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We improve the non-relativistic QCD (NRQCD) action by comparing the dispersion relation to
that of the continuum through O(p6) in perturbation theory. The one-loop matching coefficients of
the O(p4) kinetic operators are determined, as well as the scale at which to evaluate αs in the V -
scheme for each quantity. We utilise automated lattice perturbation theory using twisted boundary
conditions as an infrared regulator. The one-loop radiative corrections to the mass renormalisation,
zero-point energy and overall energy-shift of an NRQCD b-quark are also found. We also explore
how a Fat3-smeared NRQCD action and changes of the stability parameter n affect the coefficients.
Finally, we use gluon field ensembles at multiple lattice spacing values, all of which include u, d,
s and c quark vacuum polarisation, to test how the improvements affect the non-perturbatively
determined Υ(1S) and ηb(1S) kinetic masses, and the tuning of the b quark mass.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been
incredibly successful at describing experimental data to
date [1, 2]. However, in many ways, this success has
been a double-edged sword; while SM predictions have
overwhelmingly agreed with experimental measurements
within errors, this has left little room for large new-
physics effects to be observed. Consequently, to illumi-
nate any new-physics phenomena high-precision tests of
the SM must be performed. In the b-quark sector, the
LHCb and BELLE II experiments will generate increas-
ingly precise measurements. In response to this, we make
the next level of improvement to the HPQCD collabora-
tion’s formulation of the NRQCD action [3] which has
been used for a number of state-of-the-art b-physics cal-
culations [4–11].

In this study we will include, for the first time, oper-
ators in the NRQCD action which reproduce the correct
quark dispersion relation to O(p6). Then, with different
values of the NRQCD stability parameter n, we use lat-
tice perturbation theory to compute the kinetic matching
coefficients to O(αsp

4). We remove the unphysical tad-
pole contributions [12] from the lattice action and give
perturbative results for two different tadpole improve-
ment programs: the first by using a mean-field improve-
ment parameter in Landau gauge u0 [12], and the second
via Fat3 smearing [13]. Additionally, we determine the
one-loop (bare-to-pole) mass renormalisation and zero-
point energy of the b-quark. These can be combined
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to give the one-loop energy shift of the NRQCD heavy
quark, and added to non-perturbatively obtained static
masses to give numerical results which, after converting
from lattice units to GeV, can be compared to experi-
mental data. Further, for each of these quantities the
scale µ = q∗ at which to evaluate the strong coupling
constant defined in the V-scheme is determined using the
Brodsky-Lepage-Mackenzie (BLM) procedure [12, 14].

After perturbatively determining the full one-loop ra-
diative corrections to the kinetic couplings, we non-
perturbatively determine the Υ(1S) and ηb(1S) ener-
gies in order to examine how improving the NRQCD ac-
tion, both with additional O(p6) operators and with the
O(αsp

4) couplings, reduces the effect of lattice artefacts.
This paper is organised as follows. In Section II we

describe the improved NRQCD action. In Section III
we match the O(αsp

4, p6) NRQCD dispersion relation to
the continuum, describe our tadpole improvement pro-
cedures and how the scale at which to evaluate αV is
found. Section III A describes the computational setup of
the automated lattice perturbation theory, while Section
III B gives an analysis of the perturbative results. Sec-
tion IV gives details of the non-perturbative calculation
and Section IV B presents the non-perturbative results.
We summarise our findings in Section V.

II. b-QUARKS USING NRQCD

Information about processes involving heavy quarks
can be computed on the lattice using correlation func-
tions constructed from combinations of heavy-quark
propagators. Current lattice ensembles have small
enough lattice spacings and large enough volumes so
that accurate relativistic c-quark formalisms (e.g., Highly
Improved Staggered Quarks (HISQ) [15]) are available.
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Since the b-quark has a Compton wavelength of O(0.04)
fm, most current lattice ensembles cannot resolve rela-
tivistic b-quarks since amb > 1 [16]1. However, it is well
known that b-quarks are very nonrelativistic inside their
bound states (with v2

rel ≈ 0.1 for low-lying bottomonium
states) and thus using a nonrelativistic effective field the-
ory, which has a formal expansion in p/mb = vrel [18], is
very appropriate. This effective field theory is then dis-
cretised as lattice NRQCD [18].

HPQCD’s formulation of lattice NRQCD has already
proven successful in producing accurate b-physics results
in the literature. For example, the NRQCD formalism
that gave a quark dispersion relation correct to O(αsp

4)
has already been used to study bottomonium S, P and D
wave mass splittings [3, 4], B meson mass splittings [5], B
meson decay constants [6, 19], Υ and Υ′ leptonic widths
[7]. Subsequently, the spin-dependent O(v6) operators
were added to that NRQCD action in order to compute
hindered M1 radiative decays [8], precise bottomonium
hyperfine splittings [9, 10]2 and to aid in the search for
bbb̄b̄-type bound tetraquarks [11].

Given the increasingly important emphasis being put
on high-precision calculations needed to keep pace with
measurements from the LHCb and BELLE II experi-
ments, we take the next steps in improving the lattice
NRQCD action to reduce the systematic uncertainties in
future theoretical calculations using it. The first part of
this improvement is to add the necessary operators to
the aforementioned NRQCD action that reproduce the
correct O(p6) quark dispersion relation at tree level.

The NRQCD action that gives rise to a O(p6) correct
quark dispersion relation, including O(v4) interaction op-
erators [3], produces a heavy-quark propagator which can
be found through the evolution equation

G(x, t+ 1) = e−aHG(x, t),

G(x, tsrc) = φ(x) (1)

where φ(x) is a source function and

e−aH =

(
1− aδH|t+1

2

)(
1− aH0|t+1

2n

)n
U†t (x)

×
(

1− aH0|t
2n

)n(
1− aδH|t

2

)
, (2)

aH0 = − ∆(2)

2amb
,

aδH = aδHv4 + aδHp6 ;

1 Combining results at multiple lattice spacing values and multiple
heavy quark masses with a highly improved relativistic action
does allow results to be obtained at the physical b quark mass
[17].

2 Four-quark operators were also used in this study.

aδHv4 = −c1
(∆(2))2

8(amb)3
+ c2

i

8(amb)2

(
∇ · Ẽ− Ẽ · ∇

)

− c3
1

8(amb)2
σ ·
(
∇̃ × Ẽ− Ẽ× ∇̃

)

− c4
1

2amb
σ · B̃ + c5

∆(4)

24amb
− c6

(∆(2))2

16n(amb)2
,

δHp6 = − c(p2)3

16(amb)5

(
1− (amb)

2

6n2

)
(∆(2))3

− cp6

180amb
∆(6)

+
cp2p4

48(amb)3
(∆(2)∆(4)). (3)

Here, amb is the bare b-quark mass, ∇ is the symmet-
ric lattice derivative, with ∇̃ the improved version, and
∆(2), ∆(4), ∆(6) are the lattice discretisations of

∑
i

D2
i ,

∑
i

D4
i and

∑
i

D6
i respectively, with our conventions given

in Appendix A. Ẽ, B̃ are the improved chromoelectric
and chromomagnetic fields, details of which can be found
in [3]. Each of these fields, as well as the covariant
derivatives, must be tadpole-improved using the same
improvement procedure as in the perturbative calcula-
tion of the matching coefficients [12]. This will be dis-
cussed further in Sec. II B. The parameter n is used
to prevent instabilities at large momentum from the ki-
netic energy operator, and needs to satisfy the constraint
p2 < 4namb. A choice of n = 4 was suitable for val-
ues of amb used in previous non-perturbative studies.
We choose to put the aδHp6 corrections into aδH rather
than alter aH0 so that the kinetic operator remains un-
changed. This formulation is also consistent with pre-
vious HPQCD NRQCD actions, is symmetric with re-
spect to time reversal and has smaller renormalisations
than other formulations [18]. The rotationally-symmetry
breaking operators (which vanish as a → 0) with coef-
ficients cp6 and cp2p4 in δHp6 remove higher-order dis-
cretisation effects from using finite-difference derivatives.
The operator with coefficient c(p2)3 correctly adds the

term proportional to (p2)3 into the heavy-quark disper-
sion relation.

The matching coefficients ci in the above Hamiltonian
take into account the high-energy UV modes from QCD
processes that are not present in NRQCD. Each ci can be
fixed by matching a particular lattice NRQCD formalism
to full continuum QCD. Each ci can be expanded pertur-
batively as

ci = 1 + c
(1)
i αs +O(α2

s), (4)

and, after tadpole improvement [12], we expect c
(1)
i to be

O(1). In Sec. II A, we will match the on-shell NRQCD
dispersion relation to that of the continuum, and deter-

mine c
(1)
1 , c

(1)
6 and c

(1)
5 . Each of these coefficients should

exhibit benign behaviour as a function of amb in the
regime where the NRQCD effective field theory is well-
behaved. In contrast, the coefficient may diverge as the
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FIG. 1. Contributions to the one-loop self energy Σ of the
heavy quark, showing the rainbow diagram (left) and the
tadpole diagram (right). The straight lines represent heavy
quarks, while the curly lines represent gluons.

effective field theory breaks down as p ∼ π/a gets too
large or amb gets too small. We take tree level values,
ci = 1, for the coefficients appearing in δHp6 .

