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ABSTRACT
Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse
measurements of spectral energy distributions in a few filters to estimate the redshift
distribution of source galaxies. In this regime, sample variance, shot noise, and selection
effects limit the attainable accuracy of redshift calibration and thus of cosmological
constraints. We present a new method to combine wide-field, few-filter measurements
with catalogs from deep fields with additional filters and sufficiently low photometric
noise to break degeneracies in photometric redshifts. The multi-band deep field is used
as an intermediary between wide-field observations and accurate redshifts, greatly re-
ducing sample variance, shot noise, and selection effects. Our implementation of the
method uses self-organizing maps to group galaxies into phenotypes based on their
observed fluxes, and is tested using a mock DES catalog created from N-body simula-
tions. It yields a typical uncertainty on the mean redshift in each of five tomographic
bins for an idealized simulation of the DES Year 3 weak-lensing tomographic anal-
ysis of σ∆z = 0.007, which is a 60% improvement compared to the Year 1 analysis.
Although the implementation of the method is tailored to DES, its formalism can be
applied to other large photometric surveys with a similar observing strategy.
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1 INTRODUCTION

Solving the mysteries surrounding the nature of the cosmic
acceleration requires measuring the growth of structure with
exquisite precision and accuracy. To this end, one of the most
promising probes is weak gravitational lensing. In weak lens-
ing, light from distant source galaxies is deflected by the
large-scale structure of the Universe, affecting their appar-
ent shapes by gravitational shear (see e.g. Bartelmann &
Schneider 2001, Kilbinger 2015, or Mandelbaum 2018 for a
review on the subject). The amplitude of the shear depends
on the distribution of the matter causing the lensing, and
the distance ratios of source and lens galaxies. The physical
interpretation of the signal is thus sensitive to systematic er-
rors in redshift estimates of source galaxies (Ma et al. 2006;
Huterer et al. 2006). For precision cosmology from weak lens-
ing probes, an accurate measurement of galaxy shapes must
be coupled with a robust characterization of the redshift
distribution of source galaxies.

In imaging surveys, redshift must be inferred from the
electromagnetic spectral energy distribution (SED) of dis-
tant galaxies, integrated over a number of filter bands. On-
going broadband imaging surveys, such as the Dark Energy
Survey (DES; Dark Energy Survey Collaboration 2005), the
Hyper Suprime-Cam Subaru Strategic Program (HSC-SPP;
Aihara et al. 2018) and the Kilo Degree Survey (KiDS; de
Jong et al. 2013), as well as upcoming ones such as the Large
Synoptic Survey Telescope (LSST; Ivezić et al. 2008), the
Euclid survey (Laureijs et al. 2011), and the Wide-Field In-
fraRed Survey Telescope (WFIRST; Spergel et al. 2013),
rely on measurements of flux in a small number of bands
(three to six) to determine redshifts of source galaxies.

The coarse measurement of a galaxy’s redshifted SED
often does not uniquely determine its redshift and type: two
different rest-frame SEDs at two different redshifts can be
indistinguishable, as illustrated in Figure 1 (lower panel).
This type/redshift degeneracy is the fundamental cause of
uncertainty in redshift calibration, i.e. in the constraint of
the mean and shape of the redshift distribution of an ensem-
ble of galaxies, across methods. It can bias template-fitting
methods (e.g. Beńıtez 2000; Ilbert et al. 2006), even with a
Bayesian treatment of sufficiently flexible template sets, be-
cause the choice of priors determines the mix of estimated
type/redshift combinations at fixed ambiguous broad-band
fluxes. It can bias empirical methods based on machine
learning (e.g. Collister & Lahav 2004; Carrasco Kind &
Brunner 2013; De Vicente et al. 2016) or direct calibration
from spectroscopic samples, because present spectroscopic
samples are subject to selection effects at fixed broad-band
observables (Bonnett et al. 2016; Gruen & Brimioulle 2017).
These can be both explicit (i.e. because spectroscopic targets
were selected by properties not observed in a wide-field sur-
vey) or implicit (i.e. because success of spectroscopic redshift
determination depends on type/redshift). Type/redshift de-
generacy contributes to the dominant systematic uncer-
tainty in redshifts derived from cross-correlations (Schnei-
der et al. 2006; Newman 2008; Ménard et al. 2013; Schmidt
et al. 2013; Hildebrandt et al. 2017; Samuroff et al. 2017;
Davis et al. 2017, 2018), the evolution of clustering bias with
redshift (Gatti et al. 2018). The latter is due in part to the
evolution of the mix of galaxy types as a function of red-
shift. Because of type/redshift degeneracy, such an evolution

is present in any sample that can be selected from broad-
band photometry. Finally, type/redshift degeneracy is the
fundamental reason for sample variance in redshift calibra-
tion from fields like COSMOS (Lima et al. 2008; Amon et al.
2018; Hoyle et al. 2018): a criterion based on few broad-band
colors selects a mix of galaxy types/redshifts that depends
on the large-scale structure present in a small calibration
field.

A substantial improvement in redshift calibration there-
fore requires that the type/redshift degeneracy in wide-field
surveys be broken more effectively. While the collection of
large, representative samples of faint galaxy spectra remains
unfeasible, recent studies indicate that broad-band photom-
etry that covers the full range of optical and near-infrared
wavelengths substantially improves the accuracy of redshift
calibration (Masters et al. 2017; Hildebrandt et al. 2018).
This is again illustrated by the lower panel of Figure 1:
the additional bands can break type/redshift degeneracies
that are present in, e.g., (g)riz information. Over large areas
and to the depth of upcoming surveys, only few-band pho-
tometry is readily available, primarily due to a lack of effi-
cient near-infrared survey facilities (but cf. KiDS+VIKING,
Wright et al. 2018). However, in the next decade, imaging
surveys such as the Euclid survey (Laureijs et al. 2011) and
WFIRST (Spergel et al. 2013) have been designed to address
this lack of near-infrared data.

In this paper, we develop a method that leverages pho-
tometric data in additional filters (and with sufficiently low
photometric noise), available over a limited area of a survey,
to break degeneracies and thus overcome the key limitations
of redshift distribution characterization from few-band data.
Optical surveys commonly observe some regions more often
than the wide-field, and these can be chosen to overlap with
auxiliary near-infrared data and spectroscopy. The galaxies
observed in these ‘deep fields’ can be grouped into a suffi-
ciently fine-grained set of phenotypes based on their observed
many-band fluxes (Sánchez & Bernstein 2018). The average
density with which galaxies from each phenotype appear in
the sky can be measured more accurately from the deep
fields than from a smaller spectroscopic sample.

The redshift distribution of a deep-field phenotype can
be estimated from a sub-sample for which both the multi-
band fluxes and accurate redshifts are available. This could
be the result of a future targeted spectroscopic campaign
(cf. Masters et al. 2015) or, as long as spectroscopic red-
shifts do not cover all phenotypes, a photometric campaign
with high-quality and broad wavelength coverage, to be used
with a template fitting method. Members of a phenotype
have very similar multi-band colors, giving typically a com-
pact redshift distribution. This substantially reduces red-
shift biases that might arise from non-representative or in-
complete spectroscopic follow-up, sample variance, or from
variation of clustering bias with redshift. The larger volume
and depth of the deep fields allow the estimation of the den-
sity of galaxies from each phenotype in the sky with a lower
sample variance, lower shot noise, and higher completeness
than would be possible from redshift samples alone. Knowing
this density and the multi-band properties of a phenotype
and applying the distribution of measurement noise in the
wide survey, we can determine the probability that an obser-
vation in the wide field originates from a given phenotype.
That is, we learn how to statistically break the type/redshift
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Figure 1. Illustration of how redshift can be estimated from broadband images, yet not always unambiguously. Top: The same template
of an elliptical galaxy is redshifted at z = 0.4 and z = 0.8. These objects exhibit clearly different colors. Bottom: Templates of an

elliptical galaxy and a Sbc galaxy at different redshifts are plotted. In the optical (e.g. from griz information), those two objects are

indistinguishable: type and redshift are degenerate. Adding u and near-infrared bands – especially the H and Ks bands – differentiates
them. Colored areas show relative throughput of DES ugriz and VISTA YJHKs bands. Galaxy templates are taken from Beńıtez et al.

(2004).

degeneracy at given broad-band flux from a larger sample
of galaxies than is possible to obtain accurate redshifts for.
In this scheme, the multi-band deep measurements thus me-
diate an indirect mapping between wide-field measurements
and accurate redshifts.

For the purpose of developing the method in this pa-
per, we will assume that the subset of galaxies with known
redshifts (1) is representative at any position in multi-band
deep field color space, and (2) has their redshifts charac-
terized accurately. While progress is being made towards
achieving this with spectroscopy (e.g. Masters et al. 2019),
or many-band photometric redshifts, which show promis-
ing performance (at least for a large subset of the source
galaxies measured in DES; Laigle et al. 2016; Eriksen et al.
2019), substantial work remains to be done on validating
this assumption in practical applications of our scheme, and
extending its validity to the fainter galaxy samples required
by future lensing surveys.

The paper is organized as follows. In § 2, we develop the
formalism of the method which is tested on a mock galaxy
catalog presented in § 3. The implementation of the method
with self-organizing maps is presented in § 4 and the fiducial
choices of features and hyperparameters are described in § 5.
The performance of the method with unlimited samples is
assessed in § 6. We then apply the method to a simulated
DES catalog in order to forecast its performance on ongoing
and future surveys. The DES Year 3 (Y3), i.e. the analysis
of the data taken in the first 3 years of DES, targets an un-
certainty in the mean redshift of each source tomographic
bin σ∆z ∼ 0.01, which is unmatched for wide-field galaxy
samples with comparable data, and a main motivation for
this work. The sources of uncertainty and their impacts on

a DES Y3-like calibration are characterized in § 7. The im-
pact of the DES Y3 weak lensing analysis choices on red-
shift calibration are assessed in § 8. We describe the redshift
uncertainty on a DES Y3-like analysis in § 9 and explore
possible improvements of the calibration in § 10. Finally, we
conclude in § 11. A reader less interested in technical aspects
may wish to focus on § 2 and § 7.

We define three terms used in this paper that have vary-
ing uses in the cosmological literature. By sample variance
we mean a statistical uncertainty introduced by the limited
volume of a survey. By shot noise we mean a statistical un-
certainty introduced by the limited number of objects in a
sample. And the term bias is used for a mean offset of an
estimated quantity from a true one that remains after av-
eraging over many (hypothetical) random realizations of a
survey.

2 FORMALISM

In this section we develop a method based on galaxy pheno-
types to estimate redshift distributions in tomographic bins.
The method is applicable to any photometric survey with a
similar observation strategy to DES.

Assume two kinds of photometric measurements are ob-
tained over the survey: wide data (e.g. flux or colors), avail-
able for every galaxy in the survey, and deep data, available
only for a subset of galaxies. The dimensionality of the deep
data is higher by having flux measurements in more bands
of the electromagnetic spectrum. We shall denote the wide
data by x̂ with errors Σ̂. We will call the deep data x. We
will assume noiseless deep data, but confirm that obtainable
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levels of deep field noise do not affect our conclusions. The
deep sample is considered complete in the sense that any
galaxy included in the wide data would be observed if its
location was within a deep field.

A third sample contains galaxies with confidently
known redshifts, z. The redshift data can be obtained us-
ing many-band photometric observations or spectroscopy. In
this work, we will assume the redshift sample to be a repre-
sentative subset of the deep data, with perfect redshift infor-
mation. This is a fair assumption when the redshift sample is
populated with high-quality photometric redshifts (e.g. from
COSMOS or multi-medium/narrow-band surveys), and the
deep sample is complete to sufficiently faint magnitudes. It
is, however, a strong assumption for spectroscopic redshifts
when matched to a photometric sample with only few ob-
served bands (Gruen & Brimioulle 2017). As one increases
the wavelength coverage, the assumption of representative-
ness becomes less problematic: in our scheme, it is only re-
quired to hold at each position in deep multi-color space, and
thus only for subsets of galaxies with close to uniform type
and well-constrained redshift. This is confirmed by the ob-
servation that, at a given position in seven-color optical-NIR
data space, the dependence of mean redshift on magnitude
is small. Once in a discretized cell of the Euclid/WFIRST
color space, Masters et al. (2019) quantify the dependence on
galaxy brightness as ∼ 0.0029 change in ∆z/(1 + z̄) per mag-
nitude. Thus despite a selection effect in the spectroscopic
survey to only observe a brighter subset of the galaxies at
given deep multi-band color, the inferred redshift distribu-
tion would still be close to unbiased and representative of
the full sample.

In order to estimate the conditional probability p(z |x̂),
the deep sample can be used as an intermediary between
wide-field photometry and redshift. Redshifts inferred di-
rectly from wide measurements with only a small num-
ber of bands can be degenerate when distinct galaxy
types/redshifts yield the same observables. This is the ulti-
mate reason behind sample variance and selection biases in
redshift calibration: the same observed wide-field data can
correspond to different distributions of redshift depending
on the line of sight or additional selections, e.g. based on
the success of a spectroscopic redshift determination. Sam-
ple variance, shot noise, and selection effects may thus cause
the mix of types/redshifts in a redshift sample at given x̂ to
deviate from the mean of a complete sample collected over
a larger area.

