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EXTRACTION AT A THIRD-INTEGRAL RESONANCE I
K. R. Symon
March 21, 1968
We propose to derive some handy formulas applicable to third-
integral resonant extraction, using approximate analytic techniques for
solving the dynamical equations. For a first look at the problem, we

note that the principal terms in the relevant Hamiltonlan are
3/2
H= (v -m/3)s +A(25p) eos (3 y + nl, (1)

where 1y, o are canonical polar coordinates in a suitable coordinate
system. We will derive the above-Hamiltonian in a later paper in this
series, and obtain the parameters A, n in terms of the strength and location

of the sextupole magnets. We merely note here that if we introduce the

rectangular canonical coordinates
L 1
X = (209)*sin y, P = (2p})?% cosy, (2)

then at the azimuth of the extraction septum, X = gl/2% is the radial
betatron coordinate, and the radial betatron slope is dx/d6 = BI/Z(P + aX).
The independent variable here is the azimuthal angle 6. The beam is to
be extracted at the v = m/3 resonance.

Let us take the casen = m, v -~ L < 0, o« = 0, as a typical case to study

3

in detail. Any other choice of n merely rotates the phase plane; the

choice n = ® will turn out to be the preferred choice for most purposes.
The case v - % > 0 also follows without further calculation by reversing
the signs of A and ¢ . If we make the transformation (2), we find
.. L, 2 2 3 2
H = - 5 ( 7 v) (X% + P®) - AP” + 3 APX". (3)
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Since 3H/38 = 0, H is a constant of the motion. Trajectories of
constant H are sketched in Fig. 1. There are three fixed points, in
addition to X = P = 0, corresponding to an orbit precisely on the
resonance v = m/3 which returns sequentially to the three fixed

eff
points, which are located at

X =X, P = XO//31 and X = 0, P = - 2 X_//3, (4)
where
(CLNNY
X, = 22— (5)
2V3 A
. . 3 .
The Hamiltonian has the value Ho = - 4 AXO/B/EHat these points. For

tl = Hy, Eq. (3) factors into three straight lines:

(P - X /V3)(P - VI X + 2 xo//ﬁ)(p + VI X+ 2 X /V3) =0 . (6)

Thus the separatrices are straight lines as sketched. The area of the

triangle 1s
S = /3 x° (7)
o] o

The equations of motion given by the Hamiltonian (3) are

8—-—-8— = —g = - (g - \)) - 3 A (2 p) 2 cos 3 l s (8)

do 9H /2 .

av - o L3 A (2 3y . 9
5 oy (2 p) sin 3 y (9)

Near the center of the triangle, the term on the right in Eq. (9) is

small and p 1s nearly constant. If we take ¢ to be constant in Eq. (8),

we have for the effective tune Vegg @t amplitude p:
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.ody -2 (10)
m L . m .
(3 v) + 3 A (2 p)*? cos 3 Y T~ Veff
0
From Eq. (10) we have
m R S 2 2 1/2_I
3~ Vers (g v) 9 A“(2p} _I . (11)

This formula gives Veff for small amplitudes for which the phase
trajectory is nearly a circle of radius (2 p)%. Formula (11) also gives
the correct value Vogg = % for (2 p)% = (% - v)/3 A, the value at the
corners of the triangle.

Along the separatrix P = X //3, the motion is given by

dX 3H 2 2
— = — = 3 A (X¢& - X . 12
de ap ( 0) (12)
The solution is
X = X_ ctnh |2 /32 - v) (8, - 8) (13)
0 2 3 1 ’

Note that X = = in a finite time, when g= 6,5 SO that the amplitude
grows faster than exponentially. The step size per three revolutions is

given approximately by Eq. (12):

2

AX & 18 7 A (X% - X5 . (14)

This is valid provided 4X << X - X,, which will be roughly true at the
exX traction point where AX £ % (X - XO).