We call the NRQCD Hamiltonian presented in Eq. (3)
the O(p6) Hamiltonian, while choosing aδHp6 = 0 pro-
duces the O(p4) Hamiltonian. When including the one-
loop corrections to c1, c6 and c5, we denote the O(p6)
NRQCD action as being O(αsp

4, p6), while if δHp6 = 0
then the action is O(αsp

4).

A. One-loop Matching to O(αsp
4, p6)

A high-precision non-perturbative calculation of mass
splittings will require knowledge of at least the O(αs) cor-
rections to the matching coefficients in order to improve
upon existing few percent errors. For example, when tun-
ing the bare quark mass amb fully nonperturbatively in
NRQCD, one computes the kinetic mass of a hadron3 [3].
This kinetic mass depends on the internal kinematics of
the hadron, and hence on (at least) the terms c1, c5, and
c6 in the Hamiltonian. These matching coefficients are
known as the kinetic couplings [20].

The kinetic couplings can be found perturbatively
by matching the NRQCD on-shell energy (which corre-
sponds to the location of the pole of the quark propa-
gator in the interacting theory) to the continuum QCD
dispersion relation. From now on, to avoid superfluous
notation, we will implicitly work in lattice units unless
otherwise stated. To O(αs) the inverse quark propaga-
tor may be written in momentum space as

G(p)−1 = G(0)(p)−1 − αsΣ(p), (5)

with G(0)(p)−1 the quark propagator obtained at tree-
level from the non-interacting part of the NRQCD ac-
tion, Σ(p) the one-loop quark self-energy, p = (p4,p) a
four-vector in Euclidean space and ω = −ip4 the energy
in Minkowski space. The free quark propagator can be
explicitly found as

G(0)(p)−1 =
{

1− e−ip4F (p)2nF1(p)2
}
, (6)

3 The static mass (the energy corresponding to zero-spatial mo-
mentum) in lattice NRQCD [3] is shifted due to the removal of
the mass term from the Hamiltonian and so one can only tune
static mass differences fully nonperturbatively.

F (p) = 1− 1

nmb

∑

j

sin2(pj/2), (7)

F1(p) = 1− c5
3mb

∑

j

sin4(pj/2)

+
c̃1
m3
b

[
1 +

mb

2n

]

∑

j

sin2(pj/2)




2

− 2c(p2)3

m5
b

[
1− m2

b

6n2

]
∑

j

sin2(pj/2)




3

− 8cp6

45mb

∑

j

sin6(pj/2)

+
2cp2p4

3m3
b

∑

j,k

sin2(pj/2) sin4(pk/2) (8)

where we have defined c̃1 = (c1 + c6mb/2n)/(1 +mb/2n)
for computational ease, and c1 = c6 = c̃1. The term F (p)
arises from the non-interacting momentum space part of
(1−H0/2n) in (2), while F1(p) comes from the (1−δH/2)
piece.

To find the NRQCD dispersion relation we determine
the on-shell energy ω(p) which causes a pole in the
full heavy-quark propagator. The one-loop ω(p) can be
found from Eq. (5) and (6) as

ω(p) = − log
(
F 2n(p)F 2

1 (p)
)
− αsΣ(ω0(p),p) (9)

with ω0(p) = − log(F 2n(p)F 2
1 (p)), with tree-level coef-

ficients in F and F1, being the tree-level on-shell energy
found by setting the tree-level inverse propagator in Eq.
(6) to zero. We have constructed the Hamiltonian in
Eq. (2) to produce a non-relativistic dispersion relation
correct to O(p6), and we now include the O(αsp

4) cor-
rection. This yields4

ω0(p) =
p2

2mb
− (p2)2

8m3
b

+
(p2)3

16m5
b

+ αs

{
c
(1)
5

p4

24mb
− c̃(1)

1

(
1

mb
+

1

2n

)
(p2)2

8m2
b

}
.

(10)

When matching the dispersion relation to O(αsp
4, p6), it

is necessary to decompose the self-energy Σ(p) using the
small-p expansion [20] as

Σ(p) = Σ0(ω) + Σ1(ω)
p2

2mb
+ Σ2(ω)

(p2)2

8m2
b

+ Σ3(ω)p4.

(11)

Further, when ω is small, each function has a well-defined

series expansion Σm(ω) =
∑∞
l=0 Σ

(l)
m ωl. The Σ

(l)
m can be

4 We correct a typographical error in Appendix B of [3].
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found from derivatives of the quark self-energy as

Σ0(ω) = Σ(p = 0), (12)

Σ1(ω) = mb
∂2Σ(p)

∂p2
z

∣∣∣∣
p=0

, (13)

Σ2(ω) = m2
b

∂4Σ(p)

∂p2
z∂p

2
y

∣∣∣∣
p=0

, (14)

Σ3(ω) =
1

24

(
∂4Σ(p)

∂p4
z

− 3
∂4Σ(p)

∂p2
z∂p

2
y

)∣∣∣∣
p=0

, (15)

Σ(l)
m = (−i)l 1

l!

∂lΣm(p4)

∂pl4

∣∣∣∣
p4=0

. (16)

Then, by using the tree-level ω0 from (10) in Eq. (11) we
find

Σ(ω0,p) = W0 +
p2

2mb
Z(1)
m

+
(p2)2

8m2
b

{
W1 −

3Z
(1)
m

mb

}
+W2p

4,

(17)

mr
b = Zmmb = mb

(
1 + αsZ

(1)
m +O(α2

s)
)
, (18)

Z(1)
m = Σ

(1)
0 + Σ

(0)
1 , (19)

W0 = Σ
(0)
0 , (20)

W1 = 2Σ
(2)
0 + 2Σ

(1)
1 + Σ

(0)
2 +

2Σ
(1)
0

mb
+

3Σ
(0)
1

mb
, (21)

W2 = Σ
(0)
3 (22)

where the superscript ’r’ denotes renormalised quantities

and Z
(1)
m is the O(αs) coefficient of the bare-to-pole mass

renormalisation. Substituting (8) and (17) into (9) gives
the one-loop NRQCD dispersion relation to O(αsp

4, p6)
as

ω(p) =
p2

2mr
b

− (p2)2

8(mr
b)

3
+

(p2)3

16(mr
b)

5

− αs
{
W0 + p4

[
W2 −

c
(1)
5

24mb

]

+
(p2)2

8m2
b

[(
1

mb
+

1

2n

)
c̃
(1)
1 +W1

]}
. (23)

Matching Eq. (23) to the continuum QCD dispersion

relation [3, 21] gives the matching coefficients for c̃
(1)
1 , c

(1)
5

as well as the energy shift of a heavy quark (to this order)
as

c̃
(1)
1 = −

(
1

mb
+

1

2n

)−1

W1, (24)

c
(1)
5 = 24mbW2, (25)

C = ω(QCD) − ω = mr
b + αsW0 = mb(1 + αsδC), (26)

δC = Z(1)
m +

W0

mb
. (27)

The shift C is the perturbative shift of the zero of energy.
For each heavy quark in a non-perturbative calculation,
the shift can be added to the simulation energy and, after
being converted from lattice units to GeV, this can then
be compared to experimental masses [20, 21]. In practice
hadron masses can be more precisely determined fully
non-perturbatively through their kinetic mass in lattice
QCD.

The aim of this study is to determine the one-loop

coefficients c̃
(1)
1 , c

(1)
5 , δC (and thus also Z

(1)
m and W0)

for different improved NRQCD actions to find the best
way forward for increasingly accurate non-perturbative
calculations in the future. Before these coefficients can
be used, it is first necessary to remove unphysical con-
tributions from tadpole diagrams which can cause the
coefficients to be rather large [12].

B. Tadpole Improvement

The authors of Ref. [12] show that using Lie group
elements when constructing the lattice field theory in-
troduces unphysical tadpole diagrams which do not con-
tribute to continuum schemes. These unphysical tad-
pole diagrams cause large, process independent renor-
malisations and produce a poor convergence of the per-
turbative series. Ref. [12] also suggests a solution to
this: a gauge-invariant mean-field improvement program
(tadpole-improvement) where each lattice link, Uµ(x), is
scaled to Uµ(x)/u0. We choose u0 to be the mean link
in Landau gauge, i.e., u0 = 〈 13TrUµ(x)〉. This mean-
field parameter has been calculated for the Symanzik-
improved gluon [3, 22] action both perturbatively to one-

loop (with u0 = 1− αsu(2)
0 giving u

(2)
0 = 0.750) [23] and

non-perturbatively [3, 6] (where the value of u0 depends
on the ensemble used, e.g., see Table IV). After a tad-
pole improvement procedure has been implemented, the
one-loop coefficients are expected to be O(1). The same
tadpole-improvement program must of course be imple-
mented in the nonperturbative calculations as has been
used for the perturbative calculations.