The type/redshift degeneracy is mitigated for a deep
sample in which supplementary bands and more precise pho-
tometry reduce the type mixing at a given point in multi-
color space. A tighter relation can in this case be found be-
tween redshifts and deep observables. At the same time, the
small sample of galaxies with known accurate redshifts can
be reweighted to match the density of deep field galaxies in
this multi-color space. Because the position in this multi-
color space is highly indicative of type and redshift, and be-
cause larger, complete samples of deep photometric galaxies
can be collected, this reweighting evens out the type/redshift
mix of the redshift sample at given wide-field flux (Lima
et al. 2008). As a result, sample variance and selection ef-
fects present in the redshift sample are reduced. By statis-
tically relating the deep to the wide data that would be
observed for the same galaxy, the deep sample enables esti-

mating wide galaxy redshifts with reduced susceptibility to
sample variance and selection effects.

The deep and wide data sets do not necessarily repre-
sent the same population of galaxies. Not all galaxies seen
in the deep field are detected in the wide field, and for a
particular science case, not all the galaxies detected in the
wide data are used. Only the ones satisfying some selection,
ŝ, are taken into account. The wide data, x̂, and its errors,
Σ̂, are correlated with other properties that may enter in
the selection, ŝ, such as ellipticity or size. These properties
are linked to colors in the deep observations, x, that are
unobserved in the wide data. For example, morphology cor-
relates with galaxy color (e.g. Larson et al. 1980; Strateva
et al. 2001). Assume one sample, ŝ0, selects elliptical galaxies
and another, ŝ1, selects spiral galaxies. Those two samples
will have a different distribution of x given x̂. Therefore, the
mapping of x̂ to z will be different for different science sam-
ples, ŝ. In our case ŝ is the selection of observed DES galaxies
that end up in our weak lensing source catalog.

A photometric redshift estimator for an individual
galaxy is given by

p(z |x̂, Σ̂, ŝ) =
∫

dx p(z |x) p(x|x̂, Σ̂, ŝ), (1)

where we marginalized over the deep measurements, x. In
Equation 1, we assume that p(z |x, x̂, Σ̂, ŝ) = p(z |x). The valid-
ity of this assumption in our scheme is tested in § 5.2. For an
ensemble of N galaxies, an estimator (see Malz et al. 2018,
for a discussion) of the redshift distribution, dN/dz ∝ p(z),
is given by

p(z | ŝ) = 1
N

N∑
i=1

∫
dx p(z |x) p(x|x̂i, Σ̂i, ŝ), (2)

where the contribution of each galaxy is summed. The con-
ditional probability distributions p(z |x) and p(x|x̂, Σ̂, ŝ) must
be learned but this might be infeasible because the variables
x and x̂ are continuous and multidimensional. In DES for
example, x̂ has 4 dimensions and x can have up to 9 dimen-
sions. To overcome the problem of a complicated mapping
from a 4-dimensional space to a 9-dimensional space, we
discretize those spaces. We can consider that x̂ and x are
observable characteristics of an underlying variable that de-
fines a galaxy’s SED and redshift. We can also consider that
galaxies with similar x will have similar redshift. It is there-
fore reasonable to cluster the deep data, x, in discretized
deep cells, c, and the wide data, x̂, in discretized wide cells,
ĉ. Each deep cell, c, represents a galaxy phenotype. For our
purpose, all galaxies in the same cells have the same observ-
ables, and some underlying variables – the galaxy’s ‘genes’ –
determine these observables. We therefore call this method
phenotypic redshifts (hereafter pheno-z).

Using a variety of clustering methods, a galaxy with
wide measurement, x̂, and error, Σ̂, can be assigned to a
unique cell ĉ. Similarly, a galaxy with deep measurement,
x, can be assigned to a unique cell c. Those two assign-
ments need not necessarily be produced using the same
method. This reduces, for each galaxy, the continuous multi-
dimensional vectors x and x̂ (with their errors) to two inte-
gers. In this scheme, given a selection of galaxies, ŝ, each
wide cell, ĉ, has a redshift distribution:

p(z |ĉ, ŝ) =
∑
c

p(z |c) p(c |ĉ, ŝ), (3)

MNRAS 000, 1–24 (2019)
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which is analogous to Equation 1, and where we have as-
sumed p(z |c, ĉ, ŝ) = p(z |c). For an ensemble of galaxies with
selection ŝ, its redshift distribution is given by

p(z | ŝ) =
∑
c, ĉ

p(z |c) p(c |ĉ, ŝ) p(ĉ | ŝ), (4)

where p(ĉ | ŝ) is the fractional assignment of galaxies to cell ĉ.
This is the discretized version of Equation 2. The quantity
p(c |ĉ, ŝ) will be called the transfer function and is specific
to a science sample, ŝ. In our scheme, it is estimated from
galaxies for which both deep and (possibly simulated) wide
observations are available (hereafter the overlap sample).

It is useful to consider the sources of bias, sample vari-
ance and shot noise inherent to this scheme. We note that
the transfer function, p(c |ĉ, ŝ), is proportional to p(ĉ, ŝ |c)p(c)
per Bayes’ theorem. Sample variance and shot noise in the
estimated redshift distribution can thus be caused by the
limited volume and count of the deep galaxy sample, intro-
ducing noise in p(c), or by the limited overlap sample, intro-
ducing noise in p(ĉ, ŝ |c). If it were the case that c uniquely
determines the redshift, there would be no variance in p(z |c)
as long as a redshift is known for at least one galaxy from
each deep cell c. For a large enough sample of bands in the
deep data, p(z |c) is indeed much narrower than p(z |ĉ, ŝ). Sam-
ple variance and shot noise due to limited redshift sample
(as estimated in Bordoloi et al. 2010; Gruen & Brimioulle
2017) can therefore be reduced in this scheme.

Biases could be introduced by the discretization. Equa-
tion 4 is an approximation to Equation 2 that breaks when
the redshift distribution varies within the confines of a c cell
in a way that is correlated with ĉ or ŝ. One of the purposes
of this paper is to test the validity of this approximation (see
§ 5.2 and § 6).

2.1 Source bin definition

To perform tomographic analysis of lensing signals (see e.g.
Hu 1999), galaxies must be placed into redshift bins. The
pheno-z method, developed in § 2, to estimate redshift dis-
tributions is independent of the bin assignment method. The
simple algorithm presented in this section is aimed to assign
galaxies to one bin uniquely, with little overlap of bins, such
that each contains roughly the same number of galaxies.

To achieve the binning, two samples are used: the red-
shift sample for which we have deep measurements and the
overlap sample for which we have deep and wide measure-
ments. The redshift sample is assigned to cells c and the
mean redshift, z̄c , in each of those cells is computed. Each
galaxy in the overlap sample is assigned to cells c and ĉ. The
fractional occupation of those cells fc = p(c | ŝ) and fĉ = p(ĉ | ŝ)
are such that

∑
c fc =

∑
ĉ fĉ = 1. All galaxies in the redshift

sample are used whereas only the galaxies respecting the
selection criteria enter the overlap sample.

We wish to assign galaxies to Nbin tomographic bins
(Nbin = 5 in this work). The first step consists of assigning
cells c to tomographic bins B. The cells ĉ are then assigned
to tomographic bins B̂ using the transfer function. The pro-
cedure is the following:

(i) Cells c are sorted by their mean redshift, z̄c , in ascend-
ing order. Cells are assigned to bin B until

∑
c∈B fc ≥ 1

Nbin
,

where B = 1, ..., Nbin. We discuss the impact of cells lacking
redshift information in § 7.4.

(ii) Each cell ĉ is assigned to a bin B̂ by finding which
bin B it has the highest probability of belonging to through
p(c |ĉ, ŝ):

B̂ = argmax
B

p(B |ĉ, ŝ) = argmax
B

∑
c∈B

p(c |ĉ, ŝ). (5)

(iii) Individual galaxies are assigned to bin B̂ based on
their wide cell assignment, ĉ.

Once the bins are computed, the final quantity of inter-
est, the redshift distribution in bin B̂ can be inferred:

p(z |B̂, ŝ) =
∑
ĉ∈B̂

∑
c

p(z |c) p(c |ĉ, ŝ) p(ĉ | ŝ). (6)

Throughout this work, we will use Equation 6 to estimate
redshift distributions in tomographic bins.

3 SIMULATED DES GALAXY CATALOGS

In this work we use simulated galaxy catalogs designed to
mimic observational data collected with the Dark Energy
Camera (DECam; Honscheid et al. 2008; Flaugher et al.
2015). DECam is a 570 megapixel camera with a 3 deg2

field-of-view, installed at the prime focus of the Blanco 4-
m telescope at the Cerro Tololo Inter-American Observa-
tory (CTIO) in northern Chile. In addition, we mimic data
by surveys conducted with the Visible and Infrared Survey
Telescope for Astronomy (VISTA; Emerson et al. 2004), a
4-m telescope located at ESO’s Cerro Paranal Observatory
in Chile and mounted with a near infrared camera, VIR-
CAM (VISTA InfraRed CAMera), which has a 1.65 degree
diameter field-of-view containing 67 megapixels. Both the
underlying real and simulated galaxy samples are described
below.

3.1 The Dark Energy Survey

The DES is an ongoing ground-based wide-area optical
imaging survey which is designed to probe the causes of cos-
mic acceleration through four independent probes: Type Ia
supernovae, baryon acoustic oscillations, weak gravitational
lensing, and galaxy clusters. After six years of operations
(2013-2019), the survey has imaged about one-eighth of the
total sky. DES has conducted two distinct multi-band imag-
ing surveys with DECam: a ∼ 5000 deg2 wide-area survey
in the grizY bands1 and a ∼ 27 deg2 deep supernova survey
observed in the griz bands. The deep supernova survey over-
laps with the VISTA YJHKs bands measurements, and we
have obtained u band imaging of these fields using DECam.

3.1.1 DES Year 3 samples

The pheno-z method requires four samples to estimate red-
shift distributions in tomographic bins using Equation 6.
The following datasets will be used in the DES Y3 analysis:

1 While there are DES Y band flux measurements available, due

to their lower depth we will not use it.
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Table 1. Overlap between DES deep ugriz measurements and
VISTA (Y)JHKs measurements. E2, X3 and C3 refer to the DES

supernova fields and C to the COSMOS field. There are VISTA

Y band measurements in COSMOS, E2 and X3 fields but not in
the C3 field. The last column shows the reduced deep field area

when using Y band.

E2 X3 C3 C
Total

JHKs YJHKs

Overlap [deg2] 3.32 3.29 1.94 1.38 9.93 7.99

(i) Deep sample: In DES, ugriz deep photometry is ob-
tained in 10 supernova fields (∼ 27 deg2), as well as in the
COSMOS field (∼ 2 deg2). Some of those fields overlap with
deep VISTA measurements in the YJHKs bands from the
UltraVista survey (McCracken et al. 2012) for COSMOS and
from the VISTA Deep Extragalactic Observations (VIDEO;
Jarvis et al. 2013) survey for the supernova fields. Table 1
summarizes the overlap between the DES deep photometry
and the UltraVISTA (COSMOS) and VIDEO fields. The
VISTA Y band is available in three of the four fields where
JHKs bands are available. Including the Y band reduces the
total available area from 9.93 to 7.99 deg2. We examine the
trade-off between area and Y band in § 7.3.2. In the espe-
cially deep supernova fields C3 and X3, DECam griz is at an
equivalent depth of at least 200×90s, while the regular depth
supernova field E2 has at least 80×90s exposures, compared
to a final wide-field DES exposure time of 10 × 90s.

(ii) Redshift sample: The galaxies in the COSMOS field
can be assigned a redshift either by using many-band photo-
zs (Laigle et al. 2016) which are available for all galaxies
or by using spectroscopic redshifts available for a subset of
galaxies as long as this subset is representative of the color
space spanned by the deep sample and is a fair sample of
z within any given cell.2 The use of many-band photo-z is
advantageous as it avoids selection effects commonly present
in spectroscopic samples. The COSMOS catalog provides
photometry in 30 different UV, visible and IR bands. For
each galaxy, the probability density function (PDF) pC30(z)
of its redshift given its photometry is computed using the
LePhare template-fitting code (Arnouts et al. 1999; Ilbert
et al. 2006). The typical width of pC30(z) for DES sources is
≈ 0.01(1 + z) and the typical catastrophic failure rate is 1%.
The available overlap between DES deep and UltraVista for
which many-band photo-zs are available is 1.38 deg2 and
contains ∼ 135, 000 galaxies.

