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We present a fully differential and spin-dependent t-channel single-top-quark
calculation at next-to-leading order (NLO) in QCD including off-shell effects by
using the complex mass scheme in the Standard Model (SM) and in the Standard
Model Effective Field Theory (SMEFT). We include all relevant SMEFT operators
at 1/Λ2 that contribute at NLO in QCD for a fully consistent comparison to the SM
at NLO. In addition, we include chirality flipping operators that do not interfere
with the SM amplitude and contribute only at 1/Λ4 with a massless b-quark. Such
higher order effects are usually captured by considering anomalous right-handed
Wtb and left-handed Wtb tensor couplings. Despite their formal suppression in
the SMEFT, they describe an important class of models for new physics. Our
calculation and analysis framework is publicly available in MCFM.
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1. Introduction

Large statistics data samples from experiments at the CERN Large Hadron Collider (LHC)
provide the opportunity to extract precision information about the Standard Model (SM),
and to look for small deviations due to new physics that enters at energy scales beyond direct
experimental reach. t-channel single-top-quark production provides a unique window onto this
physics, and has been well-measured by both the ATLAS [1–4] and CMS [5–8] Collaborations
at the

√
S = 7, 8 and 13 TeV runs. While the Collaborations refine these measurements to

extract limits on phenomenologically motivated physics beyond the Standard Model (BSM)
[9–13], the theoretical models they use for comparison are not generally as precise as the
data they are fitting. This paper describes next-to-leading order (NLO) QCD calculations of
t-channel single-top-quark production including off-shell effects that improve both the SM
and Standard Model Effective Field Theory (SMEFT) predictions of fully differential and
spin-dependent observables.
t-channel single-top-quark production probes many aspects of the SM. Measurement of the

cross section provides direct access to the square of the CKM matrix element Vtb [14, 15]. The
V −A nature of the production and decay vertices are probed by spin correlations [16, 17].
Kinematic distributions, such as the lineshape of the b–lepton invariant mass mbl from the
top quark decay products, allow for extraction of the top quark mass at the LHC [8, 18].

This process is also a stringent test on the consistency of parton distribution function (PDF)
fits at different orders, and it directly tests the analytic framework of improved perturbation
theory. Resummation of large logarithms of the top quark mass to the bottom quark mass
leads directly to the introduction a b-quark PDFs [14]. Through NLO in QCD the process
becomes one of double deep inelastic scattering (DDIS) with two independent scales, where
the leading order (LO) process is qb→ q′t scattering [14]. Because DIS data is used to extract
the PDFs, when DDIS scale choices are made, the inclusive t-channel cross sections computed
at different perturbative orders should be approximately the same. A primary motivation for
improving the SM calculation is that this analytic constraint is strongly violated by recent PDF
sets [19]. Once this issue is resolved, this process could provide insight into PDF transverse
momentum dependence [20].

While improving our understanding of SM physics, precision calculations of single-top-quark
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production and decay establish a baseline for controlling the backgrounds to BSM physics.
The final state of the t-channel process is W + b+light jets, where the W can decay to a lepton
plus missing energy, and hence is a background to most new physics models. Deviations
in inclusive cross sections or kinematic distributions are expected in a large class of BSM
physics [21]. The spin correlations are especially sensitive to new physics [22], and a number
of observables have been developed in refs. [23–26] that are separately sensitive to new physics
contributions in the production and decay vertices of the top-quark, respectively.
In the rest of this section we briefly review the state of SM t-channel single-top-quark

calculations, explain our focus on the SMEFT as an extension of the SM, and summarize what
we add to the SMEFT calculations. In section 2 we describe our setup and the calculation. We
specify the list of SMEFT operators that we use, as well as our conventions and normalizations.
Furthermore, we describe the steps that we perform to compute and simplify the amplitudes
and provide a list of checks that we have performed. A primary goal of this study is
to allow for a direct improvement of experimental analyses, and we describe our publicly
available implementation in MCFM and how to use it. In section 3 we study off-shell and
W -boson/neutrino reconstruction effects in the SM. We define angular observables in the
top-quark rest frame that are sensitive to SMEFT contributions. We then study the impact of
off-shell effects to these distributions, and the effect of higher order contributions from QCD
and stability of the SMEFT.

Towards precise t-channel single-top-quark predictions. The precision of single-top-quark
calculations has largely coincided with the attempts to discover, and later precisely measure,
the t-channel cross section. Early results focused on the inclusive NLO cross section with stable
on-shell top quarks [14, 27, 28]. Once experimental backgrounds were better understood,
differential calculations were performed [29–31] with a stable top quark, and the results were
used to improve LO kinematics in showering Monte Carlo programs.

The next step consisted of including the leptonic decay for an on-shell top quark, preserving
full spin correlations, and including separate NLO corrections in production and decay [32–34].
The on-shell approximation relies on the assumption that off-shell effects are expected to be
small of the order Γt/mt inclusively, where Γt is the top-quark decay width, and mt is its
mass. This allows for a significant simplification of the analytical expressions at the cost of
little error for the inclusive observables used in discovery.
Since the production of the top-quark proceeds through a b-quark, one can distinguish

between calculations that either assume an intrinsic proton b-quark content (five-flavor scheme),
or not (four-flavor scheme). In the latter case, and with a non-zero b-quark mass, predictions
were first calculated in the stable top-quark approximation at NLO [35, 36], and then with a
decaying on-shell top quark, retaining spin correlations [37]. This is implemented in MCFM
[38]. To this point, all calculations were performed in the on-shell approximation.

Off-shell effects generally play a role when one considers differential distributions. A prime
example is the top-quark invariant mass distribution, where the region above the resonance is
severely underpopulated in the on-shell approximation. It only receives a tiny contribution
when QCD radiation before the top-quark’s decay is clustered with the final state b-jet. The
inclusion of off-shell effects was handled for example in an effective field theory approach
[39–42], which is valid only close to the resonance. The first gauge invariant calculation valid
also in the far off-shell region was performed [43, 44] in the complex mass scheme [45–48],
and this is the approach we follow.

Other calculations include an attempt to improve on fixed order matching by adding parton
shower effects through implementations in MC@NLO for on-shell and off-shell single top
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production [44, 49] and in POWHEG-BOX for on-shell production [50]. Analytical resummation
has also been performed on top of the on-shell approximated fixed order result [51–57]. Finally,
in recent years results at NNLO in QCD have been published for stable on-shell and for decaying
top-quarks [58–61], but these numerical results currently differ by the size of their NNLO
correction terms.
The primary goal of this study is to provide a public implementation in MCFM of a fully

differential spin-dependent prediction for t-channel single-top-quark production and semi-
leptonic decay at NLO including the off-shell effects of initial-final state QCD interference and
of non-resonant interferences. We demonstrate in section 3 that, after cuts, off-shell effects
produce significant shifts in some key experimental observables. Additionally, we identify
kinematic regions and spin observables that are highly sensitive to the cancellation of soft
radiation in production and decay. We show that this sensitivity can be hidden by the on-shell
approximation, and thus such regions should be avoided in analyses relying on fixed order
predictions.

New physics in single-top-quark production and decay. Deviations from the SM are fre-
quently modeled using anomalous couplings (see for example refs. [62–64]) because they
often map directly to experimental observables. Most recent studies of BSM physics in the
single-top-quark sector by ATLAS [12, 13] and CMS [9–11] use this approach. For a recent
single-top-quark overview focusing on measurements of anomalous contributions we refer the
reader to ref. [65]. Without a UV completion, however, it can be difficult to systematically
incorporate and renormalize higher order perturbative corrections. It can also be challenging
to compare limits obtained in one experimental data set with limits obtained from other
experiments or data sets since there is neither a systematic power counting scheme, nor a
definite basis of the modifying structures [66] (see also the discussion in ref. [67]).
In this paper we take a more systematic approach and parameterize potentially small

deviations in terms of an effective field theory (EFT) that obeys well-established SM symmetries.
A classification of all relevant dimension six operators has been developed in refs. [68, 69],
and goes under the name Standard Model Effective Field Theory (SMEFT), see also [66].
Calculations in the EFT and SMEFT have been performed in abundance at LO, and we can
only cite an excerpt of results, see for example refs. [63, 70–78]. Within the EFT framework,
limits obtained on operators can be compared directly with limits obtained from B-meson
decays [79, 80], for example.

To consistently include NLO effects one needs to determine the renormalization and anoma-
lous dimension matrix of the SMEFT operators. This framework has been fully developed
in a series of publications [81–83]. See also ref. [84] for a working group report regarding
the importance of NLO corrections of the SMEFT. Studies including NLO QCD effects for
an on-shell top quark have been performed over the years [85–88], and recently also for an
off-shell top quark [89], but with a limited set of operators.

The most complete treatment of the SMEFT in single-top-quark calculations so far has been
in ref. [89]. The authors consider a limited set of three operators contributing as interference to
the SM at LO in QCD, but neglect the operators that begin contributing at NLO in QCD and
operators that do not interfere with the SM. Their calculation is also performed in the complex
mass scheme, and includes the effect of parton showers. They study different approximations
for top-quark decay in the MadGraph5 framework using MadSpin. To estimate uncertainties
they consider additional effects at O(1/Λ4) that come from squared 1/Λ2 contributions and
from double operator insertions.

We consider the full set of relevant dimension six SMEFT operators that contribute at NLO
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in QCD at 1/Λ2 already at the amplitude level. Depending on whether or not the SMEFT
amplitudes interfere with the SM, one obtains effects of order 1/Λ2 or 1/Λ4 at the cross-section
level, respectively. We do not include effects of 1/Λ4 at the amplitude level since these would
require a classification of dimension eight operators for a consistent renormalization at NLO.
Our 1/Λ4 effects at the cross-section level thus come from “squared” amplitudes of order 1/Λ2

and constitute only partial effects in view of missing double insertions and dimension eight
operators.
The partial higher order effects we include firstly allow estimating higher order effects for

those operators that already enter at 1/Λ2 as an interference with the SM. Secondly, they
allow for a quantification of those operators’ effects that only enter as “squared” contributions.
These are usually neglected in EFT studies, but would be present in the anomalous couplings
picture. They can be relevant as higher order effects to the 1/Λ2 contributions, or under
certain model assumptions on the operator content.

In our study we consider a set of eight operators and all of them are treated fully consistently
at NLO in QCD. Four of them contribute at 1/Λ2 at the cross-section level, and four of them
only enter at 1/Λ4. Two of the newly considered operators here only begin to enter at NLO
through gluon radiation and are required for a consistent NLO evaluation since they mix under
renormalization. Note that while the 1/Λ4 contributions are partial in the SMEFT expansion,
they are still computed consistently at NLO in QCD. All contributions are implemented
including off-shell top quark effects in the complex mass scheme with a massless b-quark in
the five-flavor scheme. We do not include all-order effects of parton shower or resummation.

In section 2 we describe the full set of operators, their relationship to anomalous couplings
studies, and technical details of our calculation. We show in section 3 that some commonly
recommended spin-correlation observables [23–26] that are sensitive to these operators are
relatively stable to off-shell effects and QCD radiation, while others are highly sensitive to
soft radiation effects that are not apparent in the on-shell calculations.

