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Rare kaon decays are excellent probes of light, new weakly-coupled particles. If such particles X
couple preferentially to muons, they can be produced in K — prX decays. In this letter we evaluate
the future sensitivity for this process at NA62 assuming X decays either invisibly or to di-muons.
Our main physics target is the parameter space that resolves the (¢ — 2), anomaly, where X is a
gauged L, — L, vector or a muon-philic scalar. The same parameter space can also accommodate
dark matter freeze out or reduce the tension between cosmological and local measurements of Hy if
the new force decays to dark matter or neutrinos, respectively. We show that for invisible X decays, a
dedicated single muon trigger analysis at NA62 could probe much of the remaining (g — 2),, favored
parameter space. Alternatively, if X decays to muons, NA62 can perform a di-muon resonance
search in K — 3uv events and greatly improve existing coverage for this process. Independently of
its sensitivity to new particles, we find that NA62 is also sensitive to the Standard Model predicted
rate for K — 3puv, which has never been measured.
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I. INTRODUCTION

Light weakly-coupled forces arise in many compelling
extensions of the Standard Model (SM) and are the fo-
cus of a broad, international experimental effort [1-3].
If such forces couple preferentially to muons, they offer
the last viable opportunity to resolve the longstanding
~ 3.50 anomaly in (g — 2), [4-6] with new physics be-
low the electroweak scale as originally proposed in [7].1
Thus, there is strong motivation to improve experimental
sensitivity to these interactions.

Independently of this motivation, there is abundant
evidence for the existence of dark matter (DM), whose
microscopic properties remain elusive despite decades of
dedicated searches [9]. One possible explanation for these
null results is that DM couples more strongly to the sec-
ond and third generation. Indeed, there are several con-
sistent, viable, and predictive dark forces which medi-
ate DM freeze-out to higher generation particles [10, 11].
Since muonic forces don’t couple directly to first genera-
tion particles, these DM candidates are difficult to probe
with direct detection experiments, but can be efficiently
produced at accelerators.

It is well known that light muonic forces can be pro-
duced radiatively in rare kaon decays [12-14]. However,
there are several timely reasons to revisit this subject:

1 Light new particles with appreciable couplings to the first gen-
eration have been ruled out as possible explanations in simple
models, including both visibly and invisibly decaying dark pho-
tons (see [3] for a review and [8] for recent discussion).

1. The NA62 experiment [15] is currently producing
unprecedented numbers of kaons, and is poised to
considerably improve sensitivity to muonic forces.

2. In the next few years, the Fermilab g — 2 collabora-
tion [16] and the J-PARC g — 2 experiment [17] will
decisively test the (g —2), anomaly. If this discrep-
ancy is due to new physics, the particles responsible
necessarily predict SM deviations in other, comple-
mentary muonic systems.

3. Recently there has been great interest in new pro-
posals for dedicated experiments to probe muonic
forces [11, 18-21]. To properly assess the merits of
these ideas in the long-term, it is essential to know
what current and near-term efforts can achieve.

In this letter we show that existing and planned kaon
factories, are powerful probes of rare K — urX decays
where X is a new vector or scalar particle that couples
preferentially to muons. Our main focus are the new
physics opportunities of the NA62 experiment at CERN
[22], which will produce roughly 10** K* in the decay
region of the detector.

If X decays invisibly, we find that, with a dedicated
single muon trigger, NA62 could have unprecedented sen-
sitivity to K — uvX (X — invisible) processes. Such a
search could probe nearly all of the remaining parame-
ter space in which muonic forces reconcile the (g — 2),
anomaly. If the invisible decay daughters are DM par-
ticles, this also enables X-mediated thermal freeze out
[11]; if, instead, these daughters are neutrinos, this pa-
rameter space can also ease the ~ 3.50 tension between
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early and late time measurements of Hy [23].

If X decays visibly to muons, we find that an NA62
di-muon resonance search in K — uvX(X — ptp™)
processes could greatly improve the existing constraints
for both scalar and vector muonic forces, thereby cover-
ing some of the (g — 2), favored region for mg —m, >
myx > 2m,. The irreducible SM background for this
search arises from K — 3uv decays which have never
been observed before; intriguingly, we find that NA62
can measure this process by reanalyzing already collected
data (see [24] for the current best upper bound).