(iii) Overlap sample: This sample comprises objects for
which deep and (possibly synthetic) wide measurements are
available. In practice, we will use Balrog (Suchyta et al.
2016), a software package that paints synthetic galaxies into
observed images in order to render wide measurements and
assess selection effects. The deep sample galaxies are painted
several times over the whole DES footprint to produce a
number of realizations of each deep field galaxy under dif-

2 See section 5.3 of Masters et al. (2015) for references of spectro-

scopic data available and Masters et al. (2017) for the Complete

Calibration of the Color-Redshift Relation (C3R2) survey, which
aims at increasing the representativeness of the spectroscopic data

available.

ferent observing conditions and noise realizations. The shape
measurement pipeline is also run on those fake galaxies yield-
ing only objects that would end up in the shape catalog after
its cuts on e.g. observed size and signal-to-noise ratio. This
method produces a sample of galaxies with deep and wide
measurements with the same selection as the real source
galaxies used in the weak lensing analysis.

(iv) Wide sample: All galaxies that are selected for the
shape catalog are included in the wide sample. These are
the galaxies for which we infer the redshift distributions.

3.2 Buzzard mock galaxy catalog

We use the Buzzard-v1.6 simulation, a mock DES cata-
log created from a set of dark-matter-only simulations (a
detailed description of the simulation and the catalog con-
struction can be found in MacCrann et al. 2018; DeRose
et al. 2019, Wechsler et al. in preparation). Buzzard-v1.6
is constructed from a set of 3 N-body simulations run using
l-gadget2, a version of gadget2 (Springel 2005) modified
for memory efficiency. The simulation box sizes ranged from
1 to 4 h−1Gpc. Light cones from each box were constructed
on the fly.

Galaxies are added to the simulations using the Adding
Density Dependent GAlaxies to Light-cone Simulations al-
gorithm (addgals; DeRose et al. 2019, Wechsler et al. in
preparation). This algorithm pastes galaxies onto dark mat-
ter particles in an N-body simulation by matching galaxy
luminosities with local dark matter densities. This method
does not use dark matter host haloes, which are commonly
unresolved for the galaxies and simulations used here. SEDs
from a training set of spectroscopic data from SDSS DR7
(Cooper et al. 2011) are assigned to the simulated galaxies
to match the color-environment relation. These SEDs are
integrated in the DES pass bands to generate ugriz mag-
nitudes and in the VISTA pass bands to generate YJHKs
magnitudes (see Figure 1). Galaxy sizes and ellipticities are
drawn from distributions fit to SuprimeCam i band data
(Miyazaki et al. 2002). Galaxies are added to the simulation
to the projected apparent magnitude limit of the final DES
dataset out to redshift z = 2.

The use of SDSS spectra means that the SEDs assigned
in Buzzard are limited to bright or low redshift galaxies. In
contrast to template fitting methods, the resulting lack of
SED evolution with redshift is not a major concern for test-
ing our scheme: there is no assumption made that the same
underlying SED exists at different redshifts to produce dif-
ferent but related phenotypes. Changes in galaxy SEDs with
redshift could, however, introduce a different degree of type-
redshift degeneracy as seen in the mock catalogs, which is a
caveat in transferring our findings to real data and should
be tested by comparing e.g. the scatter of redshift within
deep SOM cells between mock and data. Note also that as
the rest-frame UV part of the SEDs is not recorded by the
SDSS spectra, the spectroscopic data must be extrapolated
to produce the optical colors at z ' 1.5. The lack of informa-
tive colors above this redshift motivates the redshift cut in
the samples described below. This may lead to an underes-
timate of the uncertainty in high-redshift tails. Only a small
fraction of observable galaxies in those parts of wide-field
color-magnitude space that provide sufficiently constrained
redshift distributions for lensing use in DES Y1 (the anal-
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ysis of the data taken in the first year of DES) and Y3 lie
at z > 1.5 (cf. e.g. Hoyle et al. 2018), but this will change in
deeper future data sets. In addition, our error estimates as-
sume that the overall population density and signal-to-noise
distribution of Buzzard galaxies as a function of redshift
mimics the data, which is only approximately true.

3.2.1 Mock samples in Buzzard

Using the Buzzard simulated catalog, we construct the 4
samples described in § 3.1.1 to test and refine our method. In
the simulations, galaxies are assigned a true redshift ztrue and
a true flux in each band. Observed fluxes are derived for each
galaxy depending on its position on the sky. The error model
used is tailored to match DES wide-field observations. In the
following, in order for the simulations to mimic the real data,
we will use the simulated true and observed information as
deep and wide information, respectively.

We use the true redshift for the redshift sample and
to compare our inferred redshift distributions to the true
ones. We reiterate that this assumption is likely valid for
the brighter subset of existing spectroscopic and many-band
photometric redshift samples only (Laigle et al. 2016; Erik-
sen et al. 2019; Masters et al. 2019), and must be validated
when applying any empirical redshift calibration scheme in
practice. The simulated true fluxes without errors are used
as the deep measurements. This is justified by the signifi-
cantly longer integrated exposure time of the deep fields rel-
ative to the wide survey. We have validated that flux errors
at least five times smaller than those that define the limiting
magnitudes in Appendix A, applied to the simulated deep
field catalogs, do not appreciably affect our redshift calibra-
tion. We are actively studying the interplay of deep field flux
errors and deep SOM calibration on Y3 data (Myles et al. in
preparation). When the measurements are considered noise-
less, Σ is taken to be the identity matrix when training the
self-organizing map (SOM; § 4.1) or when assigning galaxies
to the SOM. To mimic the deep and redshift samples, two
cuts are performed on the Buzzard catalog. Only galaxies
with true redshift ztrue < 1.5 and true magnitude in i band
mtrue, i < 24.5 are kept in both samples. The hard boundary
at ztrue = 1.5 has its drawbacks (namely, in the reliability of
the error estimate of the highest redshift bin) but it ensures
that the colors are sufficiently correct which is not the case
at high ztrue in the simulations. The redshift sample is ex-
pected to be representative of the deep sample at any point
in deep multi-color space, as would be the case for COSMOS
multi-band redshifts.

For the wide sample, we want galaxies whose properties
are similar to the ones of galaxies we would use in the DES
Y3 cosmology analysis. These galaxies are a subset of all
DES Y3 observed galaxies in the wide survey. This subset is
the result of both easy-to-mock selections (galaxies with ob-
served magnitude in some band lower than a threshold) and
difficult-to-mock selections (cut galaxies which would fail in
the shape measurement algorithm). We use the simple selec-
tion criterion of observed magnitude in i band mobs, i < 23.5
to create the wide sample. A more refined selection, which
depends on a galaxy’s size and the limiting magnitude in r
band of the survey at its position on the sky, is used at the
end of this work to check the robustness of our uncertain-
ties estimates (see § 8.1). The distributions of the observed
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Figure 2. Distribution of the observed i band magnitude of three

selections, ŝ, applied to all galaxies in a Buzzard tile (∼ 53 deg2).
The deep selection (blue) is ztrue < 1.5 and mtrue, i < 24.5. The hard

cut selection (red) is the deep selection plus mobs, i < 23.5. The

weak lensing (WL) selection (black) uses a more complex criterion
based on the size of the galaxy and the limiting magnitude of the

DES Y3 survey (see § 8.1).

i band magnitude of those three selections applied to all
galaxies in a Buzzard tile (∼ 53 deg2) is shown in Figure 2.

To obtain the overlap sample, we apply the same selec-
tion criterion as the one used for the wide sample. To mimic
the Balrog algorithm, we can take the galaxies in the deep
sample, randomly select positions over the full Y3 footprint
and run the error model at their position to obtain a noisy
version of the galaxy. This allows us to have multiple wide
realizations of the same galaxy. Only galaxies respecting the
wide selection criterion are then selected. The galaxies in the
deep sample can be spliced a certain number of times giving
an overlap sample of variable size.

In summary, only two selections are performed: a deep
and a wide. The first is applied to the redshift and deep
samples, the second to the overlap and wide samples.

4 IMPLEMENTATION

As stated in § 2, a wide variety of clustering methods can
be used to achieve the assignment of wide and deep data to
cells ĉ and c, respectively. In this work, we use self-organizing
maps to obtain both. This choice is motivated by the visual
representation offered by this method which helps interpre-
tation and debugging. Also, recent works have shown the
capabilities of this algorithm in dealing with photo-zs (see
e.g. Carrasco Kind & Brunner 2014; Masters et al. 2015).

4.1 Self-organizing maps

A self-organizing map (SOM) or Kohonen map is a type
of artificial neural network that produces a discretized and
low-dimensional representation of the input space. Since its
introduction by Kohonen (1982), this algorithm has found a
large range of scientific applications (see e.g. Kohonen 2001).
In astronomy, SOMs have been used in different classifi-
cation problems: galaxy morphologies (Naim et al. 1997),
gamma-ray bursts (Rajaniemi & Mähönen 2002) or astro-
nomical light curves (Brett et al. 2004). More recently, this
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method has been used to compute photo-zs: single photo-z
estimator (Geach 2012; Way & Klose 2012) and the full red-
shift PDF (Carrasco Kind & Brunner 2014). It has also been
used to characterize the color-redshift relation to determine
relevant spectroscopic targets (Masters et al. 2015) necessary
to meet the photo-z precision requirements for weak lens-
ing cosmology for the Euclid survey (Laureijs et al. 2011).
This work resulted in the Complete Calibration of the Color-
Redshift Relation (C3R2; Masters et al. 2017) survey, which
targets missing regions of color space.

The SOM algorithm is an unsupervised method (the
output variable, in our case the redshift, is not used in train-
ing) which produces a direct mapping from the input space
to a lower dimensional grid. The training phase is a com-
petitive process whereby cells of the map (more commonly
called neurons or nodes) compete to most closely resemble
each galaxy of the training data, until the best match is
assigned as that galaxy’s phenotype. The SOM is a type
of non-linear principal component analysis which preserves
separation, i.e. distances in input space are reflected in the
map.

Consider a training sample of n galaxies. For each galaxy
we can build an m-dimensional input vector x ∈ Rm made
of measured galaxy attributes such as magnitudes, colors
or size (but not the redshift). A SOM is a set of C cells
arranged in an l-dimensional grid that has a given topology.
Here we consider two-dimensional square maps with periodic
boundary conditions (the map resembles a torus). Each cell
is associated to a weight vector ωk ∈ Rm, where k = 1, ...,C,
that lives in the same space as the input vectors.

The iterative training process starts by initializing the
weight vectors either randomly or by sampling from the in-
put data. At each step of the algorithm, a random galaxy
from the training sample is presented to the map. The cells
whose weight vector is the closest to the galaxy’s vector is
the Best Matching Unit (BMU). To define closeness, we use
the χ2 distance:

d2(x, ωk) = (x − ωk)>Σ−1(x − ωk), (7)

where Σ is the covariance matrix for the training vector, x.
The cell minimizing this distance is the BMU and is denoted
by the subscript b:

cb = arg min
k

d(x, ωk). (8)

To preserve the topology of the input space, not only the
BMU is identified as being similar to the training galaxy but
also its neighborhood. Therefore, these cells are all modified
to more closely resemble the training galaxy. To update the
weights, the following relation is used for all weights ωk:

ωk(t + 1) = ωk(t) + a(t) Hb,k (t) [x(t) − ωk(t)], (9)

where t represents the current time step in the training. The
learning rate function, a(t), encodes the responsiveness of the
map to new data. It is a monotonically decreasing function
of the time step: the map gets gradually less sensitive to new
training vectors. The learning rate function in terms of the
total number of training steps, tmax, has the following form:

a(t) = at/tmax
0 , (10)

where a0 ∈ [0, 1]. The size of the BMU’s neighborhood af-
fected by the new training vector also decreases as a function

of time steps. This is encoded in the neighborhood function
Hb,k (t) which is parametrized as a Gaussian kernel centered
on the BMU:

Hb,k (t) = exp[−D2
b,k/σ

2(t)]. (11)

The distance between the BMU, cb, and any cell on the map,
ck , is the Euclidean distance on the l-dimensional map:

D2
b,k =

l∑
i=1
(cb,i − ck,i)2, (12)

where we account for periodic boundary conditions. The
width of the Gaussian kernel is parametrized as

σ(t) = σ1−t/tmax
s . (13)

Its starting value σs should be large enough such that most
of the map is initially affected. As the training progresses the
width shrinks until only the BMU and its closest neighbors
are significantly affected by new data.

4.2 Assignment of galaxies to cells

After the training has converged, we use the χ2 distance
introduced in Equation 7 to assign galaxies to a cell. Given
its input vector, x, and its covariance matrix, Σ, a galaxy
has a probability of belonging to cell c given by

−2 ln p(c |x,Σ) = (x − ωc)>Σ−1(x − ωc) + const., (14)

where ωc is the weight vector of cell c. In this paper, the
deep measurements are considered noiseless, while the wide
measurements have noise. When the measurement is consid-
ered noiseless, the identity is used for the covariance matrix,
Σ. When the measurement has noise, we compute the full
inverse covariance matrix in Equation 14. We present how
to calculate the inverse covariance matrix in Appendix C.
For computational efficiency and tractability, we would like
to keep a single integer for each galaxy instead of a vector
in RC where C is the number of cells. To this end, we keep
only the cell which maximizes the above probability.

