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We propose to derive some handy formulas applicable to third- 

integral resonant extraction, using approximate analytic techniques for 

solving the dynamical equations. For a first look at the problem, we 

note that the principal terms in the relevant Hamiltonian are 

H = (v - m/3)p + A (2 P)3'2 cos (3 y + Ill, (1) - 

where v_, p are canonical polar coordinates in a suitable coordinate 

system. We will derive the above-Hamiltonian in a later paper in this 

series, and obtain the parameters A, n in terms of the strength and location 

of the sextupole magnets. We merely note here that if we introduce the 

rectangular canonical coordinates 

x = ( 2 P)% sin L, P = (2 0)' cos Y t (21 

then at the azimuth of the extraction septum, x = gI/%is the radial 

betatron coordinate, and the radial betatron slope is dx/de = B1/2(P + ox). 

The independent variable here is the azimuthal angle 8. The beam is to 

be extracted at the v = m/3 resonance. 

Let us take tie case n = 71, v - t < 0, c1 = 0, as a typical case to study 

in detail. Any other choice of n merely rotates the phase plane; the 

choice n = 71 will turn out to be the preferred choice for most purposes. 

'The case \I - : > 0 also follows without further calculation by reversing 

the signs of A and 8 . If we make the transformation (2), we find 

H=-;(+)(X2 + P2) - AP3 + 3 APX2. (3) 



-2- 

Since awae = 0, H is a constant of the motion. Trajectories of 

constant H are sketched in Fig. 1. There are three fixed points, in 

addition to X = P = 0, corresponding to an orbit precisely on the 

resonance v eff 
= m/3 which returns sequentially to the three fixed 

points, which are located at 

x = I x0, P = X0/m; and X = 0, P = - 2 X,/n, 

where 

x0 = 
‘; - VI 

~v'?-A ' 

The Hamiltonian has the value Ho = - 4 AX:/35at these points. For 

II = Ho, Eq. (3) factors into three straight lines: 

(4) 

(P - Xo/C)(P - J3 x + 2 x0/n) (P + Js X + 2 X,lJ3) = 9 . (6) 

Thus the separatrices are straight lines as sketched. The area of the 

triangle is 

sO 
=crx~. 

The equations of motion given by the Hamiltonian (3) are 

(7) 

(11 aH 
de =ap= 

- (y - v) - 3 A (2 n)' cos 3 L , 

dp- aH -_.-=- 
d'3 ay 

3 A (2 p)3'2 sin 3 1 . 

Near the center of the triangle, the term on the right in Eq. (9) is 

small and p is nearly constant. lf we take P to be constant in Eq. (S), 

we have for the effective tune v eff at amplitude P: 
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dy -2T 
(; - v) + 3 A (2 p)" cos 3y = ; _ veff ' 

0 

From Eq. (10) we have 

m a -_" 
3 eff - ")2 - 9 A'(;?P)~/~ 

J 

. 

(10) 

(11) 

This formula gives veff for small amplitudes for which the phase 

trajectory is nearly a circle of radius (2 P)~. Formula (11) also gives 

the correct value veff = y for (2 p)% = (!$ - u)/3 A, the value at the 

corners of the triangle. 

Along the separatrix P = X,/n, the motion is given by 

dX aH 
de=ap= 

3 A (X2 - X;, . 

The solution is 

X = X0 ctnh 

[ 

+ p-j-(; - v) (el - 0) 1 . 

(12) 

Note that X = m in a finite time, when e= e 1, so that the amplitude 

grows faster than exponentially. The step size per three revolutions is 

given approximately by Eq. (12): 

AX 1 18 71 A (X2 - Xi) . (14) 

This is valid provided AX CC X - X0, which will be roughly true at the 

ex traction point where AX ,< i (X - X0). 