II. VECTOR FORCES
A. Gauged L, — L~

A new massive vector boson V gauging a sponta-
neously broken L, — L, symmetry is a minimal candidate
to explain the (g —2), anomaly. The Lagrangian for this
model contains

2
£ TEVVE 4V, (gv I + eedfy) (1)

where gy is the gauge coupling and my is the vector’s
mass and J{; is the L, — L, current [31]. Loops of taus
and muons induce an irreducible kinetic mixing of V,
with SM photon € ~ gy /67 which yields the coupling to
the EM current Jf; in Eq. (1). The rest frame partial
widths for V' — ff are
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where f = p,7 and ay = 57‘2//41777 and the width to neu-
trino flavor vy is I'v .5, = aymy /6. Decays through
the EM current are suppressed by additional factors of
€2a/ay, so we neglect these here. In all of the parameter
space we consider here, V' decays promptly within the
65 m decay region at NAG2.

For my below the weak scale, the existing constraints
arise from modifications of neutrino scattering observ-
ables and from B-factories. Di-muon production in neu-
trino trident scattering vN — vNputu~ has been mea-
sured by the NuTeV [32], CHARM II [26], and CCFR
[28] experiments and constrains the rate of additional
V' mediated contributions to this process. The orange
shaded band in Fig. 1 presents the conservative CHARM
II bound and the dotted orange curve shows the more
constraining CCFR result.? Due to the kinetic mixing

2 Although CCFR naively imposes a stronger bound, the analysis
did not include a background from diffractive charm production,
which NuTeV and CHARM II do include.We thank Todd Adams
for pointing this out. We leave a more detailed analysis of this
issue for future work [33]; see also [27] for a discussion.

with the SM photon in Eq. (1), solar neutrinos can scat-
ter with electrons by exchanging ¢-channel V' particles, so
this model is constrained by Borexino [21, 34, 35]. The
dashed Borexino bound in Fig. 1 assumes only the irre-
ducible contribution to the mixing from tau and muon
loops. A comparable bound can be derived from over-
cooling of white dwarfs from neutrino pair emission from
an off-shell V' (36, 37]. Finally, for my > 2m, the
BABAR 4u search [25] constrains V radiation from fi-
nal state muons in eTe™ — uTpu~V(V — ptu).

Although our analysis could be extended to arbitrarily
low masses, we require my = 1 MeV to avoid tension
with Big Bang Nucleosynthesis [38]. However, for my ~
few MeV, V' — v decays after neutrino decoupling in-
crease the neutrino/photon temperature ratio and yield
ANyg ~ 0.2 — 0.5, which can ameliorate the ~ 3.50 ten-
sion between cosmological and local measurements of the
Hubble rate Hy [23]; to the left of this band, ANeg > 0.5,
which is disfavored by CMB and BBN measurements un-
der standard cosmological assumptions [30].

As shown in Fig. 1 (left panel), the asymptotic reach of
K — prX with X decaying invisibly could cover a large
portion of the parameter space, far beyond the reach of
present experiments. Conversely the reach of K — uvX
with X decaying to di-muons is competitive with existing
bounds from BABAR. The detailed study and the exper-
imental challenges of the invisible and di-muon analysis
are described in Sec. IV A and Sec. IV B respectively.

B. Adding L, — L, Charged Dark Matter

If a light DM particle x also couples to a new muonic
force, the decay mode can significantly change the V
branching fraction above the di-muon threshold; below
this boundary, V' always decays invisibly (either to neu-
trinos or DM). In this section we add a lighter (my >
2m,,) DM candidate x charged under L, — L, and ex-
tend Eq. (1) to include a coupling to the dark current
LD gy V,J¥. For representative DM candidates, we have

ix*Oux + h.c.  Complex Scalar
JE = ¢ X7 v°x Majorana, (3)
XYHx Dirac

where g, = gvg, is the total DM-V coupling and the
DM’s L, — L, charge g, is a free parameter; throughout
this paper we assume p, 7 and their neutrinos carry unit
charge.