2. Setup and calculation

The calculations in this study are performed in the SM and in the SMEFT framework. The
SMEFT is constructed by building higher dimensional operators that respect SM symmetries
out of SM fields. It systematically extends the SM Lagrangian as a power series in 1/Λ, where
Λ is the scale of new physics where the EFT description breaks down.

LSMEFT =
∑
i

Ci
Λ2
Qi + H.c. , (1)

where Qi denote dimension six operators, we add Hermitian conjugates (H.c.) for non-
Hermitian operators with complex Wilson coefficients Ci, and we add Hermitian operators
(without H.c.) with real Wilson coefficients Ci.

The SMEFT picture we consider in this paper contrasts with the phenomenological approach
of anomalous couplings, which modify the Wtb vertex as follows:

−gW√
2
b̄γµ(VLPL + VRPR)tW−µ −

gW√
2
b̄
iσµνqν
mW

(gLPL + gRPR)tW−µ + H.c. ,

where in the SM VL = V ∗tb, VR = gL = gR = 0, and the momentum q is chosen to be incoming.
The pictures are connected at tree level, where the anomalous couplings vertices are generated
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by SMEFT operators and can be directly mapped to them [63, 64]. The relations between the
anomalous couplings and our operator Wilson coefficients (defined further below) are

δVL = C(3,33)
ϕq

m2
t

Λ2
, where VL = 1 + δVL , (2)

VR = C33
ϕud
∗m

2
t

Λ2
, (3)

gL = −4
mWmt

Λ2
· C33

dW , (4)

gR = −4
mWmt

Λ2
· C33

uW
∗ , (5)

where mW is the W -boson mass, and mW = 1
2gW v has been used to derive this equivalence.

Note that the minus sign for gL and gR is different from the literature.
When considering the leading 1/Λ2 contributions from dimension six operators to single top

observables, only VL and gR contribute as interference to the SM amplitude. The contributions
generated by VR and gL flip a b-quark chirality and do not interfere with the SM amplitude
for a massless b-quark. As such, in the SMEFT they only enter at order 1/Λ4 as “squared”
contributions from non-SM helicity amplitudes. Operator double insertions would contribute
to the amplitudes at the same order, where renormalization requires the inclusion of dimension
eight operators and a determination of their anomalous dimension matrix. Dimension eight
operators are beyond the scope of this study, and so we do not include them or any double
insertions.
While formally suppressed in SMEFT, the couplings VR and gL are relevant for the study

of new charged vector currents (W ′ bosons) or scalars (H± bosons) [90–92] and are strongly
constrained experimentally despite their suppression. This is possible due to the strong spin
correlations in single-top-quark production, and a large set of observables highly sensitive to
SM deviations.

In order to maintain a direct coupling to experiment, we follow a hybrid approach. In the
first part we include all dimension six SMEFT operators that are relevant at NLO in QCD,
and enter at order 1/Λ2 at the cross-section level. This allows for a fully consistent evaluation
of SMEFT effects and comparison of Wilson coefficients extracted from different experiments
when higher order effects can be neglected.

In an enhanced mode we include all contributions of order 1/Λ2 in the amplitudes from
dimension six operators of the SMEFT. The additional operator contributions do not interfere
with the SM and contribute only as the operator insertions squared, or in interference with
other SMEFT contributions. This leads to 1/Λ4 effects at the cross-section level. This
enhancement serves two purposes. It allows for a NLO QCD mapping to anomalous coupling
studies under the assumption that dimension eight operators can be ignored. And it allows
for a systematic determination of whether a given observable is sensitive to higher-order
corrections in the EFT. If one wishes to obtain consistent limits on Wilson coefficients and
compare them with other sources, one should not be sensitive to 1/Λ2 and 1/Λ4 contributions
at the same time. For that purpose one can run the analysis using only the 1/Λ2 contributions
and then compare with results obtained when including the partial 1/Λ4 contributions.

SMEFT operators. As shown in eq. (1), all operators Q come with a Wilson coefficient C
and a power of 1/Λ2. The operators that contribute at 1/Λ2 in NLO QCD as interference to
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the SM amplitude are

Q(3,33)
ϕq =

1

2
y2
t (ϕ
†i
↔
DI
µϕ)(Q̄Lγ

µτ IQL) , (6)

Q33
uW = ytgW (Q̄Lσ

µντ It)ϕ̃W I
µν , (7)

Q33
uG = ytgs(Q̄Lσ

µνTAt)ϕ̃GAµν , (8)

Q4L = Q(3,1133)
qq = (q̄Lγµτ

IqL)(Q̄Lγ
µτ IQL) , (9)

where QL is the third generation left handed SU(2) doublet (tL, bL) and qL the first generation
doublet (uL, dL). Here yt = mt

√
2/v is the real-valued top-quark Yukawa coupling, gW is

the electroweak coupling, and gs is the strong coupling. The operators Q(3,33)
ϕq and Q4L are

Hermitian, have real Wilson coefficients, and no Hermitian conjugate is added to the sum
in eq. (1). We also add the second generation operator Q(3,2233)

qq with the same real Wilson
coefficient. Our notation, conventions, and operator basis follows that of refs. [69, 81–83]. We
note the operator Q33

uG modifies the t̄tg Feynman rule vertex and enters only at NLO in QCD.
At 1/Λ4 there are additional dimension six operators

Q33
ϕud = y2

t (ϕ̃
†iDµϕ)(t̄γµb) , (10)

Q33
dW = ytgW (Q̄Lσ

µντ Ib)ΦW I
µν , (11)

Q33
dG = yT gs(Q̄Lσ

µνTAb)ΦGAµ ν , (12)

Q4R = Q(1,1331)
ud +Q(1,3113)

ud = (d̄γµu)(t̄γµb) + (ūγµd)(b̄γµt) , (13)

where the third operator Q33
dG only contributes at NLO in QCD and modifies the b̄bg vertex.

For the Hermitian operator Q4R no Hermitian conjugate is added to the sum in eq. (1), and
we also add the corresponding second generation operator with the same Wilson coefficient.

Operator mixing and running. The operator pair Q33
uW ,Q33

uG has nonzero anomalous dimen-
sion and mixes according to

µX
d

dµX

(
Q33
uG

Q33
uW

)
=
αs
4π
CF

(
1 0
2 2

)(
Q33
uG

Q33
uW

)
, (14)

where µX is a renormalization scale that is independent of the QCD renormalization scale.
The pair Q33

dW ,Q33
dG mixes analogously under renormalization [83].

We renormalize the Wilson coefficients in the MS scheme following Cbare
i = ZijCj(µ), where

Zij = 1 +
αs
4π

γij
2ε

.

A factor of (4π)ε/Γ(1− ε) is absorbed into the definition of αs and from here on we define
as ≡ αs/(4π). We set the renormalization point of the Wilson coefficients to the same value
as the QCD renormalization point, as both contributions are probed at the same scale. The
effect of the running of Ci has been studied in refs. [85, 87] and can be used to evolve the
Wilson coefficients to the scale Λ or to some lower scale for comparisons.

We renormalize the top-quark mass and wavefunction in the complex mass scheme with
complex mass on-shell conditions. The SM renormalization constants receive additional
contributions from Q33

uG. Up to the sign of our Wilson coefficient C33
uG (see section 2.1) we
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confirm the SMEFT mass and wavefunction renormalization constants in ref. [85] by computing
the top-quark 1PI self energy with complex mass on-shell renormalization conditions and find

µ0 = (1 + asδm)µt , (15)

δm =

(
µ2

µ2
t

)ε
CF

(
−3

ε
− 4 + Re C33

uG

mtµt
Λ2

CF

(
12

ε
+ 4

))
, (16)

ZΨ = (1 + asδZΨ) , (17)

δZΨ =

(
µ2

µ2
t

)ε
CF

(
−3

ε
− 4 + Re C33

uG

mtµt
Λ2

CF

(
6

ε
+ 2

)
+ Im C33

uG

mtµt
Λ2

CF iγ5

(
6

ε
+ 2

))
.

(18)

Here µ2
t = m2

t − iΓtmt is the squared complex top-quark mass. One power of mt is part of
the operator normalization and is kept real.
Special care has to be taken for ImC33

uG, which receives a wavefunction renormalization
contribution proportional to γ5. We obtain it by adding an additional counterterm to the
top-quark 1PI self energy proportional to γ5 and demanding that the propagator keeps its
tree-level form throughout higher orders. For the γ5 contribution this is analogous to the SM
on-shell condition of having residue i for the renormalized propagator.

Note: Because we are examining an off-shell top quark, the non-resonant diagrams include
contributions from b̄bA and b̄bZ vertices, where A is the photon field. The corresponding
SM Feynman rules receive contributions from Q33

dW in the SMEFT and renormalize the gluon
contributions from Q33

dG at NLO. In this case also the operator Q33
dB = ytgB(Q̄σµνb)ΦBµν

must be included to renormalize Q33
dG. The anomalous dimension matrix follows the operator

renormalization group running

µX
d

dµX

O33
dG

O33
dW

O33
dB

 =
αs
4π
CF

 1 0 0
2 2 0
−2/3 0 2

O33
dG

O33
dW

O33
dB

 . (19)

We include this operator Q33
dB only for the renormalization of Q33

dG and set its Wilson coefficient
to zero afterwards, since it only contributes to the non-resonant amplitudes.

2.1. Technical implementation and checks

We consider the process u(p1) + b(p2)→ ν(p3) + e+(p4) + b(p5) + d(p6) at NLO in QCD in the
complex mass scheme including off-shell interference effects and non-resonant contributions
required by gauge invariance. The complex mass scheme introduces a squared complex top-
quark mass µ2

t = m2
t − imtΓt to the otherwise real valued top-quark mass in the Lagrangian.1

We also work in the five-flavor scheme and set mb = 0. We compute all results at the
amplitude level in the spinor helicity formalism in the ’t Hooft-Veltman scheme and avoid
any ambiguities related to γ5 in dimensional regularization and thus treat it in the naive
dimensional regularization approach.

To obtain a gauge invariant result with an off-shell top quark, requires the inclusion of both
resonant and non-resonant contributions. We include all such contributions and show a partial
sample of the diagrams in figs. 1 to 3. In addition to QCD corrections, we allow for exactly
one SMEFT operator insertion in each diagram (at positions denoted by the crossed circles in

1Note that the EFT operators above have been normalized with the real-valued on-shell top quark Yukawa
coupling yt =

√
2mt/v.
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W

t

u d

b b

ν
e+

(a) resonant

γ, Z

u d

b b

ν

e+

(b) non-resonant

W

γ,Z

u d

b b

ν

e+

(c) non-resonant

Figure 1: Sample Feynman diagrams of resonant and non-resonant contributions at LO.

W

W

u d

b b

ν

e+

(a) non-resonant SMEFT

W

t

u d

b b

ν
e+

(b) off-shell resonant

Figure 2: (a) Example non-resonant contribution in the SMEFT at LO. (b) One-loop resonant
diagram with production-decay interference.

fig. 3). We do not include the W+2 jets contributions that have a gluon exchange at tree
level. These diagrams are separately gauge invariant, do not interfere with our contributions
through NLO, and are considered a background that can be computed fully independently.
Apart from gluon radiation, in the SM and throughout NLO only two helicity amplitudes

contribute. The first amplitude only encompasses left-handed particles and a right-handed
positron. Its predominant contribution is from the resonant diagrams, which are purely left-
handed charged current mediated. It also receives non-resonant contributions from Z-boson
and photon exchanges. The second amplitude with flipped b-quark helicities comes purely
from non-resonant pieces. When SMEFT operators are added, one has additional helicity
amplitudes where either one of the b-quark helicities is flipped (Q33

ϕud,Q33
dW ,Q33

dG), or the
helicities of the light quark line are flipped together with the initial-state b-quark helicity
(Q4R).