Before the mean-field improvement procedure is per-
formed, care must be taken to ensure that any link-pair
cancellations U †µ(x)Uµ(x) = 1 occur in the lattice action
used in both non-perturbative and perturbative calcula-
tions. Such cancellations do not generate any unphysical
tadpole diagrams and scaling by 1/u2

0 would be incorrect.
Yet, expanding out the complicated NRQCD Hamilto-
nian in (2) in terms of links Uµ(x) is excessively expensive
for numerical calculations. Consequently, link-pair can-
cellations are only taken into account separately for each
derivative, (∆(2n))m, or field strengths (Ei(x) or Bi(x))
appearing in the action. This is called partial cancella-
tion [3, 21]. The difference between the complete and par-
tial cancellation prescriptions was empirically shown not
to be sizable [21]. Formulae for the partially-cancelled
derivatives are given in Appendix A.

By using the partially-cancelled mean-field improve-
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ment procedure just described, one can find the O(αs)
tadpole counterterms for the one-loop quantities de-
scribed in Sec. II A. For the NRQCD action without the
O(p6) operators, the computation of the tadpole coun-
terterms was checked in two separate calculations. The
first was performed analytically, and the second using
a Mathematica script. Both calculations reproduced the
results of [21] (in the case where the additional parameter
used there, v, is set to zero) and [3, 24]. We extended the
numerical code to include the O(p6) operators. The one-
loop tadpole counterterms are given in Appendix B. After
the (unimproved) one-loop quantities have been found in
lattice perturbation theory, we can add the appropriate
tadpole counterterms to determine the improved values.
This will be discussed further in Sec. III B.

As can be seen in Appendix B, the mean-field countert-
erms obtained from using the O(p6) NRQCD action con-
tain higher-orders of 1/mb relative to the counterterms
obtained from using the O(p4) NRQCD action. This is a
consequence of partially-cancelling the derivative opera-
tors (∆(2n))m, whose counterterms are given in Appendix
A. The impact of this becomes pronounced as amb is re-
duced as will become evident in Section III.

In this study, we choose to account for the unphysical
tadpole contributions using two different prescriptions.
The first prescription proceeds via the partially-cancelled
mean-field improvement procedure just described. The
one-loop tadpole counterterms given in Appendix B,
which depend on 1/amb, remove the unphysical tad-
poles. As seen in Sec. III B, the improved values give
smaller absolute renormalisations compared to the unim-
proved case, and exhibit a longer plateau over a larger
range in amb indicating stable behaviour in the effec-
tive field theory. However, the tadpole counterterms
from using the O(p6) action diverge faster as amb → 0
due to the higher-order terms in 1/amb, and therefore
the tadpole-improved one-loop results obtained from the
O(p6) NRQCD action also diverge faster (see Sec. III B).
This could be slightly inconvenient for ensembles with
increasingly small lattice spacings, such as the super-fine
ensembles currently in use [25], which have a lattice spac-
ing of a ≈ 0.06fm.

Because of this, we explore an alternative improvement
procedure based on the fattening of gauge-links [13, 26].
The Fat7-smeared link [27] introduces staples of up to
seven-link paths to completely remove the tree-level cou-
plings to gluons with high transverse-momentum modes
equal to ±π. As the Fat7 link is computationally expen-
sive, alternative fat-links have been designed based on
three- or five-link staples, called Fat3 and Fat5 respec-
tively. These latter links reduce the couplings to gluons
with high transverse-momentum and suppress unphysi-
cal tadpole diagrams [27]. This will be discussed fur-
ther in section III B. Therefore, we also explore, for the
first time, how a Fat3-smeared NRQCD action correct
to O(p4) affects the renormalisation of kinetic couplings.
Here the fattened links are projected back onto U(3) [26]
(not SU(3)).

The last piece of information needed to use the tadpole-
improved one-loop coefficients in a non-perturbative com-
putation is the scale, q∗, at which to evaluate the strong
coupling constant.

C. Determining the scale of αs

The Brodsky-Lepage-Mackenzie procedure [12, 28] de-
termines an optimal q∗ for αV , the coupling defined using
the heavy quark potential [29], by examining the mo-
mentum flowing through a gluon in the one-loop Feyn-
man diagram. In this prescription, one studies the one-
loop integral of a fully dressed gluon within a partic-
ular diagram, then uses the running of αV (q) to find
a mean-value q∗ which reproduces the integral. To do
this, one expands the running of αV (q) as a polynomial
in log(q2/q∗2) and assumes that the leading order log-
moments are the dominant contributions. However, in
certain areas of parameter space, the leading order log-
moments can be anomalously small and give unphysically
large or small erroneous q∗. This was noticed in [20] af-
ter which [14] determined q∗ when the zeroth and first
log-moments are anomalously small via

log(q∗2) = 〈〈log(q2)〉〉 ± [−σ2]
1
2 (28)

where 〈〈log(q2)〉〉 = 〈f(q) log(q2)〉/〈f(q)〉 indicates the
weighted average, f(q) is the integrand of the one-loop
Feynman diagram, and σ2 = 〈〈log2(q2)〉〉 − 〈〈log(q2)〉〉2.
The appropriate choice of ± in Eq. (28) is usually clear
based on requiring q∗ to be continuous and physically
sensible, although the ambiguity can be removed by cal-
culating higher log-moments [14]. When σ2 > 0, only the
first term in Eq. (28) is used. However, when σ2 < 0,
Eq. (28) takes into account the anomalies to first order.

The unphysical tadpole diagrams contribute to the
scale q∗, using the mean-field improvement prescription
described in Sec. II B will alter its value. When the tad-
pole counterterm ctadαV (q∗tad) is added to the one-loop
contribution caαV (q∗a), the second-order formula (28) is
altered to [14]

log(q∗2) =
ca〈〈log(q2)〉〉a + ctad〈〈log(q2)〉〉tad

ca + ctad
± [−σ2]

1
2

(29)

σ2 =
ca〈〈log2(q2)〉〉a + ctad〈〈log2(q2)〉〉tad

ca + ctad

−
(
ca〈〈log(q2)〉〉a + ctad〈〈log(q2)〉〉tad

ca + ctad

)2

. (30)

Again, if σ2 > 0, then only the first-order term in Eq.
(29) is needed and used, while if σ2 < 0 both terms are
needed to yield physical results.

Theoretically, we expect aΛQCD < aq∗ < π as the one-
loop corrections take into account UV modes neglected
by imposing a momentum cutoff. Even though the cor-
rected second order formula given in Eq. (29) was used,
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unphysical values of q∗ for certain values of amb in the
one-loop quantities were sometimes obtained. In these
cases, although rare, it was usually clear that the issue
was due to the 0th−2nd log-moments being anomalously
small. To rectify this issue, we use the simple nth-order
formula given by [14]

log(q∗2) =
〈fa(q) logn(q2)〉+ 〈ftad(q) logn(q2)〉

n〈fa(q) logn−1(q2)〉+ n〈ftad(q) logn−1(q2)〉
.

(31)

Leaving the tadpole pieces out of Eq. (31) gives the
higher-order tadpole-unimproved scale. As we do not
mean-field improve the Fat3-smeared one-loop quantities,
the above formulae with the tadpole pieces set to zero are
used to find q∗ in the case of Fat3-smeared links.

III. PERTURBATIVE DETERMINATION OF
ONE-LOOP QUANTITIES

A. Perturbative Computational Details

Due to the complexity of the NRQCD action that we
utilise, an efficient computational methodology is needed
to calculate the Feynman integrals of the one-loop for-
mulae given in (21) and (22). Fortunately, the theory
behind the automatic generation of Feynman rules for
complex lattice actions exists [26, 30]. Here, we em-
ploy the automated lattice perturbation theory routines
HiPPy and HPsrc [26, 31]. These routines have been
thoroughly tested and used in previous perturbative cal-
culations [3, 5, 21, 22, 32]. Given that we will produce
results for a number of different NRQCD actions, these
automated packages are ideal.

We automatically generate the Feynman rules for
a specific NRQCD action (along with the Symanzik-
improved gluonic action [3, 32]) using the HiPPy pack-
age. We can then construct the Feynman diagrams in
a generic fashion using the HPsrc package, which will
use these Feynman rules to numerically evaluate the di-
agram, along with its derivatives thanks to automated
differentiation techniques [26, 33].