4.3 Scheme implementation

The computation of the redshift distributions with the
pheno-z scheme (see Equation 6) is depicted in Figure 3. To
compute p(z |c), a ‘Deep SOM’ is trained using all galaxies
in the deep sample. A redshift distribution can be computed
for each SOM cell c by assigning the redshift sample to the
Deep SOM. A second SOM, the ‘Wide SOM’, is trained on
the wide sample. Assignment of the galaxies in this sample to
the Wide SOM yields p(ĉ | ŝ). The transfer function, p(c |ĉ, ŝ),
is computed by assigning the galaxies in the overlap sample
to the Deep and the Wide SOMs. The tomographic bins are
obtained using the procedure described in § 2.1 using the
assignment of the redshift and overlap samples to the Deep
SOM as well as the transfer function, p(c |ĉ, ŝ).

In our scheme, three probability distributions must be
obtained to compute Equation 6. We need to know the prob-
ability that a galaxy ends up in wide cell, ĉ, if it passes se-
lection ŝ. This is obtained as the fractional occupation of ĉ
by the sample of interest. We can make use of our single cell
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assignment to compute it:

p(ĉ | ŝ) = 1
nŝ

∑
i∈ŝ

δĉ, ĉi , (15)

where nŝ is the number of galaxies in the sample of interest,
δ is the Kronecker delta and ĉi is a number representing the
cell that maximizes the probability given in Equation 14 for
the ith object in the sample.

The second necessary piece of our scheme is the transfer
function, p(c |ĉ, ŝ), which characterizes the mapping between
wide and deep measurements. Using the definition of condi-
tional probability, we can define it as

p(c |ĉ, ŝ) = p(c, ĉ | ŝ)
p(ĉ | ŝ) . (16)

This transfer function is the fractional occupation of deep
cell, c, given wide cell, ĉ. Galaxies of the overlap sample are
assigned to cells c and ĉ based on their deep and wide infor-
mation, respectively. To compute Equation 16, we count the
number of instances of the unique combination (c, ĉ) and di-
vide it by the number of instances of ĉ. The transfer function
becomes:

p(c |ĉ, ŝ) =
∑
i∈ŝ δc,ci δĉ, ĉi∑

i∈ŝ δc,ci
, (17)

where ci , ĉi are the best matching deep and wide cells, re-
spectively, of the ith galaxy in the overlap sample which has
selection ŝ. This overlap sample can be obtained using either
actual galaxies which are measured in both the deep and the
wide survey or artificial wide-field measurement of the deep
sample as discussed in § 3.1.1.

The last piece of our scheme is the redshift distribu-
tion p(z |c) of deep cell c. We use the assignment of the red-
shift sample to the deep cells c. For each cell c, we compute
p(z |c) as a normalized redshift histogram with bin spacing
∆z = 0.02. This resolution is sufficient since we only use
combinations of these histograms, corresponding to wide-
field bins with relatively wide redshift distributions, for our
metrics.

5 FIDUCIAL SOMS

We must choose the features (§ 5.1) used to train the SOMs
as well as their hyperparameters (§ 5.2), i.e. parameters
whose values are not learned during the training process.
Intuition guides the search for the best parameters but em-
pirical evidence settles the final choices. The choice of the
number of cells for both SOMs is specific to the samples
available in DES Y3.

5.1 Choice of features

A SOM needs input vectors, x, on which it is trained. The
available data consist of flux measurements, fx , in a set of
electromagnetic bands (x = u, g, r, ...). Using those raw fluxes
would not be optimal as the value in each band is highly cor-
related with the overall luminosity of the galaxy, which spans
several orders of magnitude. This would result in an over-
weighting of the brightest or the faintest galaxies. A common
choice to overcome this problem is to use magnitudes:

mx = m0,x − 2.5 log10 fx, (18)

for the zeropoint m0,x in x band. The drawback of this
method is that some faint galaxies will have a zero – or
even negative – measured flux in some bands. Those mea-
surements are undefined in the magnitude system. Remov-
ing those faint objects is unacceptable as it would introduce
an additional selection that may bias cosmological analyses.
Preserving the information about a galaxy’s SED contained
in the non-measurement of some band is not easily achiev-
able using the magnitude system.

We instead adopt an inverse hyperbolic sine transforma-
tion of flux known as ‘luptitude’ after Lupton et al. (1999):

µx = µ0 − a sinh−1
(

fx
2b

)
. (19)

The zeropoint is µ0 = m0 − 2.5 log b, a = 2.5 log e and b is
a softening parameter that sets the scale at which lupti-
tudes transition between logarithmic and linear behavior.
For bright galaxies (large fx), luptitudes behave like mag-
nitudes whereas for faint galaxies (small fx), they behave
like fluxes. Zero or negative fluxes are well defined with this
parametrization which allows us to avoid throwing away any
galaxy. Luptitudes properly manage both the bright and
faint ends of the luminosity function. Our analysis is robust
to the choice of softening parameter b which is discussed in
Appendix A.

Luptitudes could be used as entries of the input vector,
x, but for a sufficient set of measured colors we expect most
of the information regarding redshift to lie in the shape of the
SED. The flux of a galaxy in this case is only a weak prior on
its redshift. We find that in practice the addition of total flux
(or magnitude) to the deep SOM does not improve the per-
formance of the algorithm. Ratios of fluxes (or equivalently
difference of magnitudes) appear to encode the most rele-
vant information to discriminate redshifts and types. Sim-
ilarly to color, which is a difference of magnitudes, we can
define ‘lupticolor’ which is a difference of luptitudes. For high
signal-to-noise ratios, a lupticolor is equivalent to the ratio
of fluxes. For noisy detections, it becomes the preferable flux
difference.

Our tests show that adding a luptitude to the input
vector of the Deep SOM slightly decreases the ability of the
method to estimate the redshift distributions whereas for the
Wide SOM, it improves it. The difference lies in the number
of bands available. The deep input vector has 8 lupticolors
which are enough to characterize the redshift of the galaxy.
For the wide input vector with only three lupticolors, the
luptitude adds information and helps break degeneracies at
low redshift.

The input vector of the Deep SOM is chosen to be a list
of lupticolors with respect to the luptitude in i band:

x = (µx1−µi, ..., µx8−µi),
where the bands x1 to x8 are ugrzY JHK. This choice will be
referred to as a lupticolor Deep SOM. For the input vector
of the Wide SOM, we also use lupticolors with respect to
the luptitude in i band, and we add the luptitude in i band:

x̂ = (µi, µg−µi, µr−µi, µz−µi).
In the case of the wide field, where only few colors are mea-
sures, we find empirically that addition of the luptitude im-
proves the performance of the scheme. This choice will be
referred to as a ‘lupticolor-luptitude’ Wide SOM.
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Figure 3. The pheno-z scheme using self-organizing maps (SOMs). This illustration depicts the estimation of redshift distributions using
Equation 6. The Wide and Deep SOMs are trained using the wide and deep samples, respectively. The term p(z |c) is computed using

the assignment of the redshift sample to the Deep SOM. For each cell c, a normalized redshift histogram is computed using the galaxies

assigned to the cell. The transfer function, p(c |ĉ, ŝ), is obtained by assigning the overlap sample to both the Wide and Deep SOMs. For
all galaxies assigned to a cell ĉ, the probability of belonging to any cell c can be computed. The last piece of our scheme, p(ĉ |ŝ), is the

fractional occupation of the wide sample in the Wide SOM.

5.2 Choice of hyperparameters

As presented in § 4.1, the SOM has various hyperparameters.
Apart from one key parameter, the number of cells in the
SOM, both the Wide and the Deep SOMs share the same
hyperparameters.

The topology of the two-dimensional grid (square, rect-
angular, spherical or hexagonal), the boundary conditions
(periodic or not) as well as the number of cells must be de-
cided. Carrasco Kind & Brunner (2014) showed that spher-
ical or rectangular grids with periodic boundary conditions
performed better. The drawback of the spherical topology is
that the number of cells cannot be easily tuned. This leads
us to choose the square grid with periodic boundary condi-
tions.

Our pheno-z scheme assumes that p(z |c, ĉ, ŝ) = p(z |c),
i.e. once the assignment to a Deep SOM cell, c, is known,
a galaxy’s noisy photometry, embodied by its assignment to
the Wide SOM cell, ĉ, does not add information. This is only
true if the cell c represents a negligible volume in the griz
color space compared to the photometric uncertainty. This
assumption requires a sufficient number of Deep SOM cells.
A second assumption of our method is that we have a p(z |c)
for each Deep SOM cell, c, which is only true if we have a
sufficient number of galaxies with redshifts to sample the dis-
tribution in each cell. While for a narrow distribution p(z |c)
a small number of galaxies suffices, this still limits the num-
ber of Deep SOM cells. Those two competing effects lead us
to set the Deep SOM to a 128 by 128 grid (16,384 cells). This
setup reduces the number of empty cells for a COSMOS-like
redshift sample (∼ 135, 000 galaxies) while producing rather
sharp phenotypes, i.e. the volume of each cell in color space
is small.

The number of cells of the Wide SOM is dictated by
the photometric uncertainty in the wide measurements. By
scanning over the number of Wide SOM cells, we found that
a 32 by 32 grid offers a sufficient amount of cells to describe
the possible phenotypes observed in the wide survey, and
that larger numbers of cells did not significantly change the
calibration.

The pheno-z method is robust to other available hyper-
parameters. The learning rate, a0, which governs how much
each step in the training process affects the map, has a neg-
ligible impact unless we choose extreme values (0.01, 0.99).
It is set to a0 = 0.5. The initial width of the neighborhood
function, σs, is set to the full size of the SOM. This allows
the first training vectors to affect the whole map. The max-
imum number of training steps, tmax, must be large enough
such that the SOM converges. By scanning over tmax, we
found that two million steps are sufficient.

We also looked at three-dimensional SOMs and found
that an extra dimension for the same number of cells had a
negligible impact on the results.

5.3 Validation of the fiducial SOMs

Our fiducial pheno-z scheme uses a 128 by 128 lupticolor
Deep SOM and a 32 by 32 lupticolor-luptitude Wide SOM.
In Appendix B, we present the assessment of this choice on
our redshift calibration procedure. Using other feature com-
binations for the Deep and Wide SOMs results in a similar
calibration. The feature selection does not matter much but
our choice has the conceptual advantages described in § 5.1.
While using a limited redshift sample, increasing the num-
ber of cells of the Deep SOM leads to a higher calibration
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error whereas increasing the number of cells of the Wide
SOM does not affect it.

6 PHENO-Z SCHEME PERFORMANCE WITH
UNLIMITED SAMPLES

In this section, we use our pheno-z scheme with the fiducial
SOMs presented in the preceding section to test its capabil-
ities. We show that, with large enough redshift, deep, and
overlap samples, the choices made in the methodology allow
a redshift calibration without relevant biases. The effect of
limited samples is evaluated separately in § 7.

The most relevant metrics to assess performance for
weak lensing purposes (Bonnett et al. 2016; Hoyle et al.
2018) are the differences in the mean and the width of the
true redshift distribution and the one estimated with the
pheno-z scheme, in each tomographic bin:

∆〈z〉 = 〈ztrue〉 − 〈zpheno〉, and (20a)

∆σ(z) = σ(ztrue) − σ(zpheno). (20b)

These metrics are the calibration error of the method. Av-
eraging them over many (hypothetical) random realizations
of a survey gives the bias of the method. In the Y1 analysis,
the detailed shape of the redshift distributions had little im-
pact. Switching the redshift distribution shape directly esti-
mated from resampled COSMOS objects (Hoyle et al. 2018)
to the one estimated using Bayesian Photometric Redshifts
(BPZ; Beńıtez 2000), a template fitting method, had little
impact on the cosmological inference from cosmic shear as
long as the mean redshift of the distributions agreed within
uncertainties (Troxel et al. 2018). This is consistent with the
finding of Bonnett et al. (2016) for the DES Science Veri-
fication analysis. For future, statistically improved, lensing
measurements, this simplification may however become in-
valid. We therefore focus our attention on the first metric
for tuning and validating the method, but aim to be able to
characterize the biases in general (i.e. in terms of possible
realizations of the redshift distributions).