The one-loop amplitudes we want to compute and simplify have large tensor ranks that are
further increased with the SMEFT contributions. Their evaluation with a standard framework
like FeynCalc [93, 94] and Passarino-Veltman reduction, for example, would be prohibitively
difficult due to the size of resulting and intermediate expressions. We instead develop our own
setup in Mathematica [95] which performs the tensor reduction with dimensional shift relations
[96]. We implement the dimensionally shifted integrals with increased propagator powers
in terms of standard one-loop master integrals by means of integration by parts reduction
performed with Kira [97]. The scalar one-loop integrals are evaluated with QCDLoop 2.0
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W
t

u d

b b

ν
e+

(a) production

W
t

u d

b b

ν
e+

(b) decay

W

t

u d

b b

ν
e+

(c) self-energy

Figure 3: NLO virtual contribution to the (a) production vertex, (b) decay vertex, or (c)
top-quark self-energy. Each crossed circle represents a possible SMEFT operator
insertion.

[98, 99]. The few necessary Feynman diagrams are generated with QGRAF [100] and translated
into initial FORM [101] code with DIANA [102] to output Mathematica code. Feynman rules
are generated using LANHEP [103–106] and checked by-hand, as well as compared with
refs. [107, 108]. We make use of the Mathematica packages S@M [109] and FeynCalc [93, 94]
for debugging purposes. The simplification of large expressions is accelerated enormously with
the multivariate polynomial greatest common divisor implementation in Fermat [110], and it
is used through an interface to Mathematica [111].

A major part of our calculation involves the reduction of spinor (helicity) chains to a set of
basis structures, as outlined in ref. [46], where the elements of the minimal set are referred to
as “standard matrix elements.” We extended these reduction prescriptions to spinor chains
of type left-right “〈· · · 〉” and right-left “[· · · ]”, which appear in our SMEFT contributions. In
principle, a reduction to one spinor master structure is possible for the SM helicity amplitudes
[46]; and a reduction to two master structures can be performed for the amplitudes with one
flipped b-quark helicity (left-right and right-left types). In practice, we balance the number of
structures we use against the number of terms produced when we express the coefficients in
terms of kinematic invariants.
We begin by reducing all spinor combinations to a set of 59 structures. To achieve a

full reduction to two master structures one can directly write down a set of 58 linearly
independent equations in terms of nine Lorentz-invariants [46]. The use of Lorentz-invariants
to parameterize the kinematics enforces one additional Gram determinant constraint [112],
which leaves 57 independent equations. This system of equations is highly complicated, but
can be solved with the aid of Kira [97, 113] for example. The resulting expressions are huge
and do not directly to lead to simplifications when inserted in the amplitudes. Instead we
follow the suggestion of ref. [46], and perform the reduction using only equations that do
not introduce additional denominator structures. For example, we express the SM amplitude
with left-handed b-quarks and contributions from Q(3,33)

ϕq ,Q33
uW ,Q33

uG,Q4L to the same helicity
configuration in terms of five spinor chains. We reduce to a larger basis set for the amplitudes
with flipped quark helicities, since the equations would either introduce additional complicated
denominator structures, or do not lead to simpler final results.
Both resonant and non-resonant contributions contain box diagrams that naively lead

to huge expressions. While expressing the results in terms of scalar box integrals in six
dimensions removes some of the cancellations between the box and triangle diagrams, we do
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not use a basis that lends itself to simple expressions for the loop amplitudes. In order to
deal with leftover spurious cancellations that eventually will impair numerical stability we
implement a simple rescaling scheme stability control mechanism.

This stability control works as follows: For each phase space point we evaluate our matrix
elements twice — in double precision, and again in double precision where all dimensionful
quantities are rescaled by a constant. Taking into account the dimensionality of the matrix
element, we then divide out the constant and check how many digits agree to get an estimate
for the numerical precision of the result. We find that for precision runs the integration
eventually focuses its sampling on numerically unstable points and the integration becomes
unstable. If the stability check fails with less than four digits precision left, we reevaluate
them using the QD library [114], which implements twice the precision of IEEE doubles
(approximately 32 decimal digits) using two double precision variables. This is faster than an
evaluation with full IEEE quad precision and allows for Fortran compilers without such quad
precision support.

We directly compute all amplitudes for single-top-quark production. The matrix elements
for single-top-antiquark production are obtained by crossing the single-top-quark matrix
elements after applying a CP transformation. After the CP transformation one crosses the
light quarks and reidentifies electron and neutrino particle labels to obtain the single-top-
antiquark result. The CP transformation itself introduces sign flips for the imaginary parts
of the Wilson coefficients, which we take into account, but leaves the other parts unaffected
since we assume Vtb is real.

In order to maintain a connection to PDF fits, we implement the use of double deep inelastic
scattering (DDIS) scales [14] in MCFM. We label the DIS momentum transfer between the
light-quark line and the b-quark line as Q2 = −q2. We then set the renormalization and
factorization scales for the light-quark line to µ2 = Q2, and for the b-quark line µ2 = Q2 +m2

t .
The implementation of DDIS scales at NLO is a non-trivial effort, since light line and heavy
line corrections have to be handled separately, and Catani-Seymour dipole contributions have
also to be accounted for with the right scales.
As part of our calculation we compute the decay width t → Wb at NLO including the

SMEFT operators, with an on-shell W -boson and a massless b-quark. This is consistent with
the complex mass scheme at NLO. We follow the steps of ref. [33] to perform the necessary
real emission phase space integrals. In addition to the integrals listed in ref. [33] table I, we
find that three additional finite phase space integrals 〈y〉, 〈z〉 and 〈yz〉 are necessary. We
compute these using the Mathematica package HypExp [115].

Crosschecks. We compute Feynman rules in the SM and the SMEFT with both LANHEP
and by hand, ensuring proper relative signs with the help of ref. [108]. Our SMEFT Feynman
rules agree with those in ref. [107]. We find different signs from the literature for results
obtained with Q33

uW and Q33
dW and the operators mixing with them at NLO, Q33

uG and Q33
dG.

The relative signs between Q33
uW and Q33

uG, and Q33
dW and Q33

dG are fixed by the anomalous
dimension matrix in ref. [83], and we agree with this through our operator renormalization.

The needed Feynman rules in off-shell single top production at NLO fromQ33
uW andQ33

uG,Q33
dG

all have a linear momentum dependence, and one might argue that the sign difference we
see could be because we define particle momenta as incoming. However, because we are
considering off-shell effects, we must introduce the operator Q33

dW , which adds an additional
contribution from the momentum independent W+W−b̄b vertex. The relative sign between
this contribution and the contributions from Q33

dW and Q33
dG at NLO is set by cancellation

between the poles for UV renormalization and IR subtraction. As we are overall consistent
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with the signs in ref. [107], this fixes the signs of both Q33
dW and Q33

dG. Since Q33
uW and Q33

uG

have the same structure and mixing, it also fixes their signs. Note that this is the first
calculation to include the operators Q33

dW and Q33
dG at NLO (in the off-shell process), so this

check is new.
We compare our results analytically to the SMEFT tree level matrix elements printed in

ref. [70], eq. (27). We find agreement up to the aforementioned sign of Q33
uW . We also find

full agreement between our results and the SMEFT NLO decay width results in eq. (120)
of ref. [85] as well as the mass and wavefunction renormalization constants, up to the same
sign of Q33

uW and of Q33
uG. As a consequence, we also disagree with the sign for the Q33

uW

contribution in the recent study in ref. [89], which uses the setup introduced by Zhang et al.
We find the same global sign difference for Q33

uW and Q33
dW when comparing our results against

the Protos code [63, 73]. We do agree on the relative signs between real and imaginary parts,
so the disagreement is purely the global sign of Q33

uW and Q33
dW .

We explicitly check QCD gauge invariance for our amplitudes — analytically for pole terms
and numerically for finite pieces. We note that all amplitudes contributing to Q33

uG and
Q33
dG are separately gauge invariant. As part of our setup we reproduce the SM NLO decay

width, which is calculated in detail in refs. [33, 116]. We extensively compare our off-shell SM
calculation to on-shell results for compatibility. We check the proper cancellation of poles
between real and virtual corrections by checking independence of the α parameter in the
MCFM Catani-Seymour dipole implementation [117–119] to the per-mille level. We also check
that all infrared singular limits of the real emission amplitude are approached correctly as
predicted by the Catani-Seymour dipole terms.

2.2. Implementation in MCFM-8.3

Our results are implemented in the upcoming release version 8.3 of MCFM. Here we describe
the user-visible modifications of MCFM. The code allows one to directly and easily reproduce
the plots in the following phenomenology section. We implement b tagging, top-quark and W
reconstruction, as well as preconfigured histograms for the most common observables in the
SMEFT and spin correlation studies. Our implementation provides an easy analysis framework
to perform further studies.

Dynamical double deep inelastic scattering scales can be consistently used at NLO by setting
dynamicscale to ‘DDIS’ and scale=facscale to 1d0. In this way the momentum transfer
along the W -boson Q2 is used as the scale for the light-quark-line corrections µ2 = Q2, and
µ2 = Q2 +m2

t for the heavy-quark-line corrections. These scales are also consistently used
for the non-resonant contributions, with QCD corrections on the ud-quark line, and separate
QCD corrections on the bottom-quark line.

The new block “Single top SMEFT, nproc=164,169” in the input file governs the inclusion
of SMEFT operators and corresponding orders. The scale of new physics Λ can be separately
set, and has a default value of 1000 GeV. The flag enable 1/lambda4 enables the 1/Λ4

contributions, where operators Q33
ϕud,Q33

dW ,Q33
dG and Q4R can contribute for the first time.

For the non-Hermitian operators we allow complex Wilson coefficients. We also have a flag to
disable the pure SM contribution, leaving only contributions from SMEFT operators either
interfered with the SM amplitudes or as squared contributions at 1/Λ4. This can be used to
directly and quickly extract kinematical distributions and the magnitudes of pure SMEFT
contributions.
To allow for easier comparisons with previous anomalous couplings results, and possibly

estimate further higher order effects, we allow for an anomalous couplings mode at LO by
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Table 1: Applied cuts at a center of momentum energy
√
s = 13 TeV, mO.S.

t = 173 GeV,
µX = µR = µF set to DDIS scales. W -boson and top-quark reconstruction are as
described in the text.

Jets pT,jet > 30 GeV, |ηjet| < 4.5, Rjet = 0.4
at least one b-jet and one non-b-jet (spectator)

Lepton plT > 25 GeV, |ηl| < 2.5
Neutrino pνT > 30 GeV

enabling the corresponding flag. The relations between our operators and the anomalous
couplings are the same as in eqs. (2) to (5).
The analysis/plotting routine is contained in the file ‘src/User/nplotter_ktopanom.f’,

where all observables presented in this study are implemented, and the W -boson/neutrino
reconstruction is implemented and can be switched on or off. With this one can directly
reproduce all the phenomenological results in this study.