For m, < my, freeze out proceeds via s-channel anni-
hilation to SM final states and calculated abundance for
each of the candidates in Eq. (3) can be found in [11, 39].
In the right panel of Fig. (1), we show representative tar-
gets for these DM candidates in the ay vs. my plane
alongside existing constraints on L, — L, forces. Note
that the BABAR constraint from the left panel is absent
because V' decays predominantly to DM in this regime;
future work will assess the B-factory reach for this sce-
nario [33] (see also [40]). Note that the Hy favored region
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FIG. 1. Left: Parameter space for a gauged L, — L. SM extension from Sec. II. ay = g¥ /4r where gy is the coupling
strength to the g — 7 current. The light green band is the 20 region accommodating the (g — 2), anomaly, while the dark green
vertical region is the parameter space for which early universe V' — v decays increase yield ANeg = 0.2 — 0.5, ameliorating
the ~ 3.50 tension between cosmological and local measurements of the Hubble rate Ho [23]. We show projections for an
NAG62 search for Kt — utv,V followed by a prompt invisible V' — v decay (red curve) or a prompt visible V. — ptp~
decay (blue curve). Both sensitivities assume the full NA62 luminosity to be recorded by the single muon and di-muon trigger
respectively and systematic errors comparable to the statistical uncertainty (see Sec. IV and Appendix C for more details).
The gray shaded regions are excluded by the BABAR 4 search [25] and (g — 2),. The shaded orange region is the CHARM-II
p-trident constraint [26, 27]; the dashed curve is the CCFR measurement [28] (see text for a discussion). Right: Same as
left, only the V is now also coupled to a dark matter candidate , such that BR(V — xx) ~ 1 over the full parameter space.
Note that the Ho band and the BABAR constraints no longer apply because V' decays yield neither neutrinos (for Hp) nor
muons (for BABAR). The purple bands represent the thermal freeze out parameter space for xx annihilation to SM final states
(neutrinos and muons, where kinematically allowed) through virtual s-channel V' exchange. Note that for m, < m, DM can
only annihilate to neutrinos and hence is not subject to the BBN [29] or CMB [30] energy injection bounds on light DM.

is also absent because this band requires V' to decay to where z = mi /4mi and the lab frame decay length is

neutrinos after decoupling. 3% 106\ /50 MoV 4 5
X (S b

14 ~ 60 7

e m( g ) ( me ) (75 GeV)’ g

where the m_? scaling accounts for the boost factor. In
o ) . . this minimal “visibly decaying” scenario, most of our fa-
The minimal Lagrangian for a Yukawa muonic force is vored parameter space is below the di-muon threshold,
1 9 mj) ) ~ so the diphoton channel dominates and, for the maxi-
L= 5(8u¢) - 7¢ — Yo PRLL, (4) mum ¢ energy ~ 75 GeV, nearly all decays occur outside
the NA62 detector to mimick a missing energy signature.
However, a dedicated study is required to identify the
distance beyond which these decays are invisible given
NA62 kinematics and acceptance; we also note that it
may be possible to perform a ¢ — 77 resonance search
if this occurs inside the decay region.
Alternatively, ¢ may decay predominantly to unde-
agme ( 4mi ) 3/2 tected particles (e.g DM) in the “invisibly decaying” sce-

III. SCALAR FORCES

where ¢ is a real scalar particle. The interaction in
Eq. (4) can arise, for instance, by integrating out a heavy,
vectorlike lepton singlets whose mass mixes with the right
handed muon as discussed in Appendix B. In the absence
of additional interactions, for my > 2m,,, the dominant
decay is ¢ — ptu~ with partial width

Loyt = 5 (5) nario. In both cases, the scalar is produced via K — uv¢
processes whose width is computed in Appendix A.

In Fig. 2 we present our NA62 projections for visi-
ble (left) and invisible (right) decays on the oy = yi yE%s
vs. mg plane assuming 100% branching ratio in both
channels. The main difference relative to the vector case
is that the K — 3uv search improves considerably be-
(6)  yond the BABAR 4y bounds; here the eTe™ — putu=¢

2
Mg

where oy, = y3 /4m. For mg < 2my,, the dominant chan-
nel is ¢ — v~ through a muon loop with width

2
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Parameter space and NA62 projection for a muon-philic scalar particle ¢ described in Sec. III. Here we define

g = yi /4w where y4 is the Yukawa coupling to muons from Eq. (4) and the light green band is the 20 region accommodating
the (g — 2), anomaly. Left: Projections for an NA62 search for K+ — utv,¢ where ¢ decays visibly into ¢ — uTu™ or vy
where kinematically allowed. On the left of the dashed grey line the lifetime of the muon-philic scalar is long enough to give
an invisible signal at NA62. Also shown are E137 constraints from [41]. Right: Same as the left, but here we assume that ¢
decays invisibly. Both sensitivities assume the full NA62 luminosity and the searches to be statistic dominated (see Sec. IV and

