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Abstract:
Modern galaxy cluster science is a multi-wavelength endeavor with cornerstones provided by X-
ray, optical/IR, mm, and radio measurements. In combination, these observations enable the con-
struction of large, clean, complete cluster catalogs, and provide precise redshifts and robust mass
calibration. The complementary nature of these multi-wavelength data dramatically reduces the
impact of systematic effects that limit the utility of measurements made in any single waveband.
The future of multi-wavelength cluster science is compelling, with cluster catalogs set to expand
by orders of magnitude in size, and extend, for the first time, into the high-redshift regime where
massive, virialized structures first formed. Unlocking astrophysical and cosmological insight from
the coming catalogs will require new observing facilities that combine high spatial and spectral
resolution with large collecting areas, as well as concurrent advances in simulation modeling cam-
paigns. Together, future multi-wavelength observations will resolve the thermodynamic structure
in and around the first groups and clusters, distinguishing the signals from active and star-forming
galaxies, and unveiling the interrelated stories of galaxy evolution and structure formation during
the epoch of peak cosmic activity.
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1 Introduction
Observations of clusters of galaxies provide a powerful probe of cosmology and astrophysics (Voit
2005, Allen, Evrard & Mantz 2011, Borgani & Kravtsov 2011). Statistical measurements of the
evolution of the cluster population over time constrain both the growth of cosmic structure and
the expansion history of the Universe. Such observations have played a key role in establishing
the current “concordance” model of cosmology, in which the mass-energy budget of the Universe
is dominated by dark matter and dark energy, with the latter being consistent with a cosmological
constant (e.g. White et al. 1993, Allen et al. 2004, Vikhlinin et al. 2009, Mantz et al. 2010). Clusters
are also remarkable astrophysical laboratories, providing unique insights into, e.g., the physics of
galaxy evolution (von der Linden et al. 2010) and structure formation (Simionescu et al. 2019,
Walker et al. 2019), the role of feedback processes (Fabian 2012, McNamara & Nulsen 2012), the
history of metal enrichment (Mernier et al. 2018), the nature of dark matter (Clowe et al. 2006),
and the physics of hot, diffuse, magnetized plasmas (Markevitch & Vikhlinin 2007, Brunetti &
Jones 2014, van Weeren et al. 2019). Clusters also serve as natural gravitational telescopes with
which to observe the most distant reaches of the Universe (Treu et al. 2015).

The key observations enabling robust population studies of galaxy clusters are: a sky survey
on which cluster finding can be systematically performed with a clean selection function (below),
accurate redshift estimates, robust absolute mass calibration (typically provided by weak lensing
measurements), and targeted follow-up observations (especially at X-ray wavelengths) to provide
precise centers and relative masses for the clusters, and measurements of their dynamical states.

2 Exploiting multi-wavelength synergies in cluster searches
Galaxy clusters produce observable signals across the electromagnetic spectrum. At X-ray wave-
lengths, spatially extended bremsstrahlung emission from the hot intracluster medium (ICM) can
be clearly identified. In optical and IR data, we can search for overdensities of galaxies, as well as
the red colors typical of cluster members. At mm wavelengths, the spectral distortion of the cosmic
microwave background (CMB) due to inverse-Compton scattering with the ICM (the Sunyaev-
Zel’dovich or SZ effect) provides a nearly redshift-independent way to find clusters.

The primary observation enabling galaxy cluster science is a sky survey on which cluster find-
ing can be systematically performed, ideally over a large sky area and wide range in redshift.
While the construction of cluster catalogs in any single waveband can quickly become a frustrat-
ing endeavour hampered by systematic limitations, the complementary nature of X-ray, optical and
mm-wavelength data provides direct, observational solutions to most issues. X-ray observations,
for example, can provide clean, complete catalogs of clusters, as well as multiple low-scatter mass
proxies: quantities that are relatively immune to projection effects, correlating tightly with the true,
three-dimensional halo mass. The primary disadvantages of X-ray measurements are the need to
make them from space (which brings associated cost and risk), the impact of surface brightness
dimming (though this is mild at z > 1; Churazov et al. 2015), and the inability to provide pre-
cise absolute mass calibration directly. SZ surveys provide a more uniform selection in redshift,
with only their sensitivity determining the mass down to which clusters can in principle be de-
tected. This technique provides our best route for finding clusters at high redshifts, although care
is needed to understand the impact on selection of radio- and infrared-emissive cluster galaxies, es-
pecially at higher redshifts. Future SZ surveys will also have the ability to provide absolute cluster
mass calibration through CMB-cluster gravitational lensing (e.g. Hu et al. 2007). Like X-ray sur-
veys, optical and near-infrared (OIR) surveys are most effective at low-to-intermediate redshifts,
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Figure 1: Left: Mass–redshift plot showing some existing cluster catalogs used extensively for astrophysics
and cosmology (ROSAT in X-rays, SPT-SZ at mm wavelengths; Ebeling et al. 2000, 2010, Böhringer et al.
2007, Bleem et al. 2015), and the discovery space for the Stage 3 CMB (SPT-3G, Advanced ACT, Simons
Observatory), CMB-S4, eROSITA, LSST and Athena projects. In the standard cosmological model, clusters
are not expected to exist in the gray “exclusion” region. Solid lines show “evolutionary” tracks, tracing
out the progenitors of present-day massive clusters. Right: The number of SZ cluster detections expected
as a function of redshift from Stage 3 SZ surveys and the proposed CMB-S4 project. Blue to red shading
shows the transition to the z >∼ 2 regime that will be unveiled by new cluster surveys, for which high
spatial resolution and throughput are key requirements for extracting information about halo centers, relative
masses, dynamical states, internal structure, and galaxy/AGN populations. The proposed new programs will
enable the first detailed studies of virialized structure at these redshifts.