3. Phenomenology

In this section we examine kinematic distributions in off-shell single-top-quark production
and decay in both the SM and the SMEFT. We begin by examining the effects of a W -boson
/ neutrino reconstruction on the top-quark reconstruction. We then study a set of angular
observables in the top-quark rest frame for the SM before we focus our attention on SMEFT
contributions. We address the importance of unique NLO perturbative corrections to the
SMEFT contributions compared to using LO predictions with SM K-factors. We also show
the behavior of the operators Q33

uG and Q33
dG that only enter at NLO and are shown here for

the first time for the full process.
Our set of cuts is given in table 1. We require at least one b-jet and one non-b-jet, but also

allow for a third jet of either kind. We refer to the leading non-b-jet as the spectator jet. On
top of these cuts, experimental anomalous couplings studies in t-channel production select
exactly two jets and have further cuts on the rapidities of the b and spectator jet [9–13]. We
find that these additional cuts decrease the acceptance, but do not alter any of our conclusions
here.
Our default choice of renormalization and factorization scales for the off-shell results are

the DDIS scales, where for the light-quark line the momentum transfer Q2 to the b-quark line
is used, µ2 = Q2, and for the b-quark line µ2 = Q2 +m2

t . It has been shown that the DDIS
scales lead to small perturbative corrections in inclusive observables [14, 30]. We confirm
that the difference between using a fixed scale µ2 = m2

t and the DDIS scales is tiny for most
NLO accurate observables, even differentially. For LO observables like the subleading b or
subleading light quark jet transverse momentum, which only enter through the real emission,
the scale choices lead to significant differences.
We note that in on-shell results, we use the fixed scale mt which is used throughout the

literature. While a comparison between off-shell results with DDIS scales and on-shell results
with mt as a scale is not on precisely equal footing, we consider the DDIS scales to be an
improvement over the current calculations that do not allow for this natural scale choice.
While the DDIS paradigm formally breaks down at NNLO in QCD, interference between the
light- and heavy-quark lines is expected to be small [58, 60]. In addition, there remains an
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analytic relationship to DIS in PDF fits [19] that is directly constrained by the consistency of
the calculation of DDIS.

We use CT14 parton distribution functions (PDFs) [120] at the corresponding perturbative
orders with a value of αNLO

s (mZ) = 0.118 at NLO, and at αLO
s (mZ) = 0.13 at LO. The

CKM matrix is chosen to be diagonal and all other parameters have recent PDG values
as implemented in MCFM-8.3. The top-quark width is evaluated at the corresponding
perturbative order for t → Wb at the fixed scale mt and takes into account the SMEFT
contributions at LO and NLO.

3.1. Off-shell and W -reconstruction effects in the Standard Model.

It is well known that in fixed order perturbation theory colored resonances are sensitive
to soft radiation [121]. At higher orders in perturbation theory soft and collinear parton
configurations between virtual corrections and real emission corrections cancel in the singular
limit. However, configurations approaching the soft/collinear limits are still present. In our
case, the top-quark is reconstructed from a reconstructed b-jet and W -boson. Depending on
whether such radiation configurations get clustered with the b-jet, and whether the radiation
is produced before the resonance or in its decay, one can observe a mass enhancement or
diminution.

Assuming the top-quark is in the on-shell approximation, the cancellation between virtual
corrections and real emission is pinched to the phase space with an on-shell reconstructed
top-quark. Having an off-shell top quark makes the approach of the cancellation explicit, with
large positive and negative contributions around ' mt ± Γt. To obtain a smooth invariant
mass distribution near the peak one can either choose a larger binning with radius ' Γt or
include all-order effects through parton shower or resummation.
A further complication is that experimental analyses have to use a reconstruction scheme

for the leptonically decaying W -boson. The neutrino’s transverse component can be derived
by requiring the event’s transverse momentum to be vanishing. On the other hand, the longi-
tudinal component is completely unknown and needs to be reconstructed. This reconstruction
induces a smearing, not just of the W -boson, but also of the reconstructed top quark. We
follow the most recent ATLAS study on anomalous coupling contributions [12] and reconstruct
the neutrino’s four-vector by requiring that the invariant mass of the neutrino-electron system
in the top-quark decay equals the on-shell W -boson mass. With this condition one has either
two real solutions or two complex solutions for the neutrino’s longitudinal component. In the
former case the solution closer to zero is taken. For the latter case of complex solutions, the
neutrino’s transverse component is rescaled by 0.9 until a real and positive solution is found.
As a result of the neutrino reconstruction the reconstructed top-quark invariant mass

distribution gets smeared, and the aforementioned problem is somewhat ameliorated, although
not fully removed. We show this in fig. 4, where we compare the reconstructed top-quark
invariant mass distribution using the full neutrino four momentum to using the reconstructed
neutrino (smeared). For comparison the on-shell distributions are also shown. The full off-shell
result receives large negative (not shown on the logarithmic scale) and positive contributions
close to the resonance. These are smeared by using the reconstructed neutrino, but one can
still see a noticeable dip just below mt. These off-shell effects in comparison to the on-shell
approximation are well known [41–43].

We note that the previous off-shell SM calculation in the complex mass scheme in ref. [43]
with an on-shell W -boson seems to obtain a smooth mt distribution with 1 GeV bins without
applying any smearing procedures. This behavior could be due to the way the W -boson is
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Figure 4: Reconstructed top-quark mass distribution for an on-shell and off-shell top quark at
NLO. The full result denotes reconstruction through the full W -boson and b-jet four
vectors. The “W rec.” lines denote the reconstruction of the neutrino’s longitudinal
component.

handled, leading to a smoothing effect, although no indication of how to treat the W -boson
decay is given in their study. It is also conceivable that since the affected region is not
well-defined in fixed order perturbation theory, their use of a different subtraction procedure
leads to a differently distributed result there.
The off-shell effects we consider are important for experimental observables. In fig. 5 we

show the positron transverse momentum distribution, which is sensitive to soft QCD radiation
corrections only through the recoil of the W boson. The off-shell distribution is up to ∼ 15%
harder at 300 GeV compared to the on-shell result, while corrections at low pT are at the few
percent level. The K-factor (σNLO/σLO) in an on-shell calculation and the K-factor in the
off-shell calculation differ by at most a few percent. Similar corrections can be seen in the
leading b-jet transverse momentum distribution in fig. 6. There, off-shell effects at NLO are
about 5− 10% in the tail. The ratio of the K-factors for the off-shell and on-shell production
is not flat, and shows deviations with up to ∼ 10%.

Deviations in the distributions of these top-quark decay products will have a significant effect
on LHC measurements of the top-quark mass. To avoid neutrino reconstruction uncertainties,
it is common practice to fit the top-quark mass based on the line shape of the b-jet/lepton
invariant mass mbl [8, 18]. In fig. 7 we observe that off-shell effects lead to a large ∼ 20% shift
in the mbl line shape close to the kinematic endpoint. In a template fit this effect is similar to
a few GeV shift in the top-quark mass, though the difference might be partially ameliorated
by further final state showering.

3.2. Angular observables in the top-quark rest frame

Apart from common kinematical distributions like transverse momenta, rapidities and in-
variant masses, t-channel single-top-quark analyses are characterized by their use of angular
distributions. In particular, the angle between the leading non-b jet and the lepton from
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Figure 5: Positron transverse momentum distributions for the top-quark on-shell approxima-
tion and for the off-shell top quark at LO and NLO. The lower panel shows the
ratio of the NLO/LO K-factors from the off-shell and on-shell results.
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Figure 6: Leading b-jet transverse momentum distributions for the top-quark on-shell approx-
imation and for the off-shell top quark at LO and NLO. The lower panel shows the
ratio of the NLO/LO K-factors from the off-shell and on-shell results.
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Figure 7: Invariant mass of the positron plus leading b-jet system for the top-quark on-shell
approximation and for the off-shell top quark at LO and NLO. The lower panel
shows the ratio of the ratio of the NLO/LO K-factors from the off-shell and on-shell
results.

the top-quark decay is strongly correlated in the top-quark rest frame [16, 17], and this is
used in part to identify the t-channel state [31]. Any modification (other than scaling) of
the production or decay vertices is expected to be observed as a modification of one or more
angular observables [23, 24]. While most of the angles are well-behaved under the inclusion of
off-shell effects from fixed order perturbation theory, we find that one angle is highly unstable
to soft radiation.

The first set of angles we examine is sensitive to operators that modify the production of the
top quark. A coordinate system is established by using the direction of the spectator quark ~pj
in the top-quark rest frame to define a corresponding axis ẑ. A second axis ŷ is defined by the
direction orthogonal to the plane made by the spectator quark and the initial-state light-quark,
while the third axis x̂ is defined by requiring the coordinate system to be right-handed [24].
The direction of the initial-state quark is taken to be that of the proton beam that shares the
same sign of rapidity as that of the spectator jet.

ẑ =
~pj
|~pj |

, ŷ =
~pj × ~pq
|~pj × ~pq|

, x̂ = ŷ × ẑ . (20)

We refer to angles of the lepton in the top-quark rest frame with respect to these axes as
cos θl,x, cos θl,y, cos θl,z.

The second coordinate system we consider is sensitive to the decay vertex, and starts with
the direction ~q of the W -boson in the top-quark rest frame as one axis q̂. The second axis N̂
is orthogonal to the plane defined by q̂ and the top-quark spin direction, as implemented by
the spectator quark direction ~st in the top-quark rest frame. The last axis T̂ is again defined

17



by the right-handedness of the coordinate system [23]:

q̂ =
~q

|~q|
, N̂ =

~st × ~q
|~st × ~q|

, T̂ = q̂ × N̂ . (21)

From this basis we construct the angles between the lepton in the W -boson rest frame with
respect to these three axes. We refer to them as cos θ∗l for the angle with respect to the q̂ axis,
and cos θNl , cos θTl with respect to N̂ and T̂ , respectively. In addition to the angles described
here, one can find angles between the N̂ and T̂ axes, and projections of the lepton in the
W boson rest frame onto the N̂ -T̂ plane being used in analyses. We have examined those
projection angles, but do not find interesting results regarding the SMEFT contributions.

Discussion of angular observables. First we note that neutrino reconstruction has a no-
ticeable impact on most of the observables in the top-quark rest frame. This is expected as
the top-quark rest frame has a direct dependence on the neutrino four-momentum. Since
the reconstruction procedure we use is based on an experimental algorithm described in
section 3.1, we do not comment further on angular differences due to other reconstruction
procedures. Both on-shell and off-shell results that follow use a reconstructed neutrino.
It was previously observed [31] that, after cuts, going from LO to NLO had little effect

on the SM angular distributions used to measure t-channel single-top-quark production.
When comparing off-shell distributions to on-shell results, this similarity in most angular
distributions is maintained. For example, for cos θl,x the K-factor ratio is ' 0.97− 0.98 and
flat within 1− 2% of integration noise. In the SM, off-shell effects have rather uniform impact.
With one notable exception, the largest deviations in shape we find are ∼ 10% in cos θl,y
and cos θ∗l which are modestly relevant when considering backgrounds to SMEFT operators.
For completeness we include corresponding plots with K-factor ratios in figs. 14 to 18 in
appendix A.
One angular distribution that is currently used in experimental analyses [13] demands

further discussion. The angular distribution of cos θNl becomes unphysical at NLO for an
off-shell top quark in fixed order perturbation theory, see fig. 8. This is because the top-quark
invariant mass distribution is not well-defined close to the resonance, where soft radiation
from production and decay cancels. It turns out that the angle cos θNl is highly sensitive to
this cancellation and the cross section prediction becomes negative for cos θNl & 0, which is
compensated by an according increase for cos θNl . 0.
When using this observable at LO or with the on-shell approximation one seemingly does

not have this issue, since no negative cross section is observed. But the intrinsic sensitivity to
the cancellation of soft radiation in this angle is merely hidden. Effects from resummation
and parton showers can change the distribution drastically. As such we do not recommend to
use this angle for precision studies in the SM and the SMEFT. One must be especially careful
in the latter case, as SMEFT operators can modify gluon radiation. A resummation or parton
shower without taking into account the SMEFT operators might lead to incorrect conclusions
or limits.