In the matching procedure both the continuum and
lattice contributions to the dispersion relation are sepa-
rately infrared (IR) finite. However, intermediate steps
on the lattice may produce IR divergences which can-
cel when evaluating the one-loop quantities. To regu-
late the IR divergences, we use twisted boundary con-
ditions (TBCs) on a finite-volume lattice where the mo-
mentum integral is replaced by a summation over mo-
mentum modes [30]. TBCs introduce a lower momen-
tum cutoff by removing the zero mode from the gluon
propagator. Specifically, we employ triple-twist bound-
ary conditions with an appropriate squashing factor in
the untwisted temporal direction (used to broaden peaks
of the integrand, thus removing most of the dependence
on L [30]). Computational details of both concepts are

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1/L

−1.0

−0.5

0.0

0.5

1.0

W
1

amb =7.0
amb =2.3

amb =4.0
amb =1.9

amb =2.8

FIG. 2. The raw data for W1 at multiple values of 1/L
overlaid with our fit curve.

described in [26, 32], and we refer the reader to those
articles for further details. All numerical results are IR
finite as expected. As the dispersion relation is UV finite,
this allows us to directly equate results obtained on the
lattice to those obtained in the continuum. Furthermore,
we test that the gauge-invariant quantities are indepen-
dent of the gluon propagator gauge parameter by work-
ing in both Feynman gauge and Landau gauge. All per-
turbative results presented, except for the Landau-gauge

mean-field parameter u
(2)
0 , will be in Feynman gauge.

The one-loop contributions to the self-energy are
shown in Figure 1. Care must be taken when numeri-
cally evaluating the rainbow diagram so that the pole of
the heavy-quark propagator does not cross the temporal
integration contour. Details of our implementation of the
contour shift can be found in [21].

In this study we will always take the spatial box length
to be 4 ≤ L ≤ 16 and choose a temporal extent of
T = 16L. This allows the pole structure to be resolved
in greater detail and reduces finite-T effects. As the one-
loop integration is carried out by direct summation of the
twisted momentum modes, numerical results are exact
[32]. We follow the approach suggested by [34] in order
to fit exact data. Here, our exact results from TBCs can
be expressed as a polynomial in 1/L [30], yet we are only
interested in knowing the constant term (corresponding
to the infinite-volume result). We may use priors to
model the polynomial dependence and then marginalise
[35] from the exact data the part of the polynomial that
we are not interested in. Using a finite-degree polyno-
mial of order N to model the exact results, we find that
N = 20 is a suitable choice and check that all results
are unchanged with its variation. Marginalising the last
N − NL terms of this polynomial into the exact data
and then performing a Bayesian fit [34, 36] to a poly-
nomial of degree NL successfully determines the desired
constant parameter of the polynomial. As is common
with marginalised Bayesian fits [35], marginalising all but
one or two fit parameters produces stable and precise re-
sults and has seen wide success [8, 37]. Even though
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FIG. 3. Numerical values for W1 (top) and W2 (bottom) for
different NRQCD actions without mean-field improvement as
described in Sec. II.

we produce successful fits when marginalising all but the
constant term, we choose NL = 5 and ensure that there
is no sensitivity to this.

In the following section, we will give perturbative re-
sults for three NRQCD actions: (i) the O(p6) NRQCD
action with stability parameter n = 4 as described in
Sec. II; (ii) the O(p4) NRQCD action with stability pa-
rameter n = 4, 6 and 8; and (iii) a Fat3-smeared O(p4)
NRQCD action with stability parameter n = 4 and no
mean-field improvement. For a fixed quark and gauge
action the one-loop coefficients depend only on the input
parameter amb. We calculate results for a range of amb

values, enabling interpolation to values not explicitly cal-
culated that may be useful for lattice calculations. This
also allows us to demonstrate the functional dependence
on amb graphically to see where the divergent behaviour
begins as amb goes to zero.

B. Perturbative Results and Analysis

We calculate W1 and W2 for both the O(p4) and O(p6)
actions with n = 4 (including all log moments) with spa-
tial extent L = 4, 6, 8, 10, 16. We then successfully fit
this data using the methodology described in Sec. III A.
Figure 2 shows an example of this, with the raw W1 data
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FIG. 4. Numerical values for c̃
(1)
1 (top) and c

(1)
5 (bottom) for

different NRQCD actions without mean-field improvement.

at multiple values of 1/L overlaid against the fit curve.
In fact, we found Bayesian fitting to a polynomial so suc-
cessful that we only needed data with L = 4, 6, 8, 10 to
obtain the constant term to sub-percent precision in gen-
eral. Consequently, we calculate data for W1 and W2 for
an O(p4) action with n = 6, 8 and with L = 4, 6, 8, 10, as

well as all Z
(1)
m , W0 and Fat3-smeared results (including

log moments). The short computational time needed to

calculate u
(2)
0 (and its log moments), meant that we were

able to do this on lattices of size L = 4, 6, 8, 10, 12, 14, 16.
We present the infinite-volume results for the mean-field
unimproved W1 and W2 in Figure 3. Also shown on each
figure is a smooth interpolating curve between the re-
sults. This interpolating curve was chosen to be a poly-
nomial in 1/amb in order to reproduce the static limit
as mb → ∞. It is expected that all one-loop quantities
diverge as amb → 0 for our improved NRQCD action,
indicating a breakdown of NRQCD, and that is clearly
illustrated in our figures.

The difference between W1 and W2 in Figure 3 and

c̃
(1)
1 and c

(1)
5 in Figure 4 is purely the conversion factors

given in Equations (24) and (25). In these plots, a clear
observation is that the results are very insensitive to an
increase in n over the mass ranges that we are inter-
ested in for non-perturbative calculations on the lattice
(1 < amb < 5). Therefore, as there is no clear bene-
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FIG. 5. As in Figure 4 but with the mean-field improved data

for c̃
(1)
1 (top) and c

(1)
5 (bottom). Note the change in vertical

scale. The mean-field corrections are given in Appendix B.
Note that the Fat3 smeared data is the same as in Figure 4,
since no mean-field correction is applied in this case.

fit to increase n in the perturbative results, future non-
perturbative calculations can choose n = 4 for all amb in
this range. The Fat3 smearing works as expected to re-
move the unphysical tadpoles (as outlined in Sec. II B),
indicated by a reduction in the absolute size of the one-
loop corrections. There is a significant improvement, in
terms of longer plateau in amb and sharper divergence at
smaller amb, when using the O(p6) NRQCD action over
the O(p4). This improved behaviour in the couplings
leads to the expectation that the second-order couplings
are also well-behaved.

In Figure 5, we then include the mean-field tadpole
corrections for all results (except those for Fat3 smearing
data) with the formulae explicitly given in Appendix B.
The infinite-volume values are given in Table I. Table I
shows why we do not need tadpole-improvement when
smeared links are used. The one-loop coefficient in u0 is
much smaller in the smeared cases reflecting the fact that
tadpole effects are much smaller and the mean smeared
link is much closer to 1. Little is then gained by dividing
by it.

As can be seen in Figure 5, mean-field improvement
noticeably reduces the magnitude of the one-loop coef-
ficients, where it is applied. Due to the higher-order
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FIG. 6. The one-loop radiative correction c̃
(1)
1 αs(q∗) (top)

and c
(1)
5 αs(q∗) (bottom) with αs defined in the V -scheme, for

different NRQCD actions and different values of the lattice
spacings. We give a subset of the numerical values relevant
for non-perturbative calculations in Appendix C.

1/amn
b terms in the O(p6) mean-field counterterms, as

described in Sec. II B, the one-loop couplings with the
O(p6) action now diverge earlier as amb → 0. This is not
a desirable feature. This common behaviour is seen in all
mean-field improved data we present. Interestingly, the

absolute value of c
(1)
5 is significantly reduced when using

a O(p6) action. c
(1)
5 is the coupling which removes the

rotational-symmetry breaking operator ∆(4) at one-loop.
Therefore, it is indicative that the O(p6) action will re-
duce SO(3) symmetry breaking in non-perturbative cal-
culations also, as will be discussed in Sec. IV B.

To fully determine the one-loop shift to the kinetic
couplings, the scale at which to evaluate αs in the V-
scheme needs to be found. We give the mean-field im-
proved aq∗ and the Fat3 smeared aq∗ in Appendix C. To
determine the physical scale, q∗, we use a−1 = 1.3, 1.6,
2.2 and 3.3 GeV corresponding to very coarse, coarse,
fine and superfine MILC ensembles used by the HPQCD
collaboration [3]. To run the strong coupling in a partic-
ular renormalisation scheme, an initial condition needs

to be chosen. Here, we use αMS
s (MZ , nf = 5) taken from

the Particle Data Group [1], where αs is defined in the
MS-scheme, MZ is the Z-boson mass and nf = 5 is the
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FIG. 7. Numerical values for Z
(1)
m (top) and the one-loop

radiative correction Z
(1)
m αs(q∗) (bottom) with αs defined in

the V -scheme, for different NRQCD actions and different val-
ues of the lattice spacings. Note that the unsmeared data
is mean-field improved as described Sec. II B, and the Fat3
smeared results are not mean-field improved.

number of active flavours. To use this with our data, we
perturbatively remove the b-quarks’ contribution to the
running [38], with mb(mb) = 4.164(23) GeV [35], convert
to the V -scheme [12, 39] and run to q∗ [40]. Finally, we
combine αV (q∗) with the one-loop coefficient to give the
full one-loop coefficient. These are plotted in Figure 6.