The bias is determined under ‘perfect’ conditions that
are defined by the following requirements: the redshift sam-
ple is identical to the deep sample; the overlap sample is
identical to the wide sample; and both are large. The galax-
ies of all samples are randomly sampled from the full DES
Y3 footprint. We use our usual selection mobs,i < 23.5 for the
wide/overlap sample. A hundred iterations of this best case
scenario are run where the redshift/deep sample is made of
106 galaxies and the wide/overlap sample is made of 2 · 106

galaxies. Table 2 presents the means of the metrics defined
in Equation 20 for this best case scenario for our fiducial
lupticolor 128 by 128 Deep SOM coupled to a lupticolor-
luptitude 32 by 32 Wide SOM. For comparison the same
test is performed with a lupticolor 256 by 256 Deep SOM.
As expected, from the reduction of biases related to dis-
cretization, increasing the number of cells in the Deep SOM
results in a lower bias. This means that there are more than
16,384 possible phenotypes (as the 128 by 128 Deep SOM
has 16,384 cells). The first two bins are the most affected:
increasing the number of cells by a factor of four reduces
the bias, 〈∆〈z〉〉, by a factor of two. Note that this increase
in resolution is only possible with the idealized, large red-

Table 2. Bias of the pheno-z method in the best case scenario

of a large redshift sample. Shown are the biases on mean redshift

of tomographic bins, 〈∆〈z 〉〉, and width of redshift distribution of
a bin, 〈∆σ(z)〉. The fiducial 128 by 128 Deep SOM is compared

to a 256 by 256 Deep SOM. For such a large redshift sample, the

increased number of Deep SOM cells is beneficial. Note that the
standard deviation of both metrics in this best case scenario is an

order of magnitude smaller than their means. The mean of the

true redshift distribution in each bin, 〈ztrue 〉, is also shown.

metric size Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

〈ztrue 〉 0.34 0.48 0.68 0.87 1.07

〈∆〈z 〉〉 128 −0.0050 −0.0024 0.0001 0.0025 0.0024
256 −0.0026 −0.0010 0.0003 0.0018 0.0020

〈∆σ(z)〉 128 −0.0039 −0.0027 −0.0029 −0.0018 −0.0014
256 −0.0023 −0.0015 −0.0015 −0.0009 −0.0003

shift/deep sample used in this test. If our available redshift
sample were larger, we would use a larger SOM.

7 SOURCES OF UNCERTAINTY DUE TO
LIMITED SAMPLES

Deep multi-band observations and, more so, observations
that accurately determine galaxy redshifts with spec-
troscopy or otherwise, require substantial telescope re-
sources. As a result, in practice, deep and redshift samples
are limited in galaxy count and area. In this section, we
determine the impact of these limited samples on redshift
calibration using our scheme.

Limited samples can impact redshift calibration both as
a statistical error – i.e. depending on the field or sample of
galaxies chosen for deep and redshift observations – or as a
systematic error – i.e. as a bias due to the limited resolution
by which galaxies sample color space (see also § 6). We use
the metrics presented in Equation 20 to assess this limita-
tion: 〈∆〈z〉〉 over many realizations of our samples assesses
the systematic error in mean redshift, whereas σ(∆〈z〉) is a
statistical error due to variance in the samples used.

To this end, we use the Buzzard simulated catalogs to
assess systematic and statistical errors. Each source of un-
certainty, i.e. the effect of limiting each sample, is separately
probed in the subsections below. At each iteration of a test,
only the sample of interest is modified and the other fixed
samples are sampled randomly over the full DES footprint
and with a sufficient number to avoid a sample variance or
shot noise contribution. In § 7.5, we discuss the perhaps
counter-intuitive finding that the statistical error in a real-
istic use case is limited by the size of the deep sample, not
the redshift sample.

7.1 Limited redshift sample

The redshift sample used to estimate p(z |c) is limited in two
ways. First, it contains a finite number of galaxies; second,
the galaxies it contains come from a small field on the sky:
COSMOS. This implies that the scatter of the redshift cali-
bration error, σ(∆〈z〉), has contributions from shot noise and
sample variance, respectively.
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7.1.1 Shot noise

One can assess the effect of shot noise in the redshift sam-
ple by computing the redshift distribution of a sample of
galaxies many times using our pheno-z method. At each it-
eration we randomly select a fixed number of galaxies for
our redshift sample. In this test, we do not want to include
sample variance, thus the redshift sample is also composed
of galaxies randomly selected over the full DES footprint.

The left panel of Figure 4 shows the shot noise as a
function of the number of galaxies in the redshift sample.
If the number of galaxies is too low, there is a significant
scatter in ∆〈z〉, but with more than ∼ 105 galaxies, the scat-
ter reaches a plateau at the 2–4 · 10−4 level which is well
below our requirements (σ∆z ∼ 0.01). Note that the first and
last bins exhibit more shot noise probably due to the hard
boundaries at z = 0 and z = 1.5.

7.1.2 Sample variance

This effect stems from the fact that the selection of galax-
ies depends on the environment: as the matter field is not
homogeneous on small scales, different lines of sight have
different distributions of galaxies.

With a redshift sample that is small on the sky, subsets
of galaxies contained in this sample have the same envi-
ronment which influences their overall properties (notably
redshift and colors). This sample variance was a major limi-
tation in the DES Y1 redshift calibration. To test the effect
of sample variance we can repeat our calibration method
many times with a redshift sample coming from a different
part of the sky at each iteration. The top plot in Figure 5
shows the result of one iteration with a redshift sample made
of 135,000 galaxies sampled from a 1.38 deg2 field. The es-
timated distribution has many spikes. Those are caused by
the incomplete population of galaxies in the sample: galax-
ies have similar redshifts and colors. Many Deep SOM cells
that should have broader redshift distributions end up being
peaked due to the presence of a galaxy cluster in the redshift
field. When the redshift sample is limited to a small field on
the sky, the p(z |c) is strongly structured by sample variance.

We test the effect of sample variance as a function of
the redshift field area available. To avoid shot noise effects,
we sample the same number of galaxies for redshift fields
of different sizes. The sample variance is measured as the
standard deviation of the difference between the mean of
the true redshift distribution and the mean of the pheno-z
estimation. As expected, it decreases as the area increases.
This effect is shown in the right panel of Figure 4 for a fixed
number of galaxies of 105. The first tomographic bin has
a higher level of sample variance because of higher density
fluctuations due to the smaller volume at low redshift.

For the DES Y3 calibration, we expect that the redshift
sample will contain about 135,000 galaxies in a 1.38 deg2

field from COSMOS. The expected sample variance from
such a field is quoted in Table 3 for two different sets of
VISTA bands used. Using the Y band, we expect uncer-
tainties of the order σ(∆〈z〉) ∼ 0.001 from sample variance
alone. Relative to § 7.1.1, we find that for COSMOS, this
effect dominates by a factor of five, compared to shot noise.
For comparison, DES Y1 redshift calibration (Hoyle et al.
2018) achieved a typical σ(∆〈z〉) ∼ 0.02, with sample vari-

ance (labeled ‘COSMOS footprint sampling’ in their Table
2) contributing ∼ 0.007 in quadrature to the uncertainty.
Despite using an identical sample of galaxies as Hoyle et al.
(2018), our pheno-z method reveals a net reduction of the
sample variance in the COSMOS redshift information, ow-
ing to augmentation of the estimate of multi-color density
of galaxies with a larger, purely photometric, deep sample.
The main source of sample variance is the limited size of
the deep sample (§ 7.3) which, however, can be more easily
extended than the redshift sample.

7.2 Limited overlap sample

We estimate the overlap sample by drawing galaxies from
the deep fields (i.e. the overlap between deep DES ugriz
and VISTA YJHKs or JHKs; see § 3.1.1) over the full DES
footprint with the Balrog algorithm. In this section we test
what size of the overlap sample is required.

We assume the deep sample is artificially drawn at ran-
dom locations over the footprint, with N realizations of each
galaxy over the full footprint. N must be sufficient to provide
enough deep-wide tuples to populate the transfer function,
p(c |ĉ, ŝ), and avoid noise introduced by unevenly sampling
observing conditions.

Our investigation shows that increasing N from 5 to 50
has no impact on the mean and standard deviation of the
calibration error, ∆〈z〉. We thus use 10 realizations at differ-
ent random positions (i.e. with different noise realizations)
of each deep field galaxy. This corresponds to 1–2% ratio of
galaxy count in the overlap to wide sample for DES Y3.

7.3 Limited deep sample

The overlap sample used to compute the transfer function,
p(c |ĉ, ŝ), is limited by the deep sample. Indeed, Balrog takes
as input the galaxies measured in the deep survey, which
spans only a limited area (see § 3.1.1). We first look at the
sample variance in the overlap sample due to the limited
area of the deep sample. Secondly, we look at the trade-
offs between the number of VISTA bands used and the area
available.

7.3.1 Sample variance

As the area is bigger than the one of the redshift sample,
we might expect less sample variance coming from the over-
lap sample. Unfortunately, that is not the case. The trans-
fer function is sensitive to changes in p(c, ĉ) due to sample
variance. Although the reconstructed redshift distributions,
shown on the bottom plot in Figure 5, do not exhibit the
spikes produced by the limited redshift sample shown on
the top plot, the scatter of the calibration error, ∆〈z〉, is
three to five times larger, as reported in Table 3. The sam-
ple variance of the deep sample dominates over the one of
the redshift sample. We are learning a noisy realization of
the distribution of multi-band deep colors given a wide-field
flux measurement, and so are incorrectly learning the dis-
tribution of SEDs given our selection and observed galaxy
colors.
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Figure 4. Shot noise due to limited sample size (left panel) compared to the sample variance due to limited sample area (right panel) in
the redshift sample. The gray dashed line highlights the number of galaxies in the COSMOS field and its size. The standard deviation of

the difference in mean redshift between the true and estimated distribution over 100 iterations is plotted. Left panel: Effect of shot noise

as a function of the number of galaxies in the redshift sample. The galaxies used to compute p(z |c) are sampled from the whole sky to
avoid any sample variance contribution. Above ∼ 105 galaxies, increasing the number of objects does not yield a significant improvement.

Right panel : Effect of sample variance as a function of redshift field area sampled. One hundred thousand galaxies are sampled over
different contiguous areas. The calibration of redshift distribution with the pheno-z scheme is not limited by the number of galaxies in

COSMOS but by their common location on the same line of sight.

Table 3. Sources of bias and uncertainty of redshift calibration with the pheno-z scheme. ∆〈z 〉 is the difference between the means of the

true and estimated redshift distribution. The mean (i.e. bias) and standard deviation of this metric over 100 iterations are shown, with
the last column (in bold) showing the root-mean-square of the latter over the tomographic bins. To isolate the effect of limited redshift

and limited deep samples, only one sample is modified in each iteration. All other samples are fixed, sufficiently large, and sampled from
the whole DES footprint. The upper two and lower two lines show the impact of using VISTA Y band in our pheno-z scheme. Using it
reduces the area of deep field available but improves deep color information. For the limited redshift sample, 135,000 galaxies are sampled

from the 1.38 deg2 field.

Test 〈∆〈z〉〉 in bin σ(∆〈z〉) in bin
σRMS(∆〈z〉)

VISTA bands Sample Size [deg2] 1 2 3 4 5 1 2 3 4 5

YJHKs
Redshift 1.38 −0.0051 −0.0024 −0.0006 0.0021 0.0022 0.0016 0.0014 0.0008 0.0010 0.0008 0.0012

Deep 7.99 −0.0062 −0.0049 −0.0006 0.0020 0.0047 0.0077 0.0042 0.0031 0.0026 0.0036 0.0046

JHKs
Redshift 1.38 −0.0054 −0.0027 −0.0001 0.0028 0.0048 0.0017 0.0015 0.0007 0.0008 0.0010 0.0012

Deep 9.93 −0.0050 −0.0049 −0.0002 0.0017 0.0078 0.0065 0.0037 0.0027 0.0027 0.0032 0.0040

7.3.2 Number of bands vs. deep area

As described in § 3.1.1 and Table 1, depending on which
VISTA bands are used the available area in the deep sample
will be different. Either we use YJHKs and have 7.99 deg2 of
deep fields in three places or we drop the Y band and have
9.93 deg2 in four fields. Those two possibilities are tested
empirically.

We repeat the tests performed on the limited redshift
sample (§ 7.1) and on the limited deep sample (§ 7.3) without
the Y band and with the increased area. The results, shown
in Table 3, show two opposite trends. The bias, 〈∆〈z〉〉, is
significantly larger without the Y band for the last bin and

almost unchanged for the other bins. At large redshift, the
Y band provides valuable information necessary to estimate
correctly the redshift distribution. The bias is not sensitive
to the area used but to the number of bands available. On
the contrary, the variance of the calibration error is affected
by the size of the deep field. Without the Y band, the stan-
dard deviation of the calibration error, σ(∆〈z〉), is smaller by
about 15% because this option provides a larger deep field
area.

The two effects – a bigger deep field area and one less
band – have opposite impact of about the same amplitude.
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Figure 5. Top panel: Impact of limited redshift sample in the redshift distribution calibration. The redshift sample is made of 135,000

galaxies sampled from a 1.38 deg2 field. The spikes in the estimated distributions are due to the particular redshift distribution of this
small area. Bottom panel: Impact of limited deep sample in the redshift distribution calibration. The deep field is made of three fields

of 3.32, 3.29 and 1.38 deg2 respectively. Each deep field galaxy is painted 10 times at random positions over the whole DES footprint to

yield an overlap sample of ∼ 4.6 · 106 galaxies. Although the redshift distributions do not exhibit the spikes visible in the upper panel,
the scatter of the calibration error, ∆〈z 〉, is three to five times larger, meaning that the sample variance in the deep sample dominates

over the one in the redshift sample.