but have the benefit of finding larger numbers of clusters down to lower masses. The primary
challenges for optical cluster selection are projection effects (which can lead to overestimated rich-
nesses for some clusters) and the relatively complex nature of the intrinsic mass-–observable scal-
ing relations. Nonetheless, optical surveys provide an essential complement to X-ray and SZ data
in cluster identification, and uniquely provide essential redshift information (from precise multi-
band photometry or spectroscopy) and precise absolute mass calibration (through galaxy-cluster
lensing). Supporting these observational cornerstones, numerical simulations have emerged as a
powerful, complementary tool, providing informative priors on the expected correlations between
the measured signals (Stanek et al. 2010, Farahi et al. 2018, Truong et al. 2018).

Figure 1a illustrates the mass-redshift coverage for two of the leading, current cluster surveys,
which have been used extensively for both cosmology and astrophysics studies, and the expected
reach of a number of projects, most of which are approved and funded (for more detail see Sec-
tion 3). The figure demonstrates how the forthcoming surveys will vastly increase the size and
redshift reach of cluster catalogs, extending out to the epoch when massive clusters first formed
and when star formation and AGN activity within them peaked.

Uncovering this distant cluster population is non-trivial. At X-ray wavelengths, it requires
an imaging facility with a large collecting area (especially at soft X-ray energies, < 1 keV) and
sufficient spatial resolution to distinguish truly extended emission from the intracluster medium
(ICM) from associations of point-like AGN sources. SZ surveys likewise require a combination of
sensitivity and spatial resolution to detect clusters, as well as sufficient frequency coverage to spec-
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Figure 2: Images of the z = 2 cluster XLSSC 122: Hubble F140W (left; Willis et al. 2019, in prep),
XMM-Newton X-ray (center, 100 ks), and simulated Lynx HDXI (right, 100 ks). Dashed circles show the
characteristic radius, r200 ∼ 54′′. Realistic densities and luminosities have been generated for cluster and
background AGN in the Lynx simulation, which includes a simple β model for the ICM, based on the XMM
data. Groundbreaking studies of this high-z cluster have benefited from investments of time with XMM,
HST, Spitzer, ALMA, CARMA, and other ground-based observatories (Willis et al. 2013; Mantz et al. 2014,
2018). Such multi-wavelength studies will be routinely superseded by observations with future facilities
such as Athena, JWST, single-dish bolometric mm-wavelength observatories, and 30 m-class telescopes.
High spatial resolution across the electromagnetic spectrum is particularly important for unambiguously
identifying galaxy and AGN counterparts.

trally distinguish measurements of the SZ effect from emissive radio and infrared sources (which
contaminate the SZ signal at lower and higher frequencies, respectively). To provide both good
redshift estimates and accurate shape measurements for a robust weak lensing mass calibration,
optical surveys require exquisite photometric calibration and image quality. To extend the reach of
optical measurements significantly beyond z >∼ 1, space-based near IR measurements are needed,
with sufficient resolution and depth to appropriately complement the optical data.

3 The Landscape of Approved Projects
A number of facilities that are approved and in construction will contribute substantially to the
future of cluster science. Of special note are the new, dedicated survey instruments: eROSITA in
X-rays, LSST and Euclid at OIR wavelengths, and several “Stage 3” ground-based mm-wavelength
observatories. Also of note is the Athena observatory, which will devote a significant fraction of
its observing time to performing a deep X-ray survey of several hundred square degrees.