In order to find phase curves near the separatrices, let

H = H0 + 6H. We substitute in Eq. (3), remembering Eq. (6):

(P - X/¥V3)(P - V53X + 2 Xo/VE)Y(P + /3 X + 2 X_//3) = -§ H/A. (15)
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We now look for curves near the horizontal separatrix, and put

P = Xo//3 + §P, to obtain, to first order in 6&P:

¢p = M . (16)

2 2
34 (X% -X5)

2
This formula is valid for X2 > X, or x% < Xé . At X = X, , we must go

to second order:

) S 5 )
sp = |21 , X DX . (17)
2v3 AX,

J
The rate of flow of phase area per radian of revolution, between the

separatrix and the curve H  + SH is

5! = %— = |6P|dX/do = |sH| . (18)
8

The emittance of this particular component of extracted beam is given

then by Eqgs. (16) and (14):

E. = 4X8P = 6 7S’ (19)

as also follows immediately from Liouville's theorem.

Suppose the beam has an initial amplitude * x; in centimeters at

the extraction azimuth, and an angular amplitude * y;. Then

dx.
_ 1 1
ean
where R is theYmachine radius (R d® = dS along the orbit). In terms
of capital variables,
- n-1/2 = +1/2
Xj =812 x , Py =R B*I/2 y, . 1)

The phase area is
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(22)

We are assuming that initially we are far from the resonance. Since Xi =

we also have

2

Si = 'TTB-l X< (23)
1
If the beam is to be extracted uniformly during N turns, then
S
' i
S = (24
21 N )
so that the emittance of any component of the extracted beam is
3 ‘JTB—-lX%
Be = —x— > (25)
made up of a source size
ax = gl/2ax =18 = Agtl/2(x2 - xg) , (26)
and an angular divergence
R-1p73/2 2
ap = R-13-1/24p - —— (27)
6 NA (X° - X2)

(o)

Extraction begins when the triangular separatrix has shrunk to the

area given by Eq. (23), so that, in view of Eq. (7):
1/2

%04 =(e?%) Xi - (28)

In centimeters, the corner of the triangle is displaced from the center

of the beam by

Xo, = (3%)6 X - (29)

Since Xl shrinks to zero during extraction, it is desirable to extract

. 2 2 .
at a point X, where Xe >z X,y so that 4X in Eq. (14), and also 8P, remain

P.

1?
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substantially constant during extraction. Presumably X, >3 Xoior

> 3 .
X X3

Ax, so that by Eq. (14),

is adequate. We will specify the step size at extraction

ax = 8Y/28% - 18 1 a 22 -

This fixes the constant A.
The frequency shift at which extraction begins is given by Egs. (5)

and (28):

m 3/ZI X3 AX
3V = : 12 i (31)

The frequency v must then go smoothly to v = m/3 when extraction ends,
for any particular beam component. However, if there is an energy spread
in the beam, and v depends on energy, beam components of different energy
will have different v values at any one time.

The angular divergence of any beam component is given by Eq. (27):
2

In X5
i

= 32
&y NBR Ax (32)

However, the beam emerges intially at an angle given by the momentum of

the separatrix P, = XO//?T:

N AT ! 33
Vi (3/‘% eR o

When the triangle shrinks to zero, ¢ = 0. Thus the overall angular spread

of the beam is given by Eq. (33) and not by Eq. (32). With an energy spread,
beam may emerge at all angles 0 < y <¢; simultaneously, and the effective

emittance is increased over the ideal value (25) by a factor

05 1 N ax
— = 1 . 34
Ay 3 (3 SBayE x4 (34)
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This factor could in principle be recovered later by a suitable
combination of lenses and prisms, since there is a correlation between
¢ and energy. In principle, an energy dependent orbit bump might be
devised inside the accelerator so that the equilibrium orbit has an
angle - ¢(E) at the extraction septum which just cancels the angular

divergence u(E) of the extraction separatrix.



ig. 1, Phase plane near third-integsral G:sonance