A reduction in bias in the high redshift bin is particularly
beneficial and thus may favor including Y .

7.4 Impact of empty Deep SOM cells

When computing the redshift distributions using Equa-
tion 6, the p(ce |ĉ, ŝ) of empty cells, ce, is set to zero. To
check that this does not introduce a bias, we compute the
‘true’ redshift distributions of the empty cells by assigning
a sample of 5 ·105 galaxies to the Deep SOM. A redshift dis-
tribution is obtained for the initially empty cells and used
in our p(z |B̂, ŝ) computation. In Table 4, we compare the re-
sulting bias in the two cases: with empty cells ignored and
with empty cells filled with a large number of galaxies to be
as close to the ‘true’ redshift distribution as we can get. This
latter method is equivalent to a ‘perfect’ interpolation to the
empty cells. We therefore conclude that ignoring empty cells
does not introduce a relevant bias. In practice, since larger
numbers of cells could be empty in the case of sparse red-
shift samples, and since spectroscopic samples (rather than
complete redshifts over a field) may suffer selection biases,
the impact of cells without redshift information should be
checked.

Some of the cells (∼ 50) remain empty even when the
very large sample is assigned to the Deep SOM. Those cells
are often located where there is a sharp color and redshift

Table 4. Setting the p(ce ) of empty Deep SOM cells, ce , to
zero does not introduce a bias. The bias, 〈∆〈z 〉〉, and standard

deviation of the calibration error, σ(∆〈z 〉), in five tomographic

bins is computed over 162 iterations of our pheno-z scheme with
a different 1.38 deg2 redshift sample at each iteration. The redshift

distribution of empty Deep SOM cells, p(z |ce ), is either set to zero

or filled with the redshifts of a large sample of galaxies.

metric p(z |ce) Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

〈∆〈z 〉〉 Set to 0 −0.0080 −0.0038 0.0004 0.0013 0.0039
Filled −0.0078 −0.0038 0.0007 0.0017 0.0043

σ(∆〈z 〉) Set to 0 0.0017 0.0014 0.0008 0.0011 0.0008
Filled 0.0014 0.0012 0.0005 0.0008 0.0006

gradient. This results from the SOM training: both sides of
the boundary evolve differently pulling the cells to empty
regions of color space. These cells are not a problem in our
scheme as they never enter any computation.

7.5 Discussion of statistical error budget

The comparison of § 7.1 and § 7.3 shows that the limited
area of the deep photometric sample is dominating the sta-
tistical error budget of redshift calibration for a DES-like
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setting, by a factor of several, rather than the limited size
of a COSMOS-like redshift sample (see Figure 5).

This finding can be understood from the role of these
samples in our scheme. The redshift sample informs the red-
shift distribution of galaxies at given multi-band color. Be-
cause at most multi-band colors this redshift distribution is
narrow, there is little room for sample variance – regardless
of their position in the sky, any set of redshift galaxies of
the same multi-band color will be very similar in mean red-
shift. Increasing the number of accurate redshifts, or spread-
ing them over a larger area, reduces this variance further
(see Figure 4), but it is already at a tolerable level for a
COSMOS-like sample.

The deep sample, while not adding accurate redshift in-
formation, constrains the density of galaxies in multi-band
color space, i.e. the mix of multi-band colors that corre-
sponds to a given few-band color observed in the wide field.
Uncertain information about this distribution can be seen
as an incorrect prior on the abundance of galaxy templates,
causing an inaccurate breaking of the type/redshift degen-
eracy.

This finding represents an opportunity: by separating
the abundance aspect of sample variance from the redshift
sample, it allows us to augment the scarce information on
accurate galaxy redshifts with a larger, complete sample for
which deep multi-band photometry can be acquired with
relatively modest observational effort.

8 IMPACT OF ANALYSIS CHOICES FOR DES
Y3 WEAK LENSING

In this section, we assess the robustness of our method when
the quality of the inputs decreases. We first test a more re-
alistic selection, ŝ, for the wide and overlap samples in § 8.1.
The Metacalibration (Huff & Mandelbaum 2017; Sheldon
& Huff 2017) weak lensing analysis requires the use of fluxes
measured by the shape measurement algorithm to correct
for selection biases. We test the effect of this noisier pho-
tometry in § 8.2. Finally, we test the possibility of dropping
the g band in the Wide SOM in § 8.3. The combined effect
of these realistic conditions is discussed in § 9.

We compare those variations of the scheme to a ‘stan-
dard’ pheno-z scheme which uses DES ugriz and VISTA
YJHKs bands for the Deep SOM and DES griz for the Wide
SOM, a 1.38 deg2 redshift sample, a 7.99 deg2 deep sample
and a hard cut mobs,i < 23.5 as the wide selection. In this
standard scheme, 10 realizations of each deep field galaxy
at different random positions constitute the overlap sample.
The usual metrics for this standard scheme are presented in
Table 5.

8.1 Weak lensing selection ŝ

In the above tests, we used a simple selection for the wide
and overlap samples. Only galaxies with mobs, i < 23.5 were
selected. Here we run our pheno-z scheme with a more
refined selection criterion. The goal is to more accurately
mimic the selection effect produced by the shape measure-
ment algorithm. For this purpose, we select only galaxies for

which

mobs, r < −2.5 log10(0.5) + lr, and√
s2 + (0.13 · psfr )2 > 0.1625 · psfr,

(21)

where mobs, r is the observed r band magnitude of the galaxy,
lr is the limiting magnitude in the r band of the survey at the
galaxy’s position, s is the size of the galaxy and psfr is the
full width at half maximum of the point spread function in r
band, both in pixels. The latter is a function of the telescope
optics and the astronomical seeing. As many observations of
the same line of sight are combined to produce the catalog,
the variation is averaged out. We therefore approximate it
by psfr = 0.9′′ over the full footprint. The distribution in
magnitude of such a sample is shown in Figure 2.

The values for the mean and standard deviation of the
bias using the weak lensing selection described in Equa-
tion 21 are presented in Table 5 (see ‘w/ weak lensing se-
lection’ entry). Using a more refined weak lensing selection
than the hard cut at mobs, i < 23.5 used throughout this
work does not introduce any bias but slightly increases the
variance.

8.2 Metacalibration fluxes

For our cosmology analysis, we must understand if, when
sheared, a galaxy’s tomographic bin changes. The shape al-
gorithm – Metacalibration – allows us to artificially shear
the galaxies and measure their resulting fluxes. The Meta-
calibration flux measurement is noisier than the usual
multi-object fitting (MOF; Drlica-Wagner et al. 2018, their
section 6.3) flux measurement used by DES but the tomo-
graphic binning must be performed on Metacalibration
fluxes for the reason mentioned above (see also Zuntz et al.
2018, their section 7.4). The estimation of the redshift dis-
tribution could then be performed using MOF photometry.
To achieve this, we would need to introduce a third SOM
and compute a transfer function between MOF fluxes and
Metacalibration fluxes. We suspect that introducing a
third SOM would not improve our calibration. To avoid this
complication we can perform the estimation of redshift dis-
tributions using Metacalibration fluxes.

The simulated fluxes used throughout this work were
tailored to match MOF measurement errors. On average the
errors are

√
2 larger for Metacalibration measurements,

i.e. σMCAL =
√

2σMOF. We can build fake Metacalibration
fluxes, fMCAL, using our ‘MOF’ fluxes, fMOF:

fMCAL = fMOF +
√
σ2

MCAL − σ
2
MOF · N(0, 1). (22)

This results in fMCAL = fMOF + σMOF · N(0, 1), where N(0, 1)
is a normal distribution with zero mean and standard devi-
ation one. Note that this neglects any systematic differences
between Metacalibration and MOF fluxes, which would
be compensated by the transfer function derived from deep
galaxies with wide-field Metacalibration flux realizations.

We run our pheno-z scheme replacing the wide ‘MOF’
fluxes by the mock Metacalibration fluxes. As can be seen
in Table 5 (entry ‘w/ Metacalibration fluxes’), this results
in a slight increase of the bias and variance in calibration.
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Table 5. Comparison of the standard pheno-z scheme to various variations of the scheme. The standard scheme uses DES ugriz and
VISTA YJHKs bands for the Deep SOM and DES griz for the Wide SOM. It uses a redshift sample made of 135,000 galaxies sampled

from a 1.38 deg2 field, a 7.99 deg2 deep sample and a hard cut mobs, i < 23.5 for the wide selection. In this standard scheme, 10 realizations

of each deep field galaxy at different random positions constitute the overlap sample. The mean and standard deviation of the metrics
given in Equation 20 over 100 iterations are presented.

Variation
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

〈∆〈z〉〉 σ(∆〈z〉)

Standard −0.0073 −0.0040 0.0006 0.0016 0.0056 0.0077 0.0042 0.0028 0.0033 0.0037
w/ weak lensing selectiona −0.0057 −0.0040 0.0003 0.0027 0.0057 0.0083 0.0046 0.0042 0.0030 0.0042
w/ Metacalibration fluxesb −0.0089 −0.0044 0.0001 0.0022 0.0069 0.0077 0.0049 0.0039 0.0033 0.0037
w/ only riz c −0.0070 −0.0050 0.0019 0.0006 0.0061 0.0071 0.0051 0.0036 0.0036 0.0038
w/ decreased softening parameterd −0.0074 −0.0053 −0.0012 −0.0005 0.0044 0.0072 0.0040 0.0034 0.0028 0.0033

〈∆σ(z)〉 σ(∆σ(z))

Standard −0.0048 −0.0045 −0.0057 −0.0054 −0.0044 0.0036 0.0026 0.0029 0.0024 0.0037
w/ weak lensing selectiona −0.0009 −0.0043 −0.0044 −0.0042 −0.0039 0.0043 0.0035 0.0039 0.0027 0.0035
w/ Metacalibration fluxesb −0.0047 −0.0040 −0.0053 −0.0048 −0.0036 0.0039 0.0031 0.0037 0.0030 0.0039
w/ only riz c −0.0043 −0.0029 −0.0054 −0.0051 −0.0034 0.0036 0.0043 0.0034 0.0029 0.0035
w/ decreased softening parameterd −0.0034 −0.0041 −0.0051 −0.0048 −0.0039 0.0036 0.0033 0.0030 0.0026 0.0035

aThe selection is given in Equation 21.
bMock Metacalibration fluxes are used for the wide bands (see Equation 22).
cThe g band is not used in the Wide SOM.
dThe limiting magnitudes are increased by one magnitude in each band (see Appendix A).

8.3 Dropping the g band

Detailed tests on DES Y1 and Y3 data (Mike Jarvis, pri-
vate communication) and theoretical considerations (Plazas
& Bernstein 2012) show that point-spread function (PSF)
modeling in DES is most difficult in the g band. The ex-
pected and observed bias in PSF modeling in g band sig-
nificantly biases shape measurement. At a secondary level,
it also biases g band photometry. Thus, it may be prefer-
able to run Metacalibration uniquely on the riz bands.
In this case, the tomographic binning must be performed
only on those bands. To simplify the comparisons and sepa-
rate the different effects, we use only the riz bands, but still
use ‘MOF’ fluxes. We perform our pheno-z scheme, training
the Wide SOM on riz bands. The result of dropping the
g band is shown in Table 5 (entry ‘w/ only riz ’). The ob-
served degradation is similarly slight to the one produced by
the use of Metacalibration fluxes.

The g band carries some useful information, especially
at low redshift. Indeed, dropping this band results in larger
bins. This effect is the strongest for the lowest redshift bin as
can be seen in Figure 6, where the true redshift distributions
obtained using griz or riz are compared.

9 PHENO-Z UNCERTAINTY FOR DES Y3

We integrate the different variations discussed in § 8 to be
as close as possible to the actual redshift distribution esti-
mation of DES Y3 weak lensing sources.

We make use of three deep fields of 3.32, 3.29 and 1.38
deg2 (see Table 1), respectively, to train a 128 by 128 Deep
SOM. The input vectors are eight lupticolors relative to the
i band (using DES ugriz and VISTA YJHKs). The red-
shift sample is made of 135,000 galaxies sampled from a
1.38 deg2 field mimicking COSMOS. Each deep field galaxy
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Figure 6. Comparison of redshift distributions of bins defined

with and without g band color in addition to riz. Information

contained in g is particularly useful at low redshift. We show the
true redshift distributions. The calibration of mean redshift does

not substantially suffer from the loss of g band data in the wide
field.

is painted 10 times over the full DES footprint to yield the
overlap sample used to compute the transfer function. The
wide sample is made of randomly selected galaxies over the
full DES footprint. The wide and overlap sample selection
is performed using the refined weak lensing selection (see
§ 8.1), and the samples use mock Metacalibration fluxes
(see § 8.2). The 32 by 32 Wide SOM is trained on the wide
sample, and does not use the g band (see § 8.3). Its input
vector is x = (µi, µr − µi, µz − µi), where µx is the luptitude in
x band (see Equation 19). 300 iterations of this pheno-z fidu-
cial scheme are performed with different deep and redshift
fields at each iteration. The resulting redshift distributions
of the wide sample are presented in Figure 7 and the associ-
ated metrics in Table 6 (entry ‘DES Y3’). The expectation
value of the realizations estimates closely the shape of the
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Figure 7. Effect of sample variance on the DES Y3 source red-

shift distributions. 300 realizations of the distributions are com-

puted using the pheno-z scheme. The light shaded regions contain
68% of these realizations at each redshift. Their means (lines) esti-

mate closely the true redshift distributions (dark shaded regions;
mildly different in each realization).
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Figure 8. Predicted uncertainty in the mean redshift for DES

Y3 (Equation 23) compared to the uncertainty of the DES Y1
analysis with and without clustering information (Hoyle et al.