The German-Russian SRG mission, bearing the eROSITA X-ray survey instrument (Merloni
et al. 2012), will launch later in 2019. eROSITA will have 30–50 times the sensitivity of the
previous all-sky X-ray survey by ROSAT. Figure 1a shows that the all-sky eROSITA survey is
expected to identify essentially all groups out to z ∼ 0.3, all intermediate mass clusters to ∼ 0.6,
and the most massive clusters at z <∼ 2. The FoV-averaged spatial resolution of 26′′, while an
improvement over ROSAT, will be limiting at high redshifts, where the angular extent of clusters
is small. Distinguishing ICM and AGN contributions to the emission from faint, modestly extended
sources will require follow-up measurements with higher-spatial-resolution X-ray observatories.

LSST will survey the entire southern sky in ugrizy over a 10 year period, beginning in 2022. It
will identify clusters down to the group scale, constrain their redshifts photometrically, and provide
precise, stacked weak lensing mass measurements out to a redshift of ∼ 1.2 (LSST Dark Energy
Science Collaboration 2012). Note that the redshift limit reflects the redshift at which the 4000 Å

3



break moves out of the reddest band. Combining LSST data with near-IR data from Euclid, an ESA
M-class mission scheduled for launch in 2021, will extend the range further. Conversely, while Eu-
clid will identify overdensities of IR-luminous galaxies out to high redshifts (Laureijs et al. 2011),
its ability to characterize the cluster population will be enhanced greatly through combination with
precise LSST photometry (as well as complementary X-ray and mm observations).

The “Stage 3” CMB (i.e. mm-wavelength) surveys most relevant to cluster science are those by
SPT-3G, AdvancedACT (both ongoing), and the planned Simons Observatory and CCAT-prime.
Taking advantage of the SZ effect, these surveys will break new ground in providing the first large,
robustly selected catalogs of clusters at z > 1.5, as well as the first informative absolute mass
calibration from CMB-cluster lensing. They will find > 3000 clusters at z > 1 and ∼ 50 at z > 2
(Benson et al. 2014, De Bernardis et al. 2016, The Simons Observatory Collaboration 2018, Stacey
et al. 2018). However, few detections are expected above z ∼ 2.3 (Fig. 1).

Athena, an ESA mission with NASA involvement, will be the next flagship-class X-ray facility
(Nandra et al. 2013). Scheduled for launch in 2031, Athena will combine an order of magnitude
increase in effective area compared to XMM-Newton, with a smaller 5′′ (HPD) PSF on axis, de-
grading only to ∼ 10′′ at 30′ radius. Athena’s grasp significantly exceeds that of any previous X-ray
instrument, including eROSITA. Athena will also carry the first large, high-spectral-resolution IFU
X-ray calorimeter. With all these advances, we expect to find (Zhang et al. 2019, in prep) and study
(Ettori et al. 2013, Pointecouteau et al. 2013) very distant galaxy groups and clusters at z >∼ 2 over
a modest fraction of the sky with Athena, revolutionizing studies of cluster evolution, dynamics,
thermodynamics and metal enrichment. However, due to the small size of these objects (typically
<∼ 50′′ in diameter), these studies will rely on spectral modeling to distinguish emission from AGN
and the ICM, rather than directly resolving AGN and small-scale structure within clusters.

4 New Opportunities
While the projects described above will undoubtedly transform cluster studies, they are limited in
their ability to probe the highest redshifts of interest (z > 2; due to limited sensitivity and/or sky
coverage) and, especially, in their ability to study the astrophysical processes within and around
these systems. To do so will require new multi-wavelength facilities with improved sensitivity and
enhanced spatial and spectral resolution (Figure 2).

At X-ray wavelengths, the primary requirement is for an observatory with comparable through-
put and spectral capabilities to Athena, but an order of magnitude higher spatial resolution (∼ 0.5′′).
This would open the door to groundbreaking astrophysical measurements, especially (though not
exclusively) in the high-z regime (Figure 1b). Recent advances in lightweight, high-resolution,
high-throughput X-ray optics have made this goal achievable, as is discussed by the Lynx and
AXIS teams (Zhang et al. 2018, The Lynx Team 2018). The ability to spatially resolve and separate
AGN within clusters, and to cross-match these sources with ground- and space-based observations
in other wavebands, will transform our ability to study how the triggering and quenching of star
formation and AGN activity correlates with the evolution of galaxies and their surrounding large
scale structure. Resolving the thermodynamic structure and turbulent gas motions within halos,
and the distribution of metals within the diffuse cluster gas, will reveal the interwoven stories of
galaxy evolution and structure formation, and the roles of feedback from AGN and stars (e.g. Gas-
pari et al. 2012, McDonald et al. 2018), spanning the epochs when the massive virialized structures
first formed and AGN and star formation activity within them peaked.