We show data for the tadpole-improved Z
(1)
m in Fig-

ure 7. Without mean-field improvement, the O(p4) and
O(p6) data overlap very closely and are not shown due to
this. The modified behaviour after mean-field improve-
ment is due to the different tadpole-corrections, where
again, the O(p6) tadpole-corrections cause faster diver-
gences as amb → 0. The mean-field corrections work

as expected to reduce the absolute value of Z
(1)
m , e.g.,

Z
(1)
m (amb = 1.9) is reduced from 1.57 (without improve-

ment) to 0.45. The full one-loop correction is shown in
the lower plot in the same figure.

W0 is observed to have opposite sign to Z
(1)
m , but has

similar qualitative features as those just described, e.g.,
the mean-field unimproved result is typically is a factor
of 2−3 in magnitude larger than the mean-field improved
values and there is a clear plateau and a sharp divergence
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FIG. 8. The same as in Figure 7 but for W0 in place of Z
(1)
m .

at small amb. The tadpole-improved W0 is shown in
Figure 8.

Because Z
(1)
m and W0 have opposite sign, the one-loop

shift in the zero of energy δC is found to be very close to
zero in all cases as seen in Figure 9.

We note that our O(p4) c̃
(1)
1 , c

(1)
5 and Z

(1)
m differ by

small but significant amounts from those in Ref. [3].
Ref. [3] used Monte Carlo integration combined with nu-
merical derivatives, which they note leads to unstable
behaviour when there are large peaks in the IR region.
Consequently subtraction functions were used [41]. In
our study, we avoid these complications by using TBCs
as a gauge-invariant IR regulator, and automatic differ-
entiation for the derivatives, which avoids the numeri-
cal instabilities arising from finite-differencing schemes
[26, 33].

Finally, the tadpole-improved results for the one-loop
coefficients plotted here are given in Appendix C. Sub-
tracting the mean-field corrections (given in Appendix B)
from this data gives the results before tadpole improve-
ment.

IV. NON-PERTURBATIVE KINETIC MASSES

Here we test how improving the NRQCD action as
in Sec. II and III affects the reliability and accuracy
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TABLE I. The one-loop mean Landau gauge link [32] and its
log moments for either an unsmeared or smeared gauge-link
definition.

Gauge-Link u
(2)
0 = 〈f tad〉 〈f tad log(q2)〉 〈f tad log2(q2)〉

Unsmeared 0.750275(5) 1.45755(2) 3.6022(1)

Fat3 0.231784(5) 0.26101(7) 0.6429(2)

Fat7 0.108244(5) 0.10271(4) 0.4117(2)

of energies of bottomonium mesons obtained from non-
perturbative calculations.

The static mass (the energy corresponding to zero spa-
tial momentum) in lattice NRQCD is shifted due to the
removal of the mass term from the Hamiltonian [3], where
we found the one-loop shift, C, in Sec. II A. Consequently,
one can only determine static mass differences fully non-
perturbatively. However, one can still obtain kinetic
masses [3, 42] entirely non-perturbatively via a fully rel-
ativistic dispersion relation as

aMkin =
a2P2 − a2∆E2

2a∆E
(32)

where a∆E is the energy difference between the me-
son with momentum aP and the meson at rest. The
kinetic mass depends on the internal kinematics of the
hadron, and hence on the kinetic terms in the NRQCD
action. For example, changing the coefficient of the
(∆(2))2/8am3

b term, c1, from 1 to 1 +O(αs) will modify
the amount of the internal kinetic energy that is incorpo-
rated into the meson’s kinetic mass, effectively correcting
for an O(αs) mismatch between the static and kinetic
masses from this operator’s contribution to the binding
energy [3]. The change would be expected to be O(αsB)
where B is the binding energy of O(500) MeV. This could
in principle be as large as 150− 200 MeV but in practice
was found to be much smaller and around 80 MeV on
coarse and fine lattices (because c

(1)
1 is small) [3].

Therefore, the kinetic mass is the ideal candidate on
which to test our improvement of the kinetic part of
the action. Furthermore, the kinetic mass is typically
utilised to tune the b-quark mass [3, 42–44] and thus
if sizable improvement is seen, this would indicate
that improving the kinetic action would benefit future
calculations, where a highly accurate calculation with a
reliable error budget requires knowledge of at least the
O(αs) corrections to the matching coefficients.

In a rotationally invariant theory, the symmetry group
is the semi-direct product of the rotational group SO(3)
with three translations. The little group of the symme-
try group, used to classify energy eigenstates in terms
of invariant quantities (e.g., JP at zero-momentum and
helicity λ at non-zero momentum), is broken by a finite-
volume lattice [45]. The symmetry of the lattice discreti-
sation, which breaks SO(3) symmetry at small distances,
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FIG. 9. The same as in Figure 7 but with δC in place of Z
(1)
m .

does not need to be the same as the symmetry of the fi-
nite volume, which breaks rotational symmetry at larger
distances [46]. Here we consider a cubic lattice in a fi-
nite cubic box with PBCs, and so both the lattice and
the boundary break the full SO(3) rotational symmetry
of the continuum to the (double cover) of the octahedral
group, ODh . The lattice irreducible representations (ir-
reps) for a cubic finite-volume on a cubic lattice depend
on the allowed momenta types [45, 46] (as not all lattice-
momenta are related by an octahedral symmetry) and
we reproduce them in Table II for convenience. The en-
ergy eigenstates of the lattice Hamiltonian (as obtained
from non-perturbative lattice QCD calculations) are clas-
sified according to representations of the lattice symme-
try group.

We denote the energy computed on the lattice for a
ηb meson with spatial momentum P as Eηb(|aP |). Then
Eηb(|aP|) computed with the same a2P2 but with aP
which lie in different lattice little groups (e.g., (3, 0, 0)
which has little group Dic4 and (2, 2, 1) which has little
group C4 ) do not need to yield the same energy within
errors. However, as the infinite-volume continuum limit
is taken and full SO(3) symmetry is restored, these en-
ergies should converge. Improving the lattice NRQCD
action, both by adding in higher-order O(p6) terms and
one-loop radiative corrections, should reduce SO(3) sym-
metry breaking and produce the desired infinite-volume
continuum energies more accurately at a given value of
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TABLE II. The different little groups relevant for each mo-
mentum type in a finite-volume cubic lattice with PBC. The
momenta are in units of 2π/L and n,m, p are non-zero inte-
gers with n 6= m 6= p [45, 46]. The single cover irreps describe
integer spin states.

Momentum Type Little Group Irreps

(Double Cover) (Single Cover)

(0, 0, 0) OD
h A±

1 , A
±
2 , E

±, T±
1 , T

±
2

(n, 0, 0) Dic4 A1, A2, E2, B1, B2

(n, n, 0) Dic2 A1, A2, B1, B2

(n, n, n) Dic3 A1, A2, E2

(n,m, 0) C4 A1, A2

(n, n,m) C4 A1, A2

(n,m, p) C2 A

the lattice spacing. Examining the non-perturbative en-
ergies should indicate this to be the case.

Improving the NRQCD action will reduce the breaking
of SO(3) symmetry due to a cubic lattice. This is because
higher-order rotational-symmetry breaking operators
(which vanish as a → 0) will be increasingly taken into
account correctly, e.g., the

∑
i ∆4

i ,
∑
i,j ∆2

i∆
4
j ,
∑
i ∆6

i op-

erators in Eq. (2). It is perhaps indicative that including
O(p6) operators reduces rotational symmetry breaking,

as we found in Sec. III B that the one-loop coupling c
(1)
5 ,

which is constructed in (25) to remove the rotational-
symmetry breaking

∑
i p

4
i terms from the dispersion re-

lation to one-loop, gets reduced when improving to the
O(p6) NRQCD action.

In the following we will describe our non-perturbative
computational setup as well as discuss how the data from
the kinetic masses illustrates the reduction of SO(3) sym-
metry breaking when improving the kinetic parts of the
NRQCD action.

A. Non-Perturbative Computational Setup

Our computational setup is similar to that in Refs.
[3, 8] and we point the reader to those texts for spe-
cific details. However, we give a brief overview. We use
gauge ensembles generated by the MILC collaboration
[47] with the tadpole-improved Lüscher-Weisz gauge ac-
tion [48] with 2 + 1 + 1 dynamical flavours of HISQ sea
quarks [15]. Details of these ensembles are given in Table
III. We use ensembles at three values of the lattice spac-
ing, approximately 0.15 fm, 0.12 fm and 0.09 fm, so that
we can test the changing impact of lattice discretisation
effects.