Appendix C for more details).
space is not shown.

cross section is much smaller for ¢ vs. V' production. We
also show the E137 bound for the visible decay scenario
from [41] (see [42] for similar constraints). There are ad-
ditional constraints from supernovae [41, 43] not included
in the figure due to their large astrophysical uncertainties
and significant model dependency in the invisible decay-
ing scenario.

IV. RARE KAON DECAYS AT NA62

The electroweak coupling governing SM K — uv de-
cays is

LD (ZGFfK Vus) aaK_Du'YaPLM + h.C., (8)

where G is the Fermi constant, V,; = 0.223 is the us
CKM matrix element, and fx = 160 MeV is the kaon
decay constant. We are interested in three-body correc-
tions to this process: K™ — ptv, X, where X =V or
¢, is emitted from a final state p and/or v, line. The
differential decay distribution is

dU(K* — ptvX)
= S5y | LM ©)

dmlznlSS
where m,,x is the uX invariant mass while m?2,_ is the
missing invariant mass defined as
Miniss = (Px + P,)° = (Px — P,)? (10)

The matrix element |M|? is presented for both scalar
and vector scenarios in Appendix A. Below we describe

Note that in both panels for masses below an MeV, ¢ decays during BBN, so this parameter

two different search strategies depending on whether X
decays invisibly or to muons.

A. Invisible analysis

If X is produced in K+ — ptv,X events and decays
invisibly, the m2, . distribution K — p+ invisible events
differs from the SM prediction (see Appendix C for more
details). The sensitivity of an m?2 ;. search in single muon
events is computed using the log-likelihood ratio

_Li(S)
-y -2toe

where L;, the likelihood in each bin ¢, is constructed
from a Poisson distribution,® and S = Ng+ ABR(KT —
uTvX) is the signal yield with acceptance A ~ 0.35. We
require A(S) < 4 to define the 20 sensitivity.

Our background sample is extracted from public NA62
data from the 2015 run in which 2.4 x 107 events passing
the single muon trigger were recorded [44]. These data
yield Ng+ = 10® kaons after dividing out the detector
acceptance and SM branching ratio BR(KT — pty,) =

(11)

3 Li(S) = We*(se&*m) where D;, B;, and eg; are
data, background, and signal fraction in each bin. The maximum
likelihood estimator is S = 0 under the assumptions behind our
projections, D; = B;.



0.63; all events in this sample are binned in missing mass
intervals of 4 x 1073 GeV?Z.

One of the main backgrounds for this search is K —
uv(7y), in which a radiated v is not detected and con-
tributes to the missing energy. This process peaks at
m2 . = 0 and its contribution to the large missing mass
tail depends NA62’s photon rejection efficiency. Due to
this large background, including missing mass bins be-

likelihood ratio defined in Eq. (11).

In the 2015 data sample, other backgrounds are present
at large m2, . and exceed the K — pv(y) tail for
m2,., > 0.1 GeV?. These events are largely due to the
muon halo and we expect their contribution to be sub-
stantially reduced in the 2017 dataset where NAG62 uti-
lizes a silicon pixel detector (GTK) to measure the tim-
ing and momentum of upstream Kaons [22]. To approxi-
mately account for this existing improvement, we rescale
the background yield above m2, . > 2.3 x 1072 GeV? by
an additional factor of four to estimate our sensitivity.*

Maximizing signal sensitivity is challenging for two
main experimental reasons:

1. Single muon trigger bandwidth: This issue is
related to the large number of single muon events
arising from SM K — puv decays. Thus, the cur-
rent single muon trigger at NA62 is rescaled by
1/400 [45], so only one single muon event out of
400 is recorded, which reduces the sensitivity of
our search. This limitation can be overcome with a
dedicated single muon trigger with a lower cut on
the missing mass at trigger level (or equivalently an
upper cut on the muon momentum). In the 2015
data sample, despite over 2.4 x 107 events pass-
ing the single muon trigger, only 5.6 x 103 have
M2 > 2.3 x 1072 GeV?. Thus, with a dedicated
trigger, it would be possible to record all events
with m2,, > 2.3 x 1072 GeV? and keep the 1/400
trigger rescaling for those with lower myiss. Our
search strategy exploits this possibility and utilizes
the full NA62 luminosity Ng+ ~ 103 in the decay
region, which we assume for our projections.