3.3. SMEFT contributions

We now turn our attention to modifications of the angular distributions by SMEFT operators
in the off-shell NLO QCD calculation. We distinguish how SMEFT operators modify the
distributions compared to SM NLO effects. We also discuss the importance of higher order
corrections in the EFT for the consistent extraction of limits on SMEFT Wilson coefficients.
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Figure 8: Angular distribution cos θNl at LO and NLO for an on-shell and off-shell top quark.
The NLO off-shell result becomes unphysical and indicates a strong sensitivity to
the cancellation of soft radiation.

Operators that begin to enter at 1/Λ2 receive corrections at order 1/Λ4. To obtain universal
results one needs to make sure that these higher order EFT corrections are small.

We limit ourselves to some representative examples here, as a detailed study of all operators
and their effects on all observables used in single-top studies is beyond the scope of this paper.
Additional observables can easily and quickly be predicted with our published code. We only
show off-shell results here and present K-factors for them, if applicable. We do not display
Q(3,33)
ϕq in our plots since this operator is just a rescaling of the SM results with an effective

modification of Vtb. We consider the case where just one Wilson coefficient is non-zero and
choose Wilson coefficients of one or i, with a scale Λ = 1000 GeV. This choice is not very
important here, except for the consideration of higher order effects 1/Λ4. Otherwise, our
presentation of the pure (SM subtracted) and normalized SMEFT contributions divides out
the Wilson coefficient.

NLO and 1/Λ4 effects. We start with a discussion of higher order effects in QCD and in the
SMEFT. It has already been pointed out in ref. [89] that inclusively the K-factors for the
SMEFT contributions are different from the SM K-factor broadly by 10− 25% depending on
the operator combination. We show below that differentially this worsens somewhat. For
the actual distributions used to constrain BSM physics, NLO QCD corrections to the SMEFT
operators are essential.
We begin with one of the most important operators Q33

uW , that leads to the richest phe-
nomenological structure. In fig. 9 we show the pure SMEFT contribution (with the SM
contribution subtracted) at LO and NLO in QCD to get an impression of the perturbative
corrections. We also include effects of order 1/Λ2 and additionally of order 1/Λ4 to show
the impact of higher order EFT corrections. In the top panel the absolute corrections are
shown and in the bottom panel we show K ≡ NLO/LO as a representation of the perturbative
corrections. For comparison we have also included the K-factor for the SM contribution itself
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Figure 9: Distribution of cos θl,x for the pure SMEFT contribution with Re C33
uW = 1, Λ =

1000 GeV. Shown are results at LO and NLO in QCD and at 1/Λ2 in the SMEFT as
well as with higher order effects 1/Λ4.

in black.
The K-factor for the SMEFT contribution is not flat, and unique NLO QCD corrections

are indeed important, especially for the region of cos θl,x ' −1. The impact of the 1/Λ4

corrections on the K-factor is moderate in size, apart from the first bins. This effect reduces
for a smaller Wilson coefficient or a larger scale Λ, but might have to be considered depending
on the analysis. Differentially the corrections are an important effect to consider, but the size
of the contributions at cos θl,x ' −1 are small in comparison to the other regions. We show
the same operator contributions for cos θl,y in fig. 10. Generally NLO corrections are sizable
differentially and important to correctly capture the shapes.

The imaginary part of Q33
uW . While for most of the 1/Λ2 contributions with Wilson coef-

ficients of one, the higher order EFT effects seem to be moderate, this is not the case for
the imaginary part of Q33

uW ’s Wilson coefficient, Im C33
uW . It it claimed in the literature that

the imaginary part of Q33
uW does not contribute at 1/Λ2 [89, 122]. We do not find this to be

true (with our set of cuts). While inclusively the operator contribution for Im C33
uW = 1 and

Λ = 1000 GeV is tiny at 1/Λ2, this is not true differentially. At LO the 1/Λ4 contributions are
small, but they are not flat, and the NLO contribution is neither small nor flat. We display
these issues in fig. 11 and fig. 12. Figure 11 shows with the cos θl,x distribution that inclusively
the contribution from Im C33

uW is small at LO, but it is large at NLO QCD with a complex
angular structure. The cos θl,y distribution in fig. 12 shows that differentially in cos θl,y at
NLO, Im C33

uW leads to large contributions, where large negative contributions for cos θl,y < 0
cancel with positive contributions in cos θl,y > 0 inclusively, but will strongly modify the SM
result. Interestingly the shift in cos θl,y here is similar in shape and size to the shift seen in
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Figure 10: Distribution of cos θl,y for the pure SMEFT contribution with Re C33
uW = 1, Λ =

1000 GeV. Shown are results at LO and NLO in QCD and at 1/Λ2 in the SMEFT
as well as with higher order effects 1/Λ4.

fig. 15 when going from an on-shell approximation to the full off-shell result in the SM.

The sensitivity to 1/Λ2 contributing SMEFT operators. One way to present the sensitivity
of the angular observables to the various operators is to show normalized distributions where
the SM contributions are divided out. As previous we compute the SMEFT contribution σEFT,
but now we also normalize these distributions to themselves and divide by the normalized SM
distribution. In this way one can see the shape difference of the SMEFT contribution with
respect to the SM. Since shape differences in differential distributions result in the highest
discriminating power, operators with stronger shape differentials can be constrained better.
In short, what we show in the following for a differential distribution with respect to the
variable x is (

1

σEFT ·
∆σEFT

∆x

)/(
1

σSM ·
∆σSM

∆x

)
, (22)

where σEFT is the SM subtracted pure SMEFT contribution, σ = σEFT + σSM.
In fig. 13 we show the resulting shapes for the real and imaginary parts of the Wilson

coefficients for the operators Q33
uW and Q33

uG and the four quark operator Q4L. Note that the
operator Q33

uG has no LO contribution since it only enters at NLO. Generally Im C33
uW and

Im C33
uG have the largest shape differentials. Arriving at precise limits on Wilson coefficients is

thus strongly influenced by unique NLO contributions. The corresponding distributions for
the angles cos θl,y, cos θl,z and cos θ∗l as well as cos θTl are in included in appendix A in figs. 19
to 22 for completeness, and are maximally sensitive to the imaginary parts of the operators.
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The sensitivity to 1/Λ4 contributing SMEFT operators. We treat operators that enter at
1/Λ4 as leading order in the SMEFT in the sense that we do not consider possible mixing
with dimension eight operators that appear at NLO in QCD. We include these operators to
allow for a mapping onto the right-handed anomalous coupling experimental limits, such as
arise in W ′ models [22, 90, 91]. These operators do not interfere with the SM amplitude.
We present self-normalized angular distributions that are divided by the SM angular

distribution shape for the operators Q33
ϕud,Q33

dW ,Q33
dG and Q4R in figs. 23 to 27 in appendix A.

The cross sections only depend on the modulus squared of the Wilson coefficients |Ci|2.
Operators like Q33

ϕud that act like a right-handed Wtb coupling predictably create a strong
cos θl,z dependence that can be distinguished from the four-fermion operatorQ4R by comparing
to cos θl,y.

4. Conclusions

In this study we present for the first time a full 2→ 4 off-shell calculation of t-channel single-
top-quark production at NLO in QCD, taking into account the decay of the W -boson at the
amplitude level. We use the complex mass scheme to gauge-invariantly include such off-shell
effects in both the SM, and in the SMEFT framework. We include all relevant dimension six
operators that affect the Wtb vertex at NLO in QCD.
We examine off-shell effects in the SM and find significant differences with respect to the

on-shell approximation. We also consider effects due to the reconstruction of theW -boson and
neutrino coincident with the off-shell effects. While sensitivity of the reconstructed top-quark
invariant mass distribution near its peak due to soft radiation is expected for an off-shell top
quark; we point out for the first time how this carries through to certain angular distributions
used by experimental analyses. In particular, we find that the cos θNl distribution used by
some analyses, which is constructed in the top-quark rest frame, becomes unphysical when
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off-shell effects are included. This problem is hidden in the on-shell calculations. Without a
resummation of soft radiation in the on-shell region, we cannot recommend the use of this
observable for precision studies.
Our results move beyond the common LO SMEFT picture and allow for a fully consistent

SMEFT evaluation at 1/Λ2, as well as partial corrections from 1/Λ4 operators in order to
compare to the anomalous couplings picture. We show that NLO QCD effects to the SMEFT
contributions can be large in angular distributions, and in general are not captured by a
rescaling with SM K-factors. In addition, the operators Q33

uG and Q33
dG are included for the

first time in the full process at NLO. These operators only begin to enter at NLO in QCD,
and are important for consistent NLO limits on Wilson coefficients.
In addition, we disagree with the sign of the results obtained from the SMEFT operators
Q33
uW ,Q33

uG, Q33
dW ,Q33

dG found in the literature. The relative signs of each operator pair are
fixed by renormalization and its absolute signs are fixed by terms we consider that first enter
off-shell at NLO. We present an extensive list of checks of our amplitudes that should fix all
of our signs to the correct values to obtain the gauge-invariant and UV and IR finite result.
While we present the most complete fixed-order perturbative calculation of the SMEFT

operators, a dedicated study of parton shower effects to observables used for SMEFT studies
would be useful. Parton shower effects are included in ref. [89], but they do not discuss
their impact on the fixed order results. Some observables, like the top-quark invariant mass
distribution clearly need to include all-order effects. Our study is also performed with a
massless bottom quark, but bottom-quark mass effects could become interesting at future
precision levels.

Our implementation is publicly available in MCFM-8.3 and includes preconfigured plotting
routines to reproduce all distributions in this study. It is our goal to allow for easy, yet
precise and refined determination of observables in the SM and better constraints on SMEFT
operators.
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Figure 21: To itself and to the SM normalized SMEFT contributions to the cos θTl distribution
at NLO in QCD. Results are presented for the real and imaginary parts of C33
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uG as well as for the four quark operator C4L.
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Figure 22: To itself and to the SM normalized SMEFT contributions to the cos θ∗l distribution
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Figure 23: To itself and to the SM normalized SMEFT contributions to the cos θl,x distribution
at NLO in QCD. Results are presented for Q33

ϕud, Q33
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Figure 24: To itself and to the SM normalized SMEFT contributions to the cos θl,y distribution
at NLO in QCD. Results are presented for Q33
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four quark operator Q4R.

