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THE HEAD-TAIL EFFECT ENHANCED BY A FAST
OSCILLATING OR FAST DECAYING WAKE FIELD
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At the 1973 Particle Accelerator Conference held in
San Francisco, the following problem was raised.

The head-tail effect was discovered in the following
machines: ADONE, ACQO, CEA, SPEAR and NAL Booster. In all
these machines only the zero-th mode of the instability, which
involves the oscillations of the centre of mass of the beam, was
noticed. The instability is usually compensated by cancelling
the chromaticity (variation of the tune with momentum) of the
machine. 1In some cases the sign of the chromaticity was also
changed because by so doing it was thought the higher modes
(which do not involve the motion of the center of mass of the beam)
would become unstable. Nevertheless, the higher modes have never
been observed. The guestion was: why?

It was commented that, according to Pellegrini-Sands theoryl’z,

if the zeroth mode is stable the higher modes should be unstable

and viceversa.

We now believe that this statement is wrong. We believe alsc

that it might be correct for small betatron phase advance across

5 Operated by Universities Research Association Inc. Under Contract with the United States Atomic Eneray Commissior
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the beam-bunch and for smooth, slow decaying wake field. Our
concern was mostly about a wake field that rings or decays
rather fast within a bunch. Thus, still adopting Pellegrini-
Sands theory, we calculated the growth (or damping) rate of the
head-tail instability: (1) in the presence of a high-freguency
resonater, and (2} for a decaying wake field. Our calculations

showed, indeed, that higher modes and zeroth mode can all be

be stable (or unstable) at the same time.

Analytic Calculations

l. Let us make use of the notation used in ref. (l). The
complex frequency shift due to a wake field p(t) for the mode

number m is then given by

+7
= - Y |7 oy el
Aw 27 | W (-y)e ay (1)
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I RO
W = 5 1 e p (T'=-t) dt (2)
w_ T
o) s{o
and
T'=T = 2A sin %ﬂ cos W t (3)

for a bunch of particles with the same amplitude of synchrotron

oscillation.
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2. We shall assume that the wake field is originated by a

cavity which resonates on a single mode. By making use of the

notation used in Appendix B of ref., (2) we have,
2
e vz w
plt) = — 2 = 3 5 e 't sin w_ ko

d LmOY W + T \

1 \

- ——5 cos w, t  H(t)
4Q

where m, is the mass of the particle at rest and m,Y the mass of
the particle in motion. H (t) 1s the stepwise function.

Let us write p(t) in a more condensed form

p(t) = CBe_Pt cos (wrt + g) H(t) (4}
where
e2VZ0
C=—
dsz ¥
o}
" 2
B=_""i’"'r'_2\/l+ ~
W, + T 16Q

g = arctg (4Q2)

3. Observing that formally it is
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cos ¢ =

and inserting (3) and (4) in (2), and (2) in (l), we cbtain

hw =~ N BielEF (x - e - in) +
m 2 m
lenr™w
. )
-ig .
+ a Fm {(x + ¢ 1n){
J
= - __E%__ p (5)
167 %y =
Q
where +T 42
F_ (z) =J e*"zsm;%.tcos‘b ™ qgay (6)
n Zp =kl
and
x = 2hw_ 2, e = 2hw n = 2AT
O o ’ r r

4. In the Appendix of this paper it is proved that

Fm {z) = Rm (z) - 1 Jm {(z) {7)
where

R _ fz\’2
and /2

O

m
J (z) = 4nu (-ljmJ H_ (zcose) cos2m9dd {9)
o)
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where Jm is the Bessel function of first kind and m-th order,
and HO is the Struve function of zeroth order. It is easily
seen that

R, (2z) = Rm (-z) , J (=) = -] {(-2)

and that

F_(z) = o for z = o and |z| + =

except for m = o and z = o, in which case

_ _ 2
FO (z=0) = 2717,

5. In the case of small |z| we can expand (8) and (9) up

to the first order term in z and use the following approximation

n 2 . 8z
Fo (2) = 2r% 8+ i —5— lz|<<l (10)
4m— -1
where

(o £
jo for m % o

§ =<

mo ,

il for m= o0

By inserting (10) in (5) we obtain for the growth rate Bm’ which

is the imaginary part of -Awm,

_ ANCE
B = (11)
m o onf 0% o (4m2-1)

which is not in agreement with ref. (2). The difference is not

only in a numerical factor but also in the sign.
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Numerical Calculations