2. Background systematics for large m2, : Un-
fortunately these systematics are difficult to esti-
mate from the 2015 data release in which there is
disagreement between data and Monte Carlo (MC)
modeling at large myiss. A careful experimental ef-
fort is required to assess these uncertainties. Since
our goal here is to show how much the sensitivity of
NA62 could be improved under the most optimistic
circumstances, our analysis presents results with
only statistical errors; these can only be achieved
once systematic uncertainties become subdominant

4 We thank Evgueni Goudzovski and Babette Débrich for discus-
sions on this.

for the full NA62 luminosity: ogys/B < B2 ~
10=%. In Figs. II and III we present future sensitiv-
ities assuming systematics are negligible, but note
that exploring new parameter space in this plane
only requires systematic uncertainties to be below
1%. In Appendix C 1 we show how our results vary
under different assumptions regarding systematic
€ITors.

B. Di-muon analysis

If X is produced in K+ — p*v,X events and de-
cays visibly to di-muons, NA62 can improve upon previ-
ous experiments in the K+ — 2u"u~v channel. The
SM prediction for this branching ratio is BR(K+t —
2utp~v)sm = 1.3 x 1078 [46] and currently has not
been observed experimentally; the best limit on this
process comes from the E787 measurement BR(K+ —
20T " V)obs < 4.1 x 1077 in 1989 [24]. With the present
luminosity (~ 101K+ [45]), NA62 should already have
recorded at least 100 such events passing the di-muon
trigger. Here we propose a di-muon resonance search in
Kt — putvX(u" ™) events with opposite sign (OS) di-
muon pairs.

Since these data have not been released by the NA62
collaboration yet, we estimate the sensitivity of the
search from our MC simulation. We implement the ef-
fective weak interaction of Eq. (8), the electromagnetic
interactions of K+ decays, and the new physics couplings
from Egs. (1) and (4) in MadGraph 5 v2 LO [47, 48].
Both the background and the signal in 2u™ 1~ v final state
are simulated. In Figs 1 (left) and 2 (left) we present
the results of this analysis in blue curves labeled NA62
K — 3uf. Systematic uncertainties on the background
will affect less the result compared to the invisible chan-
nel because a data-driven background estimate would be
possible. For more details about our projection, see Ap-
pendix C2.

V. CONCLUSION

In this letter we have shown that rare kaon decay
searches at NA62 can probe most of the remaining pa-
rameter space for which muonic-philic particles resolve
the ~ 3.50 (g — 2), anomaly; these are the only viable
explanations involving particles below the weak scale.
The same parameter space can also accommodate ther-
mal DM production or reduce the Hy tension if the new
particle decays to DM or neutrinos, respectively.

If this new particle decays invisibly, achieving this sen-
sitivity requires a dedicated single muon trigger to record
all K+ — ut +invisble events with m?2 ;. > 0.05 GeV?
during Run 3. The ultimate reach in this channel de-
pends crucially on the systematic uncertainties on events
with these kinematics; a dedicated experimental study
is needed to assess the feasibility of this requirement.



If the new particle decays visibly to di-muons, we find
that NA62 can improve existing bounds with a resonance
search in opposite sign muons in K+ — 2" " v, events.
The improvement is marginal if the muonic force is medi-
ated by a vector but substantial in the scalar case. This
proposed search is based on already existing trigger and
can be performed on the data already recorded during
Run 2.