30



0

2

4

−1 −0.5 0 0.5 1

cos(θl,z)

S
M

 n
or

m
al

iz
ed

 1
σ

⋅∆
σ

∆c
os

(θ
l,z

)
Cφud 1 Λ4

CdW 1 Λ4

CdG 1 Λ4

C4R 1 Λ4

Figure 25: To itself and to the SM normalized SMEFT contributions to the cos θl,z distribution
at NLO in QCD. Results are presented for Q33

ϕud, Q33
dW and Q33

dG as well as for the
four quark operator Q4R.

0.5

1.0

1.5

2.0

2.5

−1 −0.5 0 0.5 1

cos(θl
T)

S
M

 n
or

m
al

iz
ed

 1
σ

⋅∆
σ

∆c
os

(θ
lT
)

Cφud 1 Λ4

CdW 1 Λ4

CdG 1 Λ4

C4R 1 Λ4

Figure 26: To itself and to the SM normalized SMEFT contributions to the cos θTl distribution
at NLO in QCD. Results are presented for Q33

ϕud, Q33
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four quark operator Q4R.

31



1.0

1.5

2.0

2.5

3.0

−1 −0.5 0 0.5 1

cos(θl
*)

S
M

 n
or

m
al

iz
ed

 1
σ

⋅∆
σ

∆c
os

(θ
l* )

Cφud 1 Λ4

CdW 1 Λ4

CdG 1 Λ4

C4R 1 Λ4

Figure 27: To itself and to the SM normalized SMEFT contributions to the cos θ∗l distribution
at NLO in QCD. Results are presented for Q33

ϕud, Q33
dW and Q33

dG as well as for the
four quark operator Q4R.

References

[1] ATLAS collaboration, Measurement of the t-channel single top-quark production cross
section in pp collisions at

√
s = 7 TeV with the ATLAS detector, Phys. Lett. B717

(2012) 330 [1205.3130].

[2] ATLAS collaboration, Comprehensive measurements of t-channel single top-quark
production cross sections at

√
s = 7 TeV with the ATLAS detector, Phys. Rev. D90

(2014) 112006 [1406.7844].

[3] ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark
and top-antiquark t-channel production in pp collisions at

√
s = 13 TeV with the

ATLAS detector, JHEP 04 (2017) 086 [1609.03920].

[4] ATLAS collaboration, Fiducial, total and differential cross-section measurements of
t-channel single top-quark production in pp collisions at 8 TeV using data collected by
the ATLAS detector, Eur. Phys. J. C77 (2017) 531 [1702.02859].

[5] CMS collaboration, Measurement of the t-channel single top quark production cross
section in pp collisions at

√
s = 7 TeV, Phys. Rev. Lett. 107 (2011) 091802

[1106.3052].

[6] CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp
collisions at

√
s = 7 TeV, JHEP 12 (2012) 035 [1209.4533].

[7] CMS collaboration, Cross section measurement of t-channel single top quark production
in pp collisions at

√
s = 13 TeV, Phys. Lett. B772 (2017) 752 [1610.00678].

[8] CMS collaboration, Measurement of the top quark mass using single top quark events
in proton-proton collisions at

√
s = 8 TeV, Eur. Phys. J. C77 (2017) 354 [1703.02530].

32

https://doi.org/10.1016/j.physletb.2012.09.031
https://doi.org/10.1016/j.physletb.2012.09.031
https://arxiv.org/abs/1205.3130
https://doi.org/10.1103/PhysRevD.90.112006
https://doi.org/10.1103/PhysRevD.90.112006
https://arxiv.org/abs/1406.7844
https://doi.org/10.1007/JHEP04(2017)086
https://arxiv.org/abs/1609.03920
https://doi.org/10.1140/epjc/s10052-017-5061-9
https://arxiv.org/abs/1702.02859
https://doi.org/10.1103/PhysRevLett.107.091802
https://arxiv.org/abs/1106.3052
https://doi.org/10.1007/JHEP12(2012)035
https://arxiv.org/abs/1209.4533
https://doi.org/10.1016/j.physletb.2017.07.047
https://arxiv.org/abs/1610.00678
https://doi.org/10.1140/epjc/s10052-017-4912-8
https://arxiv.org/abs/1703.02530


[9] CMS collaboration, Measurement of the t-channel single-top-quark production cross
section and of the | Vtb | CKM matrix element in pp collisions at

√
s= 8 TeV, JHEP 06

(2014) 090 [1403.7366].

[10] CMS collaboration, Measurement of Top Quark Polarisation in T-Channel Single Top
Quark Production, JHEP 04 (2016) 073 [1511.02138].

[11] CMS collaboration, Search for anomalous Wtb couplings and flavour-changing neutral
currents in t-channel single top quark production in pp collisions at

√
s = 7 and 8 TeV,

JHEP 02 (2017) 028 [1610.03545].

[12] ATLAS collaboration, Analysis of the Wtb vertex from the measurement of
triple-differential angular decay rates of single top quarks produced in the t-channel at√
s = 8 TeV with the ATLAS detector, JHEP 12 (2017) 017 [1707.05393].

[13] ATLAS collaboration, Probing the W tb vertex structure in t-channel single-top-quark
production and decay in pp collisions at

√
s = 8 TeV with the ATLAS detector, JHEP

04 (2017) 124 [1702.08309].

[14] T. Stelzer, Z. Sullivan and S. Willenbrock, Single top quark production via W - gluon
fusion at next-to-leading order, Phys. Rev. D56 (1997) 5919 [hep-ph/9705398].

[15] ATLAS, CMS collaboration, Combinations of single-top-quark production cross-section
measurements and |fLVVtb| determinations at

√
s = 7 and 8 TeV with the ATLAS and

CMS experiments, 1902.07158.

[16] G. Mahlon and S. J. Parke, Improved spin basis for angular correlation studies in single
top quark production at the Tevatron, Phys. Rev. D55 (1997) 7249 [hep-ph/9611367].

[17] G. Mahlon and S. J. Parke, Single top quark production at the LHC: Understanding
spin, Phys. Lett. B476 (2000) 323 [hep-ph/9912458].

[18] ATLAS collaboration, Measurement of the top quark mass in topologies enhanced with
single top-quarks produced in the t-channel in

√
s = 8 TeV ATLAS data, .

[19] Z. Sullivan, Are PDFs still consistent with Tevatron data?, EPJ Web Conf. 172 (2018)
03008 [1711.04018].

[20] N. A. Abdulov, H. Jung, A. V. Lipatov, G. I. Lykasov and M. A. Malyshev, Employing
RHIC and LHC data to determine the transverse momentum dependent gluon density
in a proton, Phys. Rev. D98 (2018) 054010 [1806.06739].

[21] T. M. P. Tait and C. P. Yuan, The Phenomenology of single top quark production at the
Fermilab Tevatron, hep-ph/9710372.

[22] T. M. P. Tait and C. P. Yuan, Single top quark production as a window to physics
beyond the standard model, Phys. Rev. D63 (2000) 014018 [hep-ph/0007298].

[23] J. A. Aguilar-Saavedra and J. Bernabeu, W polarisation beyond helicity fractions in top
quark decays, Nucl. Phys. B840 (2010) 349 [1005.5382].

[24] J. A. Aguilar-Saavedra and S. Amor Dos Santos, New directions for top quark
polarization in the t-channel process, Phys. Rev. D89 (2014) 114009 [1404.1585].

33

https://doi.org/10.1007/JHEP06(2014)090
https://doi.org/10.1007/JHEP06(2014)090
https://arxiv.org/abs/1403.7366
https://doi.org/10.1007/JHEP04(2016)073
https://arxiv.org/abs/1511.02138
https://doi.org/10.1007/JHEP02(2017)028
https://arxiv.org/abs/1610.03545
https://doi.org/10.1007/JHEP12(2017)017
https://arxiv.org/abs/1707.05393
https://doi.org/10.1007/JHEP04(2017)124
https://doi.org/10.1007/JHEP04(2017)124
https://arxiv.org/abs/1702.08309
https://doi.org/10.1103/PhysRevD.56.5919
https://arxiv.org/abs/hep-ph/9705398
https://arxiv.org/abs/1902.07158
https://doi.org/10.1103/PhysRevD.55.7249
https://arxiv.org/abs/hep-ph/9611367
https://doi.org/10.1016/S0370-2693(00)00149-0
https://arxiv.org/abs/hep-ph/9912458
https://doi.org/10.1051/epjconf/201817203008
https://doi.org/10.1051/epjconf/201817203008
https://arxiv.org/abs/1711.04018
https://doi.org/10.1103/PhysRevD.98.054010
https://arxiv.org/abs/1806.06739
https://arxiv.org/abs/hep-ph/9710372
https://doi.org/10.1103/PhysRevD.63.014018
https://arxiv.org/abs/hep-ph/0007298
https://doi.org/10.1016/j.nuclphysb.2010.07.012
https://arxiv.org/abs/1005.5382
https://doi.org/10.1103/PhysRevD.89.114009
https://arxiv.org/abs/1404.1585


[25] J. A. Aguilar-Saavedra and J. Bernabeu, Breaking down the entire W boson spin
observables from its decay, Phys. Rev. D93 (2016) 011301 [1508.04592].

[26] J. A. Aguilar-Saavedra, J. Boudreau, C. Escobar and J. Mueller, The fully differential
top decay distribution, Eur. Phys. J. C77 (2017) 200 [1702.03297].

[27] G. Bordes and B. van Eijk, Calculating QCD corrections to single top production in
hadronic interactions, Nucl. Phys. B435 (1995) 23.

[28] P. Kant, O. M. Kind, T. Kintscher, T. Lohse, T. Martini, S. Mölbitz et al., HatHor for
single top-quark production: Updated predictions and uncertainty estimates for single
top-quark production in hadronic collisions, Comput. Phys. Commun. 191 (2015) 74
[1406.4403].

[29] B. W. Harris, E. Laenen, L. Phaf, Z. Sullivan and S. Weinzierl, Fully differential
single-top-quark cross section in next-to-leading Order QCD, Phys. Rev. D66 (2002)
054024 [hep-ph/0207055].

[30] Z. Sullivan, Understanding single-top-quark production and jets at hadron colliders,
Phys. Rev. D70 (2004) 114012 [hep-ph/0408049].

[31] Z. Sullivan, Angular correlations in single-top-quark and Wjj production at
next-to-leading order, Phys. Rev. D72 (2005) 094034 [hep-ph/0510224].

[32] Q.-H. Cao and C. P. Yuan, Single top quark production and decay at next-to-leading
order in hadron collision, Phys. Rev. D71 (2005) 054022 [hep-ph/0408180].

[33] J. M. Campbell, R. K. Ellis and F. Tramontano, Single top production and decay at
next-to-leading order, Phys. Rev. D70 (2004) 094012 [hep-ph/0408158].

[34] R. Schwienhorst, C. P. Yuan, C. Mueller and Q.-H. Cao, Single top quark production
and decay in the t-channel at next-to-leading order at the LHC, Phys. Rev. D83 (2011)
034019 [1012.5132].

[35] J. M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order
Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett.
102 (2009) 182003 [0903.0005].

[36] J. M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for
t-channel production of single top and fourth generation quarks at hadron colliders,
JHEP 10 (2009) 042 [0907.3933].

[37] J. M. Campbell and R. K. Ellis, Top-Quark Processes at NLO in Production and Decay,
J. Phys. G42 (2015) 015005 [1204.1513].

