z—ya/2)2 + (z+ya/2)2
, 2 5 2 5 2
=Je 7+ T - iz
_t {(Azﬂ}v)z + C2y2
_ 2 ’
—Je dz
where 1
; 4
Py
a1 1
B =sx R )
Z - z+ /
C o= . 5
2 2.2
(cz+ + GZ_)

as it 1s easy teo verify.

The same integral then becomes

_Ls22
o T3 v Y
e

which leads to (5).
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Appendix B

Ccrsider a particle which has an upright ellipse describea

by the =zguation

2 2
Rx +§-=g
3
1]
as tra’sctory in the (x,x )-phase plane. ¢ is a constant,

actually the invariant action of the trajectory. The trajectory
is closed and the area of the ellipse is mwe.
Consider a beam which has gaussian distribution in either
' 1

direction x ana ¥ , centered to x = x = 0. The distribution in

the invariant £ then nmust bhe
fle) = S

where.Jf(e)de = 1 and EO 13 a measure of the width of the distri-

bution.
We want to defline the emittance ME o which includes only
the frezction 1 - v, (p < 1), of the beam. We have
“max
1 —E/EO
= J e de = 1 - p
£
o)
o]
from wnich
Cmax = —€, logp.

t
The distributicon In x and x is

2 2

|1ogp| [x + !
' e B Bx

f'(x,x ) = Jﬁ.&&]_e max .

£
max
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1
Ferform the integration cver x to g

N
[

distribution over

X only, and vice versa

-

logp e “max

£
max

——

f(xr)

dx

ogp| L7 _lzoep| x°
J e Emax B
L

_

From the above distributicns we derive the relationships

o]

between the standard deviation of the distribution in x, o, the

1]
standard deviation of the distribution in x , ¥, the fraction

of excluded beam, p, and the corresponding beam emittance 7 € hax

2
2%; |logp|

=
1}

£
max

H

2078 |logp| T .
The relation between ¢ and ¢ 1is

g = By

For instance, the emittance which includes 95% of the beam

(p = 0.05) is
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