Finally, we note that if the (¢ — 2), anomaly is con-
firmed, NA62 can play important role in deciphering the
new physics responsible for the discrepancy. However,
even if future measurements are consistent with the SM,
the searches we propose can still explore parameter space
for which muonic forces mediate dark matter production
via thermal freeze out. Such measurements can also in-
form future decisions about proposed dedicated experi-
ments including NA64.[19], M3[11], BDX [49, 50], and
LDMX [51, 52].
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Appendix A: Decay Calculation

The SM width K — pvr can be written as

2
mr A2 m?2
(K ) = Eli—-— . Al
(K" = ptv) = —— ( e ) (A.1)
where the coupling
A\u = 2GF fix myu Vs ~ 8.7 x 1078, (A.2)

sets the typical size of the kaon decay widths consid-
ered here. Note that A\, has to be proportional to the
muon mass because a chirality flip is required to make
the amplitude non-zero. The kaon width is '+ =
5.3 x 10714 MeV, so BRk—u =~ 0.63. Below we present
the calculation for the squared matrix elements of

K*(P) = pt (kv (@)X (0), (A-3)

vy Yy

K+ K+

—————— Voo 0
nr nr

FIG. 3. Two representative Feynman diagrams that con-
tribute to rare kaon decays involving a light, invisibly decay-
ing vector from Sec. II (left) and scalar from Sec. III (right).
In the vector case there is another diagram where the vector
radiates off from the neutrino line. This is not shown but it
is included in our result.

where X = V or ¢ is a muonic force carrier considered
in this paper and P, k,q and ¢ are four vectors. These
results are already present in the extensive literature on
muonic forces (see for example [53]) but we present them
here for completeness.

For either scenario, the partial width for this process
can be written as

1
ks, x = 2567r3nﬁ</Z|MX|2dm%2dm§3 , (A4)

where the limits of integration are given by (m25)min =
m% and (my)max = (mx —my)?. For a fixed mis the
minimum and maximum of msg are given by

2
(s B = (3 + B3~ (B3P (B ) (45)

where we define

2 2 2 .2 2
mip My Mg — Mz = My (A.6)

E;: B E;:

2mia 2mq2

In Fig. 4 we plot for completeness the normalized signal
rates for both the vector and the scalar model.

1. Vector Mediator

For the vector model introduced in Sec. IT with X =V,
our process of interest arises from the Feynman diagram
in Fig. 3 and also contains an additional diagram with V'
emitted from the v,. The squared matrix element is

(m2y + Qmi —2m?%)

|./\/lv|2 = g\z/—)\i 2+

may —m?2
B (m% — mi)(m%, + 2mi) Lo (m? — mi)Q + m%/mi
(m3s — mi)Q mis(mss — mi)
33, —m3)  (mdy + m3 — 2m3,)
- 1 + 5 , (A7)
mig mia

where k g and [ are respectively the u, v and V momenta
and we define mis = (£ + ¢)? and ma3 = (£ + k)2. Note
that the full matrix element vanishes for m, — 0 due to
chiral symmetry.
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FIG. 4. Total branching ratio for K — prX where X is

a vector V (red) or a scalar ¢ (black) as a function of the
the mass of X. In the small quadrant we give a zoom of the
relevant region for K — pvX (2p).

2. Scalar Mediator

For the muon-philic scalar introduced in Sec. III, the
squared matrix element is

2. 2
Wiz
QmEI (m2, — mﬁ

—mis ((m33 + mﬁ)z + miy(m3s — mﬁ))

ik + 2

IM|? =

i (md, — mm)| (A8
where ma3 is defined below Eq. (A.7). The squared ma-
trix element above does vanish for m, — 0 because
the scalar yukawa interactions with the muons in Eq. 4
breaks the chiral symmetry independently of the muon
mass.

Appendix B: Complete Scalar Model

Before electroweak symmetry breaking, the Yukawa in-
teraction in Eq. (4) is forbidden by gauge symmetry. The
simplest gauge invariant operator that gives rise to this
Yukawa interaction is the dimension 5 operator

SLHuC, (B.1)

where L is the second generation lepton doublet and pu¢
the muon singlet in 2-component spinor notation.

In this Appendix we present a UV completion of
the model which gives rise to this interactions after in-
tegrating out heavy fermionic degrees of freedom (see
e.g. [13, 54, 55] for other alternatives). This construc-
tion differs from the ones in [20] in that the coupling to
muons does not arise due to the scalar mixing with the

Higgs. In particular the Higgs-scalar mixing is loop sup-
pressed in this model and can be parametrically smaller
in a technically natural manner; thus, as discussed below,
many of the scalar bounds presented in [13] do not apply
for an equivalent ¢ — u coupling.