Details of the covariant derivative and chromo-
magnetic/electric field implementation in our NRQCD
action can be found in [3]. Each of these must be tadpole-

TABLE III. Details of the gauge ensembles used in this study.
β is the gauge coupling. aΥ is the lattice spacing determined
from the Υ(2S − 1S) splitting [3], where the error combines
statistics, experiment and the dominant NRQCD systematic
error. amq are the sea quark masses, Ns×NT gives the spatial
and temporal extent of the lattices in lattice units and ncfg is
the number of configurations in each ensemble. In column 1
we use the numbering convention for the ensembles from [3].
Ensemble 1 is referred to as “very coarse”, 3 as “coarse,” and
5 as “fine”.

Set β aΥ(fm) aml ams amc Ns ×NT ncfg

1 5.8 0.1474(15) 0.013 0.065 0.838 16× 48 1020

3 6.0 0.1219(9) 0.0102 0.0509 0.635 24× 64 1052

5 6.3 0.0884(6) 0.0074 0.037 0.440 32× 96 1008

improved using the same improvement procedure as in
the perturbative calculation of the matching coefficients
in Sec. III B. We present kinetic masses using the mean-
field improvement procedure where, as in the perturba-
tive results, we take u0 as the mean trace of the gluon
field in Landau gauge, calculated in [3, 6]. The u0 values
used for each ensemble are given in Table IV. We also
give in Table IV the values that we use for the bare b
quark mass amb on each ensemble.

The lattice two-point correlator most naturally en-
codes information on meson energies. We use bilin-
ear bb interpolating operators, listed in Table V with
Γ = iγ5, γ

j , which overlap onto definite JPC = 0−+, 1−−

energy eigenstates at rest, respectively, in the infinite-
volume continuum version of our theory (which is rota-
tionally invariant) [46]. In [8], as well as [46], it has been

shown that at nonzero momentum, Oγ5

(p) is a helicity
operator which creates a definite λ = 0− energy eigen-

state, but Oγi

(p) creates an admixture of λ = 0+,±1,
where these λ get contributions from JP values as listed
in the third column of Table V. The ± superscript on the
λ = 0 case represents the eigenvalue η̃ = P (−1)J from

the Π̂ symmetry (a parity transformation followed by a
rotation to bring the momentum direction back to the
original direction) [46].

Again, following [3], we simultaneously fit multi-
exponential functions to the bottomonium meson corre-
lator at rest and with momentum aP. Doing so allows
the correlations between the ground states energies to be
correctly taken into account when computing the kinetic
mass. We take priors of 0.1(1.0) on the amplitudes, priors
on the ground state energies are estimated from previous
results and given a suitably wide width [3], and priors on
energy splittings are taken to be En+1 − En = 500(250)
MeV. To help invert the covariance matrix a singular
value decomposition is used with a tolerance of 10−5

[8, 49]. We present fit results, following [3], for fits in-
cluding eleven exponentials for Set 1, nine exponentials
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TABLE IV. Parameters used for the valence quarks. amb

is the bare b-quark mass in lattice units, u0L is the tadpole
parameter [8]. Tp is the total propagation time for the b-
quark propagator and nt is the number of time sources used
per configuration. The O(αs) matching coefficients for c1, c6
and c5 are taken from Tables VIII and IX. As explained in
Sec. III the O(αs) coefficients are functions of amb; the αs

value they are combined with to give c1, c5 and c6 depends on
the lattice spacing. The values are different for each version of
the NRQCD action tested. As we focus on the improvements
made in this study, c2, c3 and c4 are taken to be their tree-level
values of 1.0.

Set amb u0L Tp nt

1 3.40 0.8195 40 16

3 2.80 0.8349 40 16

5 1.90 0.8525 48 16

for Set 3, and seven exponentials for Set 5.

B. Non-Perturbative Results and Analysis

We generate data for Eηb(|aP|) and EΥ(|aP|) with mo-
menta aP = (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0),
(2, 1, 1), (2, 2, 1) and (3, 0, 0) in multiples of 2π/L. As dis-
cussed above, helicity classifies the energy eigenstates of
the infinite-volume continuum NRQCD theory at non-
zero momentum. Therefore, compared to the zero-
momentum case, additional JP states can contribute to
the correlator data at non-zero momentum. The authors
of [8] found that when fitting to a 3×3 matrix of smeared
correlators, the first excited state in the fit at non-zero
momentum was the χb1(1P ), hb(1P ) for the operators

Oγ5

(x), Oγi

(x) respectively. At zero momentum, the
first excited state was the ηb(2S), Υ(2S) respectively. By
using the same smearing types and correlators as those
authors, we check that the additional states are present at
non-zero momentum when using a 3×3 fit. However even
when a fit does not resolve the additional (first excited)
state accurately we find that the ground state is uncon-
taminated and still precise. Further, the finite-volume
lattice breaks SO(3) symmetry and allows mixing with
higher JP states within each of the lattice irreps given
in Table II. As in [8], we find no signal for any mixing
in the low-lying spectrum. We conclude that our ground
state energies are reliably determined.

Each EΥ(|aP|) extracted from our lattice calculation
has larger errors than those on Eηb(|aP|) because of the
slightly poorer signal-to-noise ratio. The statistical errors
also grow with momentum. Consequently, ∆E(|aP|) has
larger absolute errors as a2P2 grows, but the relative
error on ∆E(|aP|) is larger for small a2P2. As a result,
the kinetic masses with smaller a2P2 have larger errors,
which then stabilise.

TABLE V. The local bilinear operators used in this study.
Note the iγ5 is needed to make the overlaps real [50]. The
second column gives the JPC states that these operators cre-
ate at rest in an infinite volume continuum. The third column
gives the helicity eigenvalues λ that these operators create at
nonzero momentum in an infinite volume continuum which
is only rotationally invariant, while the J in brackets are the
states which contribute to that helicity (c.f. [8, 46].)

OΓ(x) JPC λ(← JP )

ψ̄iγ5ψ 0−+ 0−(← JP = 0−, 1+, 2−, . . .)

ψ̄γiψ 1−− 0+(← JP = 0+, 1−, 2+, . . .)

|1|(← J = 1, 2, 3, . . .)

On each ensemble we examine the kinetic mass, given
by Eq. (32), in order to see how the kinetic mass changes
for a given amb as a function of momentum, as we im-
prove the NRQCD action. Since the energies and ki-
netic masses should only depend on the magnitude of the
spatial momentum, rotational symmetry breaking effects
show up most clearly as a difference between the ener-
gies corresponding to momenta (3, 0, 0) and (2, 2, 1) in
units of 2π/L, and also as a kinetic mass that depends
on a2P2.

One feature of the results is that the kinetic mass for
the ηb is slightly larger than that of the Υ, rather than
being lower to reflect the ordering of the masses seen
in experiment. This was also seen in [3] and explained
there as the result of not including relativistic corrections
to the σ · B/2m term in the NRQCD action (the term
with coefficient c4 in Eq. (3)). Such corrections (spin-
dependent terms at O(v6)) would allow the effect of the
σ ·B term to be correctly incorporated in the kinetic mass
and solve this problem [9, 10]. The strategy adopted in
[3] to mitigate this problem was to use the spin-averaged
kinetic mass, which is less sensitive to these effects, to
tune the b quark mass. The spin-averaged kinetic mass
is given by

M spin-averaged
kin =

3Mkin,Υ +Mkin,ηb

4
. (33)

Figure 10 illustrates this feature by showing results for
the Υ and ηb kinetic masses on set 5, for the p6 +αsp

4 ac-
tion. We also show the spin-averaged kinetic mass. The
solid lines show the corresponding experimental values.
In a full nonperturbative calculation we would want to
tune the amb value for each action separately to match
the spin-averaged kinetic mass to experiment. Here how-
ever we keep the same amb value for each action on a
given ensemble (with only an approximate tuning) so
that we can compare how the kinetic mass changes.

Data for the spin-averaged kinetic masses from the
tree-level O(p4) and O(p6) NRQCD actions, both with
and without O(αsp

4) corrections, are presented in Fig-
ures 11 and 12 for the ensembles described in Table III.
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FIG. 10. Non-perturbatively obtained values for Mkin for the
ηb and the Υ plotted against momentum squared, together
with the spin-averaged kinetic mass, on Set 5. The solid lines
show experimental values and errors are statistical only.

Errors are statistical only. Since these plots have the
same vertical scale we can see a reduction in the size of
ap6 and O(αs) effects as the lattice spacing is reduced,
from the fact that the range of results become more com-
pressed from Sets 1 to 5.