In the previous section we have seen that for (x + ¢ - in)
small (and not necessarily for x small) the zeroth mode and
the higher order modes have different stability cryterion. For
large arguments, one has to calculate the frequency shift (5)
with a computer. This is what we did by letting the computer

calculate (8) and (9) by means of the following series

expansions
5oz = (BT T = 2B
m 2/ o k! (n+k) !
and
@, k=1 2x-1
Ho (z) = 2 (1) "z
o T

=1 [(2k-1)11]%

and by calculating the intergrals of the form

/2
? cos2¥1 g cos2mg dg
-‘O
as shown in ref. (4}. We had to limit our calculation to the

first four modes (m = o, 1, 2, 3) and for x < 10, ¢ < 12. For
too large arguments and for too large modes the numerical
calculation gets rather inaccurate and unreliable.

Also, it is rather easy to prove that the growth rate
change sign if x does too, thus we limited our calculation only

to positive values of x.
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Finally, we considered only the two extreme cases of
very low Q (Q=1) and very high ¢ (Q = ). The results of the
calculation for Q = 1 are shown in Figures 1 to 4, and for
Q@ = « in Figures 5 to 8. The imaginary part of Pm is plotted
versus x for various resonating frequency () and modes.

We show in Figures 9 and 10 the stability diagrams. Com-
paring all the cases with the same Q (which forms a diagram)
and the same x {(a line of the diagram) we can have, at the
glance, the idea of how all the modes under consideration
behave all together. For each frequency we have four letters,
the first refers to m = o, the second tc m = 1 and so on.

The letter "s" stays for stable, the letter "u" for unstable.

It is easily seen that, especially for Q = 1 and high
frequency, all the modes own the same stability cryterion no

matter how small x is.

Fast Decaying Wake Field

We considered, then, a fast, exponentially decaying wake

field. The wake form is now

p(t) = o e E H(t) (12)

where po and ' are two constants.

By inserting (3) and (12} in (2), and (2) in (1), we obtain

Aw_ = = ) F_ {(x~-in). (13)
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From eqg. (10) we derive the growth rate for small argument

2ANpO£

B = ) (14
n ﬂza (4m2—1) )

Again observe that this does not necessarily apply for

small x, but for small |x-in

For large argument we calculated Fm(x—in) at the com-
puter. The results of the calculation are shown in Figures
11 to 14. In these figures the imaginary part of Fm is plotted
versus x (positive) for several values of n. A stability
diagram is also shown in Figure 15. From this we see that, again,
no matter how small x is, the zeroth mode and the higher order
mode have the same stability cryterion for large n, which is
for wake fields which decay very fast compared to the bunch

length.
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Appendix
From eg. (6} we have
T T2
F (z) = L] cosm ¥ c€OS (zsin*%[cos¢) de¢ dy +
-1t -n/2
T /2
+ sinm ¥ sin (zsin|%|cos¢) d¢ dy +
“n Zn/2
™ m/2
+ 1 sinm ¢ cos (zsin|%|cos¢) d¢ dy +
- -n/2
i /2
- i cosm ¥ sin (zsin|%|c0s¢) de dy .
-t -u/2

The second and third integrals are identically zero, and

we-are left with the first and the last one, which we can write,

after the change of variable ¢ = 6 - % ’
T
F o(z) = cosm U COS (zsin|%|sinﬂ) de dy +
-r o
m m
- i cosm Y sin (zsin|%ﬁsin&} ds dy
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and, from ref. ({5)
T
Fm (z) = wJ JO (zsin\%|) cosm § dy +
-
T
-i nj fy (zsinl%|) cosm ¥ dy .
-
With the change of variable ¢ = % , We have
/2
Fm_(z) = 4ﬂv) Jo (zsin¢) cos2m ¢ d¢ +
o}
m/2
*4ij Hb (zsine) cos2m ¢ d¢ .
Q
Finally, with the new variable $' = ¢ + % we have also
T/2
Fm (z) = 47 (-1lm ~J JO (zcose¢') cosZ2m~¢' d¢' +
o
/2
-4ri (-1)0 J HO {zcos¢') coszZm ¢' d¢'.
o

The first integral, according to ref. (6), is R (z), and

the second integral is Jm (z).
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