The model includes an extra vector-like pair of
fermions in which one of these carries the same gauge
quantum numbers as ¢ and the other carries compensat-
ing quantum numbers to cancel anomalies. This exten-
sion can generate the required coupling through mixing
between this new fermion and the muon. The relevant
terms in the Lagrangian of the model are

LD yuLHp® + Mypyp© + M ggpyp© + Aagppu®
+ ypLHY® + h.c.,

where (1), °) is the new vector like fermion pair. Note
that we chose to not include a mass mixing term u®y
which is allowed by all the symmetries, since this term
can be removed by an appropriate field redefinition.

Assuming M > v, we can integrate out the new fields
before electroweak symmetry breaking. This generates
the following new terms

(B2)

)\10: m
6w M OF" Fuw,

where F' is the photon field strength. After electroweak
symmetry breaking the first term in the above interaction
generates the coupling in Eq. (4), with

— A2yy %LH#C + (B.3)

. )\gywv
V2M

The second term in Eq. (B.3) contributes to the scalar
decay to photons. Depending on the choice of parame-
ters the contribution from this term can be larger than
the IR contribution from the muon loop and the partial
width to photons in Eq. (6) must be corrected. This
shows that different choice of UV parameters can lead
to either prompt or displaced decays to photons, which
highlights the complementarity of performing both an in-
visible search and a diphoton resonance search.

The couplings in Eq. (B.2) induce a ¢-Higgs mixing at
loop level. We can estimate the size of the mixing from
the contributions involving A; and A; to be

Yo = (B.4)

Ay, A2y,

1672 1672
This induces mixing angles much smaller than the ~ 1073
bound discussed in [13, 56] for all of the parameter space
we are interested in. One can also easily show that the
decay to electrons induced by the mixing with the Higgs
is small compared to the diphoton decay from the ¢F?2
coupling.

Muoh, Muoh. (B.5)

Appendix C: NA62 Analysis

Here we provide additional details about the procedure
with which NA62 projections are computed this paper.
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FIG. 5. Left: Missing invariant mass distribution for K — pr'V' decays for different masses of V' (in different colors) where
m2,,.. is the combined invariant mass of V and v, in Eq. (9). The missing mass distribution is very similar. In the scalar case
very similar distributions are obtained. The black line correspond to the background distribution extracted from [44]. The
data are binned in squared invariant mass bins of 4 x 1072 GeV2. Right: Sensitivity at 2o level of the invisible search for
modification of the missing mass tail from K — pv'V (V' — invisible). The red dashed line shows when the signal is equal to the
background extracted from the 2015 data after applying the missing mass cut. The blue band is the present sensitivity based on
10® kaons collected in 2015; the thickness of the band encompasses different assumptions about the magnitude of background
systematic uncertainties. The green band shows the future sensitivity based on 10'® kaons with different systematics. A
background suppression at large missing mass is assumed to account for the GTK installation. The dashed black line is based
on the likelihood analysis described in Sec. IV A, here the background uncertainty is assumed to be dominated by statistics.

In particular, we present the background distributions
for both the visible and invisible analyses and comment
on how different assumptions regarding systematic errors
affect these projections.

1. Invisible analysis

In Fig. 5 left we compare the m2,  distribution for
K — uv X signal events for different X masses using the
background shape extracted from NA62 public data [44].
The signal here is shown for X = V but the scalar case
is qualitatively similar. Note that the signal reduction
at small mﬁliss is myx dependent, so an optimal mpjss
can be chosen for different values to maximize sensitiv-
ity. As discussed in Sec. IV A, the background at large
missing mass does not appear to scale as one might ex-
pect if it were dominated by the QED radiative tail from
K — pv(vy) decays. The reason is that other backgrounds
including the halo muon background and K — 37 be-
come dominant in this regime. We believe that these
backgrounds will be further suppressed in future data
releases for which timing and momentum of the kaon
will be measured upstream with the silicon pixel detec-
tor (GTK), which has already been used for the 2017 run.
To roughly account for this improvement, we rescale the
background above m2;_ > 0.023 GeV? by an additional
factor of four.

In Fig. 5 right we show estimated 20 sensitivities for
the vector case computed in a cut-and-count experiment;

similar results are also found for the scalar case. This
simpler analysis is performed here and compared to the
likelihood analysis presented in the main text in order to
quantitatively show the effects of systematic uncertain-
ties on the background.