In Figure 13 we plot the differences between the en-
ergies of ηb states with momentum (2, 2, 1) and (3, 0, 0),
in units of 2π/L, on each ensemble using different ac-
tions. We see that the largest SO(3) breaking occurs
for the O(p4) NRQCD action. This breaking is reduced
when including the O(αsp

4) kinetic couplings, and then
reduced further by the O(p6) NRQCD action. The least
SO(3) breaking occurs for the O(αsp

4, p6) NRQCD ac-
tion. This improvement is sizable for the very coarse
ensemble, Set 1, while for the coarse and fine ensem-
bles the improvement is visible, but small. Further, the
breaking on the coarse and fine ensembles goes from be-
ing a significant effect to a non-significant (2σ) one after
improvement. Using this improved action allows for a
more accurate and reliable determination of the kinetic
mass, and hence also of the tuned b-quark mass in high
precision calculations.

In Figure 14, we show the speed of light squared, c2 =(
(∆E+Mkin)2−M2

kin

)
/P 2, computed on Set 5 with the

O(αsp
4, p6) NRQCD action against P 2a2, where good

agreement with the value of 1 is seen.
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FIG. 11. Non-perturbatively obtained spin-averaged kinetic
masses, given by Eq. (33), on very coarse Set 1 (above) and
coarse Set 3 (below) for p4 and p6 actions with both tree-level
and O(αs) c1, c6 and c5. The errors shown are statistical only,
excluding lattice spacing uncertainty, and are correlated. The
data points at each value of P 2a2 have been offset symmet-
rically for clarity. The larger energy with a|P| = 9 is from
the (2, 2, 1) ground state. The solid line is the experimental
value.

V. DISCUSSION AND CONCLUSIONS

In this work we have made the next round of im-
provement to the HPQCD collaboration’s formulation of
the NRQCD action to allow increasingly accurate non-
perturbative calculations in the future. The key results
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FIG. 12. Same as Figure 11 but on fine Set 5.
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FIG. 13. Non-perturbatively obtained values for ∆E221−300

for the ηb for each action plotted against the square of the
lattice spacing.

presented herein include:

• Determining the required operators which need to
be added to the NRQCD action in order to give
a correct heavy-quark dispersion relation to O(p6),
presented in Sec. II.

• Determining the one-loop coefficients of the O(p4)

kinetic couplings, namely c
(1)
1 , c

(1)
6 and c

(1)
5 , in au-

tomated lattice perturbation theory using twisted
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FIG. 14. The speed of light squared, c2P 2 = (∆E+Mkin)2−
M2

kin, on Set 5 with the O(αsp
4, p6) NRQCD action. The er-

rors shown are statistical only and we use the value of Mkin

computed using momentum (1, 1, 1). The dashed line corre-
sponds to c2 = 1.

boundary conditions as an IR regulator. We
also present results for the one-loop (bare-to-pole)

heavy-quark mass renormalisation Z
(1)
m and zero-

point energy W0 which can be combined to give the
one-loop energy shift (from neglecting the quark
mass term in the NRQCD action) of a b-quark.
This one-loop energy shift can be added to the
non-perturbatively determined simulation energies
to give a numerical value, which after converting to
GeV, can be compared to the experimentally deter-
mined masses. All perturbative results are shown
in Sec. III B.

• Determining the full one-loop radiative correction
of these quantities by finding the scale q∗ of αs de-
fined in the V -scheme. In doing this we use the
higher order methodology which takes into account
the anomalously small leading-order moments in
order to obtain physical q∗ as described in Sec. II B.

• Determining the one-loop quantities for three dif-
ferent NRQCD action formulations, namely a
NRQCD action that gives a heavy-quark disper-
sion relation correct (i) to O(p4) and (ii) to O(p6).
These actions employ a mean-field tadpole im-
provement procedure. For reasons described in Sec.
II B we also explore, for the first time, a (iii) Fat3
smeared NRQCD action with the quark dispersion
relation correct to O(p4) which does not require
mean-field improvement. The Fat3 results are en-
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couraging and show stable behaviour against amb,
indicating that the use of this or a similar smear-
ing may be the way forward in future, rather than
tadpole-improvement.

• Varying the stability parameter with n = 4, 6 and
8 to show that, as shown in Sec. III B, the O(αsp

4)
kinetic couplings in the NRQCD action are insen-
sitive to this choice. Thus, if future calculations
need to compensate a decrease in lattice spacing
(which allows higher momentum fluctuations) with
an increase in n, they can do so reliably.

• Testing how the improvement of the NRQCD ac-
tion, both in terms of additional O(p6) operators
and one-loop radiative kinetic coefficients, affects
the non-perturbatively obtained kinetic masses,
c. f. Figs. 11, 12 and 13. The impact of the p6 terms
and the radiative corrections on the kinetic masses
obtained is small, particularly on the finer lattices.
We find a significant reduction in SO(3) symmetry
breaking when using the improved actions on the
very coarse ensemble, Set 1, which decreases as the
lattice spacing is reduced. On the fine lattice, Set
5, SO(3) symmetry breaking has been reduced to
the point that the energy splitting, shown in Figure
13, is very nearly consistent with zero.

Taken together, NRQCD allows increasingly accurate
and precise numerical calculations to be performed by in-
cluding higher-order operators, in combination with de-
termining the matching coefficients using perturbation
theory. We have taken both these steps in this work.
Furthermore, NRQCD is numerically cheap compared
to its relativistic counterparts, being an initial-value,
rather than a boundary-value problem. The outlook for
NRQCD in the high-precision era is promising and this
work helps ensure that this NRQCD formalism will con-
tinue to be an active contributor.
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Appendix A: Derivative Conventions

In this section we define our convention for the discre-
tised derivative operators for use in the perturbative and
non-perturbative calculations. The forward, backward

and partially-cancelled second-order ∆
(2)
j operator are

given by (note that all gauge-links are implicitly mean-
field improved so that Ui(x) is replaced by Ui(x)/u0)

∆+
i (x) = Ui(x)ψ(x+ i)− ψ(x), (A1)

∆−i (x) = ψ(x)− U−i(x)ψ(x− i), (A2)

∆
(2),PC
j ψ(x) = Uj(x)ψ(x+ j)

+ U †j (x− j)ψ(x− j)− 2ψ(x).

(A3)

Then our partially corrected operators are

∆(2) =
∑

j

∆
(2),PC
j , (A4)

∆(4) =
∑

j

∆
(2),PC
j ∆

(2),PC
j , (A5)

∆(6) =
∑

j

∆
(2),PC
j ∆

(2),PC
j ∆

(2),PC
j , (A6)

∆(2)∆(4) =
[
∆(2)

] [
∆(4)

]
+

(
1− 1

u2
0

)
(∆(2) − 18),

(A7)

(∆(2))2 =
[
∆(2)

]2
+ 6

(
1− 1

u2
0

)
, (A8)

(∆(2))3 =
[
∆(2)

]3
+

(
1− 1

u2
0

)(
11∆(2) − 42

)
. (A9)

The additional terms in Eqs. (A7), (A8) and (A9)
are needed for the partial cancellation as described in
Sec. II B. As can be seen, when the operators are trans-
formed to momentum space, the additional terms in
these partially-cancelled operators allow mixing down of
higher-order coefficients to lower-order tadpole countert-
erms. For the smeared operators, no mean-field improve-
ment is performed (i.e. u0 is set to 1) so the additional
terms vanish and the links are replaced by their smeared
counterparts.

Appendix B: Tadpole Counterterms from Mean-field
Improvement

In this appendix we will give explicit formulae for the
tadpole counterterms used to remove the unphysical tad-
pole contributions, as described in Sec. II B, when using
a mean-field improvement procedure. These formulae
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TABLE VI. Numerical values of the one-loop coefficients. Note that the unsmeared results (O(p4) and O(p6)) are mean-field
improved given the formulae in Appendix B and the mean field parameter in Table I. The smeared results (Fat3) are not
mean-field improved.

amb 7.0 4.0 3.4 2.8 1.9 1.1

c̃
(1)
1

O(p4) 0.93051(24) 0.68266(17) 0.61998(16) 0.55180(13) 0.43443(15) 0.261360(99)

O(p6) 0.69607(24) 0.52875(17) 0.50348(16) 0.48171(13) 0.37427(10) −1.5525(50)

Fat3 0.3991(37) 0.2504(27) 0.1914(24) 0.1012(21) −0.1970(15) −1.25492(97)

c
(1)
5

O(p4) 0.568(11) 0.5341(62) 0.5220(53) 0.5056(44) 0.4628(30) 0.2946(17)

O(p6) 0.07863(55) 0.11875(32) 0.13945(27) 0.17215(22) 0.26557(15) 0.2212(58)

Fat3 0.4813(87) 0.4338(50) 0.4100(42) 0.3727(35) 0.2569(24) −0.1199(69)