2018). The potential impact on this uncertainty of a bigger deep

or redshift sample is also presented (dark red vs. brighter red
bars). A caveat to the comparison to DES Y1 is that, unlike the
Y1 uncertainty shown here, the pheno-z calibration uncertainty is

correlated between bins, however in a way that can be accounted
for in the cosmological likelihood.

true redshift distribution. At each redshift, 68% of the real-
izations are comprised in the light shaded area. This broad
region is the result of sample variance.

To obtain the DES Y3 redshift uncertainty for the ith
bin, σ∆zi , we take the root mean square of 〈∆〈z〉〉 and add
σ(∆〈z〉) of the ith tomographic bin in quadrature:

σ∆zi =

√√√√
1

Nbin

Nbin∑
j=1
〈∆〈z〉〉2

j
+ σ(∆〈z〉)2

i
. (23)

The result is presented in Figure 8 and compared to the DES
Y1 results (Hoyle et al. 2018). The pheno-z scheme shows a
net improvement by a factor of 2 (55–69% compared to the
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Figure 9. Correlation matrix of ∆〈z 〉 between redshift bins for
the DES Y3 configuration.

Y1 uncertainty without clustering and 43–60% with cluster-
ing; see Davis et al. 2017, Gatti et al. 2018, and Cawthon
et al. 2018 for details on the clustering redshift method ap-
plied to DES Y1).

The ∆〈z〉 in different bins are correlated which must be
accounted for in the inference of cosmological parameters. In
the Y1 analysis (Hoyle et al. 2018), the uncertainty on the
mean redshift was derived independently for each redshift
bin. The off-diagonal elements of the covariance matrix of
∆〈z〉 could not be estimated accurately. Hoyle et al. (2018)
showed that increasing the diagonal elements of the covari-
ance matrix by a factor (1.6)2 and zeroing the off-diagonal
elements ensured that the uncertainties of any inferred pa-
rameters were conservatively estimated for reasonable val-
ues of the off-diagonal elements. The DES Y1 values pre-
sented in Figure 8 have also been increased by this factor
1.6. We do not include this factor in our DES Y3 estimate,
as there we plan to fully marginalize over the correlated red-
shift distribution uncertainty. Given multiple realizations of
the distributions, whose variability due to sample variance
is estimated here, we can marginalize over redshift uncer-
tainty fully by directly sampling from these realizations in
the cosmological likelihood (Cordero et al. in preparation).
This fully accounts for the correlation between the redshift
bins and we expect it to yield reduced – yet still conservative
– errors on derived quantities, which adds to the improve-
ment in calibration possible with our scheme. The covariance
matrix of ∆〈z〉 is presented in Figure 9. As expected, neigh-
boring bins are more correlated and the correlation is higher
at low redshift.

10 POSSIBLE IMPROVEMENTS

Our pheno-z scheme applied to the simulated Buzzard cat-
alog allows us to investigate how the calibration could be
improved with more data. As we have previously seen, the
bias is limited by the size of our redshift sample whereas the
standard deviation of the calibration error is limited by the
size of the deep fields. We investigate how both those effects
could be mitigated.

The major contributor to the cosmic variance in our
pheno-z scheme are the deep fields. Increasing their area by
taking VISTA YJHKs images of the DES supernova fields
would allow us to reduce the sample variance. The VISTA

MNRAS 000, 1–24 (2019)
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Table 6. All effects affecting the calibration of Y3 source redshift distributions are included yielding the expected uncertainty on redshift
distributions. The DES Y3 uncertainties are computed on 300 iterations and include the predicted redshift and deep samples size,

Metacalibration fluxes, only riz bands for the galaxies in the wide sample and the weak lensing selection. Increasing the deep fields

available to a total of 29.88 deg2 reduces the standard deviation on ∆〈z 〉 by 34–41% and on ∆σ(z) by 35–43%. Increasing the redshift
field area by a factor of four reduces the bias, 〈∆〈z 〉〉, by 34–41% in the first two bins and has a marginal impact on the other bins. The

standard deviation of this metric decreases by 17–34%. From these metrics, total uncertainty is estimated according to Equation 23 and

shown in Figure 8.

Pheno-z scheme
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

〈∆〈z〉〉 σ(∆〈z〉)

DES Y3 −0.0061 −0.0056 0.0008 0.0019 0.0080 0.0075 0.0061 0.0047 0.0037 0.0054
Bigger deep sample −0.0063 −0.0059 0.0010 0.0018 0.0077 0.0044 0.0039 0.0031 0.0022 0.0033
Bigger redshift sample −0.0040 −0.0033 0.0017 0.0017 0.0077 0.0050 0.0044 0.0039 0.0031 0.0044

〈∆σ(z)〉 σ(∆σ(z))

DES Y3 −0.0009 −0.0016 −0.0034 −0.0049 −0.0041 0.0042 0.0045 0.0042 0.0029 0.0036
Bigger deep sample −0.0013 −0.0020 −0.0037 −0.0054 −0.0042 0.0027 0.0027 0.0024 0.0018 0.0023
Bigger redshift sample −0.0007 −0.0009 −0.0025 −0.0043 −0.0036 0.0033 0.0034 0.0028 0.0021 0.0028
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Tomographic bin
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Figure 10. Taking VISTA YJHKs measurements in the DES
supernova fields would increase the deep field area available by

∼ 22 deg2 which would result in a significant decrease of the sample

variance.

Extragalactic Infrared Legacy Survey (VEILS)3 is currently
imaging some of the lacking photometry in J and Ks bands.
We estimate that 15, 8, 14 and 8 VISTA pointings in Y, J, H
and Ks bands, respectively, would be needed to acquire the
remaining uncovered DES supernova fields area. Achieving
similar depth to the VIDEO survey (see Table 1 of Jarvis
et al. 2013 for planned time per pointing) would require
∼ 395 hours of telescope time. We test this possibility by
assuming the availability of five deep fields: one 1.38 deg2,
one 9 deg2, one 7.5 deg2 and two 6 deg2 fields. The mean and
standard deviation of the calibration error, ∆〈z〉, over 300
iterations are presented in Table 6 (see entry ‘Bigger deep
sample’). As expected the mean of the bias is marginally
reduced by the increase of the deep fields area. As shown
in Figure 10, the standard deviation decreases by 34–41%.
This significant reduction of the sample variance can also be
seen in the standard deviation of ∆σ(z) which decreases by
35–43%.

The bias of the method is limited by the number of
galaxies in the redshift sample. As we have seen in § 6, in-
creasing the number of cells in the Deep SOM reduces the

3 https://www.ast.cam.ac.uk/~mbanerji/VEILS/

bias, but those cells must be populated. Therefore we need
a large enough sample to populate a bigger SOM. Let us as-
sume that we can increase the number of galaxies for which
we have many-band photo-z by a factor of four and use a
256 by 256 Deep SOM. We suppose that we take many-
band measurements in three supplementary COSMOS-like
(i.e. 1.38 deg2) fields in the DES footprint. In each of these
fields we sample 135,000 galaxies. As we have seen in § 7.1,
the increase of area should not be contiguous but at differ-
ent locations on the sky to maximize the sample variance re-
duction. Furthermore, as the many-bands must include DES
ugriz and VISTA YJHKs, these fields can also be used in
the transfer function computation.

The results of increasing the redshift field area by a
factor of four is presented in Table 6 (entry ‘Bigger redshift
sample’). The effect on ∆〈z〉 and ∆σ(z) is assessed over 300
iterations. The RMS of the calibration error of mean redshift
is decreased by 18%. As the redshift field is also part of the
deep fields and is used in the transfer function computation,
the standard deviation of ∆〈z〉 also decreases by 17–34%.

While there are advantages to the spatial resolution and
wavelength coverage of the space-based observations of the
COSMOS field, a multi-medium/narrow-band survey like
the Advanced Large Homogeneous Area Medium-Band Red-
shift Astronomical (ALHAMBRA; Moles et al. 2008) survey
with the appropriate depth might also offer the necessary
sample of reliable photometric redshifts. The data could be
provided by the ongoing Physics of the Accelerating Uni-
verse (PAU; Mart́ı et al. 2014; Eriksen et al. 2019) survey
or by the planned Javalambre Physics of the Accelerating
Universe Astrophysical Survey (J-PAS; Benitez et al. 2014).
Another option would be to use a sufficiently accurate pho-
tometric code on the weight vectors of the Deep SOM. This
would yield a redshift PDF for each Deep SOM cell.

The method could be extended by incorporating the
information contained in the clustering of sources. A hier-
archical Bayesian model can be used to combine the pheno-
z method with the information contained in the galaxy
clustering against a well-characterized tracer population
(Sánchez & Bernstein 2018).
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10.1 Reliability of redshift samples

One aspect not considered in this work is the reliability
of present or obtainable redshift samples. Photometric red-
shifts based on multi-band fluxes, such as COSMOS (Laigle
et al. 2016), are known to suffer from increasing outlier rates
towards faint magnitudes. These have recently been found
to be a significant concern for the purposes of lensing cos-
mology, at least under some conditions (Hildebrandt et al.
2018). Likewise, spectroscopic samples can suffer from out-
liers due to erroneous line identifications or blends. In addi-
tion, such a sample may be incomplete at a given position
in multi-band color space, albeit superior to a photometric
sample with a limited number of bands (Gruen & Brimioulle
2017).

Unless complementary information, e.g. from clustering,
is able to counter these sources of potential bias (Sánchez &
Bernstein 2018), we thus emphasize that application of our
method requires validating that the redshift samples used
are sufficiently reliable. While this is not within the scope of
the present work, which is primarily meant to establish the
statistical benefits of a phenotypic approach that uses deep
field photometry as part of wide field redshift calibration,
such tests need to be part of any practical application to
data.

11 CONCLUSION

Inferring accurate redshift distributions from coarse mea-
surements of redshifted source photometry is a difficult task.
Improving the characterization of redshift distributions re-
quires breaking type/redshift degeneracies. To this end, we
propose a novel method – phenotypic redshift – which uses
photometric deep fields, where measurements in more bands
are available. The information from multi-band deep fields
acts as an intermediary between wide-field photometry and
accurate redshifts to produce a better mapping in two ways.
Firstly, because the deep fields in surveys like DES are larger
than existing samples of galaxies with accurately known red-
shifts, it provides an improved estimate of the distribution of
galaxies in color space. Secondly, the deep many-band pho-
tometry better breaks type/redshift degeneracies, thereby
improving the color/redshift relation applied in the redshift
estimation. Importantly, this reduces sample variance and
selection effects due to the sparse sample of galaxies with ac-
curate redshifts and therefore leverages this scarce resource
towards a more accurate characterization of the target sam-
ple’s redshift distribution.

Our implementation of this method uses two self-
organizing maps: one to group galaxies into phenotypes
based on their observed fluxes in the deep fields, and one to
discretize the wide-field flux measurements. By taking actual
or simulated observations of the deep fields under wide-field
conditions, the transfer of galaxies from cells in one of these
maps to the other can be accurately quantified.

Application of the method to simulated galaxy samples
allows us to probe the various sources of uncertainty in a co-
herent manner. We tested the method on a mock DES cata-
log, emulating a calibration of the DES Year 3 weak lensing
analysis using DES deep fields with near-infrared auxiliary
data, and COSMOS for redshifts. With these samples, the

typical uncertainty on the mean redshift in five tomographic
bins is σ∆z = 0.007, which is about a factor of 2 improve-
ment compared to the Year 1 analysis. The method yields
realizations of redshift distributions which can be marginal-
ized in the cosmological parameter likelihood, accounting for
the correlation between redshift distributions in different to-
mographic bins. This finding comes with the caveat, shared
among all redshift calibration methods that are based on
reference samples, that it assumes perfectly accurate red-
shifts to be known for the COSMOS-like sample used in the
calibration.

About half the error is due to systematic biases, 〈∆z〉, in
the method. This bias is limited by our ability to populate
the deep field SOM on a fine enough grid. If we had more
galaxies with accurate redshifts, we could increase the num-
ber of phenotypes. The potential gains are rather modest for
the effort required: if DES had three additional COSMOS-
like fields, the RMS value of the calibration error would be
reduced by 18%. This is a tall order and unlikely to be ful-
filled on the timescale of DES. A different solution to the
requirement of a high-resolution deep field SOM with red-
shifts in each cell may be to use a template fitting technique
to assign redshift distributions to any cells not covered by
spectroscopy.