The 20 sensitivity of an mZ, . search in single muon
events is computed by evaluating S/v/B + k2B? = 2,
where the S is the number signal events, B the number
of background events and k = ogys/B is the systematic
uncertainty on the background. The signal yield is

_ NK+ A mlznu 2 dFK‘*’—},u*'UX
S= I1B’7+\/m§m dmmiﬁmu (C.1)

where A ~ 0.35 is the the detector acceptance. mgyt is
the lower cut on the missing mass, which is optimized for
each value of mx to maximize signal sensitivity, but al-
ways satisfies m2,, > 0.05 GeV?%; m2_ = (myx —m,)? =
0.15 GeV? is the maximum kinematically allowed miss-
ing mass.®

From Fig. 5 it is clear that the future NA62 sensitiv-
ity depends greatly on background systematics at large

5 Note that mgut = 0.05 GeV? is the minimal missing mass cut

in our cut and count analysis. This should not be confused with
iss = 0-023 GeV? which is the value of the invariant mass
below which adding bins to the log-likelihood ratio in Eq. (11)
does not effectively improve signal sensitivity. Of course the
physics behind these two quantities is very similar and related
to the background shape peaking at mpy;ss = 0.
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FIG. 6. Normalized 2D distributions of m whu- and m udu-
for signal of two benchmark points (my = 216 376 MeV) and
the SM background. The muon momenta are evaluated in the
K™ rest frame, and ,ui‘“ corresponds to the leading muon and
ug is the other. As expected, u leads to a peak of V(¢) for
the higher mass of the muonic force, while pJ does the same
for the lower mass.

missing mass. For the present/future luminosity, the
blue/green lines at the bottom of these bands correspond
to systematic uncertainty kpyin for which the statistical
uncertainty becomes dominant. This can be estimated
as a function of the luminosity and the number of back-
ground events for a given missing mass cut

~ (4x107%,2.5 x 107%), (C.2)

Kmin ™ \/»

where the first number assumes 10® kaons and 652 back-
ground events after a missing mass cut of m2. . >
0.05 GeV? and the second number assumes 10'® kaons
and 1.6 x 107 background events (accounting for the ex-
pected background suppression). For comparison we also
show in Fig. 5 the most aggressive reach derived from our
likelihood analysis. As expected, the log-likelihood im-
proves the reach for low mass resonances where the signal
spreads widely in the large background region (see Fig. 5
left) and a simple cut-and-count analysis poorly distin-
guishes the signal from background.

2. Di-muon analysis

In this section we describe the proposed opposite-sign
di-muon resonance analysis in K — 3uv events, which

defines the blue projections in Fig. 1 (left) and 2 (left) la-
beled NA62 K — 3u+F. We assume that the irreducible
SM background for our search arises from K decays to
three muons through an off-shell gauge boson and ne-
glect other possible backgrounds from non-detection of
photons, 7% misidentification and decay which are ex-
pected to be in the same order or subdominant. More-
over, for simplicity, we assume acceptance for both signal
and background to be 5%. This number is roughly 1/6
of the acceptance reported in [44] for the single muon
trigger and should roughly account for the extra cost of
requiring three muons to pass trigger and identification
criteria.

The other challenge of this search is the ambiguity in
choosing the opposite-sign di-muon pair to reconstruct
the X invariant mass. To resolve this problem we choose
the opposite-sign di-muon pair that gives an invariant
mass closer to each test mass for the signal. Typically it is
the leading muon above mx ~ 300 MeV, and the second
leading one below mx =~ 260 MeV as seen in Fig. 6.
After this choice is made, we select the signal and the
background within a narrow invariant mass bin around
each test mass [mx — 20m,+,-,mx + 20m,+,-]. The
invariant mass bin size can be determined as a function
of the smearing of the muon momentum in the NA62
detector

om

pru— _ 1 <5plt+ o 5pu>
mx 2 pH+ p;,t,

where dp,, is the muon momentum resolution of the NA62
detector, which satisfies [44]

(C.3)

%20.3%@(

"
h . GeV) : (C.4)

where @ indicates a sum in quadrature. The muon mo-
mentum is fixed to be p,, = 20 GeV(~ pg+/4). The
future sensitivities of this search at 20 in Fig 1 left and
in Fig 2 assume 10! kaons and uncertainties dominated
by statistics. Systematic uncertainties on the background
can be under control because the data-driven background
estimate (side-band) is made possible by the peaked na-
ture of the signal.
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