[38] J. M. Campbell and R. K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys.
Proc. Suppl. 205-206 (2010) 10 [1007.3492].

[39] R. Pittau, Final state QCD corrections to off-shell single top production in hadron
collisions, Phys. Lett. B386 (1996) 397 [hep-ph/9603265].

[40] M. Beneke, A. P. Chapovsky, A. Signer and G. Zanderighi, Effective theory calculation
of resonant high-energy scattering, Nucl. Phys. B686 (2004) 205 [hep-ph/0401002].

34

https://doi.org/10.1103/PhysRevD.93.011301
https://arxiv.org/abs/1508.04592
https://doi.org/10.1140/epjc/s10052-017-4761-5
https://arxiv.org/abs/1702.03297
https://doi.org/10.1016/0550-3213(94)00460-V
https://doi.org/10.1016/j.cpc.2015.02.001
https://arxiv.org/abs/1406.4403
https://doi.org/10.1103/PhysRevD.66.054024
https://doi.org/10.1103/PhysRevD.66.054024
https://arxiv.org/abs/hep-ph/0207055
https://doi.org/10.1103/PhysRevD.70.114012
https://arxiv.org/abs/hep-ph/0408049
https://doi.org/10.1103/PhysRevD.72.094034
https://arxiv.org/abs/hep-ph/0510224
https://doi.org/10.1103/PhysRevD.71.054022
https://arxiv.org/abs/hep-ph/0408180
https://doi.org/10.1103/PhysRevD.70.094012
https://arxiv.org/abs/hep-ph/0408158
https://doi.org/10.1103/PhysRevD.83.034019
https://doi.org/10.1103/PhysRevD.83.034019
https://arxiv.org/abs/1012.5132
https://doi.org/10.1103/PhysRevLett.102.182003
https://doi.org/10.1103/PhysRevLett.102.182003
https://arxiv.org/abs/0903.0005
https://doi.org/10.1088/1126-6708/2009/10/042
https://arxiv.org/abs/0907.3933
https://doi.org/10.1088/0954-3899/42/1/015005
https://arxiv.org/abs/1204.1513
https://doi.org/10.1016/j.nuclphysbps.2010.08.011
https://doi.org/10.1016/j.nuclphysbps.2010.08.011
https://arxiv.org/abs/1007.3492
https://doi.org/10.1016/0370-2693(96)00942-2
https://arxiv.org/abs/hep-ph/9603265
https://doi.org/10.1016/j.nuclphysb.2004.03.016
https://arxiv.org/abs/hep-ph/0401002


[41] P. Falgari, F. Giannuzzi, P. Mellor and A. Signer, Off-shell effects for t-channel and
s-channel single-top production at NLO in QCD, Phys. Rev. D83 (2011) 094013
[1102.5267].

[42] P. Falgari, P. Mellor and A. Signer, Production-decay interferences at NLO in QCD for
t-channel single-top production, Phys. Rev. D82 (2010) 054028 [1007.0893].

[43] A. S. Papanastasiou, R. Frederix, S. Frixione, V. Hirschi and F. Maltoni, Single-top
t-channel production with off-shell and non-resonant effects, Phys. Lett. B726 (2013)
223 [1305.7088].

[44] R. Frederix, S. Frixione, A. S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell
single-top production at NLO matched to parton showers, JHEP 06 (2016) 027
[1603.01178].

[45] A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+ e-
→ 4 fermions + γ, Nucl. Phys. B560 (1999) 33 [hep-ph/9904472].

[46] A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Electroweak corrections to
charged-current e+ e- —> 4 fermion processes: Technical details and further results,
Nucl. Phys. B724 (2005) 247 [hep-ph/0505042].

[47] A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations
with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312].

[48] A. Denner and J.-N. Lang, The Complex-Mass Scheme and Unitarity in perturbative
Quantum Field Theory, Eur. Phys. J. C75 (2015) 377 [1406.6280].

[49] S. Frixione, E. Laenen, P. Motylinski and B. R. Webber, Single-top production in
MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250].

[50] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with
shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [0907.4076].

[51] N. Kidonakis, Higher-order soft gluon corrections in single top quark production at the
LHC, Phys. Rev. D75 (2007) 071501 [hep-ph/0701080].

[52] J. Wang, C. S. Li, H. X. Zhu and J. J. Zhang, Factorization and resummation of
t-channel single top quark production, 1010.4509.

[53] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for
t-channel single top quark production, Phys. Rev. D83 (2011) 091503 [1103.2792].

[54] N. Kidonakis, NNLL threshold resummation for top-pair and single-top production,
Phys. Part. Nucl. 45 (2014) 714 [1210.7813].

[55] N. Kidonakis, Single-top transverse-momentum distributions at approximate NNLO,
Phys. Rev. D93 (2016) 054022 [1510.06361].

[56] Q.-H. Cao, P. Sun, B. Yan, C. P. Yuan and F. Yuan, Transverse Momentum
Resummation for t-channel single top quark production at the LHC, Phys. Rev. D98
(2018) 054032 [1801.09656].

35

https://doi.org/10.1103/PhysRevD.83.094013
https://arxiv.org/abs/1102.5267
https://doi.org/10.1103/PhysRevD.82.054028
https://arxiv.org/abs/1007.0893
https://doi.org/10.1016/j.physletb.2013.07.062
https://doi.org/10.1016/j.physletb.2013.07.062
https://arxiv.org/abs/1305.7088
https://doi.org/10.1007/JHEP06(2016)027
https://arxiv.org/abs/1603.01178
https://doi.org/10.1016/S0550-3213(99)00437-X
https://arxiv.org/abs/hep-ph/9904472
https://doi.org/10.1016/j.nuclphysb.2011.09.001, 10.1016/j.nuclphysb.2005.06.033
https://arxiv.org/abs/hep-ph/0505042
https://doi.org/10.1016/j.nuclphysbps.2006.09.025
https://arxiv.org/abs/hep-ph/0605312
https://doi.org/10.1140/epjc/s10052-015-3579-2
https://arxiv.org/abs/1406.6280
https://doi.org/10.1088/1126-6708/2006/03/092
https://arxiv.org/abs/hep-ph/0512250
https://doi.org/10.1007/JHEP02(2010)011, 10.1088/1126-6708/2009/09/111
https://arxiv.org/abs/0907.4076
https://doi.org/10.1103/PhysRevD.75.071501
https://arxiv.org/abs/hep-ph/0701080
https://arxiv.org/abs/1010.4509
https://doi.org/10.1103/PhysRevD.83.091503
https://arxiv.org/abs/1103.2792
https://doi.org/10.1134/S1063779614040091
https://arxiv.org/abs/1210.7813
https://doi.org/10.1103/PhysRevD.93.054022
https://arxiv.org/abs/1510.06361
https://doi.org/10.1103/PhysRevD.98.054032
https://doi.org/10.1103/PhysRevD.98.054032
https://arxiv.org/abs/1801.09656


[57] Q.-H. Cao, P. Sun, B. Yan, C. P. Yuan and F. Yuan, Soft Gluon Resummation in
t-channel single top quark production at the LHC, 1902.09336.

[58] M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to
single-top production at the LHC, Phys. Lett. B736 (2014) 58 [1404.7116].

[59] M. Assadsolimani, P. Kant, B. Tausk and P. Uwer, Calculation of two-loop QCD
corrections for hadronic single top-quark production in the t channel, Phys. Rev. D90
(2014) 114024 [1409.3654].

[60] E. L. Berger, J. Gao, C. P. Yuan and H. X. Zhu, NNLO QCD Corrections to t-channel
Single Top-Quark Production and Decay, Phys. Rev. D94 (2016) 071501 [1606.08463].

[61] E. L. Berger, J. Gao and H. X. Zhu, Differential Distributions for t-channel Single
Top-Quark Production and Decay at Next-to-Next-to-Leading Order in QCD, JHEP 11
(2017) 158 [1708.09405].

[62] G. L. Kane, G. A. Ladinsky and C. P. Yuan, Using the Top Quark for Testing Standard
Model Polarization and CP Predictions, Phys. Rev. D45 (1992) 124.

[63] J. A. Aguilar-Saavedra, A Minimal set of top anomalous couplings, Nucl. Phys. B812
(2009) 181 [0811.3842].

[64] F. Bach and T. Ohl, Anomalous Top Couplings at Hadron Colliders Revisited, Phys.
Rev. D86 (2012) 114026 [1209.4564].

[65] A. Giammanco and R. Schwienhorst, Single top-quark production at the Tevatron and
the LHC, Rev. Mod. Phys. 90 (2018) 035001 [1710.10699].

[66] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer et al.,
Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys.
335 (2013) 21 [1205.4231].

[67] D. R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC, Rev.
Mod. Phys. 89 (2017) 035008 [1610.07572].

[68] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and
Flavor Conservation, Nucl. Phys. B268 (1986) 621.

[69] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the
Standard Model Lagrangian, JHEP 10 (2010) 085 [1008.4884].

[70] C. Zhang and S. Willenbrock, Effective-Field-Theory Approach to Top-Quark
Production and Decay, Phys. Rev. D83 (2011) 034006 [1008.3869].

[71] C. Zhang, N. Greiner and S. Willenbrock, Constraints on Non-standard Top Quark
Couplings, Phys. Rev. D86 (2012) 014024 [1201.6670].

[72] R. Romero Aguilar, A. O. Bouzas and F. Larios, Limits on the anomalous Wtq
couplings, Phys. Rev. D92 (2015) 114009 [1509.06431].

[73] J. A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb
couplings, Nucl. Phys. B804 (2008) 160 [0803.3810].

36

https://arxiv.org/abs/1902.09336
https://doi.org/10.1016/j.physletb.2014.06.075
https://arxiv.org/abs/1404.7116
https://doi.org/10.1103/PhysRevD.90.114024
https://doi.org/10.1103/PhysRevD.90.114024
https://arxiv.org/abs/1409.3654
https://doi.org/10.1103/PhysRevD.94.071501
https://arxiv.org/abs/1606.08463
https://doi.org/10.1007/JHEP11(2017)158
https://doi.org/10.1007/JHEP11(2017)158
https://arxiv.org/abs/1708.09405
https://doi.org/10.1103/PhysRevD.45.124
https://doi.org/10.1016/j.nuclphysb.2008.12.012
https://doi.org/10.1016/j.nuclphysb.2008.12.012
https://arxiv.org/abs/0811.3842
https://doi.org/10.1103/PhysRevD.86.114026
https://doi.org/10.1103/PhysRevD.86.114026
https://arxiv.org/abs/1209.4564
https://doi.org/10.1103/RevModPhys.90.035001
https://arxiv.org/abs/1710.10699
https://doi.org/10.1016/j.aop.2013.04.016
https://doi.org/10.1016/j.aop.2013.04.016
https://arxiv.org/abs/1205.4231
https://doi.org/10.1103/RevModPhys.89.035008
https://doi.org/10.1103/RevModPhys.89.035008
https://arxiv.org/abs/1610.07572
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://doi.org/10.1103/PhysRevD.83.034006
https://arxiv.org/abs/1008.3869
https://doi.org/10.1103/PhysRevD.86.014024
https://arxiv.org/abs/1201.6670
https://doi.org/10.1103/PhysRevD.92.114009
https://arxiv.org/abs/1509.06431
https://doi.org/10.1016/j.nuclphysb.2008.06.013
https://arxiv.org/abs/0803.3810


[74] Q.-H. Cao and J. Wudka, Search for new physics via single top production at TeV
energy e gamma colliders, Phys. Rev. D74 (2006) 094015 [hep-ph/0608331].