In order to find phase curves near the separatrices, let 

H=H 
0 

+ 6H. We substitute in Eq. (3), remembering Eq. (6): 

(P - X,/fi)(P - 47 x + 2 X,/Js)(P + J3 X + 2 x,/a = -6 H/A. (15) 
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We now look for curves near the horizontal separatrix, and put 

P = Xo/fi+ 6P, to obtain, to first order in 6P: 

6pL 6H 
3 A (X2 -X2) ' 

(16) 

This formula is valid for X2 > Xt 2 0rX <X 2 
0 - At X = X0, we must go 

to second order: 

6p L -6H 

[ 1 

2 
20 AX, 

, x L x0 . (17) 

-1 
The rate of flow of phase area per radian of revolution, between the 

separatrix and the curve Ho + 6H is 

s' =:= 
16P[dX/de = I6H . (18) 

The emittance of this particular component of extracted beam is given 

then by Eqs. (16) and (14): 

EC 
= AX.GP = 6 TS' , (19) 

as also follows immediately from Liouville's theorem. 

Suppose the beam has an initial amplitude + xi in centimeters at 

the extraction azimuth, and an angular amplitude + tii. Then 

dxi 
$i=iF> (20) 

y. where R is theAmachIne radius (R de = dS along the orbit). In terms 

of capital variables, 

xi = B-II2 xi, Pi = R B+1/2 Qi . 

The phase area is 
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si = lTxi Pi = nR xi I$. . 1 (22) 

We are assuming that initially we are far from the resonance. Since Xi = Pi, 

we also have 

si = 714 -1 x2 1 * (23) 

If the beam is to be extracted uniformly during N turns, then 

s' = si 
2 TN 

, (24) 

so that the emittance of any component of the extracted beam is 

EC = 
3 nB-&if 

N ' (25) 

made up of a source size 

Ax = b1i2AX =18 71 A6+l12(X2 - X;, , 

and an angular divergence 

A$ = R-l~-1/26~ = 
R-1o-3/2 .2 

i 
6 NA (X2 - x;) ' 

(261 

(27) 

Extraction begins when the triangular separatrix has shrunk to the 

area given by Eq. (23), so that, in view of Eq. (7): 
l/2 

x = E- xi. 
Oi 

(, ) 
En 

(28) 

In centimeters, the corner of the triangle is displaced from the center 

of the beam by 

XOi = (“)k xi . 
fi 

(29) 

Since Xl shrinks to zero during extraction, it is desirable to extract 

at a point X, where X2 " Xz so that AX in Eq e . (141, and also 6P, remain 
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substantially constant during extraction. Presumably X, > 3 Xoior 

xe > 3 xoiis adequate. We will specify the step size at extraction 

ax, so that by Eq. (14), 

ax = Bl/'AX= 18 71 A $/2x: . (30) 

This fixes the constant A. 

The frequency shift at which extraction begins is given by Eqs. (5) 

and (28): 

m 3% --"= 
Xi AX 

3 18 nk x; . 
(31) 

The frequency v must then go smoothly to v = m/3 when extraction ends, 

for any particular beam component. However, if there is an energy spread 

in the beam, and v depends on energy, beam components of different energy 

will have different v values at any one time. 

The angular divergence of any beam component is given by Eq. (27): 

3 ll 
A$ = 

xf 

NBR AX ’ 
(32) 

However, the beam emerges intially at an angle given by the momentum of 

the separatrix PO = X,/n : 

ei= A!- VI 
$ xi 

33 gR. (33) 

When the triangle shrinks to zero, + = 0. Thus the overall angular spread 

of the beam is given by Eq. (33) and not by Eq. (32). With an energy spread, 

beam may emerge at all angles 0 < $ <ei simultaneously, and the effective 

emittance is increased over the ideal value (25) by a factor 

+i- 1 N AX -- 

Ail, 3 (3 GI)' xi ' 
(34) 
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This factor could in principle be recovered later by a suitable 

combination of lenses and prisms, since there is a correlation between 

# and energy. In principle, an energy dependent orbit bump might be 

devised inside the accelerator so that the equilibrium orbit has an 

angle - q(E) at the extraction septum which just cancels the angular 

divergence $(E) of the extraction separatrix. 
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'Fit;. 1 . Phase plane near third-intec;ral ii::ionmce 