Z
(1)
m

O(p4) −0.08945(52) 0.08892(52) 0.15488(52) 0.24259(52) 0.44572(52) 0.77983(52)

O(p6) −0.08988(52) 0.08413(52) 0.14947(52) 0.24053(52) 0.50827(52) 1.85962(52)

Fat3 0.08866(52) 0.22842(52) 0.28608(52) 0.36957(52) 0.60455(52) 1.23018(52)

W0

O(p4) −0.94595(52) −0.84252(52) −0.80232(52) −0.74890(52) −0.64040(52) −0.72316(52)

O(p6) −0.93235(52) −0.82391(52) −0.78118(52) −0.72050(52) −0.52587(52) 1.16267(52)

Fat3 −0.97946(52) −0.98997(52) −0.99508(52) −1.00270(52) −1.02215(52) −1.03670(52)

δC

O(p4) −0.22458(53) −0.12171(54) −0.08110(54) −0.02487(55) 0.10867(59) 0.12242(70)

O(p6) −0.22307(53) −0.12185(54) −0.08029(54) −0.01679(55) 0.23149(59) 2.91658(70)

Fat3 −0.05126(53) −0.01907(54) −0.00659(54) 0.01146(55) 0.06658(59) 0.30555(70)

are utilised to produce the one-loop mean-field improved quantities discussed in Sec. III B. Features of these for-
mulae have been discussed in Sec. II B.

For a O(p4) NRQCD action (e.g., using Eq. (2) with
δHp6 = 0) with partial cancellation, the tadpole coun-
terterms are

Z
(1),tads
m

u
(2)
0

= −2

3
− 3

m2
b

, (B1)

c̃
(1),tads
1

u
(2)
0

= −1

8

(
1 +

mb

2n

)−1 [12

n2
− 1

n

+
1

2mb

(
3

n2
− 4

)
+

6

m2
b

(
1

n
− 12

)
+

6

m3
b

]
,

c
(1),tads
5

u
(2)
0

= −4

3
+

1

4mb
+

3

m2
b

− 3

8nm2
b

− 3

4m3
b

,

W tads
0

u
(2)
0

= 1 +
7

2mb
− 3

2m2
b

(
1 +

mb

2n

)
.

For a O(p6) NRQCD action (e.g., using Eq. (2)) with
partial cancellation, the tadpole counterterms are

Z
(1),tads
m

u
(2)
0

= −3

5
− 43

12m2
b

+
11

4m4
b

(
1− m2

b

6n2

)
, (B2)

W tads
0

u
(2)
0

= 1 +
37

10mb
− 3

4nm2
b

− 9

4m3
b

+
21

4m5
b

(
1− m2

b

6n2

)
,
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TABLE VII. Numerical values for the scale aq∗ used to evaluate αs in the V-scheme when computing the one-loop contributions.
Note that the unsmeared results (O(p4) and O(p6)) are mean-field improved given the formulae in Appendix B and the mean
field parameter in Table I. The smeared results (Fat3) are not mean-field improved. The aq∗ are determined as described in
Sec. II C.

amb 7.0 4.0 3.4 2.8 1.9 1.1

aq∗(c̃
(1)
1 )

O(p4) 2.4882(13) 2.17692(51) 2.06963(46) 1.93677(66) 1.6893(15) 1.56045(59)

O(p6) 2.6799(12) 2.22771(80) 2.10459(93) 1.9845(15) 1.7394(23) 2.978(11)

Fat3 2.459(22) 2.083(20) 1.961(21) 1.737(27) 2.056(14) 1.7764(19)

aq∗(c
(1)
5 )

O(p4) 2.651(56) 2.585(30) 2.571(26) 2.560(22) 2.570(16) 2.510(15)

O(p6) 1.922(21) 2.035(30) 2.310(22) 2.651(34) 2.9942(87) 0.625(19)

Fat3 2.034(28) 1.937(16) 1.902(14) 1.854(12) 1.744(12) 1.92(21)

aq∗(Z
(1)
m )

O(p4) 1.375(35) 1.169(11) 1.0532(88) 1.1508(62) 1.1920(35) 1.0931(36)

O(p6) 1.370(21) 1.170(12) 0.9945(86) 1.1342(61) 1.3047(34) 1.7829(25)

Fat3 0.9598(80) 1.0007(35) 1.0416(29) 1.0784(23) 1.1316(24) 1.2024(25)

aq∗(W0)

O(p4) 1.0833(30) 1.0370(32) 1.0163(33) 0.9874(34) 0.9378(38) 1.3173(47)

O(p6) 1.0752(30) 1.0248(32) 1.0014(33) 0.9636(35) 0.9169(37) 1.4451(84)

Fat3 1.0118(27) 1.0264(27) 1.0337(27) 1.0449(27) 1.0761(27) 1.1309(28)

aq∗(δC)

O(p4) 1.4998(91) 1.527(91) 1.589(74) 1.63(12) 2.508(45) 2.56(11)

O(p6) 1.5868(48) 1.63(12) 1.69(11) 1.79(11) 2.428(21) 2.3549(29)

Fat3 1.866(26) 1.390(76) 0.7903(92) 2.89(34) 1.699(49) 1.470(18)
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1
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b
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)
.

(B3)

Appendix C: Numerical Results

In this section, we give numerical values for the
tadpole-improved one-loop coefficients in Table VI. The
tadpole counterterms given in Appendix B can be used

with the mean-field improved data to produce the raw
results. We also give aq∗ in Table VII for each quantity
which is used to determine the the value of αV . Lastly, a
subset of the full one-loop radiative corrections relevant
for heavy-quark non-perturbative calculations are given
in Tables VIII and IX. Other values can be read off the
Figures in Sec. III B.
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TABLE VIII. Numerical values of the one-loop radiative shift relevant for non-perturbative calculations. Note that the
unsmeared results (O(p4) and O(p6)) are mean-field improved given the formulae in Appendix B and the mean field parameter
in Table I. The smeared results (Fat3) are not mean-field improved. This data is plotted in Figure 6. To determine the physical
scale, q∗, we use a−1 = 1.3, 1.6, 2.2 and 3.3 GeV corresponding to very coarse, coarse, fine and superfine MILC ensembles used
by the HPQCD collaboration [3]. The amb values of 3.4, 2.8, 1.9 and 1.1 are the appropriate ones (approximately) for the b
quark on very coarse, coarse, fine and superfine ensembles respectively. However, here we give results for all 4 lattice masses
at each lattice spacing for completeness.

αs(q∗)c̃
(1)
1

amb 3.4 2.8 1.9 1.1 3.4 2.8 1.9 1.1

Very Coarse Coarse

O(p4) 0.2138(39) 0.1983(38) 0.1713(37) 0.1094(26) 0.1905(29) 0.1756(28) 0.1494(27) 0.0944(18)

O(p6) 0.1719(31) 0.1704(32) 0.1445(31) −0.4417(64) 0.1533(23) 0.1513(24) 0.1265(22) −0.4031(52)

Fat3 0.0682(16) 0.0391(12) −0.0682(14) −0.4775(99) 0.0605(13) 0.03424(97) −0.0607(11) −0.4190(73)

Fine Superfine

O(p4) 0.1641(21) 0.1503(20) 0.1260(18) 0.0788(12) 0.1403(15) 0.1278(14) 0.1059(12) 0.06573(79)

O(p6) 0.1323(17) 0.1298(17) 0.1071(15) −0.3564(40) 0.1132(12) 0.1106(12) 0.0902(10) −0.3117(31)

Fat3 0.05184(97) 0.02897(75) −0.05227(80) −0.3555(50) 0.04413(75) 0.02441(59) −0.04466(60) −0.3001(34)

TABLE IX. The same as in Table VIII but for αsc
(1)
5 .

αs(q∗)c
(1)
5

amb 3.4 2.8 1.9 1.1 3.4 2.8 1.9 1.1

Very Coarse Coarse

O(p4) 0.1596(31) 0.1549(28) 0.1415(24) 0.0912(15) 0.1444(25) 0.1402(23) 0.1281(20) 0.0824(13)

O(p6) 0.04513(79) 0.05182(85) 0.0754(11) − 0.04055(62) 0.04698(68) 0.06879(86) −
Fat3 0.1491(34) 0.1377(31) 0.0990(23) −0.0434(40) 0.1318(26) 0.1214(24) 0.0867(18) −0.0384(32)

Fine Superfine

O(p4) 0.1265(20) 0.1228(18) 0.1122(15) 0.07210(95) 0.1098(16) 0.1065(14) 0.0973(11) 0.06244(72)

O(p6) 0.03526(45) 0.04125(51) 0.06085(66) − 0.03037(33) 0.03584(38) 0.05324(49) 0.0915(39)

Fat3 0.1126(19) 0.1035(17) 0.0734(13) −0.0328(25) 0.0956(15) 0.0877(13) 0.06187(92) −0.0279(20)
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