[75] Q.-H. Cao, J. Wudka and C. P. Yuan, Search for new physics via single top production
at the LHC, Phys. Lett. B658 (2007) 50 [0704.2809].

[76] Q.-H. Cao, B. Yan, J.-H. Yu and C. Zhang, A General Analysis of Wtb anomalous
Couplings, Chin. Phys. C41 (2017) 063101 [1504.03785].

[77] J. A. Aguilar-Saavedra, C. Degrande and S. Khatibi, Single top polarisation as a
window to new physics, Phys. Lett. B769 (2017) 498 [1701.05900].

[78] D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model
effective field theory, 1802.07237.

[79] B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative
B-meson decay, Phys. Rev. D78 (2008) 077501 [0802.1413].

[80] P. J. Fox, Z. Ligeti, M. Papucci, G. Perez and M. D. Schwartz, Deciphering top flavor
violation at the LHC with B factories, Phys. Rev. D78 (2008) 054008 [0704.1482].

[81] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group Evolution of the
Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP
10 (2013) 087 [1308.2627].

[82] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group Evolution of the
Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035
[1310.4838].

[83] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group
Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling
Dependence and Phenomenology, JHEP 04 (2014) 159 [1312.2014].

[84] G. Passarino and M. Trott, The Standard Model Effective Field Theory and Next to
Leading Order, 1610.08356.

[85] C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in
QCD, Phys. Rev. D90 (2014) 014008 [1404.1264].

[86] D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole
moment at next-to-leading order in QCD, Phys. Rev. D91 (2015) 114010 [1503.08841].

[87] C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model
Effective Field Theory, Phys. Rev. Lett. 116 (2016) 162002 [1601.06163].

[88] J. Drobnak, S. Fajfer and J. F. Kamenik, New physics in t− > bW decay at
next-to-leading order in QCD, Phys. Rev. D82 (2010) 114008 [1010.2402].

[89] M. de Beurs, E. Laenen, M. Vreeswijk and E. Vryonidou, Effective operators in
t-channel single top production and decay, Eur. Phys. J. C78 (2018) 919 [1807.03576].

[90] Z. Sullivan, Fully Differential W ′ Production and Decay at Next-to-Leading Order in
QCD, Phys. Rev. D66 (2002) 075011 [hep-ph/0207290].

37

https://doi.org/10.1103/PhysRevD.74.094015
https://arxiv.org/abs/hep-ph/0608331
https://doi.org/10.1016/j.physletb.2007.10.057
https://arxiv.org/abs/0704.2809
https://doi.org/10.1088/1674-1137/41/6/063101
https://arxiv.org/abs/1504.03785
https://doi.org/10.1016/j.physletb.2017.04.023
https://arxiv.org/abs/1701.05900
https://arxiv.org/abs/1802.07237
https://doi.org/10.1103/PhysRevD.84.059903, 10.1103/PhysRevD.78.077501
https://arxiv.org/abs/0802.1413
https://doi.org/10.1103/PhysRevD.78.054008
https://arxiv.org/abs/0704.1482
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://arxiv.org/abs/1610.08356
https://doi.org/10.1103/PhysRevD.90.014008
https://arxiv.org/abs/1404.1264
https://doi.org/10.1103/PhysRevD.91.114010
https://arxiv.org/abs/1503.08841
https://doi.org/10.1103/PhysRevLett.116.162002
https://arxiv.org/abs/1601.06163
https://doi.org/10.1103/PhysRevD.82.114008
https://arxiv.org/abs/1010.2402
https://doi.org/10.1140/epjc/s10052-018-6399-3
https://arxiv.org/abs/1807.03576
https://doi.org/10.1103/PhysRevD.66.075011
https://arxiv.org/abs/hep-ph/0207290


[91] D. Duffty and Z. Sullivan, Model independent reach for W-prime bosons at the LHC,
Phys. Rev. D86 (2012) 075018 [1208.4858].

[92] E. Drueke, J. Nutter, R. Schwienhorst, N. Vignaroli, D. G. E. Walker and J.-H. Yu,
Single Top Production as a Probe of Heavy Resonances, Phys. Rev. D91 (2015) 054020
[1409.7607].

[93] R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of
Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345.

[94] V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0,
Comput. Phys. Commun. 207 (2016) 432 [1601.01167].

[95] W. R. Inc., “Mathematica, Version 11.2.”

[96] O. V. Tarasov, Connection between Feynman integrals having different values of the
space-time dimension, Phys. Rev. D54 (1996) 6479 [hep-th/9606018].

[97] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira—A Feynman integral reduction program,
Comput. Phys. Commun. 230 (2018) 99 [1705.05610].

[98] R. K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002
[0712.1851].

[99] S. Carrazza, R. K. Ellis and G. Zanderighi, QCDLoop: a comprehensive framework for
one-loop scalar integrals, Comput. Phys. Commun. 209 (2016) 134 [1605.03181].

[100] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.

[101] J. A. M. Vermaseren, New features of FORM, math-ph/0010025.

[102] M. Tentyukov and J. Fleischer, A Feynman diagram analyzer DIANA, Comput. Phys.
Commun. 132 (2000) 124 [hep-ph/9904258].

[103] A. V. Semenov, LanHEP: A Package for automatic generation of Feynman rules in
gauge models, hep-ph/9608488.

[104] A. V. Semenov, LanHEP: A Package for automatic generation of Feynman rules in
field theory. Version 2.0, hep-ph/0208011.

[105] A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in
field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [0805.0555].

[106] A. Semenov, LanHEP — A package for automatic generation of Feynman rules from
the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167 [1412.5016].

[107] A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for
the Standard Model Effective Field Theory in Rξ -gauges, JHEP 06 (2017) 143
[1704.03888].

[108] J. C. Romao and J. P. Silva, A resource for signs and Feynman diagrams of the
Standard Model, Int. J. Mod. Phys. A27 (2012) 1230025 [1209.6213].

[109] D. Maitre and P. Mastrolia, S@M, a Mathematica Implementation of the
Spinor-Helicity Formalism, Comput. Phys. Commun. 179 (2008) 501 [0710.5559].

38

https://doi.org/10.1103/PhysRevD.86.075018
https://arxiv.org/abs/1208.4858
https://doi.org/10.1103/PhysRevD.91.054020
https://arxiv.org/abs/1409.7607
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://doi.org/10.1103/PhysRevD.54.6479
https://arxiv.org/abs/hep-th/9606018
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://doi.org/10.1088/1126-6708/2008/02/002
https://arxiv.org/abs/0712.1851
https://doi.org/10.1016/j.cpc.2016.07.033
https://arxiv.org/abs/1605.03181
https://doi.org/10.1006/jcph.1993.1074
https://arxiv.org/abs/math-ph/0010025
https://doi.org/10.1016/S0010-4655(00)00147-8
https://doi.org/10.1016/S0010-4655(00)00147-8
https://arxiv.org/abs/hep-ph/9904258
https://arxiv.org/abs/hep-ph/9608488
https://arxiv.org/abs/hep-ph/0208011
https://doi.org/10.1016/j.cpc.2008.10.012
https://arxiv.org/abs/0805.0555
https://doi.org/10.1016/j.cpc.2016.01.003
https://arxiv.org/abs/1412.5016
https://doi.org/10.1007/JHEP06(2017)143
https://arxiv.org/abs/1704.03888
https://doi.org/10.1142/S0217751X12300256
https://arxiv.org/abs/1209.6213
https://doi.org/10.1016/j.cpc.2008.05.002
https://arxiv.org/abs/0710.5559


[110] R. H. Lewis, “Fermat, A Computer Algebra System for Polynomial and Matrix
Computation.” http://home.bway.net/lewis/home.html.

[111] M. Prausa, “Mathematica interface to Fermat.”
https://github.com/mprausa/mmaFermat, 2017.

[112] E. Byckling and K. Kajantie, Particle Kinematics. University of Jyvaskyla, Jyvaskyla,
Finland, 1971.

[113] P. Maierhöfer and J. Usovitsch, Kira 1.2 Release Notes, 1812.01491.

[114] Y. Hida, X. S. Li and D. H. Bailey, “Quad double computation package.”
https://crd.lbl.gov/~dhbailey/mpdist/, 2003–2018.

[115] T. Huber and D. Maitre, HypExp: A Mathematica package for expanding
hypergeometric functions around integer-valued parameters, Comput. Phys. Commun.
175 (2006) 122 [hep-ph/0507094].

[116] M. Jezabek and J. H. Kuhn, QCD Corrections to Semileptonic Decays of Heavy Quarks,
Nucl. Phys. B314 (1989) 1.

[117] S. Catani and M. H. Seymour, A General algorithm for calculating jet cross-sections in
NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323].

[118] Z. Nagy and Z. Trocsanyi, Next-to-leading order calculation of four jet observables in
electron positron annihilation, Phys. Rev. D59 (1999) 014020 [hep-ph/9806317].

[119] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron
collision, Phys. Rev. D68 (2003) 094002 [hep-ph/0307268].

[120] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky et al., New parton
distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.
D93 (2016) 033006 [1506.07443].

[121] A. Aeppli, G. J. van Oldenborgh and D. Wyler, Unstable particles in one loop
calculations, Nucl. Phys. B428 (1994) 126 [hep-ph/9312212].

[122] V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs
sector of the Standard Model Effective Field Theory, Phys. Rev. D94 (2016) 034031
[1605.04311].

[123] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210
(2017) 103 [1601.05437].

39

http://home.bway.net/lewis/home.html
https://github.com/mprausa/mmaFermat
https://arxiv.org/abs/1812.01491
https://crd.lbl.gov/~dhbailey/mpdist/
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://arxiv.org/abs/hep-ph/0507094
https://doi.org/10.1016/0550-3213(89)90108-9
https://doi.org/10.1016/S0550-3213(96)00589-5, 10.1016/S0550-3213(98)81022-5
https://arxiv.org/abs/hep-ph/9605323
https://doi.org/10.1103/PhysRevD.62.099902, 10.1103/PhysRevD.59.014020
https://arxiv.org/abs/hep-ph/9806317
https://doi.org/10.1103/PhysRevD.68.094002
https://arxiv.org/abs/hep-ph/0307268
https://doi.org/10.1103/PhysRevD.93.033006
https://doi.org/10.1103/PhysRevD.93.033006
https://arxiv.org/abs/1506.07443
https://doi.org/10.1016/0550-3213(94)90195-3
https://arxiv.org/abs/hep-ph/9312212
https://doi.org/10.1103/PhysRevD.94.034031
https://arxiv.org/abs/1605.04311
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://arxiv.org/abs/1601.05437

	1 Introduction
	2 Setup and calculation
	2.1 Technical implementation and checks
	2.2 Implementation in MCFM-8.3

	3 Phenomenology
	3.1 Off-shell and W-reconstruction effects in the Standard Model.
	3.2 Angular observables in the top-quark rest frame
	3.3 .9plus.9minus.910.95.9SMEFT contributions

	4 Conclusions
	A Additional figures