For surveys at mm wavelengths, the primary requirements are for greater sensitivity and im-
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proved spectral coverage. At high redshifts, even the largest clusters formed have modest spatial
extent, making sensitivity and sufficient (∼ 1′) spatial resolution the keys to identifying them
through the SZ effect, and to providing precise mass calibration from CMB cluster lensing. Ad-
equate spectral coverage is also crucial to separate the SZ effect from emission due to star for-
mation and AGN activity in cluster member galaxies, which are expected to become increasingly
important at high redshifts. Configurations such as those being studied for CMB-S4, using mul-
tiple, large-aperture telescopes and large, multichroic detector arrays, appear highly promising
(CMB-S4 Collaboration 2016, Madhavacheril et al. 2017). These measurements would also pro-
vide precise (percent-level) absolute mass calibration and similarly precise measurements of the
mean pressure and density profiles of the hot gas around clusters (out to many virial radii), from
the stacked thermal- and kinetic-SZ signals. Follow-up SZ measurements with even higher spatial
resolution ( <∼ 10′′) and/or greater spectral coverage (extending above the SZ null) will be possible
with ALMA interferometry or single-dish observatories (using successors to the MUSTANG-2 and
NIKA-2 instruments and/or new proposed facilities such as CCAT-prime or AtLAST; Stacey et al.
2018, Mroczkowski et al. 2019). From space, a new survey such as the proposed PICO mission
could build on the legacy of WMAP and Planck, providing all-sky coverage from 20–800 GHz
(albeit with lower spatial resolution than ground-based telescopes), and producing its own catalog
of clusters and protoclusters (Hanany et al. 2019). All these measurements could be complemented
by high-spectral resolution X-ray grating spectroscopy of background AGN. Together, these new
X-ray and SZ facilities would provide an unprecedented view of the hot, high-redshift Universe.

At OIR wavelengths, WFIRST will provide exquisite data for measuring redshifts and weak
lensing of high-z clusters (e.g. Akeson et al. 2019). These capabilities, along with those of LSST
and Euclid, should be complemented by high-throughput spectrographs with high-multiplexing ca-
pabilities on scales of ∼ 10′. Such instruments would enable detailed studies of the star-formation
and AGN properties of cluster galaxies, spanning the period when they transition from being dom-
inated by star-forming systems to being red-sequence-dominated. Comprehensive multi-object
spectroscopy will also provide a valuable complement to X-ray measurements for dynamical stud-
ies of clusters, and will be vital for calibration of photometric redshifts in cluster fields.

Powerful synergies will also be found at radio wavelengths, where SKA and its precursors
(e.g. JVLA, LOFAR, MWA, HERA), working in concert with X-ray facilities, will extend studies
of AGN feedback out to the highest redshifts. The detection of radio halos and relics, and the
correlation of these signals with the dynamic and thermodynamic structure observed at X-ray,
optical and mm wavelengths, will reveal the acceleration of particles during subcluster merger
events and provide further insight into the virialization process.

ALMA follow-up will open the door to measurements of molecular gas in high-redshift clus-
ters. At the highest redshifts (z > 4), observations of dusty, star forming galaxies detected by mm
surveys will extend studies of dense environments into the pre-virialized, protocluster regime (e.g.
Miller et al. 2018). Finally, combining the most powerful facilities across all wavelengths, we will
continue to use clusters as gravitational cosmic telescopes, to probe the earliest phases of galaxy
evolution, and the roles of young stars and AGN in the reionization of the Universe.

Extracting science from more sensitive measurements requires concurrent advances in mod-
eling, including simulations designed to map physical models directly to the space of observable
features. Empowering the interpretation of new observational capabilities over the coming decade
will require large simulated ensembles of massive halos from cosmological volumes, as well as
improvements in resolution and new physical treatments.

5



References
Akeson R., et al., 2019, preprint, (arXiv:1902.05569)

Allen S. W., Schmidt R. W., Ebeling H., Fabian A. C., van Speybroeck L., 2004, MNRAS, 353,
457

Allen S. W., Evrard A. E., Mantz A. B., 2011, ARA&A, 49, 409

Benson B. A., et al., 2014, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instru-
mentation for Astronomy VII. p. 91531P (arXiv:1407.2973), doi:10.1117/12.2057305

Bleem L. E., et al., 2015, ApJS, 216, 27
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