The error due to sample variance can, on the contrary,
be reduced with a somewhat unexpected strategy. We find
the sample variance of the method to be dominated by the
area covered with deep multi-band photometric observa-
tions, rather than the sample of accurate redshifts (§ 7.5).
Designs of future imaging surveys should thus maximize the
overlap of their deep fields with complementary photometric
surveys. For example, ∼ 395 hours of telescope time would be
needed to obtain VISTA YJHKs measurements over the rest
of the DES supernova fields. This would reduce the sample
variance by 34–41%, and would also be beneficial to redshift
calibrations with the overlapping LSST. The Dark Energy
Science Collaboration of LSST aims for σ∆z = 0.002(1 + z)
in their Year 1 analysis and σ∆z = 0.001(1 + z) in their Year
10 analysis (The LSST Dark Energy Science Collaboration
2018), which are challenging requirements. Our tests indi-
cate that while in principle they could be met by a scheme
like the one presented here, this would require both an in-
crease in the resolution of the deep field SOM (and thus
a larger sample of galaxies with known redshift and accu-
rate multi-band photometry) and a larger volume of purely
photometric optical and near-infrared deep fields.

In DES Y1, the information contained in the cluster-
ing of sources was used separately to constrain the redshift
distribution. The pheno-z method provides a way of com-
bining flux measurements with information contained in the
sources’ position. A hierarchical Bayesian model allows us to
combine the pheno-z method and the information contained
in the galaxy clustering against a well-characterized tracer
population in a robust way (Sánchez & Bernstein 2018). We
intend to apply a variation of this method on DES Y3 data.

Obtaining reliable redshifts to cover the many-color op-
tical/NIR space remains a major observational and modeling
challenge. The pheno-z framework can leverage this effort by
efficiently using complementary information about the abun-
dance and redshift of observable galaxy types to accurately
estimate redshift distributions of ensembles of galaxies se-
lected from photometric data sets.
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APPENDIX A: SOFTENING PARAMETER OF
LUPTITUDES

The use of luptitudes to build the input vector of our scheme
requires the choice of a softening parameter, b, which sets
the scale at which luptitudes transition between logarithmic
and linear behavior (see Equation 19).

Two requirements guide the choice of this parameter.
The differences between luptitudes and magnitudes for high
signal-to-noise data as well as the luptitude variance at low

flux levels should be minimized. The former is the intrinsic
goal of luptitudes while the latter is not strictly required.
It is just convenient if the luptiude variance at zero flux is
comparable to its variance at a small signal-to-noise ratio.
These two effects oppose each other. Lupton et al. (1999)
minimize a total penalty made of the addition of those two
effects modeled as costs. The optimal choice of b with their
penalty is b = 1.042σ where σ2 is the variance of the flux.
This assumes all objects have the same error.

In reality, measurement errors change as the observa-
tion conditions change. It could be possible to set different
values of b for different parts of the sky although it is un-
practical. We can set b for the whole footprint using a typical
seeing quality and sky brightness for a given band. Lupton
et al. (1999) show that even if the softening parameter is
badly chosen, it does not result in catastrophic definition of
luptitudes; we recover the expected behavior.

Our measurement errors in each band x, are computed
using

σx =
1

nσ
10

22.5−lx
2.5 , (A1)

where lx is the limiting magnitude of the survey in x band
and nσ is the number of σ at which the limiting magnitude is
quoted. For the DES bands, the DES Y1 limiting magnitudes
of Drlica-Wagner et al. (2018), quoted at 10-σ, are used :
u = 23.7, g = 23.5, r = 22.9, i = 22.2, z = 25. DES Y3
has similar depth as Y1, but over the full survey area. For
the VISTA bands, we use the VIDEO limiting magnitudes,
which are quoted at 5-σ : Y = 24.6, J = 24.5, H = 24.0,
Ks = 23.5.

The limiting magnitudes used are conservative as the
DES deep measurements are expected to be at a higher
depth. Also, our simulations have true fluxes which have no
errors. We test the sensitivity of our quoted uncertainties
to the softening parameter by running our pheno-z scheme
with limiting magnitudes in all deep bands increased by one
magnitude (thus decreasing the softening parameter). The
result is presented in Table 5 (entry ‘w/ decreased softening
parameter’). There is no significant change in our metrics.
Hence, we are insensitive to such a change of the softening
parameter.

APPENDIX B: VALIDATION OF FEATURE
AND SOM SIZE CHOICE

The choice of a lupticolor 128 by 128 Deep SOM coupled
to a 32 by 32 Wide SOM must be validated empirically. To
this end, we train a variety of 128 by 128 Deep SOM, trained
using either colors or lupticolors, and a variety of 32 by 32
Wide SOM, trained on several different features including
lupticolors, colors, lupticolors and a luptitude, colors and
a magnitude. For this test the samples consist of galaxies
randomly selected over the whole Y3 footprint to avoid any
sample variance. Also, the number of galaxies in the redshift
sample is sufficient to minimize the shot noise effect. The
difference in mean redshift between the true distribution and
the one estimated with our scheme is reported in Table B1.
We also report the overlap, O, between bins, i.e. the fraction
of galaxies assigned to a bin which does not have the highest
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Figure B1. Impact of the number of Deep and Wide SOM

cells on the redshift distribution estimation. An unbiased method

would give ∆〈z 〉 = 0 for all bins (gray dashed line). The Deep
SOM is trained on lupticolors and the Wide SOM on lupticolors

and the luptitude in i band. All SOMs are square and the size
given in the legend is the number of cells on a side (e.g. 128 means

a 128 by 128 SOM).

dn/dz at their true redshift:

O =
Nbin∑
i=1

∫
z : ni (z)<max j n j (z)

dz ni(z) (B1)

where ni(z) = p(z |i, ŝ)N(i) is the unnormalized redshift dis-
tribution in bin i and Nbin is the number of tomographic
bins. We find that the choice of features does not matter
very much. The first 4 bins have a calibration error, for all
features combination tested, of ∆〈z〉 < 0.005 which is accept-
able for our purpose. The last bin has a larger calibration
error, reaching ∆〈z〉 > 0.01, but it is the most suspect one
in the simulations as it is constructed from a hard cutoff at
z = 1.5. We stick to the Deep lupticolor and Wide lupticolor-
luptitude SOMs for the reasons mentioned in § 5.1.

To test the impact of the size of the SOMs on our
scheme, we use a realistic redshift sample (105 galaxies)
and different SOM sizes. The result, presented in Figure B1,
shows that increasing the size of the Deep SOM results in
a larger calibration error whereas increasing the size of the
Wide SOM does not result in any improvement. We there-
fore stick to the 128 by 128 Deep SOM and 32 by 32 Wide
SOM.

APPENDIX C: CALCULATION OF
COVARIANCE AND INVERSE COVARIANCE
MATRICES

We present the analytic forms for calculating the covariance
and inverse covariance matrices for two cases:

• differences of magnitudes or luptitudes with respect to
a reference magnitude or luptitude, and including the refer-
ence magnitude or luptitude;
• differences of magnitudes or luptitudes with respect to a

reference magnitude or luptitude, not including the reference
magnitude or luptitude.

For example, we might have the bands g, r, and i, and we
might decide to use the i band as the reference band. Let
us call the errors in each band σx . We assume each band is
independently measured. We define the four combinations

of covariance terms between the reference band magnitude
and the colors:

• The covariance between the reference band magnitude
and itself,

Σi,i = σ
2
i . (C1)

• The covariance between the reference band magnitude
and a color,

Σi,g−i = −σ2
i . (C2)

• The covariance between a color and itself,

Σg−i,g−i = σ
2
g + σ

2
i . (C3)

• The covariance between one color and a second,

Σg−i,r−i = σ
2
i . (C4)

If our input vector is x = (mi,mg − mi,mr − mi), then its
covariance matrix is

Σ =


σ2
i −σ2

i −σ2
i

−σ2
i σ2

i + σ
2
g σ2

i
−σ2

i σ2
i σ2

i + σ
2
r

 . (C5)

If our input vector is x = (mg−mi,mr−mi), then its covariance
matrix is

Σ =

[
σ2
i + σ

2
g σ2

i
σ2
i σ2

i + σ
2
r

]
. (C6)

We are interested in the inverse covariance matrix for
Equation 14. We could numerically invert the covariance ma-
trices constructed from the above rules, but we find a sig-
nificant speedup (about 60 times faster) from using analytic
formulas for the inverse covariance. When our input vector
is the reference magnitude and differences with respect to
the reference band, for example x = (mi,mg − mi,mr − mi),
then the inverse covariance terms are as follows:

• The inverse covariance between the reference band mag-
nitude and itself,

Σ
−1
i,i =

∑
f

1
σ2
f

, (C7)

where the sum is over all flux passbands f .
• The inverse covariance between the reference band mag-

nitude and a color,

Σ
−1
i,g−i =

1
σ2
g

. (C8)

• The inverse covariance between a color and itself,

Σ
−1
g−i,g−i =

1
σ2
g

. (C9)

• The inverse covariance between one color and a second,

Σ
−1
g−i,r−i = 0 . (C10)

When our input vector is only the difference with re-
spect to the reference band, for example x = (mg−mi,mr−mi),
then the inverse covariance terms are as follows:

• The inverse covariance between a color and itself,

Σ
−1
g−i,g−i =

1
σ2
g

− 1
σ4
g

1∑
f

1
σ2

f

, (C11)

where the sum is over all flux passbands f .
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Table B1. Calibration error, ∆〈z 〉, and overlap between bins for different choices of features. Color denotes a difference in magnitudes

whereas lupticolor denotes a difference in luptitudes. All those differences are with respect to the i band. Magnitude and luptitude denote
adding the i band magnitude and luptitude, respectively. The Deep SOMs are 128 by 128 and the Wide SOMs are 32 by 32. All samples

used in this test are randomly selected over the whole sky. There is no significant difference between the features used. We choose to use

lupticolor for the Deep SOM and lupticolor + luptitude for the Wide SOM as it is a convenient way to deal with objects which are not
measured in some bands (see § 5.1).

Deep SOM Wide SOM
∆〈z〉 in bin

Overlap
1 2 3 4 5

color lupticolor 0.0001 −0.0009 0.0002 0.0034 0.0106 0.33

lupticolor lupticolor −0.0011 −0.0022 −0.0011 0.0026 0.0080 0.34

lupticolor lupticolor + luptitude −0.0029 −0.0020 −0.0004 0.0022 0.0072 0.37

color lupticolor + luptitude −0.0016 −0.0014 0.0004 0.0022 0.0113 0.37

color color 0.0005 −0.0011 0.0001 0.0037 0.0105 0.34

color color + magnitude 0.0014 −0.0009 0.0003 0.0028 0.0103 0.38

• The inverse covariance between one color and a second,

Σ
−1
g−i,r−i = −

1
σ2
gσ

2
r

1∑
f

1
σ2

f

, (C12)

where the sum is over all flux passbands f .

These terms are derived by considering the Sherman-
Morrison formula:

(C + uvT )−1 = C−1 − C−1uvTC−1

1 + vTC−1u
, (C13)

where Σ = C + uvT . In our case, C is a diagonal matrix,
Cj−i,k−i = δjkσ

2
j , and u and v are the same vector [σi . . . σi].

We may suggestively write Equation C13 as a sum over the
indices m, n:

(C + uuT )−1
jk =

δjk

σ2
j

−

∑
mn

δ jm

σ2
j

σ2
i
δkn
σ2

k

1 +
∑

mn
δmnσ

2
i

σ2
m

. (C14)

Carrying out the sums and simplifying, we find the above
formulas for the inverse covariance matrix.

The variance in the measurement of a luptitude, σ2
µx ,

can be calculated from the variance in the measurement of
its respective flux, σ2

fx
:

σ2
µx =

a2

4b2 + f 2
x

σ2
fx
, (C15)

where a = 2.5 log e and b is a softening parameter (Lupton
et al. 1999). Once this variance is found, the covariance and
inverse covariance matrices may be found with the above
formulas.
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Universidade de São Paulo, CP 66318, São Paulo, SP,
05314-970, Brazil
40 George P. and Cynthia Woods Mitchell Institute for
Fundamental Physics and Astronomy, and Department of
Physics and Astronomy, Texas A&M University, College
Station, TX 77843, USA
41 Department of Astrophysical Sciences, Princeton Univer-
sity, Peyton Hall, Princeton, NJ 08544, USA
42 School of Physics and Astronomy, University of
Southampton, Southampton, SO17 1BJ, UK
43 Brandeis University, Physics Department, 415 South
Street, Waltham, MA 02453, USA
44 Instituto de F́ısica Gleb Wataghin, Universidade Estad-
ual de Campinas, 13083-859, Campinas, SP, Brazil
45 Computer Science and Mathematics Division, Oak Ridge
National Laboratory, Oak Ridge, TN 37831, USA
46 Argonne National Laboratory, 9700 South Cass Avenue,
Lemont, IL 60439, USA

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–24 (2019)


